SUPERGEOMETRY AND SUPERGRAVITY HW 3

HEIDELBERG UNIVERSITY 2017

Problem 1 (Central charges and BPS bound): Consider supersymmetric quantum mechanics with Hamiltonian H and 2 complex supercharges Q_1, Q_2 with non-trivial commutators

(1)
$$\{Q_1, Q_1^{\dagger}\} = H \qquad \{Q_2, Q_2^{\dagger}\} = H \qquad \{Q_1, Q_2^{\dagger}\} = Z$$

where Z is a *complex* central charge. Show that

 $(2) H \ge |Z|$

and describe all irreducible representations of the supersymmetry algebra. *Hint:* Use that $Q_{\alpha} := Q_1 + e^{i\alpha}Q_2$ satisfies $\{Q_{\alpha}, Q_{\alpha}^{\dagger}\} \ge 0$ for all α .

Problem 2 (Supersymmetry algebras):

(a) Give the structure constants describing the extension of $\mathfrak{p} = \mathfrak{so}(1,3) \oplus V$ to the 4d $\mathcal{N} = 1$ supersymmetry algebra $\mathcal{S} = \mathfrak{p} \oplus S$ with respect to a suitable *real* basis of $S \cong \mathbb{R}^4$. *Hint:* You may either start with a real ("Majorana") representation of Cl(V), or work backward from the presentation

(3)
$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}$$

of S in terms of the complex basis Q_{α} of S (and conjugate basis $\bar{Q}_{\dot{\beta}}$ of \bar{S}) given in class. Also rewrite the invariant $\epsilon_{\alpha\beta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ in the real basis.

(b) Repeat the last part of the exercise in 5d $\mathcal{N} = 1$ to give an explicit description of the real central charge: By writing so(1,4) as a subalgebra of $Mat(2,\mathbb{H})$ acting on $S \cong \mathbb{H}^2$, identify the symmetric pairing $S \times S \to \mathbb{R}$ as the real part of a (quaternionic) hermitian form on $S \cong \mathbb{H}^2$. *Hint:* You may use the description of $so(1,5) \cong sl(2,\mathbb{H})$ given in class, or start from $so(1,3) \cong sl(2,\mathbb{C}) \subset Mat(2,\mathbb{H})$ and work upwards. Gamma-matrices would be fine too.