Wintersemester 2015/16 — Lie-Gruppen und Darstellungstheorie Übungsblatt 9

Abgabe: Donnerstag, den 17. Dezember 2015,

1. "A little plethysm" a day keeps the rust away, or the addition of angular momentum

Let V be the fundamental 2-dimensional representation of $\mathfrak{sl}(2,\mathbb{C})$. Show that for $a \geq b$,

 $\operatorname{Sym}^{a}V \otimes \operatorname{Sym}^{b}V = \operatorname{Sym}^{a+b}V \oplus \operatorname{Sym}^{a+b-2}V \oplus \cdots \oplus \operatorname{Sym}^{a-b}V$

(Fulton & Harris, exercise 11.11)

Hint: A good way to keep track of the "spin content" is to multiply out the polynomial $(t^a + t^{a-2} + \cdots + t^{2-a} + t^{-a})(t^b + t^{b-2} + \cdots + t^{2-b} + t^{-b}).$

2. Miscellaneous, from Humphreys

Let F be any field.

i) Let $x \in \mathfrak{gl}(n, F)$ have *n* distinct eigenvalues a_i . Show that the eigenvalues of $\operatorname{ad}(x)$ are precisely the n^2 scalars $a_i - a_j$, which of course need not be distinct.

ii) Show that $\mathfrak{sl}(n, F)$ is precisely the derived algebra of $\mathfrak{gl}(n, F)$.

iii) Show that the center of $\mathfrak{gl}(n, F)$ is $\mathfrak{s}(n, F)$ (the scalar matrices). Determine the center of $\mathfrak{sl}(n, F)$.

3. Oscillators

The quantum mechanical Hilbert space of the harmonic oscillator can be used to build unitary representations of $SL(2,\mathbb{R})$ and SU(2). We first briefly recall basic definitions.

Consider the algebra of operators a, a^{\dagger} satisfying $[a, a^{\dagger}] = 1$. The Hilbert space of the harmonic oscillator is spanned¹ by a lowest weight (or vacuum) vector $|0\rangle$ satisfying $a|0\rangle = 0$, and the infinite tower $|n\rangle = 1/\sqrt{n!}(a^{\dagger})^n|0\rangle$ above it of images under a^{\dagger} .²

The Hilbert space is equipped with a Hermitian inner product $\langle \cdot | \cdot \rangle$, and the inner product of vectors $|\phi\rangle$ and $|\psi\rangle$ is often denoted $\langle \phi | \psi \rangle$. It is defined by $\langle 0 | 0 \rangle = 1$ and $\langle n | m \rangle = 0$ for $n \neq m$. The normalization of $|n\rangle$ is chosen so that $\langle n | n \rangle = 1$. Check this if you have never done so!

I.)
$$SL(2,\mathbb{R})$$

Define $L_{+} = (1/\sqrt{2})a^{\dagger}a^{\dagger}$ and $L_{-} = (1/\sqrt{2})aa$.

i) Calculate the commutator $[L_+, L_-]$ and call it L_0 .

ii) Calculate $[L_0, L_{\pm}]$. You should discover that L_+, L_-, L_0 generate an $\mathfrak{sl}(2, \mathbb{R})$ Lie algebra.

Winter 2015/16

Sam Selmani Prof. J. Walcher

¹in the Hilbert space sense, i.e. finite linear combinations of the given vectors are dense in the Hilbert space.

²if you prefer, you can also say that the Hilbert space is $\mathcal{H} = l^2(\mathbb{N}_0)$.

iii) Starting from the vacuum $|0\rangle$, applying L_+ repeatedly we obtain a representation spanned by all the even states $|2n\rangle$, and starting from $|1\rangle$ we obtain one spanned by all the odd ones $|2n + 1\rangle$. Compute the L_0 eigenvalue on each and conclude in particular that the two representations are not isomorphic.

iv) Show that while the commutator $[a, a^{\dagger}]$ is not in the subalgebra generated by L_+, L_-, L_0 , their anticommutator $\{a, a^{\dagger}\}$ is. Adjoining a and a^{\dagger} thus gives rise to a super Lie algebra, and the two representations above combine into a single representation of this super Lie algebra.

These are the simplest unitary³ representations of $SL(2,\mathbb{R})$, which are all infinite dimensional.

II.) SU(2)

Take now two "uncoupled" copies of the harmonic oscillator algebra, generated by a_+ , a_+^{\dagger} and a_- , a_-^{\dagger} . Define $J_+ = a_+^{\dagger}a_-$ and $J_- = a_-^{\dagger}a_+$.

i) Calculate the commutator $[J_+, J_-]$ and call it J_3 .

ii) Calculate $[J_3, J_{\pm}]$. You should discover that J_+, J_-, J_3 generate an (complexified) $\mathfrak{su}(2)$ Lie algebra.

iii) The Hilbert space is spanned by all vectors $|n_+, n_-\rangle$. Show that it is isomorphic to a direct sum of one copy of each finite dimensional irreducible representation of $\mathfrak{su}(2)$.

³though we are not explaining this here.