

Übungsblatt 3

Abgabe: Donnerstag, den 5. November 2015,

This week's problem set is based on exercises from $Fulton \ \mathcal{E} \ Harris$, which are copied here for your convenience.

- 1. Exercise 3.32 The Fourier Transform
- o) Prove (or recall the proof) that if the group algebra $\mathbb{C}G$ is identified with the space of functions on G with the function ϕ corresponding to $\sum_{g \in G} \phi(g) e_g$, then the product in $\mathbb{C}G$ corresponds to convolutions of functions:

$$(\phi \star \psi)(g) = \sum_{h \in G} \phi(h)\psi(h^{-1}g)$$

- i) Show that $(\phi \star \psi)(\rho) = \hat{\phi}(\rho)\hat{\psi}(\rho)$
- ii) Prove the Fourier inversion formula

$$\phi(g) = \frac{1}{|G|} \sum \dim(V_{\rho}) \operatorname{Trace}(\rho(g^{-1})\hat{\phi}(\rho))$$

where the sum is over irreducible representations ρ of G.

iii) Prove the *Plancherel formula* for functions ϕ and ψ on G:

$$\sum_{g \in G} \phi(g^{-1})\psi(g) = \frac{1}{|G|} \sum_{\rho} \dim(V_{\rho}) \operatorname{Trace}(\hat{\phi}(\rho)\hat{\psi}(\rho))$$

2. Exercise 3.38 - The Frobenius-Schur indicator function

Representations can be classified into three types:

- Complex: the character is not real-valued
- Real: the character is real-valued and (there exists a basis in which) the matrices are real
- Quaternionic: the character is real-valued but there exists no basis in which matrices are real¹
- ii) Show that for V irreducible,

$$\frac{1}{|G|} \sum_{g \in G} \chi_V(g^2) = \begin{cases} 0 & V \text{ complex} \\ 1 & V \text{ real} \\ -1 & V \text{ quaternionic} \end{cases}$$

¹Another characterisation, which helps to explain the terminology, is that a representation is real (resp. quaternionic) if and only if it admits a non-degenerate symmetric (resp. skew-symmetric) bilinear form.

3. Exercise 4.4 - The transpose diagram

Set
$$A = \mathbb{C}S_d$$
, so $V_{\lambda} = Ac_{\lambda} = Aa_{\lambda}b_{\lambda}$.

- i) Show that $V_{\lambda} \cong Ab_{\lambda}a_{\lambda}$
- ii) Show that V_{λ} is the image of the map from Aa_{λ} to Ab_{λ} given by right multiplication by b_{λ} . By i) this is isomorphic to the image of $Ab_{\lambda} \to Aa_{\lambda}$ given by right multiplication by a_{λ} .
- iii) Show that

$$V_{\lambda'} = V_{\lambda} \otimes U'$$

where λ' is the conjugate partition to λ and U' is the alternating representation.