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2. The action(s) of S4 on the cube

Recall the character table for S4.

1 (12) (123) (1234) (12)(34)
TrivialU 1 1 1 1 1

AlternatingU ′ 1 −1 1 −1 1
StandardV 3 1 0 −1 −1

V ⊗ U ′ 3 −1 0 1 −1
AnotherW 2 0 −1 0 2

(i) Verify that the number of elements in each conjugacy class is 1, 6, 8, 6, 3.

By labelling the four long diagonals of a cube with 1,2,3,4, we can realise S4 as the
group of rigid symmetries of the cube. In other words the vector space with one basis
element for each long diagonal furnishes the natural permutation representation of S4
(note that you discovered this in the previous problem set!).

(ii) These rigid symmetries also act on the sets of pairs of opposite faces, faces, vertices,
and edges, furnishing representations of dimension 3, 6, 8, and 12. By counting the
number of fixed points of an element in a given conjugacy class, compute the characters
of these representations (remember/note, in the representation associated to the action
of a group on a set, the trace is the number of fixed points). Deduce their decomposition
into irreps.

For ease of visualisation:

• A transposition acts as a rotation by 180◦ around a line through the midpoints of
a pair of opposite edges

• A 3-cycle rotates by 120◦ about a long diagonal

• A 4-cycle rotates by 90◦ about a line through the midpoints of a pair of opposite
faces

• Elements in the class of (12)(34) rotate in the same fashion by 180◦.

You can use a physical cube if you need to!

2. Application of the projection formulas: normal modes

Consider a system of three masses attached by springs in a triangle. This system is
parametrised by a vector (x1, y1, x2, y2, x3, y3); the x- and y- coordinates of each mass.
Let the first mass be at the point (1, 0) and the masses be labelled counterclockwise
1,2,3.
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One central physical concept is the normal modes of the system. They are the inde-
pendent natural patterns in which the system can oscillate (this descriptive definition
will suffice for the problem). A normal mode is a triple of vectors in the plane (or a
6-vector) that encodes the direction in which the three masses move.

The key observation is the fact that applying a symmetry transformation to the system
also transforms the normal modes. In other words, the normal modes form representa-
tions of the symmetry group. This allows us in this case to determine them completely
with minimal physical input (in particular, without even knowing Hooke’s law!).

In this case the symmetry group is S3 ∼= D3 the dihedral group of order six. The system
is in a six-dimensional representation U6 that is the tensor product of two represen-
tations U2 and U3. The first is by 2x2 rotation matrices (possibly combined with a
reflection) of the x-y plane (i.e., what happens to the “background” when D3 acts on
the triangle), and the other is by 3x3 permutation matrices which exchange the labels
on the masses.

(i) Calculate the character of this representation (by calculating the characters of U2

and U3), and determine its irreducible decomposition.

The explicit 6x6 matrices are supplied to you on the last page for your convenience
(note that they just look like a rotation by 2π/3 “inserted” in a permutation matrix;
this is what tensoring representation matrices does.)

(ii) There are two irreducible one-dimensional representations that appear only once in
the decomposition. They must be normal modes. Use the projection formula given in
class to project onto the vector generating these one-dimensional representations, and
draw what the corresponding motion of the system looks like.

(Tip: if a matrix projects onto a one-dimensional space, it must be of the form vvT for
some (column) vector v (|ψ〉〈ψ| in physics notation). This v is the eigenvector and is
not too hard to guess by looking at the matrix.)

(iii) The remaining irreducible representation appears twice in the decomposition. Cal-
culate the matrix that projects onto the two copies of this summand.

To complete the job, we need just a tiny bit of physical intuition: translations in the x-
and y-directions will always be normal modes. Those are projected out by the matrices
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
Write down the matrix that projects onto the subspace spanned by the last two normal
modes. To see what the motion looks like you can act on any vector of your choice,
for example (1, 0, 0, 0, 0, 0). Then a 2π/3 rotation of this motion gives another linearly
independent mode.
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3. The Mackay quiver of S4

Last week you classified the finite subgroups of the three dimensional rotation group
SO(3). One of them, the octahedral group, corresponding to the symmetries of a cube,
is isomorphic to S4. In this problem we derive the ADE-type Dynkin diagram advertised
in the previous assignment for this example.

(i) Recall the double-cover homomorphism π : SU(2) → SO(3) with kernel ±I2 where
I2 is the 2x2 identity matrix. Argue that the “lift”, or pre-image, of S4 ∈ SO(3) (it
is called the “binary octahedral” group; denote it S̃4) under this homomorphism must
contain −I2. Argue similarly that a conjugacy class either lifts to two classes of the
same size or one class of twice the size (and say when which one occurs).

(ii) Argue that every irreducible representation of S4 lifts to an irreducible representation
of S̃4 and write down the lifted characters.

(iii) There will however be more irreducible representations of S̃4, because it has more
conjugacy classes. One of them is the fundamental representation coming naturally
from the inclusion in SU(2) (let’s denote it N)1. The following lemma, which you can
prove for extra credit, will enable you to find the others.

Lemma: Let V1, V2, V3 be irreducible representations of a finite group G. Then V3
appears in the decomposition of V1 ⊗ V2 if and only if V2 appears in V ∗1 ⊗ V3.
This enables you to use the following strategy 2:

Start with any irreducible representation, say the trivial U . Then by virtue of the fact
that U ⊗N ∼= N , U must appear in the decomposition of N ⊗N , say N ⊗N ∼= U ⊕X.
Calculate the character of X to determine whether it is irreducible, and if it is, repeat
the process by looking at X ⊗N . If it is not irreducible, pick another irreducible (say
U ′) and start over until you have the right number of them.

Before you get started take note of the definition of the Mackay quiver of a subgroup
G of SU(2) (a quiver is a directed graph). For every irreducible representation of G,
write down a node. If V2 appears k times in V1 ⊗N , draw k arrow from the node of V1
to the node of V2. The algorithm suggested above lets you build the quiver as you go
along with your search.

1Hint: to compute its character, note that while the double-cover map π : SU(2) → SO(3) is in
general somewhat ugly, it takes an acceptable form on simple matrices, for example we can pick axes

so that π(

(
eiθ/2 0
0 e−iθ/2

)
) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

. Then you can use the fact that every element

of G is conjugate in G to a rotation about your favorite axis - this is true because of a fact you proved
in the previous assignment.

2note that all the representations involved here are equivalent to their dual so you can dispense with
the ∗ in the lemma.
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Appendix: Matrices for the representation U6

1 :


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (23) :


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 −1
0 0 1 0 0 0
0 0 0 −1 0 0
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
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