Wintersemester 2015/16 — Lie-Gruppen und Darstellungstheorie Übungsblatt 10

Abgabe: Donnerstag, den 14. Januar 2016

Let F be a field of characteristic 0 and let \mathfrak{g} denote a Lie algebra. Prove all statements.

1. Inner and outer derivations of nilpotent Lie algebras

Let \mathfrak{g} be non-trivial nilpotent Lie algebra of finite dimension d.

- (a) \mathfrak{g} contains an ideal \mathfrak{l} of codimension 1.
- (b) There exists a positive integer $n \in \mathbb{N}$ such that $C_{\mathfrak{g}}(\mathfrak{l}) \subset \mathfrak{g}_n, C_{\mathfrak{g}}(\mathfrak{l}) \not\subset \mathfrak{g}_{n+1}$ and $C_{\mathfrak{g}}(\mathfrak{l}) \setminus \mathfrak{g}_{n+1}$ is not empty, where

$$C_{\mathfrak{g}}(\mathfrak{l}) := \{ x \in \mathfrak{g} \mid [x, y] = 0 \text{ for all } y \in \mathfrak{l} \}.$$

(c) Conclude that the adjoint representation

ad:
$$\mathfrak{g} \to \operatorname{Der}(\mathfrak{g})$$

is not surjective. Hint: Write $\mathfrak{g} = \mathfrak{l} \oplus Fx$ for some suitable $x \in \mathfrak{g}$.

Remark: A derivation is called *inner derivation* if it is in the image of ad and *outer derivation* otherwise. In particular, we have seen that a non-trivial nilpotent Lie algebra always admits an outer derivation.

2. Inner derivations of semisimple Lie algebras

Let \mathfrak{g} be semisimple Lie algebra. Then the adjoint representation ad: $\mathfrak{g} \to \text{Der}(\mathfrak{g})$ is surjective. To prove that, you may pursue the following steps:

- (a) $ad(\mathfrak{g})$ is an ideal in $Der(\mathfrak{g})$. Note that this is a general statement which holds for arbitrary Lie algebras.
- (b) The Killing form of $ad(\mathfrak{g})$ agrees with the Killing form of $Der(\mathfrak{g})$ restricted to the subspace $ad(\mathfrak{g}) \subseteq Der(\mathfrak{g})$.
- (c) Write $Der(\mathfrak{g}) = ad(\mathfrak{g}) \oplus ad(\mathfrak{g})^{\perp}$, where $ad(\mathfrak{g})^{\perp}$ is the orthogonal complement of $ad(\mathfrak{g})$ with respect to the Killing form. Then $ad(\mathfrak{g})^{\perp}$ equals zero.
- 3. Necessary criterion for nilpotency

Let \mathfrak{g} be nilpotent. The Killing form $B \colon \mathfrak{g} \times \mathfrak{g} \to F$ of \mathfrak{g} then is identically zero.

4. Characterization of solvability via the Killing form

 \mathfrak{g} is solvable if and only if $[\mathfrak{g}, \mathfrak{g}]$ lies in the radical of the Killing form, where the radical S of a symmetric bilinear form $\beta \colon \mathfrak{g} \times \mathfrak{g} \to F$ is given by

$$S := \{ x \in \mathfrak{g} \, | \, \beta(x, y) = 0 \text{ for all } y \in \mathfrak{g} \}.$$

Winter 2015/16

Felipe Müller Sam Selmani Prof. J. Walcher