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1 Introduction

As a movivating example, we consider the integral

I(t) =

∫
S2

dA eitz. (1)

The stationary phase approximation has contribution from the north and south
poles. Around the north pole,

dA ∼ dxdy, z ∼ 1− 1

2
(x2 + y2), (2)

and around the south pole,

dA ∼ −dxdy, z ∼ −1 +
1

2
(x2 + y2). (3)

N

S

In the limit as t→∞, we get

I(t) ∼ 2π

it
eit +

2π

−it
e−it = 4π

sin t

t
. (4)

This approximation is actually equal to the exact value of the integral,

I(t) = 2π

∫ π

0

d(cosφ)eit cosφ = 2π

(
eit

it
− e−it

it

)
= 4π

sin t

t
. (5)

The Duistermaat-Heckman formula (1982) states that certain kinds of inte-
grals are exactly equal to their stationary phase approximation.
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Berline and Vergne (1982) [4] and Atiyah and Bott (1984) [2] both showed
that the DH formula is a consequence of a localization theorem for equivariant
cohomology, which gives an exact result for integrals based on data around the
fixed points of a symmetry.

Equivariant cohomology was invented by Borel (1959), and H. Cartan (1950).
It is a cohomology theory that takes into account both a manifold M and the
action of a group G.

2 Equivariant Differential

Consider the action of G = S1 on an manifold M . The action is given by the
flow of a vector field v. Define a differential

dS1 = d− ιv. (6)

This does not square to zero. However

d2S1 = d2 − dιv − ιvd− ι2v = −Lv, (7)

so if we restrict to S1-invariant forms (Lvα = 0), we get a chain complex and
we can take its cohomology. We call a form α equivariantly-closed if dS1α = 0
and equivariantly-exact if α = dS1β for some S1 invariant form β. (Warning:
this differential is not quite the differential for equivariant cohomology. We will
see later that there is a factor of u missing, where u is the generator of the
cohomology ring of BS1)

Notice that equivariant forms are inhomogeneous

α = αn + αn−1 + . . .+ α0, (8)

where αi is a regular differential form of degree i. The condition dS1α = 0
relates the pieces which are 2 degrees apart, i.e.

0 = dαn (9)

0 = dαn−1 (10)

ιvαn = dαn−2 (11)

ιvαn−1 = dαn−3 (12)

... (13)

ιvα2 = dα0 (14)

ιvα1 = 0 (15)

ιvα0 = 0 (16)

The first and last conditions always hold by degree considerations.
We can define integration of inhomogeneous forms by integrating the piece

of the correct degree: ∫
M

α :=

∫
M

αn. (17)
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We immediately deduce an equivariant version of stokes theorem∫
M

dS1α :=

∫
M

dαn−1 =

∫
∂M

αn−1 =:

∫
∂M

α, (18)

so that the integral of an equivariant cohomology class is well defined on a
manifold without boundary.

3 Equivariant Differential as a Supersymmetry

Locally, we use even and odd coordinates xi and ψi = dxi. Now an aribitrary
form

α = αn + αn−1 + . . .+ α0 (19)

can be written as a function of xi and ψi

f(x, ψ) = fnψ1 · · ·ψn + . . .+ f0. (20)

Integration of forms becomes superintegration, which is∫
Ũ

d̃V f. (21)

The super volume d̃V = dx1 · · · dxndψ1 · · · dψn is well defined because of the
Berezinian transormation rules. The equivariant differential ds1 becomes an
odd vector field Q given by

Q =
∑
i

(
ψi

∂

∂xi
+ vi

∂

∂ψi

)
. (22)

Supposing M has no boundary, Stokes’ theorem
∫
M

dS1α = 0 becomes∫
M̃

d̃VQ(f) = 0. (23)

That is, the integral of a Q-exact function is zero. Note that in general (with
∂M = 0) we have ∫

M̃

d̃VQ(f) = −
∫
M̃

d̃V Div(Q)f. (24)

One has to show that the Q-divergence is 0, or in other words, that the super-
volume is Q-invariant. We could check this directly, or deduce it by relating to
Stokes’ theorem.

4 Localization Principle

The idea behind the example in the introduction is that the only contribution
to the integral comes from the fixed points of the rotational symmetry on the
sphere. Later, we will state prove the localization theorem, which gives an exact
result for the integral. Before this, we will give some two simple arguments
showing why there is no contribution to the integral the fixed points.
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4.1 1st Localization Proof (Supersymmetric)

Away from the fixed locus, we can choose our coordinates so that ∂
∂xn

= v. We
then use a supersymmetric change of variables

xi 7→ xi − ψiψn. (25)

This preserves the supervolume, and in these new coordinates,

Q = ψn
∂

∂xn
− ∂

∂ψn
(26)

Q2 = − ∂

∂xn
. (27)

If f is Q-closed, then in particular Q2f = 0, which means that f doesn’t depend
on xn, and futhermore, since Q(f) = 0, f doesn’t depend on ψn either. It follows
immediately that the integral∫

M̃

dx1 · · · dψ1 · · · dψnf = 0 (28)

is 0, since the integrand has no ψn.

4.2 2nd Localization Proof (Poincare Lemma)

Let g be an invariant metric (i.e. Lvg = 0. We can always average over S1 to
get this). Let η = g(v,−).

dS1η = −g(v, v) + dη. (29)

d2S1η = Lvη = 0 by the invariance of g. Away from the fixed locus, g(v, v) 6= 0
so we can invert dS1η

1

−g(v, v) + dη
=
−1

g(v, v)

∑
k

(
dη

g(v, v)

)k
. (30)

The form
Ω =

η

dvη
(31)

has the property that dvΩ = 1. Hence, away from the fixed locus, any equiv-
ariantly closed form α is equivariantly exact α = dv(Ωα). It follows that its
integral vanishes by the equivariant stokes theorem.

4.3 Localization Theorem

Either of the previous arguments show that for an equivariantly-closed form α,∫
M\MS1

α = 0 (32)
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(Actually, more properly we should say this is equal to an integral over ∂MS1

).

Now we would like to know what the intergral over the fixed locus MS1

actually
is. Let S1 act on a manifold M of dimension 2n with isolated fixed points. With
η as above, consider the closed equivariant form

αet(dS1η). (33)

Its equviariant class is independent of t since

d

dt
αet(dS1η) = α(dS1η)et(dS1η) = dS1

(
αηet(dS1η)

)
. (34)

Around a fixed point we have

v =

n∑
i=1

ωi

(
xi

∂

∂yi
− yi

∂

∂xi

)
, (35)

g =

n∑
i=1

(
dx2i + dy2i

)
, (36)

and

dvη = −
n∑
i=1

ωi
(
x2i + y2i

)
+ 2

n∑
i=1

(dxi ∧ dyi) . (37)

Now we calculate the integral as t goes to infinity.∫
M

αe−tωi(x2
i+y

2
i )e2t

∑n
i=1(dxi∧dyi) = α0

n∏
i=1

2π

ωi
+O(1/t). (38)

We can do the same thing around every fixed point. Since the integral is inde-
pendent of t, we compare with t = 0, and get the localization theorem∫

M

α = (2π)n
∑

p∈MS1

α0(p)∏n
i=1 ωi,p

. (39)

After we define equivariant cohomology in the next section, we can state this
result as ∫

M

α =
∑
p

i∗pα

e(Np)
(40)

where e(Np) is the equivariant euler class of the normal bundle of a fixed point.
Returning to introductory example: Let ω be the standard symplectic

form on S2. The height function z is actually the hamiltonian for the rotational
vector field ∂θ. If follows that

dS1(z + ω) = dz − ω(v,−) = 0. (41)

The exponential
1

it
eit(z+ω) (42)
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is also equivariantly closed. The top degree piece is dAeitz and the zeroth degree
piece is the stationary phase approximation. The generalization of this to any
symplectic manifold and any hamiltonian f is the DH formula (for example, see
[2]).

5 Equivariant Cohomology

The equivariant differential d− ιv was a slight simplification which ignores some
information about the S1 action. We now give an overview of the full theory.
Also, we might as well consider any Lie group G. There are basically 3 models
of equivariant cohomology. A very thorough explanation can be found in [6].

The simplest idea for an equivariant cohomology would be the cohomology
of the quotient M/G. It turns out, however, that this isn’t quite the right thing
consider. For example, in the case of the S1 action, the quotient is a line, which
is contractible, and the cohomology of a line is trivial.

Instead, we consider the space

MG = M ×G EG (43)

where EG is the universal G bundle over the classifying space BG = EG/G,
i.e. EG is a contractible space on which G acts freely. Then we define

H∗G(M) = H∗(MG). (44)

This has the nice property that if G acts freely, then

H∗(MG) = H∗(M/G× EG) = H∗(M/G), (45)

and if G acts trivially

H∗(MG) = H∗(M × EG/G) = H∗(M)⊗H∗(BG). (46)

In particular, the equivariant cohomology of a point H∗G(p) is H∗(BG). Since
every space maps to a point, the equivariant cohomology groups are all H∗(BG)
modules.

Example: Let G = S1. The universal S1 bundle is EG = S∞, and the
classifying space is BG = EG/S1 = CP∞ which can be seen by taking the
limit CPn = S2n+1/S1. Notice that S∞ is contractible. The cohomology of the
classifying space is in this case

H∗(BS1) = H∗S1(p;C) = H∗(CP∞;C) = C[u] (47)

We would like some kind of deRham theory for equivariant cohomology. We
should start with the space of forms

Ω∗(M)⊗ Ω∗(EG). (48)
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However, EG is probably infinite dimensional, so it’s not clear at first what to
use. To describe Ω∗(EG), Cartan uses the Weil aglebra

W = ∧g∗ ⊗ Sg∗. (49)

We denote the generators of ∧g∗ by θa (of degree 1), and the generators of Sg∗

by ua (of degree 2). G acts on g∗ via the coadjoint action, and hence it acts on
W . The infinitesimal action is

Laθ
b = −Cbacθc

Lau
b = −Cbacuc

dθi +
1

2
Cijkθ

jθk = ui

dui = Cijku
jθk

ιaθ
b = δba

ιau
b = 0

(50)

This action is consistent with the relations between d, ι, L (these operators form
a super-Lie-algebra, and all the actions above can be derived by starting only
with a few, once again see [6], especially chapter 3). Notice that the θa act like
connection forms, and ua act like curvature forms.

Now that we can describe the forms on M × EG, we need to describe the
forms which descend to the quotient by S1. These are given by

(Ω∗(M)⊗ Ω∗(EG))bas. (51)

where basic forms are those which are horizontal (ιaα = 0) and invariant (Laα =
0). So we arrive at the Weil model of equivariant cohomology, that is the
cohomology of

[(Ω∗(M)⊗W )bas , d] (52)

The Weil model is equivalent to the simpler Cartan Model[
(Ω∗(M)⊗ Sg∗)G, dC

]
(53)

where
dC = d−

∑
uaιa. (54)

In particular, for G = S1, has dimension 1, so we get

dC = d− u ιv (55)

(where we write v for the vector field v on M instead of the label a of the
element in g∗). Notice that since ua has degree 2, this differential is actually
degree 1 (unlike the simplified version we had earlier).

For M a point we have

H∗S1(p;C) = C[u] (56)
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Generalizing to any G, noticing that dC acts trivially on (Sg∗)G, we get

H∗(BG) = H∗G(pt) = (Sg∗)G. (57)

For G = GL(n), the invariants (Sg∗)G are the coefficients of t in

det(t−A) (58)

where A ∈ gl(n).

6 Example: H∗S1(S2)

Let’s consider S2 with the standard S1 action. Let f(φ) be a smooth step
function from −1 to 0 with support in [0, π/2).

0 π/2

−1

f(φ)

It’s derivative is a bump function with integral 1.

π/2

f ′(φ)

The form
dfdθ − uf (59)

is equivariantly closed. Similarly we can construct an equivariant closed form
with support in the southern hemisphere. These generate the equivariant coho-
mology ring.

We can compare with the topological picture. Cover the sphere by two
hemispheres. The intersection is S1 and since the action here is free,

H∗S1(S1) = H∗(S1/S1) = H∗(pt) = 1 (60)

The northern and southern hemisphere each retract to a point which has equiv-
ariant cohomology C[u], so we have

H∗S1(S2) = C[x, y]/(xy) (61)

Notice that if i is the inclusion of the north (or south) pole,

i∗(dfdθ − uf) = u. (62)
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7 Normal Bundle and Euler Class

If a bundle P →M comes with a G action that commutes with the projection,
we get an equivariant bundle PG →MG.

P ×G EG

M ×G EG

If G = S1, the normal bundle Np of an isolated fixed point p carries a natural
S1 action. Since a point has non-trivial equivariant cohomology, we can expect
a non-trivial equivariant euler class eS1(Np) ⊂ BS1.

The normal bundle Np is really just a vector space V , and the S1 action
decomposes

V = V1 ⊕ · · · ⊕ Vn (63)

where Vi is 2-dimensional and S1 acts with weight ai. We can see that for any
k,

(V1 ⊕ · · · ⊕ Vn)×S1 S2k+1y
p×S1 S2k+1

(64)

is the bundle

O(a1)⊕ · · · ⊕ O(an)

CP k

which has euler class

(ua1) · · · (uan) = un(a1 · · · an) ∈ H∗(CP k) = C[u]/uk+1. (65)

Taking the k to infinity, we find the equivariant euler class of the normal bundle
to a fixed point is

eS1(Np) = un(a1 · · · an) ∈ H∗S1(p) = C[u] (66)

Rederivation of Localization Theorem: If Q ⊂ M is a submanifold of
codimension q, then there is a pushforward map

(iQ)∗ : H∗S1(Q)→ H∗+qS1 (M) (67)

the composition
(iQ)∗ ◦ (iQ)∗α = α ∧ e(NQ) (68)

If Q is the fixed locus of S1, by localizating to C(u), we can invert e(NQ). We
get an isomorphism

1

e(NQ)
(iQ)∗ : H∗S1(M)→ H∗−qS1 (Q) (69)
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which is inverse to
(iQ)∗ : H∗S1(Q)→ H∗+qS1 (M). (70)

Using this isomorpism, the integral becomes∫
M

α =

∫
M

(iQ)∗
(iQ)∗α

e(NQ)
=

∫
Q

(iQ)∗α

e(NQ)
, (71)

which is just a sum for Q a collection of points.
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