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1 Preliminaries on QFT’s:

QFT is a theory that aims to bring field theories and quantum mechanics to-
gether, under the idea that not only the physical obsevables are quantized but
the fields also. We will consider the following basic mathematical concept behind
the QFT’s :

At first we choose a Manifold M , usualy a Riemannian one with a smooth
metric on it.Over this manifold we define fields and our main interesest in QFT
is to integrate over the chosen manifold, parametrizing these fields.The last
operation is of course our familiar path-integral. An other basic ingriedient of
the theory are maps from the base manifold M to a target manifold N :

X : M −→ N

Soon we will concider theories of integration in the space of those mappings
called sigma models.

2 QFT in 0-dim

Today we will take a look at the QFT’s for zero dimensional base-manifolds
dim(M ) = 0. So here we have to deal with:

• Point-like fields: X : M −→ R

• An action that is a function of the fields, S = S[X]

• and partition functions of the form: Z =
∫
dXe−S[X]

Example: Let the action integral be

S[X] =
α

2
x2 + iεx3

Then:

ε = 0→ Z =

∫
dXe

(−α)
2 x2

=

√
2π

α

ε� 1→ Z =

∫
dXe

−(αx2−iεx3)
2

pertub.expansion−−−−−−−−−−−→
∫
dX

∞∑
n=0

e−
α
2 x

2 (−iεx3)n

n!

At this point is useful to use the method of Feynman diagrams, which will
be widely used for partubative computations.
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First we consider the function: Here the physi-
cal interpretation
of J can be con-
sidered to be the
source.

f(α, J) =

∫
dXe−

α
2 x

2+Jx

=

∫
e−

α
2 (x− J2

α )2+ J2

2α

=

√
2π

α
e
J2

2α

And we perform the so called Wick contraction:
For the function given above, we take the derivatives with respect to J and
evaluate them at 0:

∂rf

∂Jr

∣∣∣
ζ=0

=

∫
dXXre−

α
2X

2

In order to obtain a non-zero outcome, the partial derivatives ∂f
∂J must of

course show up in pairs, or else the factor J
α coming from the exponential would

give 0 after the evaluation. Now every derivative corresponds to an X,so we
compute the integral over Xr using the Gaussian measure1 by considering all
possible pairings and contracting them:

Every pair of ∂f
∂J gives a factor 1

α ,so ∂rf
∂Jr gives

(
1

α
)
r
2 × (number of all possible contractions)

We now use the Wick contraction to calculate the partition function of our
example by taking into account the non trivial correction to Z (α, 0) given by:

O(ε)2 =
(−iε)2

2!

∫
dXX3 ×X3 × e−α2X

2

the graphical representation of which , is the following:

From the two graphs we get as total number of possible pairs of contraction
3! + 32 = 15

=⇒
∫
e−

α
2 x

2 (−iεx3)2

2
dX = 15

(−iε)2

2

√
2π

α

(
1

α

)3

1

Gaussian measure γn : B(Rn) → [0, 1]; γn(A) = 1√
2π
n

∫
A e
− 1

2
‖x‖2Rdλn(x)
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3 Grassmann numbers (fermionic variables)

The Grassmann numbers are elements in an algebra A over a field F that
contains the reals, such that the following is true: Let S = {η1, ..., ηn} be a set
of Grassmann numbers, then holds:

{ηi, ηj} = ηiηj + ηjηi = 0 ∀i, j

and
[ηi, a] = 0 ∀a ∈ F

Such set of elements in A , with this property of anti-commutativity , spann
a Grassmann algebra as a subalgebra of the exterior algebra over A :

G = spanF(η1, ..., ηn) < Λ(A )

So is η2
i = 0 and so ηmi = 0 ∀m ∈ N (2nd-order nilpotency).This property

implies:

eηi =

∞∑
m=0

ηmi
m!

= 1 + ηi

In generall we see for a function, on Grassmann valued variables or ”Grass-
mann variables” (η1, ..., ηn) ,that its Taylor expansion breaks up after the nth
Order.

f(η1, ..., ηn) = a0 +
∑
i

ηiai+
1

2

∑
i1,i2

ηi1ηi2ai1,i2 + ...+
1

n!

∑
i1,...,in

ηi1 · · · ηinai1,...,in

3.1 Differentiation of Grassmann variables

For the Grassmann variables (η1, ..., ηn) we have:

∂ηi
∂ηj

= δij ,
∂ηjηi
∂ηi

=
∂(−ηiηj)
∂ηi

= −ηj

So it is from the Taylor expansion:

∂

∂ηn
· · · ∂

∂η1
f(η1, ..., ηn) = a1,...,n

The use of Grassman variables ”Fermionic variables” will lead us to the path
integral formulation for fermionic fields.

3.2 Integration of Grassmann variables (Berezin integral)

For the Integration of Grassmann variables the following hold:

•
∫
dη cf(η) = c

∫
dηf(η) (linearity)

•
∫
dη f(η) =

∫
dηf(η + a) (invariance under transformations)
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From the last property one can follow that for a function g in one Grassmann
variable η with the property g(η) = η it is:∫

dη η =

∫
dη(η + a) =⇒

∫
dηa = 0

Further we choose
∫
dηη = 1, then it is for the function f(η1, ..., ηn) :∫

dηn · · · dη1f(η1, ..., ηn) = a1,...,n

If we go back to that we have obtained by the differentiation of the same
function, we see that integration and differentiation are giving the same re-
sult.This will help us to calculate partition functions of bosonic and fermionic
variables.

Example: Let S(X,Ψ1,Ψ2) = S0−Ψ1Ψ2S1(X) be an action with X bosonic
and Ψ1; Ψ2 fermionic variables. Then is the partition function over this action:

Z =

∫
dXdΨ1dΨ2e

−S0+Ψ1Ψ2S1(x)

=

∫
dXdΨ1dΨ2e

−S0(1 + Ψ1Ψ2S1(X))

=

∫
dXdΨ1dΨ2e

−S0︸ ︷︷ ︸
Grassman int.

+

∫
dXdΨ1dΨ2e

−S0(X)S1(X)

=⇒ Z =

∫
dXe−S0(X)S1(X)

4 SUSY

For a special choice of S0, S1 as : S0(X) = 1
2 (∂h)2;S1(X) = ∂2h for a real

function h,the system has a symmetry which is obtained as a relation between
the bosonic and fermionic fields, called supersymmetry (SUSY).This symmetry
is given by the following field-transformations:

δεε1 = Ψ1 + εΨ2

δΨ1 = ε2∂h

δΨ2 = −ε1∂h

for εi; Ψi fermionic.
Under the above transformation the defining action of the QFT:

S(X,Ψ1,Ψ2) :=
1

2
(∂h)2 − ∂2hΨ1Ψ2

stays invariant:
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S −→S +
∂S

∂X
δX +

∂S

∂Ψ1
δΨ1 +

∂S

∂Ψ2
δΨ2

= S + h′h′′(ε1Ψ1 + ε2Ψ2) + h′′(ε1Ψ1 + ε2Ψ2)Ψ1Ψ2 + h′′Ψ2ε2h
′ + h′′(−Ψ1)(−ε1h′)

= S + h′h′′(ε1Ψ1 + ε2Ψ2)− h′h′′(ε1Ψ1 + ε2Ψ2)

= S

5 Localization principle in SUSY

5.1 The idea of the localization principle

The principle is a way to calculate integrals with respect to both bosonic and
fermionic variables. If for our system we have a given supersymmetric transfor-
mation then the integral becomes localized in the field configurations for which
the fermionic variables are invariant under the supersymmetry. We use it to
compute partition functions by reducing the dimension of the path integrals
defining the QFT. (For further reading in a more general framework:2)

Now we want to discuss the use of the localization principle in the super-
symmetric context as we have seen it in the last paragraph ( Prg.4). In this
context the statement can be exact formulated as :

”The path integral is localized at loci where the right hand side of the fermionic
transformation under supersymmetry is 0”, that is ∂h = 0.

To explain this we start with the contraposition by considering h such that
∂h 6= 0 and we imply that then the partion function Z will vanish. Let the
partition function be:

Z :=

∫
e−SdXdΨ1Ψ2

To show that Z = 0 we perform a SUSY-transformation to set one of the
fermions in the action to be 0 and use the rules of Grassmann integration. We
change the bosonic variable into:

X := X ′ +
Ψ1Ψ2

∂h(X)
,where ∂h 6= 0 by assumption

And by using the invariance of the action under SUSY we get:

S(X,Ψ1,Ψ2) = S(X ′, 0,Ψ′2) = S(X ′)

and for:

X = X ′ + g(X ′)Ψ1Ψ2, with g(X ′) =
1

∂h(X ′)

2

Supersymmetry and localization: http://arxiv.org/abs/hep-th/9511112
Or take a look at Adam’s lecture Week 12 on ”Equivariant localization”.
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then this implies:

=⇒ Z =
1√
2π

∫
dX ′dΨ1dΨ2e

−S(X′) dX

dX ′

=
1√
2π

∫
dX ′dΨ1dΨ2e

−S(X′)(1 + ∂g(X ′)Ψ1Ψ2)

=
1√
2π

∫
dX ′e−S(X′)∂g(X ′)

=
1√
2π

∫
d[g(X ′)e−S(X′)] = 0

because δS(X ′) = 0.

So we examine now how the system behaves near the critical points of the
function h. We study this for the case where h is a generic polynomial. So
h ∈ C[X], i.e. h has finitely many critical points xc:

h = h(xc) +
h′′(xc)

2
(x− xc)2 + · · ·, and set αc := h′′(xc)

Then the partition function takes the form:

Z =

∫
dXdΨ1Ψ2√

2π
e
−α2

c
2 (x−xc)2+αcΨ1Ψ2 =

∫
dX√

2π
αce

−α2
c

2 (x−xc)2

=

√
2π

α2
c

αc√
2π

=
αc
|αc|

= sgn(h′′(xc))

−→ Z ∈ {0,±1}(depending on n := grad(h))

We see here that the partition function is only effected by grad(h). Surprisingly
Z turns out to be an integer, something that gives away the nature of the
partition function as a ”counting function”.

6 Deformation theory

The idea of deformation theory is to simplify the given problem by changing
the function h by applying affine transformations on it,such that the partition
function stays invariant under the change of the function h.

Let h −→ h+ ρ, ρ, h ∈ C[X] : grad(ρ) < grad(h)

(Homothetic affine transformation of trivial ratio in C[X])
and f = δg, δe−S = 0,where the latest has been implied by the postulate of

invariance of the partition function. For this we get:

< f >=

∫
e−Sf =

∫
e−Sδg =

∫
δ(ge−S) = 0
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and for g = ∂ρΨ1

f = δg = ∂2ρδXΨ1 + ∂ρδΨ1

= ε(−∂2ρΨ1Ψ2 + ∂ρ∂h)

−→ < ∂ρ∂h− ∂2ρΨ1Ψ2 >= 0 = δS

@BookMirror Symmetry, author = K.Hori, S.Katz, A.Klemm,R.Pandharipande,R.Thomas,
C.Vafa, R.Vakil, E.Zaslow,
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