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1 Aim and Basic Results

• Up to now: Landau-Ginzburg (LG) and Sigma Models on Calabi-Yau (CY) are described
differently.

• Witten (1993) proposed a generalization of LG and CY-models to a common, unified
model, the Gauged Linear Sigma Model (GLSM).
Schematically:

Figure 1: Calabi Yau/Landau-Ginzburg correspondence, from [1].

−→ CY- and LG-models can be interpreted as different phases of the same system.

• r plays the role of a tuning parameter for the ’phase transition’.
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• Also remarkable: The elliptic genus of an N = (2, 2) supersymmetric theory, defined as

ZT 2(τ, z, u) = TrRR(−1)F qHLqHRyJ
∏
a

xKaa (1.1)

is a topological invariant which may be calculated for the GLSM using modern tech-
niques. (See [1].)

2 Supersymmetric gauge theories

2.1 Revision: Gauge-invariance in scalar field theory

Aim: We first need to define the Lagrangian of a supersymmetric gauge theory.

To this end, we review the standard procedure of introducing a gauge field into a U(1)-
symmetric scalar field theory with Lagrangian

L = −
n∑
i=1

|∂µϕi|2 − U(ϕ) (2.1)

where

U(ϕ) =
e2

2

(
n∑
i=1

|ϕi|2 − r

)2

. (2.2)

For the sake of completeness, we introduce the vacuum manifold Mvac:

Definition 1. The set of classical vacua Mvac is defined as the set of all configurations
ϕ = (ϕ1, ..., ϕn) where U(ϕ) attains its minimum value, i.e.

Mvac = {ϕ = (ϕ1, ..., ϕn) ∈ Cn : U(ϕ) = 0}. (2.3)

Note that for r < 0, Mvac = {0} consists of a single point, while for r > 0, Mvac = Sn−1√
r

is a

sphere of radius
√
r. One could now go in detail about this so-called spontaneous symmetry

breaking for r > 0, but we will not do so here. However, a similar argument involving the
structure of Mvac will appear when we discuss the different phases of the GLSM.

The Lagrangian (2.1) is invariant under the global U(1)-transformation

(ϕ1(x), ..., ϕn(x)) −→ (eiγϕ1(x), ..., eiγϕn(x)), (2.4)

which is to be understood as a global phase rotation, where γ ∈ R is a real number.

This is however not true anymore, if γ is allowed to depend on the space-time coordinates
γ ≡ γ(x), since

∂µϕ
j(x) −→ ∂µ

(
eiγ(x)ϕj(x)

)
= eiγ(x) (∂µ + i∂µγ(x))ϕj(x).

(2.5)

The invariance can be restored by introducing a vector field (or: one-form field) vµ(x) as an
additive contribution to the partial derivative. This gives the following
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Definition / Lemma 2. The covariant derivative is defined as

Dµϕ
j(x) = (∂µ + ivµ(x))ϕj(x). (2.6)

The Lagrangian

L = −
n∑
i=1

|Dµϕ
i|2 − U(ϕ) (2.7)

is invariant under the combined gauge transformation{
ϕi(x) −→ eiγ(x)ϕi(x)

vµ(x) −→ vµ(x)− ∂µγ(x).
(2.8)

Notice: L ≡ Lkin defined in (2.7) contains:

• a kinetic term for the ϕ fields,

• interaction terms between the vµ and the ϕ fields,

but no kinetic term for the vµ. Therefore, one could consider vµ as an auxiliary field and
eliminate it using its equations of motion. If vµ is to be considered as a physical field, such
as the photon in ordinary QED, we need to add a kinetic term for it into the Lagrangian.

Indeed, the definition

L = Lkin + Lgauge

Lgauge = − 1

2e2
vµνv

µν
(2.9)

with vµν = ∂µvν − ∂νvµ (the curvature or field strength of the gauge field) gives a gauge-
invariant theory where vµ has a kinetic term.

2.2 Gauge-invariance in supersymmetric QFT

Now we want to mimic this procedure for a superfield Φ instead of a scalar field ϕ. Recall (i.e.
from Talk 3 or chapter 12 of [2]) that a N = (2, 2) chiral superfield in 2 dimensions (which

will be our main interest here) has coordinates x0, x1, θ±, θ
±

.

The coordinates θ± and θ
±

are anticommuting, and hence fulfill (θ±)2 = 0 = (θ
±

)2, so
employing a Taylor-expansion-like argument, one can see that Φ can be expanded as

Φ(xµ, θ±, θ
±

) = ϕ− iθ+θ+∂+ϕ− iθ−θ
−
∂−ϕ− θ+θ−θ

−
θ
+
∂+∂−ϕ

+ θ+ψ+ − iθ+θ−θ
−
∂−ψ+ + θ−ψ− − iθ−θ+θ

+
∂+ψ− + θ+θ−F.

(2.10)

Here x± = x0 ± x1 and ∂± = ∂
∂x± = 1

2 (∂0 ± ∂1) are the derivatives with respect to these
coordinates. The fields ϕ, F and ψ± are fields in ordinary space, i.e. functions of xµ only.
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The equivalent of the theory (2.1) (without potential), is the manifestly SUSY invariant
Lagrangian L:

L =

∫
d4θΦΦ =

∫
dθ+dθ−dθ

−
dθ

+
ΦΦ. (2.11)

The integration with respect to d4θ extracts the component of ΦΦ that contains terms pro-
portional to θ+θ−θ

−
θ
+

with appropriate sign.

The Lagrangian (2.11) was chosen such that it admits − just as its scalar field theoretic
counterpart (2.1) − a global phase rotation-invariance, that is, L is unchanged under

Φ −→ eiαΦ. (2.12)

Now replace α by a chiral superfield A ≡ A(xµ, θ±, θ
±

). Again, since one has Φ −→ eiAΦ,
the Lagrangian is not invariant under this local transformation anymore, since

ΦΦ −→ Φe−iA+iAΦ. (2.13)

The way out is again the introduction of an auxiliary field V , which is another chiral super-
field with appropriate transformation behaviour. This leads to

Lemma 3. For a chiral superfield V with tranformation behaviour

V −→ V + i(A−A), (2.14)

the Lagrangian

Lkin =

∫
d4θΦeV Φ (2.15)

is invariant under the combined gauge transformation{
Φ(xµ, θ±, θ

±
) −→ eiA(x

µ,θ±,θ
±
)Φ(xµ, θ±, θ

±
)

V (xµ, θ±, θ
±

) −→ V (xµ, θ±, θ
±

) + i(A(xµ, θ±, θ
±

)−A(xµ, θ±, θ
±

)).
(2.16)

A real superfield with transformation behaviour (2.14) is called a vector superfield. One can

use the gauge invariance of V to bring its expansion in terms of the θ±, θ
±

into the form

V = θ−θ
−

(v0 − v1) + θ+θ
+

(v0 + v1)− θ−θ
+
σ − θ+θ−σ

+ iθ−θ+(θ
−
λ− + θ

+
λ+) + iθ

+
θ
−

(θ−λ− + θ+λ+) + θ−θ+θ
+
θ
−
D.

(2.17)

In this expansion, the fields have the following statistics:

• λ±, λ± define a Dirac fermion field

• D defines a real scalar field

• σ, σ define a complex scalar field and

• v0, v1 define a one-form field.
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The gauge where V can be written in the above form is referred to as Wess-Zumino gauge.

Notice that there is still a residual gauge symmetry, i.e. gauge transformations that keep
the form (2.17), and it is given by

vµ(x) −→ vµ(x)− ∂µα(x), (2.18)

with all other component fields unchanged. Two natural questions arise:

1. How can vµν be generalized to a supersymmetric field strength?

2. Which of the various fields in the vector multiplet V get kinetic terms, and which are
to be eliminated using the equations of motion?

Definition 4. For a vector multiplet V , the super-field strength is defined as

Σ = D+D−V. (2.19)

Just like vµν , Σ is invariant under the gauge transformation (2.14). The kinetic term for V
is given in terms of Σ as

Lgauge = − 1

2e2

∫
d4θΣΣ. (2.20)

By a straightforward, but tedious calculation, one can obtain the component expansions of
Lkin and Lgauge:

Lgauge =
1

2e2
(−∂µσ∂µσ + iλ−(∂0 + ∂1)λ− + iλ+(∂0 − ∂1)λ+ + v201 +D2. (2.21)

Lkin = −DµϕDµϕ+ iψ−(D0 +D1)ψ− + iψ+(D0 −D1)ψ+ +D|ϕ|2 + |F |2 − |σ|2|ϕ|2

− ψ−σψ+ − ψ+σψ− − iϕλ−ψ+ + iϕλ+ψ− + iψ+λ−ϕ− iψ−λ−ϕ.
(2.22)

One can also write down so called twisted F-terms for Σ. The most important choice for us is

W̃FI,ϑ = −tΣ = −rΣ + iϑΣ, (2.23)

with t = r − iϑ, r being called Fayet-Iliopoulos parameter1 and ϑ the theta angle. The
corresponding contribution to the Lagrangian is

LFI,ϑ =
1

2

(
−t
∫
d2θ̃Σ + c.c.

)
= −rD + ϑv01.

(2.24)

Here, the integration is defined as d2θ̃ = dθ
−
dθ+.

The final result is the Lagrangian for the Gauged Linear Sigma Model

L = Lkin + Lgauge + LFI,ϑ + LW

=

∫
d4θ

(
ΦeV Φ− 1

2e2
ΣΣ

)
+

1

2

(
−t
∫
d2θ̃Σ + c.c.

)
+ LW .

(2.25)

1hence the subscripts ’FI’.
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Comments:

• LW is a Lagrangian contribution from a superpotential (yet to be introduced).

• D, F have no kinetic term and can be eliminated using the equations of motion.

• After said elimination, one can extract the following potential energy term for σ, ϕ
(neglecting the superpotential):

U = |σ|2|ϕ|2 +
e2

2

(
|ϕ|2 − r

)2
. (2.26)

3 The different phases of the model

3.1 CPN−1 sigma model (no superpotential)

Consider a U(1) gauge theory with N chiral superfields Φ1, ...,ΦN :

L =

∫
d4θ

(
N∑
i=1

Φie
V Φi −

1

2e2
ΣΣ

)
+

1

2

(
−t
∫
d2θ̃Σ + c.c.

)
. (3.1)

After eliminating D and Fi, one obtains again a potential energy term for σ and ϕi:

U =

N∑
i=1

|σ|2|ϕi|2 +
e2

2

(
N∑
i=1

|ϕi|2 − r

)2

. (3.2)

From this, one can discuss where U attains 0 for different values of the (real) Fayet-Iliopoulos
parameter r:

• r > 0: U = 0 can only be attained if
∑N

i=1 |ϕi|2 = r > 0. Then, ∃1 ≤ i ≤ N : |ϕi|2 > 0,
so σ = 0.

• r = 0: U = 0 attained if ϕ = 0, σ arbitrary.

• r < 0: U > 0 for all configurations, so there is no zero energy ground state.

For r > 0: The set of all classical vacua modulo the U(1) gauge group forms the vacuum
manifold, since we require configurations that can be transformed into one another by gauge
transformations to be physically equivalent.

In our case, this is {
(ϕ1, ..., ϕN )

∣∣∣∣ N∑
i=1

|ϕi|2 = r

}/
U(1) = CPN−1 (3.3)

An analysis of the excitations from the vacuum manifold reveals that in this model, the
gauge fields vµ acquire mass due to the superHiggs mechanism, which can be thought of as
the supersymmetric generalization of the Higgs mechanism (see [2]).
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3.2 Hypersurfaces in CPN−1

Consider a polynomial G of degree d in the variables ϕ1, ..., ϕN :

G(ϕ1, ..., ϕN ) =
∑

i1,i2,...,id

ai1,...,idϕi1 · ... · ϕid . (3.4)

Definition 5. A polynomial (3.4) is called generic or transverse if the following implication
holds:

G(ϕ) =
∂G

∂ϕ1
(ϕ) = ... =

∂G

∂ϕN
(ϕ) = 0 =⇒ ϕ1 = ... = ϕN = 0. (3.5)

The polynomial G defines the hypersurface M of CPN−1 as

M = {ϕ ∈ CPN−1|G(ϕ1, ..., ϕN ) = 0}. (3.6)

M is a smooth complex manifold with (complex) dimension N − 2, which justifies its inter-
pretation as a hypersurface.

Consinder a U(1) gauge theory with N + 1 chiral multiplets Φ1, ...,ΦN , P such that:{
Φ1, ...,ΦN  U(1)-charge 1,

P  U(1)-charge − d.
(3.7)

Then the GLSM Lagrangian with superpotential

W = P ·G(Φ1, ...,ΦN ) (3.8)

is given by

L =

∫
d4θ

( N∑
i=1

Φie
V Φi + Pe−dV P − 1

2e2
ΣΣ

)
− 1

2

(∫
d2θ̃Σ + c.c.

)
+

1

2

(∫
d2θP ·G(Φ1, ...,ΦN ) + c.c.

)
.

(3.9)

From this, one can extract the potential term for the scalar fields as

U = |σ|2
N∑
i=1

|ϕi|2 + |σ|2d2|p|2 +
e2

2

(
N∑
i=1

|ϕi|2 − d|p|2 − r

)2

+
1

4
|G(ϕ1, ..., ϕN )|2 +

1

4

N∑
i=1

|p|2|∂iG|2.

(3.10)

Here, p means the scalar field component of P . The sign of r will determine the structure of
the vacuum manifold.

The main analysis will now be to set the right-hand side of equation (3.10) to zero and
determine the configurations for σ, p and ϕi that fulfill the equation.
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3.2.1 r > 0: Calabi-Yau regime

If r > 0, U = 0 requires ϕi 6= 0 for one i, therefore σ = 0.
Assume p 6= 0, then G = ∂1G = ... = ∂NG = 0. By transversality, one has

ϕ1 = ... = ϕN = 0, (3.11)

which is a contradiction. It follows that p = 0. To sum everything up, U = 0 is attained if
and only if

p = σ = 0 ∧
N∑
i=1

|ϕi|2 = r ∧ G(ϕ1, ..., ϕN ) = 0. (3.12)

The vacuum manifold is now the set of all fields satisfying the above equations modulo U(1).
This is indeed the hypersurface M ⊆ CPN−1. One can now show, that the requirement d = N
makes M a so called Calabi-Yau manifold.

Definition 6. A Calabi-Yau manifold is a compact Kähler manifold with vanishing first
chern class.

Theorem 7. A smooth hypersurface M ⊆ CPN−1 of degree d is a Calabi-Yau manifold
if and only if d = N .2

The last statement shows that for r > 0, the GLSM reduces to a non-linear sigma model
on a Calabi-Yau manifold if N = d.

3.2.2 r < 0: Landau-Ginzburg regime

If r < 0, U = 0 requires p 6= 0, therefore again σ = 0.
Since G = ∂1G = ... = ∂NG = 0, transversality implies ϕ = 0, therefore

|p| =
√
|r|
d
. (3.13)

Any choice of the vacuum, i.e. 〈p〉 =
√
|r|/d breaks the gauge invariance, and by the super-

Higgs mechanism, the vector multiplets and the P -multiplets gain mass e
√
|r|/d.

If one takes e → ∞, the massive modes decouple from the classical theory and we are left
with a theory of the Φi fields only, which is a Landau-Ginzburg theory with superpotential

W = 〈p〉G(Φ1, ...,ΦN ). (3.14)
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