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1 Introduction

In perturbative string theory one calculates string amplitudes by summing
over all possible world sheet topologies with all possible choices of confor-
mal structures. The world sheet topologies that can arise in closed oriented
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bosonic string theory are precisely Riemann surfaces and the summation over
conformal structure can be made precise by an integration over the moduli
spaces Mg of Riemann surfaces of genus g.
If we now consider super string theory, we need to introduce an odd variable
on the world sheet, i.e. we need replace the Riemann surfaces by super Rie-
mann surfaces.
In order to perform the integration over all possible super Riemann surfaces
we need to study the moduli space (or rather stack) Mg of super Riemann
surfaces of genus g. For genus 2 the supermoduli space is projected and hence
the calculation of the superstring amplitude can be broken to an integration
over the moduli spaceMspin,2 of spin curves after integrating over the fibers.
This calculation was performed by D’Hoker and Phong [3]. However in [4]
Donagi and Witten showed that Mg is non-projected for g ≥ 5. The ques-
tion is still unanswered for g = 3, 4. Besides the integration over all super
Riemann surfaces, the path integral also includes so called vertex operators,
that are inserted on the super Riemann surfaces. Unlike in bosonic string
theory where it is clear how to insert the operators, in super string theory we
need to distinguish between the Neveu-Schwarz sector which leads to space-
time bosons and the Ramond sector which leads to spacetime fermions. We
rediscover this distinction in the theory of super Riemann surfaces, where it
leads to different kinds of divisors along which the operators are inserted. A
detailed overview of the theory of super Riemann surface can be found in [7].
For applications to superstring theory see [6].

2 Preliminary

2.1 Supermanifolds over a basis

In supergeometry, as in algebraic geometry, it is beneficial to consider families
of supermanifolds. For a detailed overview of relative supergeometry and
applications to super Riemann surfaces we refer to [5].

Definition 2.1. Let U ⊂ Rm|n, V ⊂ Rm|n and B ⊂ Rp|q be superdomains
with coordinates XA = (xa, ηα), Y B = (yb, θβ) and LC = (lc, ιγ) respectively.
For a map of superdomains f : U × B → V × B over B and u ∈ |U × B| a
point. We call the map f a submersion at u if the following holds:
There exists an open neighbourhood V ′ ⊂ V×B of fred(u) and a superdomain
U ′ ⊂ Rk|l and an neighbourhood of u which is isomorphic to V ′ × U ′ such
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that f |V ′×U ′ : V ′ × U ′ → V ′ is given by projection on the first factor.

Equivalently, the matrix ∂f#yb

∂xa
has rank k and the matrix ∂f#θβ

∂ηα
has rank l.

If f is a submersion for all u ∈ |U ×B|, it is called a submersion.

In algebraic geometry the analog of a submersion is a smooth morphism.
A morphism f : X → B of schemes is called smooth if

i) f is locally of finite presentation

ii) f is flat

iii) for every geometric point b̄→ B, the fiber X ×B b̄ is regular.

The last point says, that each fiber is non-singular. Equivalently, one can
show that for a submersion each fiber is a smooth supermanifold (the same
is true for ordinary manifolds). Just as smooth morphisms, submersions are
stable under base change. All this motivates the following definition.

Definition 2.2. (Family of Supermanifolds) A supermanifold M with a sub-
mersion M → B is called a family over the base B or shorter a supermanifold
over B.

By the definition of a submersion, for every point p ∈ |M | there is a
neighbourhood U ⊆ M such that the submersion coincides with the projec-
tion U1 × U2 → U2 for U1 ⊆ Rm|n and U2 ⊆ B. In this case we call M
a supermanifold of relative dimension m|n over B. Coordinates on U1 are
called relative coordinates for M . A morphism of supermanifolds over B is
a smooth map f : M →M ′, such that the following diagram commutes:

M M ′

B

f

Remark 2.2.1. Any supermanifold is a supermanifold over a point R0|0.
This observation let us establish the following principle. Any supermanifold
M is to be understood implicitly as a family bM : M → B of supermanifolds.
Any map of supermanifolds is to be understood as a map of supermanifolds
over a basis B.
One should only consider properties of supermanifolds and maps that are
invariant under base change. That is, if a property holds for a supermanifold
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M or a map f : M → N this property should also hold for b∗M and b∗f ,
where b : B′ → B is any map of supermanifolds. Properties that are invariant
under base change are called ”geometric”.

2.2 Divisors

In projective space a codimension 1 subvariety is defined by the vanishing of
one homogeneous polynomial. In contrast subvarieties of higher dimension
are much more difficult to understand.

Example 2.2.1. (Twisted Cubic) We construct construct a projective scheme
as follows. Let

f1 = x0x3 − x1x2

f2 = x2
1 − x0x2

f3 = x2
2 − x1x3

The twisted cubic is the projective scheme

Proj

(
C[x0, x1, x2, x3]

(f1, f2, f3)

)
(1)

The embedding P1
C → P3

C is given by

[s : t]→ [s3 : s2t : st2 : t3] (2)

One easily checks that this embedding respects f1, f2 and f3.

Motivated by the observation we study subvarieties of codimension 1 in
varieties (or also supermanifolds). In a general variety the condition to be a
subvariety of codimension 1 is generalized by the definition of a Weil divisor.
A subvariety cut out by 1 equation leads to the definition of a Cartier divisor.

Definition 2.3. Let X be integral, locally notherian scheme. A prime Weil
divisor is an integral, closed subscheme Z of codimension 1 in X.
A Weil divisor in the free abelian group generated on the set of prime divisors.
An general Weil divisor is a locally finite sum

D =
∑
Z

nZZ. (3)
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The group of all Weil divisors is denotedDiv(X). A Weil divisorD is effective
if all the coefficients are non-negative. One writes D ≥ D′ if the difference
D −D′ is effective. If X is defined over an algebraic closed field, we define
the degree deg(D) =

∑
Z nZ .

If f ∈ OX,Z where OX,Z is the stalk at the generic point of Z. We define the
order of vanishing of f along Z

ordZ(f) := length (OX,Z/(f)) (4)

This length is finite and ordZ(fg) = ordZ(f) + ordZ(g). For a non-zero
rational function f ∈ k(X)×, the principal Weil divisor associated to f is
defined to be the Weil divisor

div f =
∑
Z

ordZ(f)Z. (5)

Let X be a normal integral noetherian scheme. Every Weil divisor D deter-
mines a coherent sheaf OX(D) on X by

Γ(U,OX(D)) = {f ∈ k(X) | f = 0 or div(f) +D ≥ 0 on U} (6)

The idea behind this definition is that for a prime divisor Z the sheafOX(−Z)
is the sheaf of functions vanishing on Z. For a general effective divisor D we
get a corresponding subscheme of X, and a exact sequence

0→ OX(−D)→ OX → i∗OD → 0. (7)

We already saw that there is a strong connection between line bundles
and divisors. This observation motivates the definition of a Cartier divisor

Definition 2.4. Let X be an integral noetherian scheme. Let MX be the
sheaf of rational functions. There is a exact sequence:

0→ O×X →M
×
X →M

×
X/O

×
X → 0 (8)

A Cartier divisor on X is a global section of M×
X/O

×
X . An equivalent de-

scription is that a Cartier divisor is a collection {(Ui, fi)}, where fi = fj on
Ui ∩ Uj up to multiplication by a section of O×X . The idea is that on the
patch Ui we cut out a subscheme by a single equation fi.
By the exact sequence above, there is an exact sequence of sheaf cohomology
groups:

H0(X,M×
X)→ H0(X,M×

X/O
×
X)→ H1(X,O×X) = Pic(X)→ 0 (9)
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A Cartier divisor is called principal if it is in the image of H0(X,M×
X) →

H0(X,M×
X/O

×
X). We see that

Pic(X) ∼= {Cartier divisors}/{principal Cartier divisors} (10)

Let L1,L2 be line bundles and [L1], [L2] the corresponding equivalence classes
of divisors. We have a group structure on H0(X,M×

X/O
×
X) and also on

Pic(X), which are compatible, i.e. [L1] + [L2] = [L1 ⊗L2] and −[L1] = [L∗1].

We now restrict ourselves to the for us must interesting case of an proper
algebraic curve X over C, i.e. a compact Riemann surface of some genus
g. On a curve the canonical bundle is isomorphic to the sheaf of Kähler
differentials Ω1

X . The corresponding divisor in called the canonical divisor
K.

Theorem 2.5. (Riemann-Roch) For a divisor D on X

l(D)− l(K −D) = deg(D)− g + 1 (11)

with l(D) = dimH0(X,L) where L is the line bundle corresponding to D.

The second important theorem on divisors by Serre (actually the theorem
holds for all vector bundles) can seen as a algebraic analog of Poincaré duality.

Theorem 2.6. (Serre duality) For every line bundle L on a Riemann surface
X there is an isomorphism H i(X,L)→ H1−i(X,K ⊗ L)∗.

2.3 Spin structures

Definition 2.7. A spin structure on an orientable Riemannian manifold
(M, g) is an equivariant lift of the oriented Riemannian manifold (M, g) is
an equivariant lift of the oriented orthonormal frame bundle

π : FSO(M)→M (12)

with respect to the double covering

ρ : Spin(n)→ SO(n) (13)

I.e. a pair (P, Fp) is a spin structure on the principal bundle π : FSO(M)→
M , where
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a) πP : P →M is a principal Spin(n)-bundle over M .

b) Fp : P → FSO(M) is an ρ-equivariant 2-fold covering map such that
π◦Fp = πP and Fp(p·q) = Fp(p)·ρ(q) for all p ∈ P and all q ∈ Spin(n).

The Obstruction to the existence of a spin structure is the a certain coho-
mology class w2(M) ∈ H2(M,Z/2) of M .
There is a spin structure if and only if w2(M) vanishes. If E → M is spin,
the spin structures are in bijection with H1(M,Z/2).

Spin structures on curves

Suppose that X is an almost complex manifold so that the structure group of
its principal SO(2n)-bundle P reduces to U(n). The Serre spectral sequence
gives an exact sequence:

0 H1(PE,Z/2) H1(SO(n),Z/2) ∼= Z/2 H2(M,Z/2)δ

There is an isomorphism H1(SO(n),Z/2) ∼= Z and we have δ(1) = w2(E).
The maps U(n) → SO(2n) and det : U(n) → U(1) induce isomorphisms in
H1(−,Z/2). One can show that spin structures over X correspond bijective
to those double coverings of the U(1)-bundle det(P ) which restrict to the
squaring map U(1)→ U(1), i.e. (L, α) where L is a line bundle and α is an
isomorphism

α : L2 → K (14)

In the language of divisors this meadns that a spin structure corresponds to a
divisor D such that 2θ = K where K is the canonical divisor. For a Riemann
surface over C it is dim(H1(M,Z/2) = 2g. Hence there are 22g different spin
structures on a surface of genus g. The divisor associated to a spin structure
is also called a theta characteristic. A spin structure (or more precisely the
associated divisor) θ can be even if dim(H0(C, θ)) = 0 mod 2 and odd if
dim(H0(C, θ)) = 1 mod 2. There are 2g−1(2g + 1) even and 2g−1(2g + 1) odd
spin structures. For a complete discussion of the correspondence between
theta characteristics and spin structures we refer to [1].

3 Super Riemann Surfaces

We now are in the position to define super Riemann surfaces (over some base
supermanifold B. For the mathematically minded reader we recommend to
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consult [5] and for the physicists [7] for more details.

Definition 3.1. A super Riemann surface Σ is a (smooth family of) complex
supermanifold of relative complex dimension 1|1 together with a holomorphic
subbundle D ⊂ TM of complex rank 0|1 such that the Lie bracket induces
an isomorphism

1

2
[·, ·] : D ⊗C D → TM/D (15)

The condition (15) is called the complete non-integrability of D. This
condition is crucial for the results about super Riemann surfaces presented
here, hence the results most probably do not generalize to other definitions
of super Riemann surfaces (for instance dropping the distribution D).

Example 3.1.1. Let (z, θ) be the standard complex coordinates on C1|1. Note
that D is a line bundle and hence locally generated by one section D of D
over C1|1. A typical example is Dθ = ∂θ + θ∂z. Then we have D2

θ = ∂z and
hence Dθ and D2

θ is everywhere a basis of T (C1|1).

The example 3.1.1 is typical, because every super Riemann surface is
locally equivalent to the standard super Riemann surface C1|1. To see this
let D = a∂η + b∂u be a local section of D where (u, η) are relative local
coordinates on M and a = a(u, η) is some even holomorphic function and
b = b(u, η) an odd holomorphic function. Since D and D2 locally generate
TM the function a has to be invertible and we way assume that a = 1.
Due the complete non-integrability condition, the remaining coefficient of
1
2
[D,D] = (∂ηb)∂u has to be invertible. Consider the coordinate change
z = f(u) + ηζ(u), θ = η. We obtain:

D = ∂θ +

(
b
∂z

∂u
+
∂z

∂η

)
∂z (16)

We decompose b as b = b0 + ηb1 (note that b1 is invertible). The equation
b ∂z
∂u

+ ∂z
∂η

= η decomposes to

b0 · f ′ + ζ(u) = 0

b0ζ
′ + b1f

′ = 0

The set of differential equations is solved by

ζ = −b0

b1

f ′ = (b1 − b0b
′
0) b−2

1 .
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A morphism of super Riemann surfaces is a holomorphic map M →M ′ over
B that preserves the distribution D. We call such a map superconformal.
We call coordinates (z|θ) on a super Riemann surface superconformal coor-
dinates if the distribution D is locally generated by ∂θ + θ∂z.
We want to determine the most general form of superconformal coordinate
changes, since a super Riemann surface is completely determined by an atlas
of superconformal coordinates such that all coordinate changes preserve the
line bundle D. The must general holomorphic coordinate change is given by

z̃ = f(z) + θζ(z)

θ̃ = ξ(z) + θg(z)

where f, g are even holomorphic functions and ζ, ξ are odd holomorphic func-
tions. In order to preserve D we want that Dθ = FDθ̃ for a non-zero function
F (i.e. such that 1/F is defined). Acting on θ̃ determines F : Dθ = (Dθθ̃)Dθ̃.
Using the chain rule we compute

Dθ = (Dθθ̃)Dθ̃ + (Dθz̃ − θ̃Dθθ̃)∂z̃ (17)

Plugging in the explicit for of the coordinate changes we obtain

ζ = gξ

f ′ = g2 − ξξ′

Let’s now consider the case that ξ = 0. It follows immediately that ζ = 0.
Then we get the the transition functions

zα = f(zβ)

θα = (f ′(zβ))1/2θβ

The transition of the bosonic coordinates are independent of the θ’s. This
shows that we can consistently forget the θ’s which amounts to a projection
Σ→ Σred, so we see explicitly that ever Riemann surface over a point is pro-
jected Σ. We already know that ever complex supermanifold with dimension
n|1 is split so every super Riemann surface over a bosonic base is split. A
split supermanifold is determined by the underlying ordinary manifold and a
vector bundle on the base. The vector defining the vector bundle on a super
Riemann surface is generated by θ.
On a Riemann surface the canonical bundle K is generated by dzα, which
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transform like dzα = f ′(zβ)dzβ, so we see that the θα transform as (dzα)1/2.
Hence the bundle generated by θ is a square root of the canonical bundle
(i.e. a Spin structure) with odd fibers. We conclude the following:

Theorem 3.2. There exist a bijection between the set of super Riemann
surfaces over the point R0|0 and the set of pairs (M,S), where M is an
ordinary Riemann surface over a point and S a Spin structure on M .

Example 3.2.1. From the theory of Riemann surfaces we know, we know, that
on a Riemann surface of genus g there are 22g non-equivalent spin structures.
So the spin structure on the sphere P 1

C is unique. Cover P
1|1
C by two patch

given by (z1|θ1) and (z2|θ2) and the transition function are given by z2 = 1/z1

and θ2 = θ1
z1

. We fix D1 = ∂θ1 + θ1∂z1 and get

D1 =
∂θ2

∂θ1

∂θ2 +
∂z2

∂θ1

∂z2 + θ2z1

(
∂θ2

∂z1

∂θ2 +
∂z2

∂z1

∂θ2

)
=

1

z1

∂θ2 −
θ

z1

∂z2

Since Dθ1θ2 = 1
z1

we see that we can write D2 = θθ2 − θ2∂z2 and superconfor-
mal coordinates are given by (z1|θ) and (−z2|θ2).

3.1 Superconformal vector fields

Infinitesimally, superconformal coordinate transformations are generated by
vector fields that preserve Dθ, i.e. [W,Dθ] = FDθ. One check that these
vector fields are generated given by

νf = f(z) (∂θ − θ∂z)

Vg = g(z)∂z +
∂zg(z)

2
θ∂θ

The vector field νf is odd, whereas Vg is even. We call these superconformal
vector fields. A short calculation shows

{νf , Dθ} = (θf ′)Dθ

[Vg, Dθ] = −(∂zg/2)Dθ

We want to understand the sheaf of superconformal vector fields on Σ. Since
D2 ∼= TΣ/D, the natural exact sequence 0 → D → TΣ → TΣ/D → 0
becomes

0→ D → TΣ→ D2 → 0. (18)
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Given a global super conformal transformation defined by f and g, (i.e. with
the odd parameter turned off). We want to combine f and g to a super field.
In terms of a superfield V(z|θ) = g(z) + 2θf(x), a general superconformal
vector field is

W = V(z|θ)∂z +
1

2
DθVDθ (19)

Expanding the right hand side shows

W = Vg + νf (20)

A superconformal vector field W is in particular a vector field, and thus a
section of TΣ. We can project W from TΣ to TΣ/D by dropping the Dθ
term. In other words W ≡ V(z, θ)∂z mod Dθ. Since V(z, θ) determines W
we conclude that the map from super conformal vector fields to sections of
TΣ/D ∼= D2 is one-to-one. Hence the sheaf of superconformal vector fields
is isomorphic to the sheaf D2.

3.2 The Berezinian

We want to use super Riemann surface to construct supersymmetric La-
grangian densities. Since we want to integrate this density to obtain an
action, the Lagrangian density must be a section of the Berezinian bundle of
a super Riemann surface.

Proposition 3.3. For a super Riemann surface Σ, the Berezinian bundle
Ber(Σ) is naturally isomorphic to D−1. This means that Ber(Σ)⊗D should
be the trivial bundle and hence, [dz|dθ]Dθ] should be invariant under coordi-
nate change.

Proof. We consider transformed coordinates (z̃(z, θ)|θ̃(z, θ)). By definition
the Berezinian transforms like

[dz̃|dθ̃] = [dz|dϑ]Ber(M) (21)

where

M =

(
∂z z̃ ∂z θ̃

∂θz̃ ∂θθ̃

)
(22)

One calculates that

Ber(M) =
∂z z̃ + θ̃∂z ˜grt

Dθθ̃
= Dθ. (23)
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We get that
[dz̃|dθ̃]Dθ̃ = [dz|dϑ]Dθθ̃Dθ̃ = [dz|dϑ]Dθ. (24)

4 The moduli space of super Riemann sur-

faces

In this section we want to study the moduli space of super Riemann surfaces.
The precise definition of a moduli space is quite technical but for our purpose
it’s enough to characterize the moduli space M as the following functor of
points: For any super manifold B we set

M(B) = {Σ→ B |Σ super Riemann surface over B }

We have already seen that the Riemann surfaces over a bosonic base are just
given by families of Spin curves. The underlying manifold is just given by
reducing the moduli space M to bosonic manifolds Bred. Then the the moduli
space reduces to the moduli space of spin curves Mspin. The moduli space
of spin curves decomposes into two parts Mspin,±. We call a spin structure
K1/2 even if the dimension of H0(Σred, K

1/2) is even if it is odd.
If we allow odd parameters they are nilpotent, so they does not change
the topology of the situation and the moduli space M has two connected
components M± with reduced space Mspin,±.
We want to investigate the odd degrees of freedom of the moduli space M.
Recall that Σ is build out of small open sets Uα that are glued together on
intersections Uα∩Uβ. So a first-order deformation of the gluing data is given
by an infinitesimal superconformal coordinate transformation φαβ defined
on each intersection Uα ∩ Uβ. The idea is that before gluing Uβ to Uα, we
transform by 1 + wφαβ, with an infinitesimal parameter w. The φαβ must
obey the cocycle condition

φαβ + φβγ + φγα = 0

and transformations coming from superconformal vector fields φα − φβ re-
stricted to the intersection should be considered as trivial since it comes
from a global automorphism. All in all the first order deformations of a su-
per Riemann surface are determined by an element of H1(Σ,S) where S is
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the space of superconformal vector fields. What we just explained is that
TM|Σ = H1(Σ,S). For a super Riemann surface Σ, only the sheaf cohomol-
ogy groups Hk(Σ,S) for k = 0, 1 are non-zero.
For the time being, we consider Riemann surfaces without punctures. In this
case there are no inner automorphisms for g ≥ 2, i.e. H0(Σ,S) = 0. We
claim without proof that the dimension of TM|Σ does not depend on the odd
moduli. With this we can choose Σ to be a split super Riemann surface. In
this case, we have a decomposition S = S+ ⊗ S− where S+ consist of vector
fields Vg and S− of vector fields νf with f odd. In the split, there is also a
natural decomposition TM|Σ = T+M|Σ⊕ T−M|Σ, and T±M|Σ = H1(Σ, S±).
Vg is determined by g(z)∂z which is a section of the tangent bundle TΣred,
so S+ is the sheaf of sections of TΣred and

T+M|Σ = H1(Σred, TΣred). (25)

Recall the Riemann-Roch theorem: For any line bundle L of degree n, this
theorems asserts that

dim H0(Σred,L)− dim H1(Σred,L) = 1− g + n. (26)

If n < 0 then H0(Σred,L) = 0. For the tangent bundle L = TΣred =
K−1 we have that n = 2 − 2g which is negative for g ≥ 2 and so we get
dim H1(Σred, TΣred) = 3g − 3.
To νf we associate the object f(z)∂θ which we view as an odd vector field

along the fibers of Σ→ Σred, or in other words as a section of K−1/2 = TΣ
1/2
red.

So S− is the sheaf of sections of K−1/2 and

T−Σ
1/2
red = ΠH1(Σred, TΣ

1/2
red). (27)

The degree of deg(K−1/2) = −deg(K)/2 = 1 − g, hence for g ≥ 2 we have
H0(Σred, K

−1/2) = 0 and the Riemann-Roch formula gives

dim H1(Σred, TΣ
1/2
red) = 2g − 2. (28)

Thus for g ≥ 2, the dimension of the moduli space of super Riemann surfaces
of genus g with no punctures is

dim Mg = 3g − 3|2g − 2 (29)
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Remark 4.0.1. The moduli space Mg of ordinary Riemann surfaces Σ0 of
genus g is not a manifold but an orbifold, since Σ0 may have automorphisms.
Similarly a super Riemann surface can have automorphisms, indeed every
split Riemann surface admits an automorphism τ : zα|θα → zα| − θα. Since
every super Riemann surface is a infinitesimal deformation of a split Riemann
surface the locus of enhanced symmetry is dense inMg. So it’s more correct
to refer to Mg as the moduli ”stack” of super Riemann surfaces rather than
the moduli ”space”.

4.1 Non-Projectedness

In [4] Donagi and Witten showed that (for g ≥ 5) the moduli space of super
Riemann surfaces is non-projected i.e. there is no projection Mg → Mg.
The proof constructs a non-projected smooth compact curve embedded in
Mg and further deduces that the some obstruction class wk(Mg) does not
vanish and hence Mg cannot be projected.
The construction of the compact curve inside Mg uses some advance tech-
niques, so we won’t discuss it here, we rather look at a closely related ex-
ample, namely the moduli space of super Riemann surfaces with a marked
point Mg,1. There is a canonical projection Mg,1 → Mg which intuitively
just forget about the marked point. This moduli space can be understood
as the universal curve over Mg. What does this mean? We would like to
think of the moduli space as an actual geometric space rather than the func-
tor of points we used to define it and we would like to think of an element
b ∈Mg(B) and morphism of space b : B →Mg as we know it from algebraic
geometry. Given a B-point b, if we want to make sense of b as a morphism
B → Mg, we should be able to form pullbacks, in particular we can form a
Cartesian square

X Mg,1

B Mg
b

Since Mg,1 is a super Riemann surface over Mg, the pullback X → B is a
super Riemann surface over B. We now remember that an element in Mg(B)
really corresponds to a super Riemann surface over B and the super Riemann
surface corresponding to b is X → B.
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We want to construct a non-projected super Riemann surface. We already
know, that all super Riemann surface over a bosonic base are split so the
simplest case where we can hope to find a non-split example is for B = C0|1.
We start with a point fη ∈Mg(C

0|1. Remember that for any supermanifold
M we have that HomsMfd(C0|1,M) ∼= {(p, v) | p ∈ Mred, v ∈ TM{. In our
case a point is given by (Σ,D) a super Riemann surface of genus g (or equiv-

alently a spin curve) and a tangent vector η ∈ H1(Σred, T
1/2
C ). We define

Xη := f ∗η (Mg,1)→ C0|1 as the pullback of Mg,1 →Mg along f ∗η . Xη has total
dimension (1|2), so the obstruction to projectedness is given by w2(Xη).

Proposition 4.1. Xη is projected if and only if η = 0, in which case it is
actually split.

Proof. First note that for η = 0 the map fη is constant and hence Xη =
S × C0|1 so clearly Xη is split.
In the general case, we will use the following result

Lemma 4.2. A supermanifold S of dimension (m|2) is determined by the
triple (M,V,w), where w = w2 ∈ H1(M,Hom(∧2T−, T+)), and any such
triple arises from some S. A supermanifold of dimension (m|2) is projected
if and only if it is split if and only if w 6= 0.

We want to determine

w2(Xη) ∈ H1((Xη)red, Hom(∧2T−Xη, T+Xη)) (30)

we first need to understand the sheaf Hom(∧2T−Xη, T+Xη) better. We first
introduce C := (Xη)red to keep the notation compact and than identify

T+Xη = TC

∧2T−Xη = T−S ⊗ T−C0|1 = T
1/2
C ⊗O = T

1/2
C

Hom(∧2T−Xη, T+Xη) = (T
1/2
C )∗ ⊗ TC = T

1/2
C .

Hence w ∈ H1(C, T
1/2
C ). The claim immediately follows if we can show that

w(Xη) = η. The 1-cocycle on S × C0|1 defining Xη is given by wαβηθ∂z. We
can view this as a first-order deformation of S×C0|1, which deforms S×C0|1

away from being split.
On the other hand odd deformations are given by vector field νf for some odd
function f . We want the the deformation to be η dependent, so we choose f
and −uη for an even function u. We get that

νf = −u(z)η(∂θ − θ∂z) (31)
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We forget the the first term since this deformation goes along the S and hence
does not affect splitness of S×C0|1, but the u(z)ηθ∂z does affect the splitness.
If we set w = u, this term coincides with the cocycle that characterizes Xη.
If the function u is non-zero, we can assume it to be one and we see that the
section of T

1/2
C is determined by η.

By construction we get a map Xη → Mg,1 which (for η 6= 0 is an em-
bedding of supermanifolds since this property is stable under pullbacks. We
want to use this fact to proof

Proposition 4.3. The first obstruction to the splitting of Mg,1:

w := w2 ∈ H1(Mspin,g,1, Hom(∧2T−Xη, T+Xη)) (32)

does not vanish for g ≥ 2 (and even spin structure), so the supermanifold
Mg,1 is non-projected.

Proof. Fix a spin curve (C, T
1/2
C ) ∈ M+

spin,g and an odd tangent vector η ∈
H1(C, T

1/2
C ). We have already seen that Xη which is constructed from this

data is non-projected. To proof that M is non-projected, we use the following
result:

Lemma 4.4. Let M be a supermanifold with submanifold M ′. Consider the
following diagram of sheaves:

Hom(∧2T−M,T+M)

Hom(∧2T−M
′, T+M

′) Hom(∧2T−M,T+M |M ′)

ι

j

This induces the following diagram of cohomology groups:

H1(Mred, Hom(∧2T−M,T+M))

H1(M ′red,Hom(∧2T−M
′, T+M

′)) H1(M ′
red, Hom(∧2T−M,T+M |M ′)).

ι

j

Then j(w2(M ′)) = ι(w2(M)).
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We want to use this lemma with M = Mg,1, M ′ = Xη, Mred =Mspin,g,1,
M ′

red = C. We note that T−Xη is a rank 2 vector bundle on C, and we have

seen that ∧2T−Xη
∼= T

1/2
C . We know from the proof of 4.1 that w(Xη) = η 6=

0, so in order to show that w 6= 0, it suffices to show that

j : H1(C, T
1/2
C , TC))→ H1(C,Hom(T

1/2
C , T+Mg,1)) (33)

is injective. We start with the sequence of sheaves on C:

0→ TC → i∗T+Mg,1 → i∗π∗T+Mg → 0 (34)

We note that i∗π∗T+Mg
∼= W⊗OC withW = T+,CMg. We applyHom(T 1/2, ·)

to this sequence; the cohomology sequence of the resulting exact sequence
reads in part

W ⊗H0(C,K
1/2
C ) H1(C,Hom(T

1/2
C , TC)) H1(C,Hom(T

1/2
C , T+Mg,1))

j

For a generic choice of even spin structures on a Riemann surface of genus
g ≥ 2 we have H0(C,K1/2) = 0, so j is injective.

5 Punctures

To calculate the transition amplitudes in superstring we need to insert vertex
operators on our world sheet to create the in- and out-states. In bosonic
string theory it’s quite clear, how to do that. The vertex operator are inserted
at a point of the world sheet. A point is just a Weil divisor of the Riemann
surface. In superstring theory we also will insert vertex operators along
Divisors. A divisor on a super Riemann surface has codimension 1|0, so D
needs to have dimension 0|1. The analog of a Weil divisor on a Riemann
surface for super Riemann surface is called a Neveu-Schwarz (NS) puncture.
Fix a point (z0|θ0) ∈ HomB(B ×C0|1,Σ), i.e. we choose a section of Σ→ B
and a tangent vector in each point of the section. The parameters z0|θ0

are the moduli of the NS puncture. So adding an NS puncture increases
the dimension of supermoduli space by 1|1, and the moduli space of super
Riemann surfaces of genus g with nNS NS punctures has dimension 3g− 3 +
nNS|nNS.
In a Riemann surface this point determines a divisor through that point.
This divisor is the orbit through (z0|θ0) generated by the odd vector field
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Dθ. This vector field generates the coordinate transformation θ → θ + α,
z → z + αθ, so the orbit is given by

z = z0 + αθ

θ = θ0 + α

Note that when we consider a Riemann surface over the point R0|0 the divisor
take a very simple form. The point z is a constant point in Σred, since the
odd parameter α must be proportional to θ and the divisor is just the odd
line over z. Over a general base, we get the equation

z = z0 − θ0θ (35)

So the divisor is cut out by one even equation.
A Ramond puncture is a more subtle concept. The technical definition is the
following

Definition 5.1. A family of super Riemann surfaces with nR Ramond punc-
ture is a family of supermanifolds Σ→ B of relative dimension 1|1 with the
additional structure of a rank 0|1 locally free subsheaf D ⊂ TΣ/B, an irre-
ducible relative effective Cartier divisor F of degree n = nR on Σ/B, and an
isomorphism 1

2
[·, ·] : D2 → (TΣ/B/D)(−F) of locally free sheaves on Σ.

For now we are interested in a single divisor D. Locally D should be
generated by a non-zero sections of TM so locally

D∗θ = a(z)∂θ + b(z)θ∂z (36)

Since v has to be non-zero everywhere, we can again assume that a(z) = 1.
The simplest divisors of this form are given by b(z) = zk for k ≥ 0, i.e.

D∗θ = ∂θ + zkθ∂z (37)

We see that v2
k = zk∂z which vanishes at the divisor z = 0 to order k. The

basic case k = 1 is called a Ramond puncture. The divisor F is the divisor in
which the superconformal structure degenerates. In the example above this
would be the divisor z = 0.
We can generalize this by setting b(z) = Π(z − zi). So D∗θ = b(z)∂z, and the
super conformal structure degenerates precisely at the divisor Fi given by
z = zi. So D2 ∼= TΣ/D ⊗O(−F).
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5.1 Relation between punctures and string states

Let consider the propagation of a closed string. That gives us a cylinder.
This cylinder can be mapped to the plain by the conformal transformation
z = eρ. In the first description the string propagates around a puncture,
in the second description we think of z = 0 as a marked point at which an
operator is inserted.
On a super Riemann surface we map the supertube to C1|1 by z = eρ and
θ = eρ/2ζ. We have that Dθ = e−ρ/2(∂η + ζ∂ρ). They are subject to the
equivalence relation

ρ ∼= ρ+ 2π
√
−1, ζ → −ζ (38)

This is precisely the behavior we’d expect from fermions in the NS sector.
On the other hand consider the divisor D∗θ = ∂θ + zθ∂z at z = 0 in this case
we have z = eρ and θ = ζ. We have that D∗θ = ζ + θ∂ρ and hence ρ|ζ are
superconformal coordinates. This time we have

ρ ∼= ρ+ 2π
√
−1, ζ → ζ (39)

and hence the strings propagation in the Re ρ direction will be in the Ramond
sector. What we have encountered here are the two possible spin structures
on the purely bosonic cylinder.

6 Perturbative Superstring Theory

So far, we have considered a super Riemann surface purely as a complex
supermanifold of dimension 1|1 with some additional structure. In string
theory we usually consider both holomorphic and antiholomorphic degrees
of freedom. The solution of this problem is to define a string worldsheet Σ
to be a smooth supermanifold that is embedded in a product ΣL × ΣR of
holomorphic Riemann surfaces or super Riemann surfaces.
For heterotic string theory ΣR is a super Riemann surface and ΣL is an
ordinary Riemann surface. For Type II superstrings, both ΣR and ΣL are
super Riemann surfaces.
The odd dimension of Σ is the same as that of ΣL×ΣR, and its even dimension
is 2. The basic example is that the reduced spaces ΣL and ΣR are complex
conjugates and Σred is the diagonal in ΣL,red×ΣR,red. Then Σ is obtained by a
slight thickening in the fermionic direction. Since the ΣL×ΣR is a product, its
Berezinian is Ber(ΣL×ΣR)⊗Ber(ΣL)⊗Ber(ΣR). And Ber(ΣL×ΣR)|Σ ∼=
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Ber(Σ). We recall that for a super Riemann surface X, the Berezinian
Ber(X) ∼= D−1. So a section is locally given by [dz||dθ]Dθφ. So a section of
Σ in heterotic string theory is given by

[dz̃; dz|dθ]∂z̃φDθφ (40)

To make the for of the Lagrangian as readable as possible we set

D(z̃, z|θ) = −i[dz̃; dz|dθ] (41)

6.1 Lagrangians

We merely want to give a (very) brief overview of the constructions of Lan-
grangians and action functionals from the supergeometry point of view. A
thorough discussion of the constructions of Lagrangians can be found in [7].
For the necessary background in perturbative superstring theory and a dis-
cussion of the RNS-formalism we refer to [2]. To formulate the heterotic
string on R10, four contributions to the Lagrangian are important.
The first contribution is the well known RNS-Lagrangian:

IX =
1

2πα′

∫
D(z̃, z|θ)

∑
IJ

ηIJ∂z̃X
IDθX

J , (42)

In Type II superstring theory the action we start with is given by

IX =
1

2πα′

∫
D(z̃, z|θ, θ̃)

∑
IJ

ηIJDθ̃X
IDθX

J . (43)

The holomorphic ghosts are a section C of ΠS = ΠD2 where S is the sheaf
of super conformal vector fields on ΣR, thus Dθ̃C makes sense as a section
of Ber(ΣL). The holomorphic antighosts are a section B of ΠD−3. Hence
BDθ̃C is a section of Ber(ΣL)⊗D−1 ∼= Ber(ΣL×ΣR) so it can be integrated
over Σ:

IB,C =
1

2π

∫
D(z̃, z|θ, θ̃)BDθ̃C (44)

The antiholomorphic ghosts are sections C̃ of ΠD̃−2,and the corresponding
antighosts are a section B̃ of ΠD̃−3. And

IB̃,C̃ =
1

2π

∫
D(z̃, z|θ, θ̃)B̃DθC̃. (45)
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For heterotic superstring theory one replaces Dθ̃ by ∂z̃, and leave the form
of the Lagrangian unchanged.
Let’s compare IX to the classical N = 1 supergravity action in 2 dimensions

S[x, ψ; g, χ] =
1

4π

∫
dµg
[1
2

(∂mx
µ∂nxµ + ψµγaema ∂mψµ

− ψµγaγbχaemb ∂mxµ −
1

4
ψµγaγbχa(χbψµ)

]
The first line is our familiar RNS-action written in local coordinates. The
second line parametrizes deformations of the pair (gmn, χ

σ
m) which is a super

analog of a Riemannian metric and we denote the space of all such pairs on a
curve C of genus g by sMet(C). The moduli space of super Riemann surfaces
then arises as the quotient

Mg = sMet(C)/(sDiff(C) n sWeyl(C)× Lorentz(C)). (46)

Since this action is not free the quotient won’t be a supermanifold but rather
an orbifold.
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