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1 Supermanifolds, fermionic sheaf and tangent sheaf
We want to recall the definitions for supermanifolds and introduce some new notation.

Definition 1.1. A superspaceM = (|M |,OM ) is a locally ringed space with a sheaf of supercommutative
rings OM . We write OM = O0 ⊕ O1 for the even and the odd parts of the sheaf. To a superspace, we
associate a sheaf of ideals J that is generated by the nilpotent sections of OM .

From a superspace we can recover a locally ringed space by setting

Mred := (|M |,OM/J) = (|M |,Ored).

This space is called the reduced space and its structure sheaf is a sheaf of commutative rings. Caution
has to be exercised in this construction as a sheaf modulo an ideal is defined as

OM/J := (U 7→ OM (U)/J(U))sh

but we have isomorphisms on the level of stalks

(OM/J)x ∼= OM,x/Jx ∀x ∈M.

Consequently, we can use theorems from standard ring theory (such as the isomorphism theorems) with
impunity.
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Definition 1.2. A supermanifold of dimension n|m is a locally decomposable superspace with underlying
manifold. This means

• Mred is a n-manifold (real smooth or complex holomorphic)

• There is a covering {Ui} of |M | and a locally free sheaf E of rank m on Mred such that

OUi
∼=
•∧
E∨|Ui

as sheaves of graded rings (grading in the exterior algebra as the Z-grading modulo 2).

We can think of the basis vectors of E∨ as the fermionic coordinates which are additional degrees
of freedom on the supermanifold. We take the exterior power of E∨ since we want these coordinates
to be anticommuting. We can recover the local model E from a given superspace M using the next
construction. Defining a supermanifold this way, leaves room for generalizations. For instance, we can
define a C-supermanifold by replacing the word manifold by C-variety in the above definition.

Example. 1. The supermanifold Rn|m is the supermanifold with underlying reduced manifold Rn and
locally free sheaf O⊕mRn which is the trivial rank m sheaf on Rn.

2. The C-supermanifold Pn|mC is the complex supermanifold with reduced manifold PnC modeled by the
locally free sheaf OP1(−1)⊕m.

Definition 1.3. Let M be a supermanifold of dimension n|m. We define then its fermionic sheaf as

FM := J/J2.

The fermionic sheaf is a locally free sheaf of Ored-modules of rank 0|m. It is the parity reversed version
of the sheaf E∨

ΠFM ∼= E∨.

Remark 1.4. In the following, we encounter symmetric powers of FM . We use here the conventions of
[Man13]. We thus have that the product on S•FM is not commutative but it remains supercommutative
(i.e. graded commutative). As we have a supercommutative product of FM with itself defined, we can
identify

SiFM ∼= J i/J i+1

as Ored-modules. By this construction, we can identify the symmetric algebra of FM with the exterior
algebra of E∨ as Ored-superalgebras

S•FM ∼=
•∧
E∨.

When we label the fermionic coordinates of M by some θi, we can think of J as all products and sums
of these coordinates and FM as the linear span of the θi. Therefore, the FM and E∨ can be identified, as
E∨ provides precisely these coordinates as its basis vectors.

Similar as for regular manifolds, we can also associate a tangent sheaf to a supermanifold. This sheaf
is defined in terms of algebra derivations.

Definition 1.5. Let A be a superalgebra over a field k. A superderivation on A is then a homogeneous,
k-linear map D : A→ A of parity |D|, that satisfies

D(ab) = D(a)b+ (−1)|D||a|aD(b).

for any homogeneous element a ∈ A and b ∈ A. We can also formulate a sheaf version of derivations. Let
M be a supermanifold. A OM -superderivation is a sheaf morphism D : OM → OM such that D(U) is a
superderivation on OM (U) for U ⊆ |M | open.
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Definition 1.6. The tangent sheaf TM of a supermanifold M is defined as

TM (U) := {Superderivations on OU}.

TM is a locally free sheaf of rank n|m where n|m is the dimension of M .

All these definitions remain valid for a regular manifold, by deleting the prefix "super" every time and
setting |D| = 0. We will use the tangent sheaf Tred later on which is the tangent sheaf of the reduced
manifold Mred. This sheaf represents the derivations of Ored.

We can also define superderivations with different target space than OM itself. For any OM -module
B we can define (super)derivations OM → B. These B-valued derivations are represented by the sheaf
TM ⊗OM

B.

2 Splitting and Projecting Supermanifolds
We want to analyze the structure of supermanifolds. We define what it means to be split and projected
for supermanifold and we define obstructions to splitting.

2.1 Projectedness

We have a natural closed embedding i : Mred → M which is the identity on the |M | with the sheaf
morphism

i] : OM → i∗Ored = OM/JM
induced by the quotient projection. The kernel of this projection is given by JM . By surjectivity of i] we
have an exact sequence

0→ JM → OM
i]−→ OM/JM → 0

of OM -modules. We call this exact sequence the structural sequence of the supermanifold.
A short exact sequence like the one above is said to be split, if there exists a morphism π] : Ored → OM

such that
i] ◦ π] = idOred

.

The morphism of sheaves π] induces a morphism π = (id, π]) : M → Mred of manifolds that also fulfills
i ◦ π = id. If such a morphism exists, we get an isomorphism

OM ∼= OM/JM ⊕ JM

which is an isomorphism of OM -modules (and not as sheaves of superalgebras). The existence of such
an isomorphism is equivalent to the splitting of the structural sequence. This idea leads to the following
definition

Definition 2.1. The supermanifold M is called projected, if its structural sequence splits.

We want to establish criteria for a supermanifold to not be projected. Before we do this, we look at
split supermanifolds.
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2.2 Split supermanifolds

For a given supermanifold M of odd dimension m, there is a JM -adic filtration of OM by

OM =: J0
M ⊇ JM ⊇ J2

M ⊇ ... ⊇ JmM ⊇ Jm+1
M = 0

Given this sequence, we can define a sheaf of Z2 graded rings by

GrOM := Ored ⊕ JM/J2
M ⊕ ...⊕ Jm−1

M /JmM ⊕ JmM

The Z2 grading results from reducing the Z grading modulo 2. This sheaf allows us to define a new
supermanifold GrM := (|M |,GrOM ). We call this supermanifold, the split supermanifold associated to
M . This leads to the definition

Definition 2.2. A supermanifold M is said to be split, if there is an isomorphism OM ∼= GrOM .

The second summand FM = JM/J
2
M is the fermionic sheaf of M . This corresponds thus to E from

the local model of the supermanifold M (from Def.1.1). The higher summands are the symmetric powers
of FM

SiF ∼= J i/J i+1

This shows that a split supermanifold is completely defined by its reduced manifoldMred and the fermionic
sheaf FM . The symmetric powers of FM can be identified with the exterior powers of E∨. Thus, for a
split supermanifold, we have an isomorphism

OM ∼=
•∧
E∨

In the definition of a supermanifold, we only demanded the existence of such an isomorphism locally.
We note that we have an isomorphism of sheaves of abelian groupsin the case that the supermanifold

is split

JM ∼=
m⊕
i=1

J iM/J
i+1
M .

Thus, split implies projected. The converse is not true; the isomorphism

OM ∼= Ored ⊕ JM

need not respect the grading for a projected supermanifold. Being split is stronger, as we have an
isomorphism of sheaves of graded rings in this case.

2.3 Obstruction theory

We want to discuss how it can be detected whether a supermanifold is projected or not. In the most
general case, this question is very much open, but if the odd dimension is low enough, we can get a good
grip on the subject. The theory presented here is taken from [Man13]. For the rest of this subsection, let
M be a supermanifold of dimension n|m.

In order to project M we need a projection π : M →Mred that fulfills π ◦ i = id. We construct such a
map recursively starting from id : Mred → Mred via extension of the domain. In the i-th recursion step,
we construct a projection map OM/J → OM/J iM and we give a criterion whether we can perform the
next recursion step.

The recursion is initiated at i = 1 by the identity map id : OM/JM → OM/JM . We give now an
algorithm for the recursion step.
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• Assume we have a projection πi : OM/JM → OM/J iM . With the embedding i]i : OM/J iM →
OM/JM , πi satisfies

i]i ◦ π
i = id.

In the next recursion step we want to construct a projection πi+1 : OM/JM → OM/J i+1
M .

• We know that M is locally split by definition. Choose a covering U of |M | such that M |U is split
for U ∈ U

OU ∼= OU/JU ⊕ ...⊕ Jm−1
U /JmU ⊕ JmU .

• Define then the maps

πi+1
U := OU/JU

πi|U−−−→ OU/J iU
ι1−→ OU/J iU ⊕ J iU/J i+1

U
∼= OU/J i+1

U

where ι1 : OU/J iU → OU/J iU ⊕ J iU/J
i+1
U is the direct product inclusion of the first factor. These

morphisms are extensions of πi|U as we have

p1 ◦ πi+1
U = πi|U

for p1 : OU/J iU ⊕ J iU/J
i+1
U → OU/J iU the first factor projection.

• We get
i]i+1|U ◦ π

i+1
U = i]i|U ◦ π

i|U = id

because the image of πi+1
U is contained in OU/J iU and there the action is given by πi|U . We conclude

that πi+1
U is a projection.

• The πi+1
U are only defined on the subsheaves OU/JU . We can glue the maps to a global morphism

if they agree on intersections. Take then U, V ∈ U and set W := U ∩ V and define

ωi+1
UV := πi+1

U |W − π
i+1
V |W : OW /JW → OW /J i+1

W .

We can refine the target space of ωi+1
UV to ker p1|W which means

ωi+1
UV : OW /JW → J iW /J

i+1
W = SiFW .

• The set ωi+1
M :=

{
ωiUV

}
is a well-defined cohomology class

ωi+1
M ∈ H1(Mred, (TMred

⊗ SiFM )0).

We show this in Appendix A.

• If the class ωi+1
M vanishes, the local projections πi+1

U glue to a global one

πi+1 : OM/JM → OM/J i+1
M with i]i+1 ◦ π

i+1 = id.

After m+ 1 successful steps (assuming that the classes ωiM always vanish) we get a projection

π := πm+1 : OM/JM → OM/Jm+1
M = OM with i] ◦ π = id.

This gives us thus the following criterion on projectedness (see [DW15], p.14).

Lemma 2.3. A supermanifold M of odd dimension m is projected if and only if all obstruction classes
ωiM vanish in the cohomology groups H1(Mred, (TMred

⊗ SiFM )0) for all i = 1, ...,m.
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Remark 2.4. • The classes ωiM for i odd vanish for H1((Tred ⊗ SiFM )0) = 0 in this case. This is
because for odd i the target space SiFM is a purely odd sheaf. Since Ored is purely even, there are
no even derivations from Ored to SiFM .

• The classes constructed here can also be interpreted in terms of non-abelian cohomology. In Sec. 4
we describe how this is done.

We can now apply this criterion in specific situations

2.4 Applications

Theory for smooth supermanifolds For smooth differentiable supermanifolds, we have the following
result [Man13].

Lemma 2.5. Any locally free sheaf on a differentiable supermanifold M is acyclic.

This derives from the existence of a smooth partition of unity on smooth supermanifolds. This property
is lost in the case of complex analytic supermanifolds, as the partition of unity cannot be chosen to be
holomorphic. Being an acyclic sheaf means that the cohomology in degrees higher than 0 vanishes. The
sheaf TMred

⊗ SiFM is a locally free sheaf on Mred which means that we can conclude

H1(TMred
⊗ SiFM ) = 0 ∀i.

This implies that all obstruction classes ωiM vanish. Therefore, we get that every smooth differentiable
supermanifold is projected.

Remark 2.6. One has now projectedness of any smooth differentiable supermanifold. With a little extra
work, one can now extend this result to also show that every such supermanifold is also split. This is
Batchelor’s theorem.

Theory in odd dimension 1 In the smooth case we could answer the question about being split for
all odd dimensions. In the complex analytic case we need a more careful treatment. In odd dimension 1
nothing can go wrong, though.

Theorem 2.7. Let M be a complex supermanifold of odd dimension 1. Then M is defined up to isomor-
phism by the pair (Mred,FM ).

Proof. We prove that any such supermanifold is split. We have OM = O0 ⊕ O1. Because the odd
dimension is 1, we have J2

M = 0 and FM = JM/J
2
M = JM and O1 ∼= JM . This implies

OM/JM = O0 ⊕O1
O1

∼= O0

Thus, we get
OM = O0 ⊕O1 ∼= OM/JM ⊕ JM . (2.1)
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Theory in odd dimension 2 In odd dimension 2, there is also the possibility of not projecting, i.e.
the case that ω2

M is non-zero. In this case, the supermanifold is not determined by the reduced manifold
and fermionic sheaf. But we can ask the question how much more information we need to reconstruct the
supermanifold. The answer is given by the following theorem.

Theorem 2.8. LetM be a complex supermanifold of dimension n|2. ThenM is defined up to isomorphism
by the triple (Mred,FM , ωM ) where FM is a locally free rank 0|2 sheaf of OMred

-modules and ωM ∈
H1(TMred

⊗ S2FM ).

Proof. M is augmented in two ways compared to Mred. Firstly, the even part of the structure sheaf is
the reduced structure sheaf Ored extended by even products of fermionic coordinates. The odd part of
the OM is given by FM itself. Thus we set O1 := FM . We realize the bosonization as an extension of
OMred

by S2FM . This means that we want to define O0 such that it fits in an exact sequence

0→ S2FM → O0
i]0−→ Ored → 0. (?)

Furthermore, we want this sequence to be locally split.
We start by using a cover {Ui} such that we have ωij on the intersection Ui ∩Uj as representatives of

ω. Then define the sheaves
OUi,0 := OMred

⊕ S2FM |Ui .

This setup guarantees that O0 sits locally split exact in the above sequence (?). We define transitions
between these sheaves by

ψij : OUi,0|Ui∩Uj → OUj ,0|Ui∩Uj ; (a, b) 7→ (a, b+ ωij(a))

This prescription gives an isomorphism of sheaves. The set of isomorphisms {ψij} satisfies the cocycle
condition because the ωij do. Thus, the isomorphisms constitute a gluing datum; this means the sheaves
can be glued together along these isomorphisms. If we change the ωij ’s by a coboundary, the resulting
glued sheaf is isomorphic to the sheaf glued by the ωij . Therefore, the isomorphism class of the resulting
sheaf is well-defined.

The supermanifold M constructed this way is split (and hence projected) if and only if ω = 0.

This proof tells us how to realize the transition functions for the non-projected manifold explicitly.
Namely, if we have coordinates zl, wk on Ui, Uj for Ored with transition zl(wk) on the intersection Ui ∩Uj
and coordinates θa, ηb for S2FM we get transitions

zl(wk|ηb) = zl(wk) + ωij(wk)

where ωij(wk) lands in S2FM and contains only products of the coordinates ηb. This means that we get
a fermionic correction to the even transition functions. The odd transition functions remain the same as
for FM .

3 Superextensions of P1 of odd dimension 2
The goal of this section is to describe all possible supermanifolds of odd dimension 2 with P1 as underlying
space. Before we start with the results, we recall some results on projective space. These results can be
found in Hartshorne’s Algebraic Geometry in chapters II and III [Har13].
Facts. We recall about P1 := P1

C:

7



1. P1 is a complex manifold.

2. The group of all line bundles on P1 is isomorphic to Z with isomorphism

Z→ Pic(P1);n 7→ OP1(n).

3. The tangent sheaf TP1 is an invertible sheaf and we have

TP1 ∼= OP1(2).

4. P1 is covered by two affine charts U and V . When we consider

P1 = {[x0 : x1]|(x0, x1) 6= (0, 0)}

as a set, we can write

U = {[x0 : x1]|x0 6= 0} and V = {[x0 : x1]|x1 6= 0}.

5. The first cohomology groups of the sheaves OP1(−k), k ∈ Z are given by

H1(OP1(−k)) ∼=
{
Ck−1 , k ≥ 2
0 , else.

We examine the non-projected superextensions of P1 of odd dimension 2. The situation is that we have
given a locally free sheaf FM of OP1 modules of rank 0|2 and a cohomology class ω ∈ H1(TP1 ⊗ S2FM )
and we want to obtain the associated supermanifold.

Such a superextension is non-split if ω 6= 0 and we state now when this is possible. We can remark
first that S2FM is a locally free sheaf of rank 1|0. This means that it is an invertible sheaf implying that
there is some k ∈ Z such that S2FM ∼= OP1(k). In total we get

TP1 ⊗ S2F ∼= OP1(k + 2).

Therefore, non-vanishing cohomology is only possible for k ≤ −4. We can restrict ourselves to the case
that S2FM ∼= OP1(−l) for l ≥ 4. This allows us to classify the superextensions of P1.

Theorem 3.1. All non-projected supermanifolds of odd dimension 2 over P1 are completely characterized
by a locally free sheaf F of rank 0|2 such that S2F ∼= OP1(−l) for l ≥ 4 and ω ∈ H1(OP1(2− l)) such that
ω 6= 0. Furthermore, we can characterize the locally free sheaf F by two integers a, b ∈ Z

F ∼= ΠOP1(a)⊕ΠOP1(b)

with a+ b = −l.

Proof. The only thing that remains to be proven is the classification of the locally free sheaf F . This
follows from the Grothendieck splitting theorem [Har13]. Further

S2F ∼=
2∧

ΠF ∼=
2∧

(OP1(a)⊕OP1(b)) ∼= OP1(a+ b).
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We define P1
ω(a, b) as the supermanifold uniquely defined by the triple (P1,F , ω) with F = ΠOP1(a)⊕

ΠOP1(b). This supermanifold is split if and only if ω = 0.
Given these explicit descriptions of P1

ω(a, b), we can describe this supermanifold also more concretely
in terms of transition functions. The coordinates of P1

ω(a, b) are given on the charts U and V . On these
charts we get the bosonic coordinates

On U : z := x1
x0

and On V : w := x0
x1
.

Thus we have the transition z = 1
w on U ∩ V . The fermionic coordinates can be described by the local

bases of F = ΠOP1(a)⊕ ΠOP1(b). The local bases are deduced from non-vanishing local sections. These
sections are given by 1

x−k
i

for OP1(k) for i = 0 on U and i = 1 on V . This entails

On U : θ1 := 1
x−a0

and θ2 := 1
x−b0

.

and
On V : η1 := 1

x−a1
and η2 := 1

x−b1
.

Thus, we get the transition functions on U ∩ V

θ1 = η1
w−a

and θ2 = η2
w−b

.

Furthermore, we can give the cohomology class ω ∈ Cl−3 as a vector (λ1, ..., λl−3).

Theorem 3.2. The transition functions of P1
ω(a, b) are given by

z = 1
w

+
l−3∑
j=1

λj
η1η2
wj+2 ,

θ1 = η1
w−a

,

θ2 = η2
w−b

.

The proof of this relies on the explicit structure of P1. It can be found in [Noj18].

4 Obstruction theory in terms of non-abelian cohomology
We present here the approach to obstructions of splitting via non-abelian cohomology as presented in
[DW15]. This is based on the insights from [Gre82]. As a reference for non-abelian cohomology, we give
[GW10].

Classification of supermanifolds of fixed odd dimension It is our first goal to classify all super-
manifolds of fixed odd dimension.

Let M be a supermanifold with reduced space Mred. Let now FM be the fermionic sheaf of M and
E the locally free sheaf on Mred that is given by ΠFM = E∨. We define then S(Mred, E) as the split
supermanifold with reduced space Mred and local model E . Thus, we can think of M as a gluing of
patches from S(Mred, E) via isomorphisms. These isomorphisms are captured in the sheaf

Isom(S(Mred, E),M) : U 7→
{
sheaf isomorphisms OU

∼−→ ∧•E∨|U
}
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In the special case of M = S(Mred, E) (the split supermanifold associated to M , also denoted by GrM),
we get

Isom(S(Mred, E), S(Mred, E)) = Aut(∧•E∨) = Aut(∧•E)

We can identify automorphisms of ∧•E with the automorphisms ∧•E∨ by identifying a bundle au-
tomorphisms with its inverse transpose. Since M is locally isomorphic to S(Mred, E), we have that
Isom(S(Mred, E),M) is locally isomorphic to Aut(∧•E). We note here that the sheaf of groups Aut(∧•E)
is not abelian. The supermanifold M is defined by giving local isomorphisms OU → ∧•E∨|U which are
compatible on intersections. By that, we mean that the isomorphisms satisfy the cocycle condition such
that we can glue the manifold M along them. Furthermore, changing these isomorphisms by cobound-
aries does not change the resulting manifold up to isomorphism. This means that an isomorphism class of
supermanifolds corresponds uniquely to an element in H1(Mred,Aut(∧•E)). The odd dimension of such
a supermanifold is rank E . The set H1(Mred,Aut(∧•E)) suffices to describe all supermanifolds of odd
dimension of rank E as all locally free sheaves of the same rank are locally isomorphic. Since Aut(∧•E)
is a sheaf of non-abelian groups, the cohomology is not a group but only a pointed set. What we have
achieved here is the classification of supermanifolds of fixed reduced manifold and fixed odd dimension.

Refinement of this classification In the theory of splitting, we need to refine this classification by
classifying the supermanifoldsM with given reduced spaceMred and fixed isomorphism class of the vector
bundle E . This setting is different from the former, as we have here a given vector bundle on not just an
arbitrary bundle of fixed rank. In order to classify these supermanifolds, we look at the exact sequence
of groups

1→ G→ Aut(∧•E) α−→ Aut(E)→ 1

The map α sends a ∧•E-automorphism to the induced automorphism of E ∼= J/J2 (when interpreting
E as a local model and J as the induced nilpotent sheaf). The sheaf of groups G on Mred can then be
identified as those automorphisms of ∧•E that preserve E .

We can then look at the long exact sequence of cohomology

1→ H0(G)→ H0(Aut(∧•E))→ H0(Aut(E))→ H1(G)→ ...

This exact sequence says that the set H0(Aut(E)) acts on H1(G), where H0(Aut(E)) are just the global
bundle automorphisms of E . The quotient H1(G)/H0(Aut(E)) (i.e. the orbit space of H1(G) under this
action) can be identified with the set of isomorphism classes of supermanifolds with given reduced space
Mred and fixed bundle E . The set H1(G) specifies all supermanifolds coming from a fixed bundle E and
to allow also bundles isomorphic to E we have to divide out the automorphisms of E . We summarize our
findings by the following lemma.

Lemma 4.1. A given supermanifold M with reduced manifold Mred and bundle E induces a unique class
ωM ∈ H1(G). The supermanifold is split if and only if this class vanishes

Obstruction classes The task of determining whether a given supermanifold is split or not is thus to
compute the class ωM . Here we give a criterion when the obstruction class vanishes.

Although the interpretation of H1(G) is clear, we would like carry out the computations in the domain
of abelian cohomology. In order to do so, we define the subgroups

Gi :=
{
g ∈ G|g(x)− x ∈ J i ∀x ∈ ∧•E

}
.

These are normal subgroups and we have the filtration

G = G2 D ... D Gm+1 = 1
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The quotients Gi/Gi+1 are abelian and we have the following isomorphisms of sheaves of abelian groups
(k ∈ N)

G2k/G2k+1 ∼= TMred
⊗ ∧2kE and G2k+1/G2k+2 ∼= HomOMred

(E ,∧2k+1E).

The inclusions Gi ↪→ G induce maps H1(Gi)→ H1(G). We can formulate a criterion for the vanishing of
the class ωM .

Lemma 4.2. The class ωM ∈ H1(G) vanishes if and only if this class is the image of some class
φi ∈ H1(Gi) for all i ≥ 2.

Assume now that ωM is the image of some class φi ∈ H1(Gi). We can then determine whether there is
also a class φi+1 ∈ H1(Gi+1) such that ωM is also the image of this class. We look at the exact sequence

H1(Gi+1)→ H1(Gi) ω−→ H1(Gi/Gi+1).

The class φi+1 exists if the image ω(φi) vanishes in H1(Gi/Gi+1). This defines the i-th obstruction class
of splitting

Ωi
M := ω(φi) ∈ H1(Gi/Gi+1).

The supermanifold M is split if and only if all obstruction classes Ωi
M vanish.

Remark 4.3. In a similar way, we can also define obstructions to projecting, but looking at the subgroup
of G that preserves projections. This leads to the concept of obstruction classes for projecting, and these
classes are then precisely the classes ωiM that we defined earlier.

A Appendix
Lemma A.1. ωiM is well-defined in H1(Mred, (Tred ⊗ SiFM )0)

Proof. • ωiM defines an even derivation: Let f, g be two sections in Ored(W ) with W ⊆ U ∩ V open.
Then

ωiUV (fg) = πiU (fg)− πiV (fg) = πiU (f)πiU (g)− πiV (f)πiV (g) (A.1)
= πiU (f)(π1

U (g)− πiV (g)) + (πiU (f)− πiV (f))πiV (g) (A.2)
= πiU (f)ωiUV (g) + ωiUV (f)πiV (g). (A.3)

But we consider πiU and πiV define the same Ored(W )-module structure on SiFM (W ). Thus, we
have

ωiUV (fg) = fωUV (g)− ωUV (f)g

which means that ωUV is an even derivation on SiFM . This implies that ωiM is a collection of
sections in the sheaf Tred ⊗ SiFM .

• ωiM is a cocycle: We have

ωiM = d
({
πiU

})
⇒ dωiM = d2(

{
πiU

}
) = 0

where d is the Cech-coboundary operator.
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• ωiM is unchanged by a different choice of πiU : If we have different projections {π′U} we get

ω′UV = π′U − π′V .

Then we have
ψU := πiU − π′U : OU,red → S2FU

is again a derivation on OU,red. Thus, we get

ω′UV = ωiUV + ψU − ψV .

The additional term ψU − ψV is a coboundary, which means that

[ωiM ] = [ω′] ∈ H1(Tred ⊗ SiFM ).
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