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1 The Yoneda-Lemma

We start with a short reminder of several essential de�nitions in category theory - feel
free to skip it or skim for the notation.

De�nition 1.1. A category C is an algebraic construction consisting of the following
pieces of data:

• A collection of objects ob C, that we will also just denote by C

• For C,D ∈ C a set of morphisms HomC(C,D)

• For C,D,E ∈ C a composition operation

◦ : HomC(D,E)× HomC(C,D)→ HomC(C,E)

• For C ∈ C, an identity morphism idC .

1
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We demand composition to me associative, and composition with the identity on both
sides to not change a morphism.

Example 1.2. • The category Set, with objects being (small) sets and morphisms
being arbitrary functions

• The category CRing of commutative rings (with unit!) with ring homomorphisms

• The category SRing of superrings (i.e. graded commutative Z2-graded rings) with
graded ring homomorphisms

• The category Mfd of manifolds and smooth maps

• The category SMfd of supermanifolds and maps of locally superringed spaces

• For C an arbitrary category, the opposite category Cop with HomCop(C,D) = HomC(D,C)
and composition turned around - note this is purely a formal rewriting, and we do
not need to impose invertibility on the morphisms or anything like that.

De�nition 1.3. A morphism f : C → D in a category C is called isomorphism if it
possesses an inverse g : D → C, i.e. satisfying f ◦ g = idD and g ◦ f = idC .

De�nition 1.4. Let C,D be categories, then a functor F : C → D consists of:

• A map F : ob C → obD between objects

• For C,C ′ ∈ C a map HomC(C,C
′)→ HomD(F (C), F (D))

such that F (idC) = idF (C) and F (g ◦ f) = F (g) ◦ F (f) hold.

De�nition 1.5. For F,G : C → D two functors, a natural transformation η : F ⇒ G
is given by a collection of morphisms ηC : F (C) → G(C) for every C ∈ C, making the
following square commute for every f : C → C ′ in C.

F (C) G(C)

F (C ′) G(C ′)

F (f)

ηC

G(f)

ηC′

De�nition 1.6. For categories C and D, we de�ne the functor category Fun(C,D) con-
sisting of objects that are functors from C and D, and morphisms that are natural
transformations between such functors - check that this is indeed a category.

De�nition 1.7. Let F : C → D be a functor. We call it:

• essentially surjective if its essential image, i.e. the set of objects in D that are
isomorphic to an object F (C) with C ∈ C, is all of D

• fully faithful if the induced map HomC(C,C
′)→ HomD(F (C), F (C ′)) is a bijection

for all C,C ′ ∈ C

• equivalence if it is both of the above.
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Theorem 1.8. A functor F : C → D is an equivalence if and only if there is another
functor G : D → C, such that F ◦G ∼= idD and G ◦ F ∼= idC.

Remark. Compare this to the statement that a map of sets is a bijection i� it is invertible.

Lemma 1.9. Let F : C ↪→ D be fully faithful (we notate this by a hooked arrow) and
E be its essential image, then F induces an equivalence C ' E, so we can identify C
with a full subcategory of D (by this we mean a subset of objects of D together with all
morphisms between them - this is again a category).

Proof. Since the corestriction F |E : C → E exists, is still fully faithful and by de�nition
of E essentially surjective, this follows by the de�nitions.

With all of this machinery at hand, we state the famous Yoneda Lemma:

Theorem 1.10 (Yoneda-Lemma). For any category C, the functor

jC : C → Fun(Cop, Set)
C 7→ HomC(−, C)

(f : C → D) 7→ (f ◦ − : HomC(−, C)→ HomC(−, D))

(1)

is fully faithful. We call it the Yoneda embedding, and we further denote Fun(Cop, Set) =:
PSh(C) the presheaf category of C.

Proof. It is a good exercise to check that the above construction is indeed well-de�ned
and a functor; we will not further elaborate this. To prove that it is fully faithful, we
need to show that for any C,C ′ ∈ C, the map Ψ : HomC(C,C

′)→ HomPSh(C)(j(C), j(C ′))
induced by jC is a bijection. For this, construct an inverse

Φ : Nat(HomC(−, C),HomC(−, C ′))→ HomC(C,C
′)

η 7→ ηC(idC)
(2)

We now go on to check that these maps are indeed inverse to each other:

Φ ◦Ψ(f) = Ψ(f)C(idC) = f ◦ idC = f (3)

(Ψ ◦ Φ(η))X (g) = (Ψ(ηC(idC)))X (g) = ηC(idC) ◦ g = ηX(g) (4)

The last equality follows by chasing idC around the following naturality square:

HomC(C,C) HomC(C,C
′)

HomC(X,C) HomC(X,C
′)

−◦g

ηC

−◦g

ηX
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By 1.9, this means that we may regard C (up to equivalence) as a full subcategory of
PSh(C). We call presheaves that lie in the essential image of the Yoneda embedding
representable.

Corollary 1.11. An object C ∈ C is, up to isomorphism, uniquely determined by all
maps into it. More formally, we claim that for any other C ′ ∈ C, we have that

HomC(−, C) ∼= HomC(−, C ′) (5)

are naturally isomorphic if and only if already C ∼= C ′.

Proof. Note that by 1.9, the essential image of the Yoneda embedding is equivalent
to C. Since functors always preserve isomorphisms (as they preserve composition and
identities), our statement follows from Theorem 1.8 which gives us an inverse to this
equivalence.

Remark. There is an analogous dual version of the Yoneda Lemma, abstractly expressing
the similar statement that an object C ∈ C is determined up to isomorphism by the
morphisms out of it. Further, there is a more general statement going by the same
name: For C ∈ C and functors F : Cop → Set and F ′ : C → Set, there are natural (in
any possible way) isomorphisms:

Nat(HomC(−, C), F ) ∼= F (C) (6)

Nat(HomC(C,−), F ′) ∼= F ′(C) (7)

The reader might feel that all of these are purely esoteric considerations, but we will
argue that the Yoneda-Lemma has a deep and very �gurative meaning:

Example 1.12. Let ∆ be the category of simplices, with objects the nonempty �nite
totally ordered sets [n] = 0 < 1 < · · · < n for n ∈ N0, and morphisms being order-
preserving maps (i.e. x ≤ y, then f(x) ≤ f(y)). We imagine the objects of this category
as n-dimensional tetrahedra:

But how does the presheaf category PSh(∆) := Fun(∆op, Set) look like? Such a functor
X• maps each natural number n to a set Xn, which we call the set of n-simplices in X•,
and by working out the combinatorics of possible maps in ∆, we realize that the simplices
are glued together along their edges, forming so-called simplicial sets - a more general
form of simplicial complexes. An example would be:
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The Yoneda Lemma has a straightforward interpretation in this setting: It just states
that n-simplices are already simplicial sets by themselves, i.e. ∆ is a full subcategory of
the category of simplicial sets PSh(∆).

We thereby note that presheaves on a category C can be interpreted as formal gluings
of objects in C. The geometric signi�cance of this gets even more apparent if we turn to
di�erential geometric constructions:

Question 1.13. Above statements tell us that a manifold is uniquely determined by
either of the functors

C∞(−,M) C∞(M,−) (8)

namely the smooth maps from other manifolds into or out of it - the same holds for
supermanifolds. We call the �rst functor, represented by M , the functor of points of
M . Morphisms from a (super-)manifold S into M are then often called S-points of M ;
they are the possible ways of laying S out in M , i.e. probing our manifold with S.

This idea is commonly used when de�ning new (super-)manifolds: One explicitly writes
down such a contravariant functor and then shows that it is representable. But giving
such a functor is a lot of information to carry around - can we do better?

For this, let Cart be the category of Cartesian spaces Rn, together with smooth maps
between them. Intuitively, glueing these together in good ways, combined with certain
�niteness conditions, should give us smooth manifolds - by the above heuristic, we would
therefore wish for the Yoneda embedding to factor as

Cart ↪→ Mfd ↪→ PSh(Cart) ; (9)

thereby establishing manifolds as a full subcategory of presheaves on Cart.
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Proof. LetM,N be smooth manifolds of dimensionsm,n. We want to show that the map
HomMfd(M,N)→ HomPSh(Cart)(C

∞(−,M), C∞(−, N)) induced by postcomposition has
an inverse. Namely, given a natural transformation η in the right hand side, we want to
obtain a corresponding smooth map φ : M → N .

For this, choose an atlas M =
⋃
Ui, let ιi : Ui ↪→ M denote the inclusion and let

φi := ηUi
(ιi) : Ui → N . If there indeed exists such a φ, then φ|Ui

must be equal to φi as
can be seen by noting that ηUi

must be given by postcomposition with φ.

These φi �t together to glue a smooth map φ : M → N , which is thereby also unique.
One can see this by noting that the intersection Ui ∩ Uj, while not being a chart itself,
can be covered by charts Wijk di�eomorphic to Rn. We construct φijk : Wijk → N in the
same way as above, and use the naturality square below to show that φi|Ui∩Uj

= φj|Ui∩Uj

since their restrictions to eack Wijk coincide.

HomMfd(Ui,M) HomMfd(Ui, N)

HomMfd(Wijk,M) HomMfd(Wijk, N)

HomMfd(Uj,M) HomMfd(Uj, N)

ηUi

ηWijk

ηUj

Alternatively, compatibility of the φi can also be deduced from (6), which implies that
the φij are uniquely determined by the induced transformations in
HomPSh(Cart)(C

∞(−,Wijk), C
∞(−, N)) (try to elaborate this yourself!).

Remark. There is a more conceptual, alternative proof of this statement using the Com-
parison Lemma from Topos Theory - this is essentially just a categori�cation of our
proof of Lemma 2.4.

Theorem 1.14. A smooth manifold M is uniquely determined by either:

• The induced functor C∞(−,M) : Cartop → Set, i.e. we obtain a fully faithful
functor Mfd ↪→ PSh(Cart)

• The R-algebra of smooth R-valued functions C∞(M,R), i.e. we obtain a fully
faithful functor Mfd ↪→ CAlgopR

Similarly, a smooth supermanifold (M,OM) is uniquely determined via

• The functor HomSMfd(−,M) : SCartop → Set

• The graded commutative Z2-graded R-algebra of global sections OM(M)

where SCart is the category of super-Cartesian spaces Rp|q together with maps of locally
superringed spaces.
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Proof. The �rst statement was already discussed above, and the statement about su-
permanifolds can be deduced in a completely analogous way. The fact that a smooth
manifold is determined by its smooth functions is a deep theorem in di�erential geom-
etry, known as Milnor's exercise, that we can't do justice here - we refer to Chapter 35
in [KMS13]. The analogous claim for supermanifolds follows easily, see [HST11].

Remark. On super-Cartesian spaces, this last embedding into graded algebras is explic-
itly given via:

Rp|q 7→ C∞(Rp)⊗R
∧∗

Rq (10)

We shortly summarize what we have found (the inclusions of presheaf categories follow
by abstract nonesense on Left Kan Extensions):

CAlgopR

Cart Mfd PSh(Cart) PSh(Mfd)

SCart SMfd PSh(SCart) PSh(SMfd)

SAlgopR

Example 1.15. Above statement is extremely helpful when studying spaces of �elds:

• Let M be an ordinary manifold, then:

HomSMfd(R0|1,M) ∼= HomSAlgR

(
C∞(M),

∧∗
R
)
∼= HomCAlgR (C∞(M),R) =

= HomCAlgR

(
C∞(M), C∞(R0)

) ∼= HomCart(R0,M) ∼= M

Note that these smooth functions correspond to the evaluation maps evv : C∞(Rn)→
R that send α 7→ α(v), for v ∈ Rn.

• Together with a standard fact from di�erential geometry, this helps us �nd:

HomSMfd(R0|2,M) ∼= HomSAlgR

(
C∞(M),

∧∗
R2
) ε=θ1θ2∼= HomCAlgR

(
C∞(M),R[ε]�(ε2)

)
=

= {(f, g) : C∞(M)→ R|f algebra hom, g(α1α2) = f(α1)g(α2) + g(α1)f(α2)} =

=
{
f ∈ HomCart(R0,M) ∼= M, g : C∞(M)→ R|g(α1α2) = α1(f)g(α2) + g(α1)α2(f)

}
=

∼= TM
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• We claim that [R0|1,M ] := HomSMfd(−×R0|1,M) ∼= HomSMfd(−,ΠTM) ∈ PSh(SMfd),
namely is representable by the odd tangent bundle. This seems reasonable, since:

[R0|1,M ](R0|0) = HomSMfd(R0|1,M)
above∼= M

[R0|1,M ](R0|1) = HomSMfd(R0|2,M)
above∼= TM

• Finally we de�ne the space of super�elds on M with values in Rp|q as the func-
tor [M,Rp|q] := HomSMfd(− ×M,Rp|q) ∈ PSh(SMfd). Note that this presheaf is
generally not representable - if M is compact, we can however understand it as a
Fréchet manifold.

Exercise 1.16. Use the above methods, as well as 3.1, to evaluate:

1. HomSMfd(Rn|0,R0|b)

2. HomSMfd(M,Rn|m) for M a manifold

3. HomSMfd(R0|m,M) for m = 0, 1, 2, 3 and M a manifold

4. HomSMfd(R0|a,R0|b) is a bit more di�cult

Finally, for R, S, T arbitrary supermanifolds (or even presheaves on SMfd), try to make
sense of the construction [S, T ] ∈ PSh(SMfd) and show (using 6):

HomPSh(SMfd) (jSMfd(R), [S, T ]) ∼= HomSMfd(R× S, T ) ∼= HomPSh(SMfd) (jSMfd(S), [R, T ])

[R, [S, T ]] ∼= [R× S, T ] ∼= [S, [R, T ]]

2 Schemes and Superschemes

We have seen that (smooth!) manifolds and supermanifolds can be recovered by their
(super-)algebra of functions. Thus, given an arbitrary (super-)commutative algebra, we
might think about somehow constructing a space such that elements of our algebra are
exactly the functions on this space. We will now see that this is indeed possible, albeit
yielding a di�erent and conceptually new kind of space - a (super-)scheme.

2.1 Schemes

De�nition 2.1. Let R be a commutative ring, then a multiplicative subset S ⊆ R is a
collection of elements such that 1 ∈ S and for a, b ∈ S, also a · b ∈ S.

In this case, we can de�ne a new commutative ring R[S−1] that consists of elements r
s

with r ∈ R, s ∈ S, where we identify two such elements i�

r

s
=
r′

s′
⇔ ∃ t ∈ S : t · (rs′ − r′s) = 0 . (11)

We give this set of (equivalence classes of) fractions the usual addition and multiplication
from fractional algebra, and call the obtained ring the localization of R at S.
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Example 2.2. • If R = Z and S = Z×, this gives us the usual construction of Q.

• If 0 ∈ S, then by setting t = 0 above we immediately �nd R[S−1] = 0.

• For s ∈ S nilpotent (e.g. odd element of a superring), 0 = sN ∈ S so R[S−1] = 0.

• We have a natural map R → R[S−1] sending r 7→ r
1
, similarly for S ⊂ T multi-

plicative subsets we get a map R[S−1]→ R[T−1].

• For f ∈ R, the set {1, f, f 2, f 3, . . . } is multiplicatively closed, and we call the
localization of R at it Rf .

• For p E R a prime ideal, R− p is multiplicatively closed by de�nition, and we call
the localization at it Rp.

Before we use this de�nition to construct a�ne schemes, let us �rst introduce a workhorse
lemma that will simplify things a lot.

De�nition 2.3. Let X be a topological space and B a basis of the topology. We call
this basis stable under intersections or IS if for U, V ∈ B also U ∩V ∈ B. Further, we let
Open(X) denote the category of open sets in X and Open(B) the category of of open
sets in B; with morphisms given by inclusions of open subsets.

Lemma 2.4 (0-comparison lemma). Let X be a topological space and B be an IS basis
of X. Then, the following data are equivalent:

• A sheaf F : Open(X)op → Set on X

• A sheaf F : Open(B)op → Set on the basis B - since it is IS, we can just formalize
the sheaf axioms only on sets in this basis.

Proof Sketch. We have an obvious inclusion functor ι : Open(B) ↪→ Open(X), which by
precomposition induces a functor on presheaf categories

ι∗ : Fun(Open(X)op, Set)→ Fun(Open(B)op, Set) (12)

It follows from the de�nitions that this functor restricts to the actual categories of
sheaves, i.e. if F is a sheaf on X then restricting it to open sets in B gives us a sheaf an
B. Our goal is to show that ι∗ is always an equivalence, and by theorem 1.8 this can be
done by giving an inverse functor

Ran : Sh(B)→ Sh(X) . (13)

For a sheaf F and U ⊆ X open, choose a cover U =
⋃
Ui by Ui ∈ B and de�ne:

RanF (U) :=
{

(xi) ∈
∏

F (Ui) | ∀i, j : xi|Ui∩Uj
= xj|Ui∩Uj

}
(14)

It is easy (and instructive) to check that this is indeed independent of the chosen covering,
actually a sheaf, and that it is the inverse functor to ι∗ we are searching for.
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Remark. We have given Ran this strange name for a reason, it is actually the so-called
Right Kan Extension functor along ι. Noticing this, and some abstract nonsense, makes
almost all of this proof trivial. Further, the way we have named this lemma is due to a
categori�cation of it being well-known in topos theory as the comparison lemma.

With this knowledge, we are �t to de�ne a�ne schemata, which should build a geo-
metric incarnation of the usual theory of rings; and quasicoherent modules that can be
understood in analogy to modules over rings.

De�nition 2.5 (Zariski-Topology). Let R be a commutative ring, then denote by
Spec(R) the set of prime ideals in that ring. We de�ne a topology on this set by giving
its closed subsets: These should be exactly the subsets of the form

V(a) = {p ∈ Spec(R)|p ⊇ a} (15)

where a E R is an arbitrary ideal.

Lemma 2.6. The open subsets D(f) := Spec(R) − V((f)), for any f ∈ R, form an IS
basis of Spec(R).

Proof. Complements of closed sets these are clearly open, and we can further calculate,
for f, g ∈ R and a E R an ideal:⋃

f∈a

D(f) = Spec(R)−
⋂
f∈a

V((f)) = Spec(R)− V

(⋃
f∈a

(f)

)
= Spec(R)− V(a) ;

D(f · g) = Spec(R)− {p ∈ Spec(R)|p 3 fg} =

= Spec(R)− {p ∈ Spec(R)|p 3 f ∨ p 3 g} = D(f) ∩D(g) .

The �rst assertion shows that every open subset can be covered by the D(f), and the
second one that the basis is indeed intersection-stable.

De�nition 2.7. A locally ringed space is a pair (X,OX) consisting of a topological space
X and a sheaf OX of commmutative rings on it (called the structure sheaf ), such that
at every x ∈ X, the stalk OX,x is a local ring, i.e. a ring that has only one maximal
ideal.

A morphism of locally ringed spaces f : (X,OX)→ (Y,OY ) consists of a continuous map
f : X → Y and a sheaf morphism f ] : OY → f∗OX or equivalently f [ : f−1OY → OX ,
such that this morphism induces local ring maps on stalks, i.e. carries the (unique)
maximal ideal into the maximal ideal.

Proposition 2.8. We can make Spec(R) into a locally ringed space by de�ning the
following structure sheaf OSpec(R) on it:

OSpec(R)(D(f)) := Rf (16)

Transition maps are immediately given via the morphisms constructed in 2.2.
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Proof. By 2.4, it is enough to de�ne a sheaf on a basis like this. We leave verifying
the sheaf property as an easy exercise to the reader; further we note that the stalk at
p ∈ Spec(R) is a local ring by writing:

OSpec(R),p =
⋃

p∈D(f)

OSpec(R)(D(f)) =
⋃
f /∈p

Rf = Rp (17)

De�nition 2.9. We de�ne the category Aff of a�ne schemes with objects being the
locally ringed spaces Spec(R), for R any commutative ring, and morphisms of locally
ringed spaces.

Theorem 2.10. The functor Spec induces an equivalence of categories between CRingop

and Aff, with inverse given by taking global sections of the structure sheaf.

Proof. Standard, but as we would �rst need to make Spec into a functor and the cal-
culation of Spec(OX(X)) ∼= X for X ∈ Aff is rather tedious, we refer to the vast
literature.

De�nition 2.11. For Spec(R) any a�ne scheme and M an R-module, we de�ne the
quasicoherent sheaf M̃ associated to M as a sheaf on Spec(R) de�ned by

M̃(D(f)) := Mf (18)

with obvious transition maps. Again, the category of quasicoherent sheafs on Spec(R),
denoted QCoh(Spec(R)), is equivalent via this construction and taking global sections
to the category of modules on R.

With these de�nitions in mind, we can �nally explain what an actual scheme is.

De�nition 2.12. A scheme (X,OX) is a locally ringed space such that for every x ∈ X,
there is an open neighbourhood x ∈ U ⊆ X such that (U, OX |U) is an a�ne scheme.
We denote the category of schemes and morphisms of locally ringed spaces by Sch.

De�nition 2.13. Let X be a scheme, then a quasicoherent sheaf F ∈ QCoh(X) is a
sheaf such that on any a�ne open subset U ⊂ X (it su�ces to show this on an a�ne
open cover), F|U is a quasicoherent sheaf on the a�ne scheme (U, OX |U).

2.2 Superschemes

We will try to perform a similar construction after replacing rings with superrings.

De�nition 2.14. Let A be a superring (in particular, supercommutative). We then
de�ne a topological space Spec(A) to be just Spec(A0), namely the spectrum of the even
part of A, considered as an ordinary commutative ring. Further, we de�ne a structure
sheaf on the IS basis (D(f)|f ∈ A0) by

OSpecA(D(f)) := Af (19)
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Remark. This might seem a bit ad hoc, however since A1 consists of nilpotent elements
only, D(f) = 0 for f ∈ A1 anyway (see also 2.2), and even SpecA0 = SpecA since every
prime ideal must contain the nil radical. Thus, we could just replace A0 by A at any
point in this de�nition and obtain the same construction.

De�nition 2.15. A locally superringed space (S,OS) is de�ned analogously to a locally
ringed space, the only di�erence is that the structure sheaf now takes values in superrings.

De�nition 2.16. An a�ne superscheme is a locally superringed space of the form
Spec(A) for A a superring - the proof that this is indeed locally superringed works just
like for ordinary schemes. We denote the full subcategory of locally superringed spaces
on these by SAff.

De�nition 2.17. A superscheme is a locally superringed space (S,OS) that, analogously
to usual schemes, locally looks like an a�ne superscheme. We denote the category of
such by SSch.

De�nition 2.18. For S = (S,OS) a superringed space, its even part, or bosonic quotient,
Seven is the ordinary ringed space (S, (OS)0).

Theorem 2.19. The following conditions on a locally superringed space (S,OS) are
equivalent:

• (S,OS) is a superscheme

• Seven = (S, (OS)0) is a scheme, and (OS)1 is a quasicoherent sheaf on this scheme.

Proof. Since all of these statements can be checked on an a�ne open cover, we can
reduce wlog. to the a�ne case.
⇒ For an a�ne superscheme S = Spec(A), we see immediately that Seven = SpecA0,
thus an a�ne scheme. Since A1 is an A0-module we also follow that (OS)1 = Ã1 is
indeed quasicoherent.
⇐ If (OS)1 is a quasicoherent module over the a�ne scheme S = SpecA0, then the
equivalence in 2.11 shows that the A0-module A1 := (OS)1(S) satis�es (OS)1 = Ã1.
Further, OS(S) = A0⊕A1 =: A by de�nition of a locally superringed space is a superring,
and we claim X = SpecA �nishing our proof. This holds trivially as topological spaces,
and on a�ne opens D(f) as well since Af = (A0)f ⊕ (A1)f .

This characterization is often easier to check and can without much e�ort be generalized
to de�ne Z-graded superschemes or dg schemes.

Example 2.20. For k any �eld, we can de�ne the a�ne superspace Spec(Sym∗ kp|q) =
Spec(k[x1, . . . , xp, θ1, . . . , θq]) = Ap|q; for k = R this should be imagined as an algebraic
analogon to Rp|q.
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Example 2.21. We de�ne projective superspace Pp|qk
by gluing together p + 1 copies of Ap|qk , just like for
usual projective space. On the right, we sketch this for
p = 1, where two copies A1|q

k = Spec k[x
y
, θ1
y
, . . . , θq

y
]

and A1|q
k = Spec k[ y

x
, θ1
x
, . . . , θq

x
] are glued along

Spec k[(x
y
)±1, θ1

y
, . . . , θ1

y
] in the obvious way.

There are of course e�cient ways to write this down, in
particular the Proj-Construction (see [BRP20]) of a Z-
Z2-bigraded superalgebra. Note that the last expression
below exhibits the structure sheaf as the exterior algebra
on a locally free sheaf on the bosonic space Ppk, we there-

fore say that Pp|qk is split:

Pp|qk =

p⋃
i=0

Ap|qk = Proj(Sym∗ kp|q) =
(
Ppk,
∧∗
OPpk(−1)⊕n

)
(20)

Proposition 2.22. A scheme (X,OX) is uniquely determined by:

• Its functor of points HomSch(−, X) : Schop → Set

• The restriction of this functor to HomSch(−, X) : Affop → Set

• The functor corepresented by it HomSch(X,−) : Sch→ Set

In particular, we have an embedding Sch ↪→ PSh(Aff) ' PSh(CRingop).

Proof. The �rst and third claim are just the (opposite) Yoneda Lemma; and the second
one is proved exactly analogously to (9), replacing charts by a�ne open subsets and
atlases by a�ne coverings.

Remark. For X ∈ Sch, also denote its functor of points by X(−), and again call the
elements of X(S), for any S ∈ Sch, S-points of X.

The similarity of this statement and its proof to Mfd ↪→ PSh(Cart) is no accident,
as we will see later - and it should come as no surprise that it holds verbatim for
superschemes:

SSch ↪→ PSh(SAff) ' PSh(SRingop) (21)

The plan of these statements is again to de�ne new spaces by explicitly giving their
functors of points and showing that those are representable; further, properties like
allowing a Lie group or algebraic group structure can often be detected a lot easier on
the functors of points.
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3 Applications of the Functor of Points

Remember the following constructions for superrings, that we can actually promote to
functors:

• Given a commutative ring R, we can construct a superring i(R) by setting i(R)0 =
R and i(R)1 = 0 with the induced multiplication - this extends to a functor
CRing ↪→ SRing.

• Given a superring A, we can just forget about its odd part and obtain a commu-
tative ring A0 with well de�ned multiplication, as A0 ·A0 ⊆ A0 in our grading. We
denote this by a functor (−)0 : SRing→ CRing

• Finally, again with A a superring, we can forget about the grading to obtain a non-
commutative ring, and divide this ring by the two-sided ideal A2

1 ⊕ A1 generated
by (formerly) odd elements A1. This gives a commutative ring as is easy to see,
denote this by a functor (−)/(−)1 : SRing→ CRing

Proposition 3.1. We have natural equivalences between the following morphism sets,
for R a commutative ring and A a superring:

HomCRing(A/A1, R) ∼= HomSRing (A, i(R)) , (22)

HomSRing(i(R), A) ∼= HomCRing(R,A0) . (23)

Proof. A superring morphism A→ i(R) must send A1 to i(R)1 = 0 and therefore consists
equivalently of a usual ring morphism A/A1 → R by the homomorphism theorem - the
other direction follows by the same argument.

A superring morphism i(R)→ A consists of usual ring morphisms i(R)0 = R→ A0 and
i(R)1 = 0→ A1, the latter being trivial data.

We say that the functor (−)/(−)1 is left adjoint to i and the functor (−)0 is right adjoint
to i, and denote this situation by the following diagram:

CRing SRingi

(−)/(−)1

(−)0

Since the theory of (super-)schemes is nothing but a geometrization of the theory of
(super-)rings, namely just a subcategory of the presheaf category on CRing respectively
SRing as we have seen, we expect there to be a way to extend these constructions to
this richer setting. It is possible to formalize this (via a composition of a Left Kan
Extension and Shea��cation on the (Super-)Zariski-Topos), but we will opt to only give
the results:
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Proposition 3.2. We obtain three pairwise adjoint functors between schemes and su-
perschemes that �t in the following diagram:

Sch SSchi

(−)even

(−)bos

• The even part of a superscheme was already de�ned in 2.18

• The natural inclusion of schemes into superschemes just sends a scheme (X,OX)
to itself, equipped with the trivial quasi-coherent sheaf describing the odd part - it
is easy to see that this functor is again fully faithful.

• The bosonic reduction of a superscheme (S,OS) (distinguish this from the usual
reduction of a scheme) is formed by taking the sheaf quotient of the structure sheaf
by its odd part, namely by applying the functor (−)/(−)1 from above on every open
set and then shea�fying.

Proof. We let the reader verify that the above functors are indeed well-de�ned, and only
show the adjunction properties, namely the natural equivalences of morphism sets. Since
all of our functors don't change the underlying topological spaces, it will su�ce to show
that, for a �xed continuous map f : S → X, the sheaf morphisms satisfy the required
property - again, the reader should verify that being a local ring map on stalks is also
preserved by the following calculation.

HomSh(Seven,CRing)

(
f−1OX ,OSeven

)
= HomSh(S,CRing)

(
f−1OX , (OS)0

)
=

HomSh(S,SRing)

(
f−1Oi(X),OS

) (24)

Check yourself that pointwise applying i to f−1OX obtains f−1Oi(X), similarly for f∗.
This proves the �rst adjunction (note that morphisms of locally (super-)ringed space
induce sheaf morphisms in the other direction!), and the second one follows from

HomSh(S,CRing)

(
OS, f∗Oi(X)

)
= HomPSh(S,CRing)

(
OS, f∗Oi(X)

)
=

HomPSh(S,CRing)

(
OS(−)�(OS(−))1

, f∗OX
)

= HomSh(X,CRing) (OSeven , f∗OX)
(25)

where we note (S,OS)even =

(
S,
(
OS�(OS)1

)sh)
and use the universal property of

shea��cation.

Remark. The way we have discovered (−)even and (−)bos, retrospectively, was by de�ning
how their functors of points (resp. their opposites) should look like and then giving
explicit constructions to show that they are indeed representable. If one wanted to
further re�ne this strategy, one could develop explicit representability criteria as it done
for example in [CCF11].
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Finally, as we have swept of lot of technical details under the rug in this presentation, let
us take a look at how to further formalize many of the previous constructions. We had
seen that for any category C, the presheaf category PSh(C) can be constructed from C be
freely gluing together objects along arbitrary morphisms between them - unfortunately,
general objects in this new category are usually way too outlandish and general to be
useful.

Often however, certain subcategories of the presheaf category are of interest. Namely,
you might have heard of the idempotent completion or Karoubi envelope of a category,
which in a way forms a thin hull around C in the presheaf category. Also, number theo-
rists are probably familiar with Ind- and Pro-completions (e.g. as in pro�nite groups);
the former and variants thereof can also be found as a full subcategory of PSh(C).

For us, the main interest is to somehow specify a way in which model objects of C
should be glued, and only regard presheaves that occur by such a well-behaved gluing.
This works by equipping C with a construction plan, a so-called Grothendieck Topology
τ , that lets us (in a similar manner as on topological spaces) de�ne a subcategory
Sh(C, τ) ⊆ PSh(C), the so-called sheaf topos on the site (C, τ).

While this still doesn't give us exactly what we want, objects in these topoi are usually
much better behaved than arbitrary presheaves, and very close to being geometric spaces.
We have had glimpses on:

• The topos of smooth sets that contains the category of smooth manifolds - here,
we only allow gluing along open subsets of Cartesian spaces

• The topos of supersmooth sets that contains the category of supermanifolds

• The big Zariski topos that contains schemes

• The big Super-Zariski topos that contains superschemes

These constructions truly inherit the functor-of-points philosophy, and we refer the
reader to [nLa21] and the other chapters of this book project for further information
and more abstract nonesense.
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