SUPERSYMMETRIC LOCALIZATIONS

Erik Fink

May 18th 2021

Erik Fink

SUPERSYMMETRIC LOCALIZATIONS

Мау 18тн 2021 1/

- **2** Equivariant differential Forms
- **3** The Atiyah Bott Localization
- **4** DUISTERMAAT HECKMAN LOCALIZATION
- **5** SUPERSYMMETRIC LOCALIZATIONS

Let's integrate an object α (a function, differential form, superfunction, path integrand ...) over some measure space M:

$$\int_M \alpha$$

That's complex; so let us split M into two pieces: $M = A \sqcup B$ where A is "bigger" then B.

$$\int_M \alpha = \int_A \alpha + \int_B \alpha = \int_B \alpha$$

If $\int_A \alpha = 0$ for some miraculous reason. We say that $\int_M \alpha$ is **localized** around *B*.

WHAT ARE SUPER SYMMETRIC LOCALIZATIONS?

The properties of super integration give us a new way of thinking about localitazions!

Let $M = M^{(n|m)}$ be a supermanifold with dimension (n|m). Let f be a function on M and Q a fermionic vectorfield such that:

$$Q(f) = 0$$

Further assume that we can find around a point $p \in M$ local coordinates (x^i, ψ^j) such that: $Q = \frac{\partial}{\partial \psi^1}$

$$\int d\psi^1 ... d\psi^m f = \int d\psi^2 ... d\psi^m \left(\frac{\partial}{\partial \psi^1} f\right) = 0$$

The integral over a neighbourhood of p does not contribute to the integral $\int_M f$!

This leads us to the conclusion:

$$\int_M f = \int_{M-N} f$$

With:

$$N = \left\{ p \in M \middle| Q = \frac{\partial}{\partial \psi^1} \text{ in a neighbourhood of } p \right\}$$

This is a **supersymmetric localization**.

Let M be a compact manifold, G a compact Lie group with algebra \mathfrak{g} and an action $G \times M \mapsto M$ on M. Let:

$$S(\mathfrak{g}^*) = \left\{ f : \mathfrak{g} \mapsto \mathbb{R} \middle| f \text{ is a polynomial} \right\}$$

With "f is a polynomial" we mean that f is a polynomial over a basis $\{\alpha_1, ..., \alpha_n\}$ of \mathfrak{g}^* for example:

$$f(\cdot) = 5\alpha_1(\cdot)^3 + \alpha_2(\cdot)\alpha_4(\cdot)$$

Let's now consider:

$$f \in S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R})$$

f takes an element of $\mathfrak g$ and returns an ordinary differential form:

$$f:\mathfrak{g}\mapsto\Omega^*(M,\mathbb{R})$$

We want a cohomology theory similar to deRahm's build on the forms $S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R})$. Unfortunately, that does not work. To get a proper theory we need a subspace of $S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R})$.

 $g \in G$ can act on both sides of f:

$$f(\cdot) \mapsto f(Ad_g(\cdot))$$
$$f(\cdot) \mapsto g^* f(\cdot)$$

Where $Ad_g(h) = ghg^{-1}$ for $g \in G$ and $h \in \mathfrak{g}$. (For matrix groups.)

We need the subspace of *equivariant* f the **equivariant differential** forms:

$$(S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R}))^G = \left\{ f \in S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R}) \middle| g^* f(\cdot) = f(Ad_g(\cdot)) \forall g \in G \right\}$$

$$= \Omega^*_G(M)$$

This is the proper space to define the cohomology theory on. We need a nilpotent operator.

A nilpotent operator:

Observation: A $X \in \mathfrak{g}$ generates a vectorfield X_M on M via:

$$X_M(h)(p) = \frac{d}{dt}\Big|_{t=0} h(exp(-tX)p)$$

For a $p \in M$ and a $h \in C^{\infty}(M, \mathbb{R})$.

Now define the nilpotent operator

$$D: (S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R}))^G \mapsto (S(\mathfrak{g}^*) \otimes \Omega^*(M, \mathbb{R}))^G$$

by:

or:

$$D(h \otimes \alpha)(X) = h(X) \otimes d\alpha + h(X) \otimes \iota_{X_M} \alpha$$

 $D = d + \iota_{X_M}$

This in nilpotent on $\Omega^*_G(M)$ because:

$$D^{2} = d^{2} + d\iota_{X_{M}} + \iota_{X_{M}}d + \iota_{X_{M}}^{2} = 0 + \pounds_{X_{M}} + 0 = 0$$

Due to Cartans magic formula.

The Lie derivative is not 0 for general forms but for $\alpha \in \Omega^*_G(M)$:

$$\begin{aligned} \pounds_{X_M} \alpha(X) &= \lim_{t \to 0} \frac{(1 - tX)^* \alpha(X) - \alpha(X)}{t} \\ &= \lim_{t \to 0} \frac{\alpha((1 - tX)X(1 + tX)) - \alpha(X)}{t} = \lim_{t \to 0} \frac{\alpha(X + t[X, X]) - \alpha(X)}{t} = 0 \end{aligned}$$

CARTAN MODEL OF EQUIVARIANT COHOMOLOGY

A form $f = h(\cdot) \otimes \alpha \in \Omega^*_G(M)$ with $h \in S(\mathfrak{g}^*)$ and $\alpha \in \Omega^*(M)$ has the grading:

$$deg(f) = deg(\alpha) + 2deg(h)$$

 $D = d + \iota_{X_M}$ increases the grading by 1.

Now we can define the **equivariant coboundarys** B_G^* and the **equivariant cocycles** Z_G^* :

 $Z_G^* = kern(D)$

 $B_G^* = Im(D)$

And finally the **equivariant cohomology**:

$$H^*_G(M) = \frac{Z^*_G}{B^*_G}$$

Final Remarks:

 \otimes There are more models of equivariant cohomology like the **Weil** and **BRST** model.

 \otimes The equivariant cohomology is usually defined in a more general way by the means of universal bundles. That is complex because the definition involves infinite dimensional manifolds.

For more detailes see [2] and [1]

Theorem:

Let G be a compact Lie group, \mathfrak{g} its algebra. M is an even dimensional compact manifold with dimension dim(M) = n = 2lThe Atiyah Bott Localization formula:

$$\int_{M} \alpha(X)_{[n]} = (-2\pi)^{l} \sum_{p \in M_{0}(X)} \frac{\alpha(X)_{[0]}(p)}{e_{F}(X)(p)}$$

Where $X \in \mathfrak{g}$, α an equivariantly closed differential form, $M_0(X)$ the set of *isolated* zeros of X_M .

 $e_F(X)(p)$ is the so called equivariant Euler class of the normal bundle of the point p.

Lemma: $\alpha(X)_{[n]}$ is *d*-exact outside $M_0(X)$.

We can find a form θ (with the use of a *G* invariant metric) such that $\pounds_{X_M} \theta = 0$ and $D\theta$ is invertible on $M - M_0(X)$. Then we have on $M - M_0(X)$:

$$\alpha(X)_{[n]} = d\left(\frac{\theta \wedge \alpha(X)}{D\theta}\right)_{[n-1]}$$

because:

$$d\bigg(\frac{\theta \wedge \alpha(X)}{D\theta}\bigg)_{[n-1]} = D\bigg(\frac{\theta \wedge \alpha(X)}{D\theta}\bigg)_{[n-1]} = \bigg(\frac{D\theta}{D\theta}\alpha(X)\bigg)_{[n]} = \alpha(X)_{[n]}$$

(We have no element of order [n + 1] so we don't get a contribution by the ι_{X_M})

Lemma:

 X_M rotates around $p \in M_0(X)$. We can find local coordinates x_i such that:

$$X_M = \lambda_1 (x_2 \partial_1 - x_1 \partial_2) + \dots$$

And we define a 1 form θ^p via:

$$\theta^p = \lambda_1^{-1} (x_2 dx_1 - x_1 dx_2) + \dots$$

Properties:

 \otimes We can find a θ as above such that near $p{:}\ \theta=\theta^p$

Let B_{ϵ}^p be the ϵ ball around the $p \in M_0(X)$

$$\int_{M} \alpha(X) = \lim_{\epsilon \to 0} \int_{M - \bigcup B_{\epsilon}^{p}} \alpha(X) = \lim_{\epsilon \to 0} \int_{M - \bigcup B_{\epsilon}^{p}} d\left(\frac{\theta \wedge \alpha(X)}{D\theta}\right)$$
$$= -\sum_{p} \lim_{\epsilon \to 0} \int_{S_{\epsilon}^{p}} \frac{\theta \wedge \alpha(X)}{D\theta}$$

Rescaling: $x \mapsto \epsilon x$

- $\otimes \epsilon$ -sphere S_{ϵ} becomes the unit sphere S_1
- $\otimes \frac{\theta}{D\theta}$ remains unchanged
- $\otimes \quad \lim_{\epsilon \to 0} \alpha_{\epsilon}(X) = \alpha_{[0]}(X)(p)$

$$\int_{S_{\epsilon}^{p}} \frac{\theta \wedge \alpha(X)}{D\theta} = \int_{S_{1}^{p}} \frac{\theta \wedge \alpha_{\epsilon}(X)}{D\theta} = \alpha_{[0]}(X)(p) \int_{S_{1}} \frac{\theta}{D\theta}$$

$$-\int_{S_1} \frac{\theta}{D\theta} = \int_{S_1} \frac{\theta}{1 - d\theta} = \int_{S_1} \theta d\theta^{l-1} = \int_{B_1} d\theta^l = RHS$$

$$(d\theta)^l = (-2)^l l! (\lambda_1 \dots \lambda_l)^{-1} dx_1 \wedge \dots dx_n$$

2*l* dimensional unit ball has volume $\frac{\pi^{l}}{l!}$ Define the **equivariant Euler class** (for points!):

$$e_F(X)(p) = \lambda_1 \dots \lambda_d$$

$$RHS = \frac{(-2\pi)^l}{e_F(X)(p)}$$

QED

And:

Remark:

 \otimes There is also a more general formula for the case in which $M_0(X)$ is a submanifold N and not just a set of isolated points

 \otimes We obtain it in a similar process by integration over $\{M - \text{tubular neigbourhood of } N\}$ and manipulationg the integral.

$$\int_M \alpha(X) = \int_N \frac{\alpha(X)}{e_F(X)}$$

Where $e_F(X)$ is the **equivariant Euler form** of the **normal bundle** of N in M. (In our case it was the $e_F(X)(p = \lambda_1 \dots \lambda_l)$)

Let (M, ω) be a symplectic manifold of dimension 2l.

 $(\omega \in \Omega^2(M); \quad d\omega = 0 \text{ and } \omega \text{ is invertible})$

Let G be a symplectomorphic action $(g^*\omega = \omega)$ on M. A **moment map** is a function $\mu : \mathfrak{g} \times M \mapsto \mathbb{R}$ such that:

- $\otimes \mu(X)$ is linear in $X \in \mathfrak{g}$
- \otimes X_M is the **Hamiltonian** vector field generated by $\mu(X)$

$$d\mu(X)(\cdot) = \omega(X_M, \cdot)$$

 $\otimes \quad \mu(X) \text{ is equivariant: } g^*\mu(X) = \mu(Ad_g(X)) \quad \forall g \in G$

Let's add μ and ω :

$$X \mapsto \Omega(X) = \mu(X) - \omega$$

is an equivariant closed differential form.

$$D\Omega(X_M) = d\mu(X) - \omega(X_M, \cdot) = 0$$

We had a nice formula for integrals over equivariantly closed differential forms!

 $\Omega(X)$ has maximally degree 2 so we integrate over:

$$e^{i\Omega}{}_{[n]} = e^{i\mu(X) + i\omega}{}_{[n]} = e^{i\mu(X)}e^{i\omega}{}_{[n]} = e^{i\mu(X)}\frac{\omega^l i^l}{l!}$$

Is also equivariantly closed.

Atiyah Bott \Rightarrow The Duistermaat Heckmann localization

$$\int_{M} e^{i\mu(X)} \frac{\omega^{l}}{l!} = (2\pi i)^{l} \sum_{p \in M_{0}(X)} \frac{e^{i\mu(X)}(p)}{e_{F}(X)(p)}$$

Example: S^2 with S^1 rotation around z localizes to a sum over the poles.

This is the so called **exact stationary phase approximation**.

We can use Duistermaat Heckman to proof that the stationary phase approximation of **certain** path integrals is exact!

Atiyah Bott localizations in susy language:

We saw in the last talk that integration of a differential form over a (bosonic) manifold is a special case of supergeometric integration:

$$(x^{i}, dx^{i}) \rightarrow (x^{i}, \psi^{i})$$
$$\int_{M} dx^{i_{1}} \wedge \dots \wedge dx^{i_{n}} \alpha_{i_{1}\dots i_{n}} = \int_{\Pi TM} dx^{1} \dots dx^{n} d\psi^{1} \dots d\psi^{n} \alpha(x, \psi)$$
$$= (-2\pi)^{l} \sum_{p \in M_{0}(X)} \frac{\alpha(X)_{[0]}(p)}{e_{F}(X)(p)}$$

$$\int_{M} dx^{i_{1}} \wedge \dots \wedge dx^{i_{n}} \alpha_{i_{1}\dots i_{n}} = \int_{\Pi TM} dx^{1} \dots dx^{n} d\psi^{1} \dots d\psi^{n} \alpha(x, \psi)$$
$$D = d + \iota_{X_{M}} = \psi^{i} \frac{\partial}{\partial x^{i}} + X^{i}_{M}(p) \frac{\partial}{\partial \psi^{i}}$$
$$D^{2} = \pounds_{X_{M}}$$

- $\otimes \alpha(x,\psi)$ is a superfunction
- $\otimes \quad D \text{ is a fermionic vector$ $field}$
- $\otimes D^2 = \pounds_{X_M}$ is a bosonic vectorfield

 $D\alpha = 0$ is one of the conditions of the supersymmetric localization from the beginning of the talk.

Is the Atiyah Bott localization formula a special case of the supersymmetric localization formula?

We have to check whether we can write:

$$D = d + \iota_{X_M} = \psi^i \frac{\partial}{\partial x^i} + X^i_M(p) \frac{\partial}{\partial \psi^i}$$
$$D = \frac{\partial}{\partial {\psi'}^1}$$

Is this possible?

as:

Problem: That's not possible!

Theorem:

Let Q be a fermionic vectorfield on a sumpermanifold M that does not vanish at x_0 . Then we can write Q in local coordinates (x^i, ψ^j) around x_0 as:

$$\otimes \quad Q = \frac{\partial}{\partial \psi^1} \quad \Leftrightarrow \quad Q^2 = 0$$

The proof can be found in [1], chapter 4 §4 section 2.

But:
$$D^2 = \pounds_{X_M} \neq 0$$

 \Rightarrow Atiyah Bott is **not** a special case of the susy localization from the beginning of the talk!

We now have susy localizations with fermionic vector fields Q of the form ∂_{ψ^1} and $D = \psi^i \partial_{x^i} + X^i_M \partial_{\psi^i}$.

 \Rightarrow There could be a more general localization formula for fermionic vector fields!

To formulate the localization theorem for supermanifolds we have to define more structures on them.

Reminder: Facts about supermanifolds:

 \otimes A *real* supermanifold $M = M^{(n_+|n_-)}$ can be seen as a outer product bundle $\Pi \alpha(N)$ over some bosonic manifold N.

 $\otimes N = m(M)$ is called the **body** of M

 \otimes We can find local coordinates $(x_1, \ldots, x_{n_+}, \psi_1, \ldots, \psi_{n_-})$

 \otimes A bosonic vector field A on M has a number part m(A)

$$A = A^{i}(x,\psi)\partial_{x^{i}} + A^{\iota}(x,\psi)\partial_{\psi^{\iota}} \Rightarrow m(A) = A^{i}(x,0)\partial_{x^{i}}$$

 \otimes The **number part of an fermionic vector field** Q is a section in the bundle determined by $(q^1(x,0),\ldots,q^{n_-}(x,0))$.

$$Q = \kappa^i(x,\psi)\partial_{x^i} + q^\iota(x,\psi)\partial_{\psi^\iota}$$

 \otimes Diffeomorphisms on M are automorphisms on $\alpha(N)$

 \otimes Bosonic vector fiels A on M are infinitesimal diffeomorphisms on $M \Leftrightarrow$ infinitesimal automorphisms \overline{A} on αN

 \otimes A bosonic vectorfield is **compact**, if it is generated by the action of a 1 parameter subgroup of a **compact** Lie group.

 \otimes The set of compact vector fields on M is denoted by $\mathcal{K}(M)$

Superdivergence:

 \otimes The bosonic divergence div(X) of a bosonic vectorfield X on a bosonic manifold M tells us how the volume form dV on the manifold changes with the flow of X.

 \otimes That's hard to define for supermanifolds!

 \otimes Lets just define the **super divergence** div_{dV} by its action unter superintegration:

$$\int_{M} dV Q(f) = -\int_{M} dV div_{dV}(Q) f \quad \forall f$$

Where M is a supermanifold, dV is a supervolume form on M, Q is a fermionic vectorfield and f a test function.

Supersymmetric localization Theorem:

Let M be a *compact supermanifold* with volumeform dV. Let Q be a fermionic vectorfield on M such that:

 $div_{dV}Q = 0$ $Q^2 \in \mathcal{K}(M)$

For any neighbourhood U of $M_0(Q)$ exists an bosonic, Q invariant function g_0 , that is equal to 1 in a neighbourhood $O \subset U$ of $M_0(Q)$ and vanishes outside. For every function h with Q(h) = 0 on M and every g_0 that satisfies this condition we have:

$$\int_M dV h = \int_M dV g_0 \cdot h$$

$\begin{array}{l} \partial_{\psi^1} \ \ {\rm Localization:} \\ \otimes \quad \partial^2_{\psi^1} \in {\mathcal K}(M) \end{array}$

$$\left(\frac{\partial}{\partial\psi^1}\right)^2 = 0 \in \mathcal{K}(M)$$

 $\otimes \quad div_{dV}(\partial_{\psi^1}) = 0$

$$\int d\psi^1 \dots d\psi^{n-} div_{dV} \left(\frac{\partial}{\partial \psi^1}\right) \phi =$$
$$-\int d\psi^1 \dots d\psi^{n-} \frac{\partial}{\partial \psi^1} \phi = -\int d\psi^2 \dots d\psi^{n-} \left(\frac{\partial}{\partial \psi^1}\right)^2 \phi = 0$$

For every function ϕ .

Atiyah Bott Localization:

 $\otimes div_{dV}(D) = 0$

$$\int_{M} dV div_{dV}(D)\phi = -\int_{M} dV D(\phi)$$
$$= -\int_{m(M)} d\phi + \iota_{X}(\phi) = 0$$

due to stokes and the nonexistence of a n+1 form on m(M)

 $\otimes D^2 = \pounds_X \in \mathcal{K}(\Pi TM)$

Because X is generated by the action of a 1 parameter subgroup of a compact Lie group and so is \pounds_X .

Lemma 1: \exists a fermionic, Q^2 invariant function σ on M such that:

$$m(Q\sigma)(x) \neq 0 \quad \forall x \notin M_0(Q)$$

Proof:

 \otimes Local coordinates: $z=(x^i,\psi^\alpha)$

$$Q = \sum_{i=1}^{n_+} a^i_\alpha(z) \psi^\alpha \frac{\partial}{\partial x^i} + \sum_{\alpha=1}^{n_-} b^\alpha(z) \frac{\partial}{\partial \psi^\alpha}$$

Where: $a_{\alpha}^{i}(z) = a_{\alpha}^{i}(x) + \dots$ and $b^{\alpha}(z) = b^{\alpha}(x) + \dots$ Where the dots denote higher orders in ψ^{α} \otimes We can write in a similar manner:

$$Q^2 = k^i(z)\frac{\partial}{\partial x^i} + l^{\alpha}_{\beta}\psi^{\beta}\frac{\partial}{\partial\psi^{\alpha}}$$

With some coefficients $k^i(z) = k^i(x) + \ldots$ and $l^{\alpha}_{\beta}(z) = l^{\alpha}_{\beta}(x) + \ldots$ depending on a^i_{α} and b^{α}

$$\otimes \quad [Q,Q^2] = 0 \quad \Rightarrow \\ k^i(x) \frac{\partial b^{\alpha}(x)}{\partial x^i} - l^{\alpha}_{\beta}(x) b^{\beta}(x) = 0$$

The section in α generated by the number part $b^{\alpha}(x)$ of Q is therefore invariant under the infinitesimal automorphism $\overline{Q^2}$ \otimes We assumed that $\overline{Q^2}$ is generated by a 1 parameter subgroup of a compact group G.

 \otimes We can find a *G* invariant metric $g_{\alpha\beta}$ on the fibers of the bundle α because *G* is **compact**.

 \otimes Define:

$$\sigma(z) = g_{\alpha\beta}(x)b^{\alpha}(x)\psi^{\beta}$$

$$\otimes b^{\alpha}(x) \text{ and } g_{\alpha\beta} \text{ are } \overline{Q^2} \text{ invariant} \Rightarrow Q^2 \sigma = 0$$

$$\otimes \quad m(Q\sigma)(x) = g_{\alpha\beta}(x)b^{\alpha}(x)b^{\beta}(x) \neq 0 \quad \forall x \notin M_0(Q)$$

That completes the proof of the Lemma 1.

 \otimes Lets define:

$$\beta(z) = \frac{\sigma(z)}{Q\sigma(z)} \quad \forall z \notin M_0(Q)$$

 $\otimes \quad Q\beta = 1$ (Does this look familiar? Compare to $\frac{\theta}{D\theta}$)

Lemma 2:

We can find a partition of unity $\sum g_i = 1$ such that:

$$supp(g_0) \subset U$$

$$g_0|_O = 1$$

$$Qg_n = 0 \text{ and } g_n = Q(\rho_n) \text{ if } n \neq 0$$

Where $O \subset U$ are the neighbourhoods of $M_0(Q)$ from the Theorem.

Proof:

 \otimes Choose an open covering (U_n) such that:

 $M_0(Q) \subset U_0 \text{ and } M_0(Q) \cap U_n = \emptyset \quad \forall n > 0$

 \otimes Choose a partition of unity f_n on this set.

 \otimes The partition f_n is *G*-invariant. (We can always choose this because *G* is **compact**). It is also $\overline{Q^2}$ invariant.

 \otimes Define:

$$g_n = Q(\beta f_n) \quad \forall n > 0$$
$$g_0 = 1 - \sum_{n > 0} g_n$$

$$g_n = Q(\beta f_n) \quad \forall n > 0$$
$$g_0 = 1 - \sum_{n > 0} g_n$$

Does this satisfy all conditions?

$$\sum_{n>0} g_n = \sum_{n>0} Q(\beta f_n) = \sum_{n>0} f_n + \beta Q(\sum_{n>0} f_n)$$

That's 0 in a neighbourhood of $M_0(Q)$ and 1 in $M - U_0$

Further: $Q(g_n) = Q(Q(\beta f_n)) = 0$ since $Q^2(f_n) = 0$

Proof of the Theorem:

Let h be an function that is invariant under Q.

$$\int_{M} dVh = \sum_{n} \int_{M} dVg_{n}h = \sum_{n>0} \int_{M} dVQ(\rho_{n})h + \int_{M} dVg_{0}h$$
$$= \sum_{n>0} \int_{M} dVQ(\rho_{n}h) + \int_{M} dVg_{o}h = \int_{M} dVg_{o}h$$
se $div_{AV}(Q) = 0$

Because $div_{dV}(Q)$

Is this independend from the choise of g_0 ?

 \otimes Assume that we have another function $\widetilde{g_0}$ with the same properties as g_0

$$g_0 - \tilde{g_0} = 0 \text{ in a small nbhd of } M_0(Q)$$

$$\Rightarrow \qquad (g_0 - \tilde{g_0}) = Q(\beta(g_0 - \tilde{g_0}))$$

$$\Rightarrow \qquad \int_M dV g_0 h - \int_M dV \tilde{g_0} h = \int_M dV Q(\beta(g_0 - \tilde{g_0})) h = \int_M dV Q(\beta h(g_0 - \tilde{g_0}))$$

$$= 0$$

That completes the proof of the supersymmetric localization theorem.

A more general result can be found in [5]

Erik Fink

\otimes Wittens proof of the Morse inequalities [6]

 \otimes Calculation of **some** QFT partition functions and even some correlation functions [4]

 \otimes The Atiyah Bott theorem can be proven with the means of equivariant differential forms.

 \otimes The Duistermaat Heckman theorem is a corollary of the Atyiah Bott theorem. It provides the exactness of the stationary phase approximations in some cases.

 \otimes The Atiyah Bott theorem can be rephrased as a localization theorem on certain supermanifolds.

 \otimes The Atiyah Bott is a special case of a localization theorem on general supermanifolds.

 \otimes The proof of the general theorem shows astonishing parallels to the proof of Atiyah Bott.

BIBLIOGRAPHY

- Yu.I. Manin, Gauge theory and Complex geometry, Springer (1988)
- N. Berline, E. Getzler, M. Vergne, *Heat Kernels and Dirac operators*, Springer (1996)
- V.W. Guillemin, S. Sternberg, Supersymmetrie and Equivariant de Rahm Theory, Springer (1999)
- V.Pestun et al., Localization Techniques in Quantum Field Theories, availebal at http://pestun.ihes.fr/pages/LocalizationReview/LocQFT.pdf, last call April 8. 2021
- A. Schwarz, O. Zaboronsky, *Supersymmetry and Localization* Commun. Math. Phys 183, 463-476 (1997)
- E. Witten, Supersymmetry and Morse Theory, J.Differential Geometry 17 (1982) 611-692

- M. Atiyah, R. Bott *The moment map and equivariant cohomology*. Topology 23.1 (1984)
- P. Rossi Equivariant and supersymmetric localization in QFT, arXiv:2101.09205
- L.Abath M. Correa M.R. Pena, *Localization Formulas on Complex supermanifolds*, arXiv 1909.13087
- S. Dwivedi, J. Herman L.C. Jeffrey, T. van den Hurk, *Hamiltonian Group Actions and Equivariant Cohomology*, Springer (2019)