SUPERSYMMETRIC LOCALIZATIONS

Erik Fink

May 18th 2021

Table of Contents

(1) What are Localizations?
(2) Equivariant differential Forms
(3) The Atiyah Bott Localization
(4) Duistermat Heckman Localization
(5) Supersymmetric localizations

What are localizations?

Let's integrate an object α (a function, differentialform, superfunction, path integrand ..) over some measure space M :

$$
\int_{M} \alpha
$$

That's complex; so let us split M into two pieces: $M=A \sqcup B$ where A is "bigger" then B.

$$
\int_{M} \alpha=\int_{A} \alpha+\int_{B} \alpha=\int_{B} \alpha
$$

If $\int_{A} \alpha=0$ for some miraculous reason. We say that $\int_{M} \alpha$ is localized around B.

What are super symmetric localizations?

The properties of super integration give us a new way of thinking about localitazions!

Let $M=M^{(n \mid m)}$ be a supermanifold with dimension $(n \mid m)$. Let f be a function on M and Q a fermionic vectorfield such that:

$$
Q(f)=0
$$

Further assume that we can find around a point $p \in M$ local coordinates $\left(x^{i}, \psi^{j}\right)$ such that: $Q=\frac{\partial}{\partial \psi^{1}}$

$$
\int d \psi^{1} \ldots d \psi^{m} f=\int d \psi^{2} \ldots d \psi^{m}\left(\frac{\partial}{\partial \psi^{1}} f\right)=0
$$

The integral over a neighbourhood of p does not contribute to the integral $\int_{M} f$!

This leads us to the conclusion:

$$
\int_{M} f=\int_{M-N} f
$$

With:

$$
N=\left\{p \in M \left\lvert\, Q=\frac{\partial}{\partial \psi^{1}}\right. \text { in a neighbourhood of } p\right\}
$$

This is a supersymmetric localization.

Equivariant differential Forms

Let M be a compact manifold, G a compact Lie group with algebra \mathfrak{g} and an action $G \times M \mapsto M$ on M.
Let:

$$
S\left(\mathfrak{g}^{*}\right)=\{f: \mathfrak{g} \mapsto \mathbb{R} \mid f \text { is a polynomial }\}
$$

With " f is a polynomial" we mean that f is a polynomial over a basis $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of \mathfrak{g}^{*} for example:

$$
f(\cdot)=5 \alpha_{1}(\cdot)^{3}+\alpha_{2}(\cdot) \alpha_{4}(\cdot)
$$

Let's now consider:

$$
f \in S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R})
$$

f takes an element of \mathfrak{g} and returns an ordinary differential form:

$$
f: \mathfrak{g} \mapsto \Omega^{*}(M, \mathbb{R})
$$

We want a cohomology theory similar to deRahm's build on the forms $S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R})$. Unfortunately, that does not work. To get a proper theory we need a subspace of $S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R})$.
$g \in G$ can act on both sides of f :

$$
\begin{gathered}
f(\cdot) \mapsto f\left(A d_{g}(\cdot)\right) \\
f(\cdot) \mapsto g^{*} f(\cdot)
\end{gathered}
$$

Where $A d_{g}(h)=g h g^{-1}$ for $g \in G$ and $h \in \mathfrak{g}$. (For matrix groups.)

We need the subspace of equivariant f the equivariant differential forms:
$\left(S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R})\right)^{G}=\left\{f \in S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R}) \mid g^{*} f(\cdot)=f\left(A d_{g}(\cdot)\right) \forall g \in G\right\}$

$$
=\Omega_{G}^{*}(M)
$$

This is the proper space to define the cohomology theory on. We need a nilpotent operator.

A nilpotent operator:

Observation: A $X \in \mathfrak{g}$ generates a vectorfield X_{M} on M via:

$$
X_{M}(h)(p)=\left.\frac{d}{d t}\right|_{t=0} h(\exp (-t X) p)
$$

For a $p \in M$ and a $h \in C^{\infty}(M, \mathbb{R})$.

Now define the nilpotent operator

$$
D:\left(S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R})\right)^{G} \mapsto\left(S\left(\mathfrak{g}^{*}\right) \otimes \Omega^{*}(M, \mathbb{R})\right)^{G}
$$

by:

$$
D(h \otimes \alpha)(X)=h(X) \otimes d \alpha+h(X) \otimes \iota_{X_{M}} \alpha
$$

or:

$$
D=d+\iota_{X_{M}}
$$

This in nilpotent on $\Omega_{G}^{*}(M)$ because:

$$
D^{2}=d^{2}+d \iota_{X_{M}}+\iota_{X_{M}} d+\iota_{X_{M}}^{2}=0+£_{X_{M}}+0=0
$$

Due to Cartans magic formula.
The Lie derivative is not 0 for general forms but for $\alpha \in \Omega_{G}^{*}(M)$:

$$
\begin{gathered}
£_{X_{M}} \alpha(X)=\lim _{t \rightarrow 0} \frac{(1-t X)^{*} \alpha(X)-\alpha(X)}{t} \\
=\lim _{t \rightarrow 0} \frac{\alpha((1-t X) X(1+t X))-\alpha(X)}{t}=\lim _{t \rightarrow 0} \frac{\alpha(X+t[X, X])-\alpha(X)}{t}=0
\end{gathered}
$$

Cartan Model of Equivariant Cohomology

A form $f=h(\cdot) \otimes \alpha \in \Omega_{G}^{*}(M)$ with $h \in S\left(\mathfrak{g}^{*}\right)$ and $\alpha \in \Omega^{*}(M)$ has the grading:

$$
\operatorname{deg}(f)=\operatorname{deg}(\alpha)+2 \operatorname{deg}(h)
$$

$D=d+\iota_{X_{M}}$ increases the grading by 1.
Now we can define the equivariant coboundarys B_{G}^{*} and the equivariant cocycles Z_{G}^{*} :

$$
\begin{gathered}
Z_{G}^{*}=\operatorname{kern}(D) \\
B_{G}^{*}=\operatorname{Im}(D)
\end{gathered}
$$

And finally the equivariant cohomology:

$$
H_{G}^{*}(M)=\frac{Z_{G}^{*}}{B_{G}^{*}}
$$

Final Remarks:

\otimes There are more models of equivariant cohomology like the Weil and BRST model.
\otimes The equivariant cohomology is usually defined in a more general way by the means of universal bundles. That is complex because the definition involves infinite dimensional manifolds.

For more detailes see [2] and [1]

The Atiyah Bott Localization:

Theorem:

Let G be a compact Lie group, \mathfrak{g} its algebra. M is an even dimensional compact manifold with dimension $\operatorname{dim}(M)=n=2 l$

The Atiyah Bott Localization formula:

$$
\int_{M} \alpha(X)_{[n]}=(-2 \pi)^{l} \sum_{p \in M_{0}(X)} \frac{\alpha(X)_{[0]}(p)}{e_{F}(X)(p)}
$$

Where $X \in \mathfrak{g}, \alpha$ an equivariantly closed differential form, $M_{0}(X)$ the set of isolated zeros of X_{M}.
$e_{F}(X)(p)$ is the so called equivariant Euler class of the normal bundle of the point p.

Lemma: $\alpha(X)_{[n]}$ is d-exact outside $M_{0}(X)$.
We can find a form θ (with the use of a G invariant metric) such that $£_{X_{M}} \theta=0$ and $D \theta$ is invertibel on $M-M_{0}(X)$. Then we have on $M-M_{0}(X)$:

$$
\alpha(X)_{[n]}=d\left(\frac{\theta \wedge \alpha(X)}{D \theta}\right)_{[n-1]}
$$

because:

$$
d\left(\frac{\theta \wedge \alpha(X)}{D \theta}\right)_{[n-1]}=D\left(\frac{\theta \wedge \alpha(X)}{D \theta}\right)_{[n-1]}=\left(\frac{D \theta}{D \theta} \alpha(X)\right)_{[n]}=\alpha(X)_{[n]}
$$

(We have no element of order $[n+1]$ so we don't get a contribution by the $\iota_{X_{M}}$)

Lemma:

X_{M} rotates around $p \in M_{0}(X)$. We can find local coordinates x_{i} such that:

$$
X_{M}=\lambda_{1}\left(x_{2} \partial_{1}-x_{1} \partial_{2}\right)+\ldots
$$

And we define a 1 form θ^{p} via:

$$
\theta^{p}=\lambda_{1}^{-1}\left(x_{2} d x_{1}-x_{1} d x_{2}\right)+\ldots
$$

Properties:

$\otimes £_{X_{M}} \theta^{p}=0$
Q $\theta^{p}\left(X_{M}\right)=\Sigma x_{i}^{2}=\|x\|^{2}$ (In the local trivial metric given by the coordinates)
\otimes We can find a θ as above such that near $p: \theta=\theta^{p}$

Let B_{ϵ}^{p} be the ϵ ball around the $p \in M_{0}(X)$

$$
\begin{gathered}
\int_{M} \alpha(X)=\lim _{\epsilon \rightarrow 0} \int_{M-\cup B_{\epsilon}^{p}} \alpha(X)=\lim _{\epsilon \rightarrow 0} \int_{M-\cup B_{\epsilon}^{p}} d\left(\frac{\theta \wedge \alpha(X)}{D \theta}\right) \\
=-\sum_{p} \lim _{\epsilon \rightarrow 0} \int_{S_{\epsilon}^{p}} \frac{\theta \wedge \alpha(X)}{D \theta}
\end{gathered}
$$

Rescaling: $x \mapsto \epsilon x$
$\otimes \epsilon$-sphere S_{ϵ} becomes the unit sphere S_{1}
$\otimes \frac{\theta}{D \theta}$ remains unchanged
$\otimes \quad \lim _{\epsilon \rightarrow 0} \alpha_{\epsilon}(X)=\alpha_{[0]}(X)(p)$

$$
\int_{S_{\epsilon}^{p}} \frac{\theta \wedge \alpha(X)}{D \theta}=\int_{S_{1}^{p}} \frac{\theta \wedge \alpha_{\epsilon}(X)}{D \theta}=\alpha_{[0]}(X)(p) \int_{S_{1}} \frac{\theta}{D \theta}
$$

$$
-\int_{S_{1}} \frac{\theta}{D \theta}=\int_{S_{1}} \frac{\theta}{1-d \theta}=\int_{S_{1}} \theta d \theta^{l-1}=\int_{B_{1}} d \theta^{l}=R H S
$$

And:

$$
(d \theta)^{l}=(-2)^{l} l!\left(\lambda_{1} \ldots \lambda_{l}\right)^{-1} d x_{1} \wedge \ldots d x_{n}
$$

$2 l$ dimensional unit ball has volume $\frac{\pi^{l}}{l!}$
Define the equivariant Euler class (for points!):

$$
e_{F}(X)(p)=\lambda_{1} \ldots \lambda_{l}
$$

\Rightarrow

$$
R H S=\frac{(-2 \pi)^{l}}{e_{F}(X)(p)}
$$

$Q E D$

Remark:

\otimes There is also a more general formula for the case in which $M_{0}(X)$ is a submanifold N and not just a set of isolated points
\otimes We obtain it in in a similar process by integration over $\{M$ - tubular neigbourhood of $N\}$ and manipulationg the integral.

$$
\int_{M} \alpha(X)=\int_{N} \frac{\alpha(X)}{e_{F}(X)}
$$

Where $e_{F}(X)$ is the equivariant Euler form of the normal bundle of N in M. (In our case it was the $\left.e_{F}(X)\left(p=\lambda_{1} \ldots \lambda_{l}\right)\right)$

Duistermaat Heckman Localization

Let (M, ω) be a symplectic manifold of dimension $2 l$.
$\left(\omega \in \Omega^{2}(M) ; \quad d \omega=0\right.$ and ω is invertible $)$
Let G be a symplectomorphic action $\left(g^{*} \omega=\omega\right)$ on M.
A moment map is a function $\mu: \mathfrak{g} \times M \mapsto \mathbb{R}$ such that:
$\otimes \mu(X)$ is linear in $X \in \mathfrak{g}$
$\otimes X_{M}$ is the Hamiltonian vector field generated by $\mu(X)$

$$
d \mu(X)(\cdot)=\omega\left(X_{M}, \cdot\right)
$$

$\otimes \mu(X)$ is equivariant: $g^{*} \mu(X)=\mu\left(A d_{g}(X)\right) \quad \forall g \in G$

Let's add μ and ω :

$$
X \mapsto \Omega(X)=\mu(X)-\omega
$$

is an equivariant closed differential form.

$$
D \Omega\left(X_{M}\right)=d \mu(X)-\omega\left(X_{M}, \cdot\right)=0
$$

We had a nice formula for integrals over equivariantly closed differential forms!
$\Omega(X)$ has maximally degree 2 so we integrate over:

$$
e_{[n]}^{i \Omega}=e^{i \mu(X)+i \omega}{ }_{[n]}=e^{i \mu(X)} e^{i \omega}{ }_{[n]}=e^{i \mu(X)} \frac{\omega^{l} i^{l}}{l!}
$$

Is also equivariantly closed.

Atiyah Bott \Rightarrow The Duistermaat Heckmann localization

$$
\int_{M} e^{i \mu(X)} \frac{\omega^{l}}{l!}=(2 \pi i)^{l} \sum_{p \in M_{0}(X)} \frac{e^{i \mu(X)}(p)}{e_{F}(X)(p)}
$$

Example: S^{2} with S^{1} rotation around z localizes to a sum over the poles.

This is the so called exact stationary phase approximation.
We can use Duistermaat Heckman to proof that the stationary phase approximation of certain path integrals is exact!

Supersymmetric localizations

Atiyah Bott localizations in susy language:

We saw in the last talk that integration of a differential form over a (bosonic) manifold is a special case of supergeometric integration:

$$
\begin{gathered}
\left(x^{i}, d x^{i}\right) \rightarrow\left(x^{i}, \psi^{i}\right) \\
\int_{M} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n}} \alpha_{i_{1} \ldots i_{n}}=\int_{\Pi T M} d x^{1} \ldots d x^{n} d \psi^{1} \ldots d \psi^{n} \alpha(x, \psi) \\
=(-2 \pi)^{l} \sum_{p \in M_{0}(X)} \frac{\alpha(X)_{[0]}(p)}{e_{F}(X)(p)}
\end{gathered}
$$

$$
\begin{gathered}
\int_{M} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{n}} \alpha_{i_{1} \ldots i_{n}}=\int_{\Pi T M} d x^{1} \ldots d x^{n} d \psi^{1} \ldots d \psi^{n} \alpha(x, \psi) \\
D=d+\iota_{X_{M}}=\psi^{i} \frac{\partial}{\partial x^{i}}+X_{M}^{i}(p) \frac{\partial}{\partial \psi^{i}} \\
D^{2}=£_{X_{M}}
\end{gathered}
$$

$\otimes \quad \alpha(x, \psi)$ is a superfunction
$\otimes D$ is a fermionic vectorfield
$\otimes \quad D^{2}=£_{X_{M}}$ is a bosonic vectorfield
$D \alpha=0$ is one of the conditions of the supersymmetric localization from the beginning of the talk.

Is the Atiyah Bott localization formula a special case of the supersymmetric localization formula?

We have to check whether we can write:

$$
D=d+\iota_{X_{M}}=\psi^{i} \frac{\partial}{\partial x^{i}}+X_{M}^{i}(p) \frac{\partial}{\partial \psi^{i}}
$$

as:

$$
D=\frac{\partial}{\partial \psi^{\prime 1}}
$$

Is this possible?

Problem: That's not possible!

Theorem:

Let Q be a fermionic vectorfield on a sumpermanifold M that does not vanish at x_{0}. Then we can write Q in local coordinates $\left(x^{i}, \psi^{j}\right)$ around x_{0} as:
$\otimes \quad Q=\frac{\partial}{\partial \psi^{1}} \quad \Leftrightarrow \quad Q^{2}=0$
The proof can be found in [1], chapter $4 \S 4$ section 2.
But: $D^{2}=£_{X_{M}} \neq 0$
\Rightarrow Atiyah Bott is not a special case of the susy localization from the beginning of the talk!

We now have susy localizations with fermionic vectorfields Q of the form $\partial_{\psi^{1}}$ and $D=\psi^{i} \partial_{x^{i}}+X_{M}^{i} \partial_{\psi^{i}}$.
\Rightarrow There could be a more general localization formula for fermionic vectorfields!

To formulate the localization theorem for supermanifolds we have to define more structures on them.

Reminder: Facts about supermanifolds:

\otimes A real supermanifold $M=M^{\left(n_{+} \mid n_{-}\right)}$can be seen as a outer product bundle $\Pi \alpha(N)$ over some bosonic manifold N.
$\otimes \quad N=m(M)$ is called the body of M
\otimes We can find local coordinates $\left(x_{1}, \ldots, x_{n_{+}}, \psi_{1}, \ldots \psi_{n_{-}}\right)$
\otimes A bosonic vector field A on M has a number part m(A)

$$
A=A^{i}(x, \psi) \partial_{x^{i}}+A^{\iota}(x, \psi) \partial_{\psi^{\iota}} \Rightarrow m(A)=A^{i}(x, 0) \partial_{x^{i}}
$$

\otimes The number part of an fermionic vector field Q is a section in the bundle determined by $\left(q^{1}(x, 0), \ldots, q^{n_{-}}(x, 0)\right)$.

$$
Q=\kappa^{i}(x, \psi) \partial_{x^{i}}+q^{\iota}(x, \psi) \partial_{\psi^{\iota}}
$$

\otimes Diffeomorphisms on M are automorphisms on $\alpha(N)$
\otimes Bosonic vectorfiels A on M are infinitesimal diffeomorphisms on $M \quad \Leftrightarrow \quad$ infinitesimal automorphisms \bar{A} on αN
\otimes A bosonic vectorfield is compact, if it is generated by the action of a 1 parameter subgroup of a compact Lie group.
\otimes The set of compact vector fields on M is denoted by $\mathcal{K}(M)$

Superdivergence:

\otimes The bosonic divergence $\operatorname{div}(X)$ of a bosonic vectorfield X on a bosonic manifold M tells us how the volume form $d V$ on the manifold changes with the flow of X.
\otimes That's hard to define for supermanifolds!
\otimes Lets just define the super divergence $d i v_{d V}$ by its action unter superintegration:

$$
\int_{M} d V Q(f)=-\int_{M} d V d i v_{d V}(Q) f \quad \forall f
$$

Where M is a supermanifold, $d V$ is a supervolume form on M, Q is a fermionic vectorfield and f a test function.

Supersymmetric localization Theorem:

Let M be a compact supermanifold with volumeform $d V$. Let Q be a fermionic vectorfield on M such that:

$$
\begin{aligned}
& \operatorname{div}_{d V} Q=0 \\
& Q^{2} \in \mathcal{K}(M)
\end{aligned}
$$

For any neighbourhood U of $M_{0}(Q)$ exists an bosonic, Q invariant function g_{0}, that is equal to 1 in a neighbourhood $O \subset U$ of $M_{0}(Q)$ and vanishes outside. For every function h with $Q(h)=0$ on M and every g_{0} that satisfies this condition we have:

$$
\int_{M} d V h=\int_{M} d V g_{0} \cdot h
$$

Special cases

$\partial_{\psi^{1}}$ Localization:
$\otimes \quad \partial_{\psi^{1}}^{2} \in \mathcal{K}(M)$

$$
\left(\frac{\partial}{\partial \psi^{1}}\right)^{2}=0 \in \mathcal{K}(M)
$$

$\otimes \quad d i v_{d V}\left(\partial_{\psi^{1}}\right)=0$

$$
\begin{gathered}
\int d \psi^{1} \ldots d \psi^{n_{-}} \operatorname{div}_{d V}\left(\frac{\partial}{\partial \psi^{1}}\right) \phi= \\
-\int d \psi^{1} \ldots d \psi^{n_{-}} \frac{\partial}{\partial \psi^{1}} \phi=-\int d \psi^{2} \ldots d \psi^{n_{-}}\left(\frac{\partial}{\partial \psi^{1}}\right)^{2} \phi=0
\end{gathered}
$$

For every function ϕ.

Atiyah Bott Localization:

$\otimes \quad \operatorname{div}_{d V}(D)=0$

$$
\begin{gathered}
\int_{M} d V d i v_{d V}(D) \phi=-\int_{M} d V D(\phi) \\
=-\int_{m(M)} d \phi+\iota_{X}(\phi)=0
\end{gathered}
$$

due to stokes and the nonexistence of a $n+1$ form on $m(M)$
$\otimes D^{2}=£_{X} \in \mathcal{K}(\Pi T M)$
Because X is generated by the action of a 1 parameter subgroup of a compact Lie group and so is $£_{X}$.

Proof of the Theorem

Lemma 1:

\exists a fermionic, Q^{2} invariant function σ on M such that:

$$
m(Q \sigma)(x) \neq 0 \quad \forall x \notin M_{0}(Q)
$$

Proof:

\otimes Local coordinates: $z=\left(x^{i}, \psi^{\alpha}\right)$

$$
Q=\sum_{i=1}^{n_{+}} a_{\alpha}^{i}(z) \psi^{\alpha} \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{n_{-}} b^{\alpha}(z) \frac{\partial}{\partial \psi^{\alpha}}
$$

Where: $a_{\alpha}^{i}(z)=a_{\alpha}^{i}(x)+\ldots$ and $b^{\alpha}(z)=b^{\alpha}(x)+\ldots$
Where the dots denote higher orders in ψ^{α}
\otimes We can write in a similar manner:

$$
Q^{2}=k^{i}(z) \frac{\partial}{\partial x^{i}}+l_{\beta}^{\alpha} \psi^{\beta} \frac{\partial}{\partial \psi^{\alpha}}
$$

With some coefficients $k^{i}(z)=k^{i}(x)+\ldots$ and $l_{\beta}^{\alpha}(z)=l_{\beta}^{\alpha}(x)+\ldots$ depending on a_{α}^{i} and b^{α}
$\otimes \quad\left[Q, Q^{2}\right]=0 \quad \Rightarrow$

$$
k^{i}(x) \frac{\partial b^{\alpha}(x)}{\partial x^{i}}-l_{\beta}^{\alpha}(x) b^{\beta}(x)=0
$$

The section in α generated by the number part $b^{\alpha}(x)$ of Q is therefore invariant under the infinitesimal automorphism $\overline{Q^{2}}$
\otimes We assumed that $\overline{Q^{2}}$ is generated by a 1 parameter subgroup of a compact group G.
\otimes We can find a G invariant metric $g_{\alpha \beta}$ on the fibers of the bundle α because G is compact.
\otimes Define:

$$
\sigma(z)=g_{\alpha \beta}(x) b^{\alpha}(x) \psi^{\beta}
$$

$\otimes \quad b^{\alpha}(x)$ and $g_{\alpha \beta}$ are $\overline{Q^{2}}$ invariant $\Rightarrow \quad Q^{2} \sigma=0$
$\otimes \quad m(Q \sigma)(x)=g_{\alpha \beta}(x) b^{\alpha}(x) b^{\beta}(x) \neq 0 \quad \forall x \notin M_{0}(Q)$

That completes the proof of the Lemma 1.
\otimes Lets define:

$$
\beta(z)=\frac{\sigma(z)}{Q \sigma(z)} \quad \forall z \notin M_{0}(Q)
$$

$\otimes \quad Q \beta=1$ (Does this look familiar? Compare to $\frac{\theta}{D \theta}$)

Lemma 2:

We can find a partition of unity $\sum g_{i}=1$ such that:

$$
\begin{gathered}
\operatorname{supp}\left(g_{0}\right) \subset U \\
\left.g_{0}\right|_{O}=1 \\
Q g_{n}=0 \text { and } g_{n}=Q\left(\rho_{n}\right) \text { if } n \neq 0
\end{gathered}
$$

Where $O \subset U$ are the neigbourhoods of $M_{0}(Q)$ from the Theorem.

Proof:

\otimes Choose an open covering $\left(U_{n}\right)$ such that:

$$
M_{0}(Q) \subset U_{0} \text { and } M_{0}(Q) \cap U_{n}=\emptyset \quad \forall n>0
$$

\otimes Choose a partition of unity f_{n} on this set.
\otimes The partition f_{n} is G-invariant. (We can always choose this because G is compact). It is also $\overline{Q^{2}}$ invariant.
\otimes Define:

$$
\begin{gathered}
g_{n}=Q\left(\beta f_{n}\right) \quad \forall n>0 \\
g_{0}=1-\sum_{n>0} g_{n}
\end{gathered}
$$

$$
\begin{gathered}
g_{n}=Q\left(\beta f_{n}\right) \quad \forall n>0 \\
g_{0}=1-\sum_{n>0} g_{n}
\end{gathered}
$$

Does this satisfy all conditions?

$$
\sum_{n>0} g_{n}=\sum_{n>0} Q\left(\beta f_{n}\right)=\sum_{n>0} f_{n}+\beta Q\left(\sum_{n>0} f_{n}\right)
$$

That's 0 in a neighbourhood of $M_{0}(Q)$ and 1 in $M-U_{0}$
Further: $Q\left(g_{n}\right)=Q\left(Q\left(\beta f_{n}\right)\right)=0$ since $Q^{2}\left(f_{n}\right)=0$

Proof of the Theorem:

Let h be an function that is invariant under Q.

$$
\begin{gathered}
\int_{M} d V h=\sum_{n} \int_{M} d V g_{n} h=\sum_{n>0} \int_{M} d V Q\left(\rho_{n}\right) h+\int_{M} d V g_{0} h \\
=\sum_{n>0} \int_{M} d V Q\left(\rho_{n} h\right)+\int_{M} d V g_{o} h=\int_{M} d V g_{o} h
\end{gathered}
$$

Because $\operatorname{div}_{d V}(Q)=0$

Is this independend from the choise of g_{0} ?
\otimes Assume that we have another function $\widetilde{g_{0}}$ with the same properties as g_{0}

$$
g_{0}-\widetilde{g_{0}}=0 \text { in a small nbhd of } M_{0}(Q)
$$

\Rightarrow

$$
\left(g_{0}-\widetilde{g_{0}}\right)=Q\left(\beta\left(g_{0}-\widetilde{g_{0}}\right)\right)
$$

\Rightarrow
$\int_{M} d V g_{0} h-\int_{M} d V \widetilde{g_{0}} h=\int_{M} d V Q\left(\beta\left(g_{0}-\widetilde{g_{0}}\right)\right) h=\int_{M} d V Q\left(\beta h\left(g_{0}-\widetilde{g_{0}}\right)\right)$

$$
=0
$$

That completes the proof of the supersymmetric localization theorem.

A more general result can be found in [5]

Some Applications

\otimes Wittens proof of the Morse inequalities [6]
\otimes Calculation of some QFT partition functions and even some correlation functions [4]

Summary:

\otimes The Atiyah Bott theorem can be proven with the means of equivariant differentialforms.
\otimes The Duistermaat Heckman theorem is a corollary of the Atyiah Bott theorem. It provides the exactness of the stationary phase approximations in some cases.
\otimes The Atiyah Bott theorem can be rephrased as a localization theorem on certain supermanifolds.
\otimes The Atiyah Bott is a special case of a localization theorem on general supermanifolds.
\otimes The proof of the general theorem shows astonishing parallels to the proof of Atiyah Bott.

Bibliography

目 Yu．I．Manin，Gauge theory and Complex geometry，Springer（1988）
围 N．Berline，E．Getzler，M．Vergne，Heat Kernels and Dirac operators，Springer（1996）

回 V．W．Guillemin，S．Sternberg，Supersymmetrie and Equivariant de Rahm Theory，Springer（1999）
围 V．Pestun et al．，Localization Techniques in Quantum Field Theories，availebal at http：／／pestun．ihes．fr／pages／LocalizationReview／LocQFT．pdf，last call April 8． 2021
A．Schwarz，O．Zaboronsky，Supersymmetry and Localization Commun．Math．Phys 183，463－476（1997）
E．Witten，Supersymmetry and Morse Theory，J．Differential Geometry 17 （1982）611－692

睩 M. Atiyah, R. Bott The moment map and equivariant cohomology. Topology 23.1 (1984)
P. Rossi Equivariant and supersymmetric localization in QFT, arXiv:2101.09205
L.Abath M. Correa M.R. Pena, Localization Formulas on Complex supermanifolds, arXiv 1909.13087
圊 S. Dwivedi, J. Herman L.C. Jeffrey, T. van den Hurk, Hamiltonian Group Actions and Equivariant Cohomology, Springer (2019)

