SuperGeometry Integration

jonathan.s.paulsen

May 2021

Contents

- Recap on de Rham Cohomology
- Vector Bundles
- Differential Forms and ordinary Integration
- Introduction to the idea of Berenzian Integrals
- Construction of Differential and Integral Forms on general Supermanifolds
- Clifford Algebra
- Weyl Algebra
- Forms and Integration

Tangent Bundles

Definition (Vector Bundle)

A (real) vector bundle of rank n is a triple (E, B, π) of topological spaces E, B and a projection $\pi: E \longrightarrow B$ with:

- Every fiber $\pi^{-1}(p), p \in B$, is a n-dim. real vector space.
- Locally trivial: $\forall U \subset B$ open $\exists \varphi: U \times \mathbb{R}^{n} \longrightarrow \pi^{-1}(U)$ homeo. with
(1) $\pi \circ \varphi=$ proj $_{1}$,
(1) $\varphi \mid:\{p\} \times \mathbb{R}^{n} \longrightarrow \pi^{-1}(p)$ is a vector space iso. $\forall p \in B$.
- Transition function for two local trivializations $\left(U_{\alpha}, \varphi_{\alpha}\right),\left(U_{\beta}, \varphi_{\beta}\right)$ with $U_{\alpha} \cap U_{\beta} \neq \emptyset$:

$$
\rho_{\alpha \beta}=\varphi_{\alpha}^{-1} \circ \varphi_{\beta}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n} \longrightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n} .
$$

Tangent Bundles

Definition (Vector Bundle)

A (real) vector bundle of rank n is a triple (E, B, π) of topological spaces
E, B and a projection $\pi: E \longrightarrow B$ with:

- Every fiber $\pi^{-1}(p), p \in B$, is a n-dim. real vector space.
- Locally trivial: $\forall U \subset B$ open $\exists \varphi: U \times \mathbb{R}^{n} \longrightarrow \pi^{-1}(U)$ homeo. with
() $\pi \circ \varphi=\operatorname{proj}_{1}$,
(1) $\varphi \mid:\{p\} \times \mathbb{R}^{n} \longrightarrow \pi^{-1}(p)$ is a vector space iso. $\forall p \in B$.
- Transition function for two local trivializations $\left(U_{\alpha}, \varphi_{\alpha}\right),\left(U_{\beta}, \varphi_{\beta}\right)$ with $U_{\alpha} \cap U_{\beta} \neq \emptyset$:

$$
\rho_{\alpha \beta}=\varphi_{\alpha}^{-1} \circ \varphi_{\beta}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n} \longrightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n} .
$$

$M^{(n)}$ manifold with tangent spaces $T_{p} M$ and projection $\pi: T_{p} M \mapsto p$.

- $T M=\cup_{p \in M} T_{p} M$, then $(T M, M, \pi)$ is the tangent bundle.
- $T^{*} M=\cup_{p \in M} T_{p}^{*} M$ is the cotangent bundle.

Tangent Bundles

Definition (Section)

A smooth section s of a vector bundle is a smooth map:
$s: B \longrightarrow E$ with $\pi \circ s=i d_{B}$.

- A vector field X on a manifold M is a section $X: M \longrightarrow T M$.

Exterior Algebra

Definition (Exterior Power)

The k-th exterior power $\bigwedge^{k}(V)$ of a vector space $V^{(n)}$ is the quotient space:
$\bigwedge^{k}(V)=\otimes_{j=1}^{k} V / \operatorname{Lin}\left(v_{1} \otimes \ldots \otimes v_{k} \mid \exists i \neq j: v_{i}=v_{j}\right)$.

Definition (Exterior Product)

$$
\begin{aligned}
& \wedge: \bigwedge^{p}\left(V^{*}\right) \otimes \bigwedge^{q}\left(V^{*}\right) \longrightarrow \bigwedge^{p+q}\left(V^{*}\right) \\
& (\omega \wedge \eta)\left(v_{1}, \ldots, v_{p+q}\right)= \\
& \frac{1}{p!q!} \sum_{\sigma} \operatorname{sgn}(\sigma) \omega\left(v_{\sigma(1)}, . ., v_{\sigma(p)}\right) \eta\left(v_{\sigma(p+1)}, . ., v_{\sigma(p+q)}\right) .
\end{aligned}
$$

- A basis for $\Lambda^{k}(V)$ is given by $\left\{e_{j_{1}} \wedge . . \wedge e_{j_{k}} \mid 1 \leq j_{1}<. .<j_{k} \leq n\right\}$.
- $\operatorname{dim} \bigwedge^{k}(V)=\binom{n}{k}$ for $1 \leq k \leq n$, and $\bigwedge^{k}=\{0\}$ for $k>n$.
- The exterior Algebra of V is $\left(\oplus_{i \geq 0} \bigwedge^{i}(V),+, \wedge\right)$.

Differential Forms

Definition (k-Form)

A smooth differential k-form on a manifold $M^{(n)}$ is a smooth section into the space $\Lambda^{k}\left(T^{*} M\right)$.
The space of all k-forms on M is denoted by $\Omega^{k}(M)$.

- 0-forms are functions f, 1-forms are dual vectors $f_{i} d x^{i}$.
- A general k-form is $\omega=\sum_{i_{1}, . ., i_{k}} f_{i_{1}, ., i_{k}} d x^{i_{1}} \wedge . . \wedge d x^{i_{k}}=f_{l} d x^{\prime}$.
- Example: $\alpha=x_{3} d x^{1} \wedge d x^{2}-2 x_{1} d x^{1} \wedge d x^{3}$ is some 2 -form on \mathbb{R}^{3}.

Definition (Exterior Derivative)

We define the exterior derivative (de Rham differential) d by its action on a general k-form $\omega=f_{l} d x_{l}$:
$d: \Omega^{k}(M) \longrightarrow \Omega^{k+1}(M)$, $d \omega=\sum_{j} \frac{\partial f_{1}}{\partial x_{j}} d x^{j} \wedge d x^{\prime}$.

de Rham Complex

The de Rham differential satisfies:
(1) $d^{2}=0$, or more precisely $d(d \omega)=0$ for any form ω.
(2) $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$ for ω k-form.

Example

$$
\begin{aligned}
& \alpha=x_{3} d x^{1} \wedge d x^{2}-2 x_{1} d x^{1} \wedge d x^{3} \\
& d \alpha=d x^{3} \wedge d x^{1} \wedge d x^{2}-2 d x^{1} \wedge d x^{1} \wedge d x^{3}=d x^{1} \wedge d x^{2} \wedge d x^{3}
\end{aligned}
$$

Some terminology:

- $\omega \in \Omega^{k}(M)$ is called closed if $d \omega=0$.
- $\omega \in \Omega^{k}(M)$ is called exact if $\exists \eta \in \Omega^{k-1}(M)$ with $\omega=d \eta$.

de Rham Complex

The de Rham complex is following the sequence:

$$
0 \longrightarrow \Omega^{0}(M) \longrightarrow \Omega^{1}(M) \longrightarrow \ldots \longrightarrow \Omega^{n}(M) \longrightarrow 0
$$

where $\Omega^{k}(M)=0 \forall k>n$ because of the antisymmetry of \wedge. We take a closer look at $d^{2}=0$. This implies:

$$
\Omega^{k-1}(M) \longrightarrow \Omega^{k}(M) \longrightarrow \Omega^{k+1}(M): \eta \mapsto d \eta \mapsto 0
$$

Therefore the de Rham complex satisfies $\operatorname{Im}\left(d_{k-1}\right) \subset \operatorname{Ker}\left(d_{k}\right)$ for every k and we define the k-th (de Rham) Cohomology Group as: $H^{k}(M)=\operatorname{Ker}\left(d_{k}\right) / \operatorname{Im}\left(d_{k-1}\right)$.

Definition (Pullback)

Let $\varphi: M \longrightarrow N$ between two manifolds. This induces a map: $\varphi^{*}: \Omega^{k}(N) \longrightarrow \Omega^{k}(M)$ given by:
$\varphi^{*} \omega_{p}\left(X_{1}, . ., X_{k}\right)=\omega_{\varphi(p)}\left(d_{p} \varphi\left(X_{1}\right), . ., d_{p} \varphi\left(X_{k}\right)\right)$.
Pullbacks are "nice":

- For $\psi: N \longrightarrow \mathbb{R}$ is $\varphi^{*} \psi=\psi \circ \varphi$.
- $\varphi^{*} \circ d=d \circ \varphi^{*}$.
- $\varphi^{*}(\omega \wedge \eta)=\varphi^{*} \omega \wedge \varphi^{*} \eta$.

Example

$\varphi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{3}$.
$\alpha=x_{3} d x^{1} \wedge d x^{2}-2 x_{1} d x^{1} \wedge d x^{3} \in \Omega^{2}\left(\mathbb{R}^{3}\right)$.
$\varphi^{*} \alpha=\varphi_{3} d \varphi^{1} \wedge d \varphi^{2}-2 \varphi_{1} d \varphi^{1} \wedge d \varphi^{3} \in \Omega^{2}\left(\mathbb{R}^{n}\right)$ with $\varphi_{i}=x_{i}(\varphi)$.

Integration of Bosonic Forms

Let $U \subset \mathbb{R}^{n}$ be open and oriented. Let $\omega=f\left(x_{1}, . ., x_{n}\right) d x^{1} \wedge . . \wedge d x^{n}$ be an n-form with $\operatorname{supp}(\omega) \subset U$ compact.

Definition

The integral of ω over U is defined as the Lebesgue integral: $\int_{U} \omega=\int_{\mathbb{R}^{n}} f\left(x_{1}, . ., x_{n}\right) d x_{1} . . d x_{n}$.

Choose a partition of unity $\left(h_{i}\right)$ where each $\operatorname{supp}\left(h_{i}\right) \subset U_{i}$ for some chart $\left(U_{i}, \varphi_{i}\right)$.

Definition

$\int_{M} \omega=\sum_{i} \int_{U_{i}} h_{i} \cdot\left(\varphi_{i}^{-1}\right)^{*} \omega$.

Supermanifolds

Let $M^{p \mid q}$ be a supermanifold with p even coordinates $x=\left(x_{1}, . ., x_{p}\right)$ and q odd coordinates $\theta=\left(\theta_{1}, . ., \theta_{q}\right)$.

- $M_{\text {red }}=\left.M\right|_{\theta_{1}=. .=\theta_{q}=0}$ is the (purely bosonic) reduced manifold.
- Recall that fermionic coordinates are infinitesimal.
- Let $U \subset M . U$ is called open iff $U_{\text {red }}=U \cap M_{\text {red }}$ is open in \mathbb{R}^{p}.

Idea of the Berizinian Integral

Start with a superspace $\mathbb{R}^{p \mid q}$ with $x=\left(x_{1}, . ., x_{p}\right)$ bosonic and $\theta=\left(\theta_{1}, . ., \theta_{q}\right)$ fermionic coordinates.

- We want to integrate a function $g\left(x_{1}, \ldots, \theta_{q}\right)$.
- Write down some measure: $\left[d x^{1}, . . \mid . ., d \theta^{q}\right]$.
- Expand g in powers of $\theta \mathrm{s}$:

$$
g(x, \theta)=g_{0}(x)+g_{1}^{i}(x) \theta_{i}+. .+g_{q}(x) \theta_{1} . . \theta_{q} .
$$

We assume that g_{q} is compactly supported (or vanishes fast enough at infinity).

Definition (Berizinian Integral)

$\int_{\mathbb{R}^{p \mid q}}\left[d x^{1}, . . \mid . ., d \theta^{q}\right] g(x, \theta)=\int_{\mathbb{R}^{p}} d x^{1} . . d x^{p} g_{q}(x)$.

The Berizinian Bundle

What is the integral measure?

Definition (Berizinian Bundle)

We define a line bundle $\operatorname{Ber}(M)$ locally:

- Each coordinate system $(x \mid \theta)=\left(x_{1}, . ., x_{p} \mid \theta_{1}, . ., \theta_{q}\right)$ is a local trivialization which we call $\left[d x^{1} . . \mid . . d \theta^{q}\right]$.
- The transition functions between two trivializations (x, θ) and $\left(x^{\prime}, \theta^{\prime}\right)$ are given by the Berenzian:
$\left[d x^{1} . . \mid . . d \theta^{q}\right]=\operatorname{Ber}\left(\frac{\partial(x \mid \theta)}{\partial\left(x^{\prime} \mid \theta^{\prime}\right)}\right)\left[d x^{\prime 1} . . \mid . . d \theta^{\prime q}\right]$.
- The fibres are one-dimensional.

Reminder

For $V=V_{\text {even }} \oplus V_{\text {odd }}$ a matrix $W=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Hom}(V, V)$, where A, D even and B, C odd, has the Berizinian:
$\operatorname{Ber}(W)=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det}^{-1}(D)$.

The Berizinian Bundle

Let σ be a section of $\operatorname{Ber}(M)$ that is supported locally in $(U,(x \mid \theta))$:

- $\sigma=g(x, \theta)\left[d x^{1} . . \mid . . d \theta^{q}\right]$.

Definition

$\int_{U} \sigma=\int_{\mathbb{R}^{p} \mid q}\left[d x^{1}, . . \mid . ., d \theta^{q}\right] g(x, \theta)$.
Let now σ be a general section.

- We define the integral over M piece-wise as above.
- Choose a partition of unity $\left(h_{i}\right)$ where each $\operatorname{supp}\left(h_{i}\right) \subset U_{i}$ for some chart $\left(U_{i}, \varphi_{i}\right)$.

Definition

$\int_{M} \sigma=\sum_{i} \int_{U_{i}} h_{i} \cdot \sigma$.

Remark

Remark:

- You CAN think of sections in $\operatorname{Ber}(M)$ as the supersymmetric equivalent of a top form.
- We have defined no such thing as a k-form yet! $\left[d x^{1} . . \mid . . d \theta^{q}\right]$ is irreducible, and not a form.
- Careful about transformation properties.

$$
\begin{aligned}
& \operatorname{Ber}(\cdot)=\lambda^{-1} \text { for the transformation } \theta \mapsto \lambda \theta . \\
& \operatorname{Ber}(\cdot)=(-1) \text { for swapping two } \theta \mathrm{s} .
\end{aligned}
$$

ALGEBRAIC CONSTRUCTION OF FORMS.

Construction of Forms via Clifford Algebra

Let V be an odd vector space $\cong \mathbb{R}^{0 \mid p}$.

- $\left(\zeta^{1}, . ., \zeta^{p}\right)$ basis of V.
- $\left(\eta_{1}, . ., \eta_{p}\right)$ basis of V^{*}.

Consider the space $V \oplus V^{*}$. Introduce canonical bilinear form $\langle\cdot, \cdot\rangle$:

- $\left\langle\zeta^{i}, \zeta^{j}\right\rangle=\left\langle\eta_{i}, \eta_{j}\right\rangle=0$.
- $\left\langle\zeta^{i}, \eta_{j}\right\rangle=\left\langle\eta_{j}, \zeta^{i}\right\rangle=\delta_{j}^{i}$.

Quantisation:

- Vectors $\eta_{i}, \zeta^{j} \longrightarrow$ Operators η_{i}, ζ^{j}.
- Bilinear form $\langle\cdot, \cdot\rangle \longrightarrow$ Anticommutator $\{\cdot, \cdot\}$ with: $\{A, B\}=A B+B A$.

Construction of Forms via Clifford Algebra

We want to construct a module \mathcal{S} for the Clifford Algebra.

- Take a vector $|\downarrow\rangle$ that is annihilated by the η_{i}.
- Basis for \mathcal{S} is then given by acting on $|\downarrow\rangle$ with the ζ^{j} : $\left\{\zeta^{i_{1}} . . \zeta^{i_{k}}|\downarrow\rangle \mid k \in[|0, p|]\right\}$.

Remark:

A corresponding state $|\uparrow\rangle$ that is annihilated by the $\zeta^{j} \mathrm{~s}$ is then given by $\zeta^{1} . . \zeta^{p}|\downarrow\rangle$.
Alternatively one can start the construction with $|\uparrow\rangle$ and deriving $|\downarrow\rangle$ by acting on it with the η_{i}.

Construction of Forms via Clifford Algebra

Let $M^{(p)}$ be a bosonic manifold.

- We denote ПTM as the tangent bundle of M with twisted fibers: $\left(x_{1}, . ., x_{p}\right)$ on $M \longrightarrow\left(x_{1}, . . \mid ., d x^{p}\right)$ on ПTM where $\left(d x^{1}, . ., d x^{p}\right)$ are odd.
- Expand a function on ПTM in powers of $d x^{i}$ as before: $f(x \mid d x)=f_{0}(x)+f_{1 i}(x) d x^{i}+. .+f_{p}(x) d x^{1} . . d x^{p}$.

Remark:

A k-order term $f_{k I}(x) d x^{\prime}, I=\left(i_{1}, . ., i_{k}\right)$, is a differential k-forms. The space of functions on ПTM is the space of differential forms on M.

Construction of Forms via Clifford Algebra

For $a \in M$ we define a Clifford Algebra by specifying the operators η_{i} and ζ^{j}.

Definition

Let f be a function on ПТМ.
$\zeta^{j}: f \mapsto d x^{j} \wedge f \equiv d x^{j} f$.
$\eta_{i}: f \mapsto \frac{\partial}{\partial d x^{i}}(f)$.
Sanity check:

- $\left\langle\zeta^{i}, \zeta^{j}\right\rangle=\left\langle\eta_{i}, \eta_{j}\right\rangle=0$.
- $\left\langle\zeta^{i}, \eta_{j}\right\rangle=\left\langle\eta_{j}, \zeta^{i}\right\rangle=\delta_{j}^{i}$.

Construction of Forms via Clifford Algebra

Remark:

The exterior derivative is recovered via the definition:
$d=\zeta^{j} \partial_{j}=\sum_{j} d x^{j} \frac{\partial}{\partial x^{j}}$.
Sanity check:

- Degree: +1 .
- $d^{2}=0$.
- Leibniz rule.

Construction of Forms via Weyl Algebra

Let W be an even vector space $\cong \mathbb{R}^{q \mid 0}$.

- $\left(\alpha^{1}, . ., \alpha^{q}\right)$ basis of W.
- $\left(\beta_{1}, . ., \beta_{q}\right)$ basis of W^{*}.

Consider the space $W \oplus W^{*}$. Introduce canonical bilinear form $\langle\cdot, \cdot\rangle$:

- $\left\langle\alpha^{i}, \alpha^{j}\right\rangle=\left\langle\beta_{i}, \beta_{j}\right\rangle=0$.
- $\left\langle\alpha^{i}, \beta_{j}\right\rangle=\left\langle\beta_{j}, \alpha^{i}\right\rangle=\delta_{j}^{i}$.

Quantisation:

- Vectors $\beta_{i}, \alpha^{j} \longrightarrow$ Operators β_{i}, α^{j}.
- Bilinear form $\langle\cdot, \cdot\rangle \longrightarrow$ Commutator $[\cdot, \cdot]$ with: $[A, B]=A B-B A$.

Construction of Forms via Weyl Algebra

We want to construct a module \mathcal{V} for the Weyl Algebra.

- Take a vector $|\downarrow\rangle$ that is annihilated by the β_{i}.
- Basis for \mathcal{V} is then given by acting on $|\downarrow\rangle$ with the α^{j} : $\left\{\alpha^{i_{1}} . . \alpha^{i_{k}}|\downarrow\rangle \mid k \geq 0\right\}$.

Remark:

The basis is not finite! This is a symptom of the fact that the α^{j} are commuting and will be important later.
One can again construct a module \mathcal{V}^{\prime} with $|\uparrow\rangle$ acting on it with the β_{i}, but the two modules are not equivalent.

Construction of Forms via Weyl Algebra

Again we choose α^{j} to be multiplications and β_{i} derivatives:

- $\alpha^{j}: f \mapsto \alpha^{j} f$,
- $\beta_{i}: f \mapsto \frac{\partial}{\partial \alpha^{\prime}}(f)$.

Sanity check:

- $\left\langle\alpha^{i}, \alpha^{j}\right\rangle=\left\langle\beta_{i}, \beta_{j}\right\rangle=0$.
- $\left\langle\alpha^{i}, \beta_{j}\right\rangle=\left\langle\beta_{j}, \alpha^{i}\right\rangle=\delta_{j}^{i}$.

Construction of Forms via Weyl Algebra

The different modules support different functions.

\mathcal{V}

$|\downarrow\rangle$ is annihilated by derivatives β_{i} :
$\Longrightarrow \psi=1$ is a ground state.
\Longrightarrow polynomials in α_{i} are basis elements.
$|\uparrow\rangle$ is annihilated by multiplication with α^{j} :
\Longrightarrow distributions supported at the origin $\alpha^{j}=0$ are ground states. \Longrightarrow basis for \mathcal{V}^{\prime} is: $\left\{\left.\frac{\partial}{\partial \alpha^{j_{1}}} \cdot \frac{\partial}{\partial \alpha^{j k}} \delta^{(q)}\left(\alpha^{1} . . \alpha^{q}\right) \right\rvert\, k \geq 0\right\}$.

Construction of Forms via Weyl Algebra

Let $M^{(p)}$ be a fermionic manifold, $M \cong \mathbb{R}^{0 \mid q}$.

Definition

- $\alpha^{j} \equiv d \theta^{j}$ are called one-forms and considered even.
- The exterior derivative is defined on \mathcal{V} and \mathcal{V}^{\prime} by:

$$
d=\alpha^{j} \partial_{\theta^{j}}=\sum_{j} d \theta^{j} \frac{\partial}{\partial \theta^{j}} .
$$

Sanity check:

- This trivially fulfills $d^{2}=0$.
- The wedge product is a simple multiplication:

$$
\mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V}, \mathcal{V} \times \mathcal{V}^{\prime} \longrightarrow \mathcal{V}^{\prime}
$$

- There is no way to multiply two elements of \mathcal{V}^{\prime}.

Forms on Supermanifolds

Let $M^{(p \mid q)}$ be a general supermanifold.

Definition

A form ω on M is a function on $\Pi T M: \omega(x, d \theta \mid \theta, d x)$.
(1) Differential forms are functions with polynomial dependence on $d \theta^{i}$. The space of differential forms on M is called $\Omega^{*}(M)$.
(1) Integral forms are functions whose dependence on all $d \theta^{i}$ is a Dirac-delta distribution supported at $d \theta^{i}=0$. The space of integral forms on M is called $\Omega_{i n t}^{*}(M)$.

Definition

The exterior derivative is the following vector field on ПТМ:
$d=d x^{i} \frac{\partial}{\partial x^{i}}+d \theta^{j} \frac{\partial}{\partial \theta^{j}}$.

Remark

Remark:

(1) There is no top differential form, we can not integrate $\omega \in \Omega^{*}(M)$! (For positive fermionic dimensions.)
(1) We can integrate $\omega \in \Omega_{i n t}^{*}(M)$. A top integral form is: $f(x \mid \theta) d x^{1} . . d x^{p} \delta\left(d \theta^{1} . . d \theta^{q}\right)$.
However there is no bottom form as every $\frac{\partial}{\partial d \theta^{j}}$ increases the codimension by 1 .

$$
\begin{gathered}
0 \longrightarrow \Omega^{0}(M) \longrightarrow \Omega^{1}(M) . . \longrightarrow \Omega^{p}(M) . . \longrightarrow \Omega^{N}(M) \longrightarrow . . \\
. . \longrightarrow \Omega_{i n t}^{-1}(M) \longrightarrow \Omega_{i n t}^{0}(M) \longrightarrow \Omega_{i n t}^{1}(M) . . \longrightarrow \Omega_{i n t}^{p}(M) \longrightarrow 0 .
\end{gathered}
$$

Integration

We want to specify the integral over the $d \theta$ variable.

Definition

- Abuse of notation: The measure is denoted by $[d(d \theta)]$.
- Transformation properties of the measure imply:

$$
\begin{aligned}
& \delta\left(\lambda d \theta^{i}\right)=\lambda^{-1} \delta\left(d \theta^{i}\right) . \\
& \delta\left(d \theta^{i}\right) \delta\left(d \theta^{j}\right)=-\delta\left(d \theta^{j}\right) \delta\left(d \theta^{i}\right) .
\end{aligned}
$$

- $\int g(d \theta) \frac{\partial}{\partial d \theta^{i}}[d(d \theta)]$ is defined by "partial integration".

Example ($\mathbb{R}^{0 \mid 1}$ with one coordinate θ)

- $\int[d(d \theta)] \frac{\partial}{\partial d \theta} \delta(d \theta) \equiv 0$.
- $\int[d(d \theta)] d \theta \frac{\partial}{\partial d \theta} \delta(d \theta)$
$=-\int[d(d \theta)] \frac{\partial}{\partial d \theta}(d \theta) \delta(d \theta)+($ total derivative $)=-1$.

Integration

With this we can define the integral over the total space:

Definition

Let $\omega \in \Omega_{i n t}^{*}(M)$.
$\int_{M} \omega=\int_{\Pi T M} \omega(x, d \theta \mid \theta, d x)$.

Remark:

- This is a Berenzian integral over the odd coordinates $\theta, d x$.
- The integration over $d \theta$ is distributional.
- The remaining even coordinates x get integrated ordinarily.

Integration

Example $\left(M=\mathbb{R}^{3 \mid 2}\right)$

Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M : $\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.

Integration

Example $\left(M=\mathbb{R}^{3 / 2}\right)$
Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M :
$\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.
ω is an integral form.
We calculate:

Integration

Example $\left(M=\mathbb{R}^{3 / 2}\right)$

Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M :
$\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.
ω is an integral form.
We calculate:
$\int_{M} \omega=\int_{\Pi T M}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$

Integration

Example $\left(M=\mathbb{R}^{3 / 2}\right)$

Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M :
$\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.
ω is an integral form.
We calculate:
$\int_{M} \omega=\int_{\Pi T M}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$
$=\int_{\Pi T \mathbb{R}^{3 \mid 0}} \int\left[d\left(d \theta^{1}\right), d\left(d \theta^{2}\right)\right]\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$

Integration

Example $\left(M=\mathbb{R}^{3 / 2}\right)$

Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M :
$\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.
ω is an integral form.
We calculate:
$\int_{M} \omega=\int_{\Pi T M}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$
$=\int_{\Pi T \mathbb{R}^{3 \mid 0}} \int\left[d\left(d \theta^{1}\right), d\left(d \theta^{2}\right)\right]\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$
$=\int_{\Pi T \mathbb{R}^{3 \mid 0}}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d x^{1} d x^{2} d x^{3}\right)$

Integration

Example $\left(M=\mathbb{R}^{3 / 2}\right)$

Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M :
$\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.
ω is an integral form.
We calculate:

$$
\begin{aligned}
& \int_{M} \omega=\int_{\Pi T M}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right) \\
& =\int_{\Pi T \mathbb{R}^{3 \mid 0}} \int\left[d\left(d \theta^{1}\right), d\left(d \theta^{2}\right)\right]\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right) \\
& =\int_{\Pi T \mathbb{R}^{3 \mid 0}}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d x^{1} d x^{2} d x^{3}\right) \\
& =\int_{\mathbb{R}^{3}} f\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Integration

Example $\left(M=\mathbb{R}^{3 \mid 2}\right)$

Let $d \alpha=d x^{1} d x^{2} d x^{3}$.
Let $f\left(x_{1}, x_{2}, x_{3}\right)$ be a function with $\int_{\mathbb{R}^{3}} f=1$.
Consider the following function on M :
$\omega=\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right)$.
ω is an integral form.
We calculate:

$$
\begin{aligned}
& \int_{M} \omega=\int_{\Pi T M}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right)\left(1+\theta_{1} \theta_{2}\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right) \\
& =\int_{\Pi T \mathbb{R}^{3 \mid 0}} \int\left[d\left(d \theta^{1}\right), d\left(d \theta^{2}\right)\right]\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d \alpha\right) \delta\left(d \theta^{1}\right) \delta\left(d \theta^{2}\right) \\
& =\int_{\Pi T \mathbb{R}^{3 \mid 0}}\left(x_{1} x_{2} d x^{3}+f\left(x_{1}, x_{2}, x_{3}\right) d x^{1} d x^{2} d x^{3}\right) \\
& =\int_{\mathbb{R}^{3}} f\left(x_{1}, x_{2}, x_{3}\right) \\
& =1 .
\end{aligned}
$$

References

- E. Witten,Notes on Supermanifolds and Integration, Pure Appl. Math. Q.,15(1) (2019) 3-56
- PDF link: https://arxiv.org/pdf/1209.2199

