SuperGeometry Integration

jonathan.s.paulsen

May 2021

					en

Image: A matched block of the second seco

Contents

- Recap on de Rham Cohomology
 - Vector Bundles
 - Differential Forms and ordinary Integration
- Introduction to the idea of Berenzian Integrals
- Construction of Differential and Integral Forms on general Supermanifolds
 - Clifford Algebra
 - Weyl Algebra
 - Forms and Integration

Tangent Bundles

Definition (Vector Bundle)

A (real) vector bundle of rank n is a triple (E, B, π) of topological spaces E, B and a projection $\pi : E \longrightarrow B$ with:

- Every fiber $\pi^{-1}(p)$, $p \in B$, is a n-dim. real vector space.
- Locally trivial: ∀U ⊂ B open ∃φ : U × ℝⁿ → π⁻¹(U) homeo. with
 π ∘ φ = proj₁,
 φ|: {p} × ℝⁿ → π⁻¹(p) is a vector space iso. ∀p ∈ B.
- Transition function for two local trivializations (U_α, φ_α), (U_β, φ_β) with U_α ∩ U_β ≠ Ø:
 ρ_{αβ} = φ_α⁻¹ ∘ φ_β : (U_α ∩ U_β) × ℝⁿ → (U_α ∩ U_β) × ℝⁿ.

Tangent Bundles

Definition (Vector Bundle)

A (real) vector bundle of rank n is a triple (E, B, π) of topological spaces E, B and a projection $\pi : E \longrightarrow B$ with:

- Every fiber $\pi^{-1}(p)$, $p \in B$, is a n-dim. real vector space.
- Locally trivial: ∀U ⊂ B open ∃φ : U × ℝⁿ → π⁻¹(U) homeo. with
 π ∘ φ = proj₁,
 φ|: {p} × ℝⁿ → π⁻¹(p) is a vector space iso. ∀p ∈ B.

Transition function for two local trivializations (U_α, φ_α), (U_β, φ_β) with U_α ∩ U_β ≠ Ø:
 ρ_{αβ} = φ_α⁻¹ ∘ φ_β : (U_α ∩ U_β) × ℝⁿ → (U_α ∩ U_β) × ℝⁿ.

 $M^{(n)}$ manifold with tangent spaces T_pM and projection $\pi: T_pM \mapsto p$.

- $TM = \bigcup_{p \in M} T_p M$, then (TM, M, π) is the tangent bundle.
- $T^*M = \bigcup_{p \in M} T^*_p M$ is the cotangent bundle.

イロト 不得 トイヨト イヨト 二日

Tangent Bundles

Definition (Section)

A smooth section s of a vector bundle is a smooth map: $s: B \longrightarrow E$ with $\pi \circ s = id_B$.

• A vector field X on a manifold M is a section $X : M \longrightarrow TM$.

Exterior Algebra

Definition (Exterior Power)

The k-th exterior power $\bigwedge^k(V)$ of a vector space $V^{(n)}$ is the quotient space:

$$\bigwedge^{k}(V) = \bigotimes_{j=1}^{k} V / Lin(v_{1} \otimes ... \otimes v_{k} | \exists i \neq j : v_{i} = v_{j}).$$

Definition (Exterior Product)

$$\wedge : \bigwedge^{p}(V^{*}) \otimes \bigwedge^{q}(V^{*}) \longrightarrow \bigwedge^{p+q}(V^{*}), \\ (\omega \wedge \eta)(v_{1}, ..., v_{p+q}) = \\ \frac{1}{p!q!} \sum_{\sigma} sgn(\sigma) \omega(v_{\sigma(1)}, ..., v_{\sigma(p)}) \eta(v_{\sigma(p+1)}, ..., v_{\sigma(p+q)})$$

• A basis for $\bigwedge^k(V)$ is given by $\{e_{j_1} \land .. \land e_{j_k} | 1 \le j_1 < .. < j_k \le n\}$.

- $\dim \bigwedge^k (V) = \binom{n}{k}$ for $1 \le k \le n$, and $\bigwedge^k = \{0\}$ for k > n.
- The exterior Algebra of V is $(\bigoplus_{i\geq 0} \bigwedge^i (V), +, \wedge)$.

(日)

Differential Forms

Definition (k-Form)

A smooth differential k-form on a manifold $M^{(n)}$ is a smooth section into the space $\bigwedge^k (T^*M)$. The space of all k-forms on M is denoted by $\Omega^k(M)$.

- 0-forms are functions f, 1-forms are dual vectors $f_i dx^i$.
- A general k-form is $\omega = \sum_{i_1,..,i_k} f_{i_1,..,i_k} dx^{i_1} \wedge .. \wedge dx^{i_k} = f_I dx^I$.
- Example: $\alpha = x_3 dx^1 \wedge dx^2 2x_1 dx^1 \wedge dx^3$ is some 2-form on \mathbb{R}^3 .

Definition (Exterior Derivative)

We define the exterior derivative (de Rham differential) d by its action on a general k-form $\omega = f_I dx_I$: $d : \Omega^k(M) \longrightarrow \Omega^{k+1}(M),$ $d\omega = \sum_j \frac{\partial f_I}{\partial x_j} dx^j \wedge dx^I.$

A D N A B N A B N A B N

de Rham Complex

The de Rham differential satisfies:

•
$$d^2 = 0$$
, or more precisely $d(d\omega) = 0$ for any form ω .

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$$
 for ω k-form.

Example

$$\begin{aligned} \alpha &= x_3 dx^1 \wedge dx^2 - 2x_1 dx^1 \wedge dx^3. \\ d\alpha &= dx^3 \wedge dx^1 \wedge dx^2 - 2dx^1 \wedge dx^1 \wedge dx^3 = dx^1 \wedge dx^2 \wedge dx^3. \end{aligned}$$

Some terminology:

- $\omega \in \Omega^k(M)$ is called closed if $d\omega = 0$.
- $\omega \in \Omega^k(M)$ is called exact if $\exists \eta \in \Omega^{k-1}(M)$ with $\omega = d\eta$.

▲ □ ▶ ▲ □ ▶ ▲ □

de Rham Complex

The de Rham complex is following the sequence:

$$0 \longrightarrow \Omega^0(M) \longrightarrow \Omega^1(M) \longrightarrow ... \longrightarrow \Omega^n(M) \longrightarrow 0,$$

where $\Omega^k(M) = 0 \forall k > n$ because of the antisymmetry of \wedge . We take a closer look at $d^2 = 0$. This implies:

$$\Omega^{k-1}(M) \longrightarrow \Omega^k(M) \longrightarrow \Omega^{k+1}(M) : \eta \mapsto d\eta \mapsto 0.$$

Therefore the de Rham complex satisfies $Im(d_{k-1}) \subset Ker(d_k)$ for every k and we define the k-th (de Rham) Cohomology Group as: $H^k(M) = Ker(d_k) / Im(d_{k-1})$.

Definition (Pullback)

Let $\varphi : M \longrightarrow N$ between two manifolds. This induces a map: $\varphi^* : \Omega^k(N) \longrightarrow \Omega^k(M)$ given by: $\varphi^* \omega_p(X_1, ..., X_k) = \omega_{\varphi(p)}(d_p \varphi(X_1), ..., d_p \varphi(X_k)).$

Pullbacks are "nice":

• For $\psi: \mathbb{N} \longrightarrow \mathbb{R}$ is $\varphi^* \psi = \psi \circ \varphi$.

•
$$\varphi^* \circ d = d \circ \varphi^*$$
.

•
$$\varphi^*(\omega \wedge \eta) = \varphi^* \omega \wedge \varphi^* \eta.$$

Example

$$\begin{split} \varphi : \mathbb{R}^n &\longrightarrow \mathbb{R}^3. \\ \alpha &= x_3 dx^1 \wedge dx^2 - 2x_1 dx^1 \wedge dx^3 \in \Omega^2(\mathbb{R}^3). \\ \varphi^* \alpha &= \varphi_3 d\varphi^1 \wedge d\varphi^2 - 2\varphi_1 d\varphi^1 \wedge d\varphi^3 \in \Omega^2(\mathbb{R}^n) \text{ with } \varphi_i = x_i(\varphi) \end{split}$$

イロト 不得 トイラト イラト 一日

Integration of Bosonic Forms

Let $U \subset \mathbb{R}^n$ be open and oriented. Let $\omega = f(x_1, ..., x_n)dx^1 \wedge ... \wedge dx^n$ be an n-form with $supp(\omega) \subset U$ compact.

Definition

The integral of ω over U is defined as the Lebesgue integral: $\int_U \omega = \int_{\mathbb{R}^n} f(x_1, ..., x_n) dx_1 ... dx_n.$

Choose a partition of unity (h_i) where each $supp(h_i) \subset U_i$ for some chart (U_i, φ_i) .

Definition

$$\int_{M} \omega = \sum_{i} \int_{U_{i}} h_{i} \cdot (\varphi_{i}^{-1})^{*} \omega.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Supermanifolds

Let $M^{p|q}$ be a supermanifold with p even coordinates $x = (x_1, ..., x_p)$ and q odd coordinates $\theta = (\theta_1, ..., \theta_q)$.

- $M_{red} = M|_{\theta_1 = ... = \theta_q = 0}$ is the (purely bosonic) reduced manifold.
- Recall that fermionic coordinates are infinitesimal.
- Let $U \subset M$. U is called open iff $U_{red} = U \cap M_{red}$ is open in \mathbb{R}^p .

• • = • • = •

Idea of the Berizinian Integral

Start with a superspace $\mathbb{R}^{p|q}$ with $x = (x_1, ..., x_p)$ bosonic and $\theta = (\theta_1, ..., \theta_q)$ fermionic coordinates.

- We want to integrate a function $g(x_1, ..., \theta_q)$.
- Write down some measure: $[dx^1, ..|., d\theta^q]$.
- Expand g in powers of θ s: $g(x, \theta) = g_0(x) + g_1^i(x)\theta_i + ... + g_q(x)\theta_1...\theta_q.$

We assume that g_q is compactly supported (or vanishes fast enough at infinity).

Definition (Berizinian Integral)

$$\int_{\mathbb{R}^{p|q}} [dx^1, ..| .., d\theta^q] g(x, \theta) = \int_{\mathbb{R}^p} dx^1 .. dx^p g_q(x).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Berizinian Bundle

What is the integral measure?

Definition (Berizinian Bundle)

We define a line bundle Ber(M) locally:

- Each coordinate system (x|θ) = (x₁,..,x_p|θ₁,..,θ_q) is a local trivialization which we call [dx¹..|..dθ^q].
- The transition functions between two trivializations (x, θ) and (x', θ') are given by the Berenzian:
 [dx¹..|..dθ^q] = Ber(∂(x|θ) / ∂(x'|θ'))[dx'¹..|..dθ'^q].
- The fibres are one-dimensional.

Reminder

For
$$V = V_{even} \oplus V_{odd}$$
 a matrix $W = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Hom(V, V)$, where A, D even and B, C odd, has the Berizinian:
 $Ber(W) = det(A - BD^{-1}C)det^{-1}(D).$

A D N A B N A B N A B N

The Berizinian Bundle

Let σ be a section of Ber(M) that is supported locally in $(U, (x|\theta))$:

• $\sigma = g(x, \theta)[dx^1..|..d\theta^q].$

Definition $\int_U \sigma = \int_{\mathbb{R}^{p|q}} [dx^1, ..|., d\theta^q] g(x, \theta).$

Let now σ be a general section.

- We define the integral over *M* piece-wise as above.
- Choose a partition of unity (h_i) where each supp(h_i) ⊂ U_i for some chart (U_i, φ_i).

Definition

$$\int_M \sigma = \sum_i \int_{U_i} h_i \cdot \sigma.$$

イロト 不得下 イヨト イヨト 二日

Remark

Remark:

- You CAN think of sections in *Ber*(*M*) as the supersymmetric equivalent of a top form.
- We have defined no such thing as a k-form yet! $[dx^1..|..d\theta^q]$ is irreducible, and not a form.
- Careful about transformation properties.

$$Ber(\cdot) = \lambda^{-1}$$
 for the transformation $heta \mapsto \lambda heta$.

 $Ber(\cdot) = (-1)$ for swapping two θ s.

< ∃ > <

ALGEBRAIC CONSTRUCTION OF FORMS.

< □ > < □ > < □ > < □ > < □ >

Let V be an odd vector space $\cong \mathbb{R}^{0|p}$.

- $(\zeta^1, .., \zeta^p)$ basis of V.
- $(\eta_1, .., \eta_p)$ basis of V^* .

Consider the space $V \oplus V^*$. Introduce canonical bilinear form $\langle \cdot, \cdot \rangle$:

•
$$\langle \zeta^i, \zeta^j \rangle = \langle \eta_i, \eta_j \rangle = 0.$$

•
$$\langle \zeta^i, \eta_j \rangle = \langle \eta_j, \zeta^i \rangle = \delta^i_j.$$

Quantisation:

• Vectors
$$\eta_i$$
, $\zeta^j \longrightarrow$ Operators η_i , ζ^j .

• Bilinear form
$$\langle \cdot, \cdot \rangle \longrightarrow$$
 Anticommutator $\{ \cdot, \cdot \}$ with:
 $\{A, B\} = AB + BA.$

< □ > < □ > < □ > < □ > < □ > < □ >

We want to construct a module ${\mathcal S}$ for the Clifford Algebra.

- Take a vector $|\downarrow\rangle$ that is annihilated by the η_i .
- Basis for S is then given by acting on $|\downarrow\rangle$ with the ζ^{j} : $\{\zeta^{i_{1}}..\zeta^{i_{k}}|\downarrow\rangle|k\in[|0,p|]\}.$

Remark:

A corresponding state $|\uparrow\rangle$ that is annihilated by the ζ^j s is then given by $\zeta^1..\zeta^p|\downarrow\rangle$. Alternatively one can start the construction with $|\uparrow\rangle$ and deriving $|\downarrow\rangle$ by acting on it with the η_i .

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Let $M^{(p)}$ be a bosonic manifold.

• We denote $\sqcap TM$ as the tangent bundle of M with twisted fibers: $(x_1, ..., x_p)$ on $M \longrightarrow (x_1, ..., dx^p)$ on $\sqcap TM$ where $(dx^1, ..., dx^p)$ are odd.

• Expand a function on ΠTM in powers of dx^i as before: $f(x|dx) = f_0(x) + f_{1i}(x)dx^i + ... + f_p(x)dx^1..dx^p.$

Remark:

A k-order term $f_{kl}(x)dx^l$, $l = (i_1, ..., i_k)$, is a differential k-forms. The space of functions on ΠTM is the space of differential forms on M.

For $a \in M$ we define a Clifford Algebra by specifying the operators η_i and ζ^j .

Definition

Let f be a function on ΠTM . $\zeta^j : f \mapsto dx^j \wedge f \equiv dx^j f$. $\eta_i : f \mapsto \frac{\partial}{\partial dx^i}(f)$.

Sanity check:

•
$$\langle \zeta^i, \zeta^j \rangle = \langle \eta_i, \eta_j \rangle = 0.$$

• $\langle \zeta^i, \eta_j \rangle = \langle \eta_j, \zeta^i \rangle = \delta^i_j.$

.

Remark:

The exterior derivative is recovered via the definition: $d = \zeta^j \partial_j = \sum_j dx^j \frac{\partial}{\partial x^j}.$

Sanity check:

- Degree: +1.
- $d^2 = 0$.
- Leibniz rule.

Let W be an even vector space $\cong \mathbb{R}^{q|0}$.

- $(\alpha^1, .., \alpha^q)$ basis of W.
- $(\beta_1, .., \beta_q)$ basis of W^* .

Consider the space $W \oplus W^*$. Introduce canonical bilinear form $\langle \cdot, \cdot \rangle$:

•
$$\langle \alpha^i, \alpha^j \rangle = \langle \beta_i, \beta_j \rangle = 0.$$

•
$$\langle \alpha^i, \beta_j \rangle = \langle \beta_j, \alpha^i \rangle = \delta^i_j.$$

Quantisation:

• Vectors
$$\beta_i$$
, $\alpha^j \longrightarrow \text{Operators } \beta_i$, α^j .

• Bilinear form
$$\langle \cdot, \cdot \rangle \longrightarrow$$
 Commutator $[\cdot, \cdot]$ with:
 $[A, B] = AB - BA.$

・ 何 ト ・ ヨ ト ・ ヨ ト

We want to construct a module $\ensuremath{\mathcal{V}}$ for the Weyl Algebra.

- Take a vector $|\downarrow\rangle$ that is annihilated by the β_i .
- Basis for \mathcal{V} is then given by acting on $|\downarrow\rangle$ with the α^{j} : $\{\alpha^{i_{1}}..\alpha^{i_{k}}|\downarrow\rangle|k\geq 0\}.$

Remark:

The basis is not finite! This is a symptom of the fact that the α^j are commuting and will be important later. One can again construct a module \mathcal{V}' with $|\uparrow\rangle$ acting on it with the β_i , but the two modules are not equivalent.

Again we choose α^j to be multiplications and β_i derivatives:

- $\alpha^j: f \mapsto \alpha^j f$,
- $\beta_i: f \mapsto \frac{\partial}{\partial \alpha^i}(f).$

Sanity check:

•
$$\langle \alpha^i, \alpha^j \rangle = \langle \beta_i, \beta_j \rangle = 0.$$

• $\langle \alpha^i, \beta_j \rangle = \langle \beta_j, \alpha^i \rangle = \delta^i_i.$

<日

<</p>

The different modules support different functions.

\mathcal{V}

 $|\downarrow\rangle$ is annihilated by derivatives β_i :

 $\implies \psi = 1$ is a ground state.

 \implies polynomials in α_i are basis elements.

\mathcal{V}'

$$\begin{split} |\uparrow\rangle \text{ is annihilated by multiplication with } \alpha^{j}: \\ \implies \text{ distributions supported at the origin } \alpha^{j} = 0 \text{ are ground states. } \implies \\ \text{ basis for } \mathcal{V}' \text{ is: } \{\frac{\partial}{\partial \alpha^{j_{1}}}..\frac{\partial}{\partial \alpha^{j_{k}}} \delta^{(q)}(\alpha^{1}..\alpha^{q}) | k \geq 0 \}. \end{split}$$

• • = • • = •

Let $M^{(p)}$ be a fermionic manifold, $M \cong \mathbb{R}^{0|q}$.

Definition

- $\alpha^j \equiv d\theta^j$ are called one-forms and considered even.
- The exterior derivative is defined on \mathcal{V} and \mathcal{V}' by: $d = \alpha^j \partial_{\theta^j} = \sum_j d\theta^j \frac{\partial}{\partial \theta^j}.$

Sanity check:

- This trivially fulfills $d^2 = 0$.
- The wedge product is a simple multiplication: $\mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V}, \ \mathcal{V} \times \mathcal{V}' \longrightarrow \mathcal{V}'.$
- There is no way to multiply two elements of \mathcal{V}' .

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Forms on Supermanifolds

Let $M^{(p|q)}$ be a general supermanifold.

Definition

A form ω on M is a function on ΠTM : $\omega(x, d\theta|\theta, dx)$.

- Differential forms are functions with polynomial dependence on dθⁱ. The space of differential forms on M is called Ω*(M).
- Integral forms are functions whose dependence on all dθⁱ is a Dirac-delta distribution supported at dθⁱ = 0. The space of integral forms on M is called Ω_{int}^{*}(M).

Definition

The exterior derivative is the following vector field on ΠTM : $d = dx^i \frac{\partial}{\partial x^i} + d\theta^j \frac{\partial}{\partial \theta^j}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Remark

Remark:

 There is no top differential form, we can not integrate ω ∈ Ω*(M)! (For positive fermionic dimensions.)

 We can integrate ω ∈ Ω^{*}_{int}(M). A top integral form is: f(x|θ)dx¹..dx^pδ(dθ¹..dθ^q). However there is no bottom form as every ∂/∂dθ^j increases the codimension by 1.

$$0 \longrightarrow \Omega^0(M) \longrightarrow \Omega^1(M) .. \longrightarrow \Omega^p(M) .. \longrightarrow \Omega^N(M) \longrightarrow ..$$

$$. \longrightarrow \Omega^{-1}_{int}(M) \longrightarrow \Omega^{0}_{int}(M) \longrightarrow \Omega^{1}_{int}(M) .. \longrightarrow \Omega^{p}_{int}(M) \longrightarrow 0.$$

• = • •

We want to specify the integral over the $d\theta$ variable.

Definition

- Abuse of notation: The measure is denoted by $[d(d\theta)]$.
- Transformation properties of the measure imply:

$$\delta(\lambda d heta^i) = \lambda^{-1} \delta(d heta^i).$$

 $\delta(d heta^i) \delta(d heta^j) = -\delta(d heta^j) \delta(d heta^i).$

• $\int g(d\theta) \frac{\partial}{\partial d\theta^{i}} [d(d\theta)]$ is defined by "partial integration".

Example ($\mathbb{R}^{0|1}$ with one coordinate θ)

- $\int [d(d\theta)] \frac{\partial}{\partial d\theta} \delta(d\theta) \equiv 0.$
- $\int [d(d\theta)] d\theta \frac{\partial}{\partial d\theta} \delta(d\theta)$
- = $\int [d(d\theta)] \frac{\partial}{\partial d\theta} (d\theta) \delta(d\theta) + (\text{total derivative}) = -1.$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

With this we can define the integral over the total space:

Definition Let $\omega \in \Omega^*_{int}(M)$. $\int_M \omega = \int_{\Pi TM} \omega(x, d\theta | \theta, dx).$

Remark:

- This is a Berenzian integral over the odd coordinates θ , dx.
- The integration over $d\theta$ is distributional.
- The remaining even coordinates x get integrated ordinarily.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example $(M = \mathbb{R}^{3|2})$

Let $d\alpha = dx^1 dx^2 dx^3$. Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$.

< □ > < □ > < □ > < □ > < □ > < □ >

Example $(M = \mathbb{R}^{3|2})$ Let $d\alpha = dx^1 dx^2 dx^3$. Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$. ω is an integral form. We calculate:

< □ > < □ > < □ > < □ > < □ > < □ >

Example $(M = \mathbb{R}^{3|2})$

Let $d\alpha = dx^1 dx^2 dx^3$. Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$. ω is an integral form. We calculate:

 $\int_{M} \omega = \int_{\Pi TM} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha) (1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example $(M = \mathbb{R}^{3|2})$ Let $d\alpha = dx^1 dx^2 dx^3$. Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$. ω is an integral form. We calculate: $\int_M \omega = \int_{\Pi TM} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$ $= \int_{\Pi T\mathbb{R}^{3|0}} \int [d(d\theta^1), d(d\theta^2)](x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha) \delta(d\theta^1) \delta(d\theta^2)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example ($M = \mathbb{R}^{3|2}$) Let $d\alpha = dx^1 dx^2 dx^3$ Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2)\delta(d\theta^1)\delta(d\theta^2).$ ω is an integral form. We calculate: $\int_{M} \omega = \int_{\Pi \mathcal{T}M} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha) (1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$ $= \int_{\Pi T \mathbb{R}^{3|0}} \int [d(d\theta^{1}), d(d\theta^{2})](x_{1}x_{2}dx^{3} + f(x_{1}, x_{2}, x_{3})d\alpha)\delta(d\theta^{1})\delta(d\theta^{2})$ $= \int_{\Box \in \Xi^{(3)}} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) dx^1 dx^2 dx^3)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example ($M = \mathbb{R}^{3|2}$) Let $d\alpha = dx^1 dx^2 dx^3$ Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2)\delta(d\theta^1)\delta(d\theta^2).$ ω is an integral form. We calculate: $\int_{M} \omega = \int_{\Pi TM} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha) (1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$ $= \int_{\Pi T \mathbb{R}^{3|0}} \int [d(d\theta^{1}), d(d\theta^{2})](x_{1}x_{2}dx^{3} + f(x_{1}, x_{2}, x_{3})d\alpha)\delta(d\theta^{1})\delta(d\theta^{2})$ $= \int_{\Pi \in \Pi^{3|0}} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) dx^1 dx^2 dx^3)$ $= \int_{\mathbb{D}^3} f(x_1, x_2, x_3)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example ($M = \mathbb{R}^{3|2}$) Let $d\alpha = dx^1 dx^2 dx^3$ Let $f(x_1, x_2, x_3)$ be a function with $\int_{\mathbb{R}^3} f = 1$. Consider the following function on M: $\omega = (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha)(1 + \theta_1 \theta_2)\delta(d\theta^1)\delta(d\theta^2).$ ω is an integral form. We calculate: $\int_{M} \omega = \int_{\Pi TM} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) d\alpha) (1 + \theta_1 \theta_2) \delta(d\theta^1) \delta(d\theta^2)$ $= \int_{\Pi T \mathbb{R}^{3|0}} \int [d(d\theta^{1}), d(d\theta^{2})](x_{1}x_{2}dx^{3} + f(x_{1}, x_{2}, x_{3})d\alpha)\delta(d\theta^{1})\delta(d\theta^{2})$ $= \int_{\Pi \in \Pi^{3|0}} (x_1 x_2 dx^3 + f(x_1, x_2, x_3) dx^1 dx^2 dx^3)$ $= \int_{\mathbb{D}^3} f(x_1, x_2, x_3)$ = 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- E. Witten,Notes on Supermanifolds and Integration, Pure Appl. Math. Q.,15(1) (2019) 3-56
- PDF link: https://arxiv.org/pdf/1209.2199

(4) (3) (4) (4) (4)