Det .: (Graded Ring)

Let
$$R$$
 be a unitary ring and Γ be an abelian group.
We call $R = \Gamma$ -graded ring if $R = \Phi$ R_y with each R_y and
abelian subgroup of R and $R_{y_1}R_{y_2} \subseteq R_{y_1+y_2} = V_{y_1,y_2} \in \Gamma$.
Terminology:
• $R^h := U$ R_y the set of all homogeneous elements
• $\Gamma \in F_{y_1}$ rto is a called a homogeneous element of olegree $deg(r) = \gamma$
 $\Rightarrow deg : R^h 1_{EO3} \rightarrow \Gamma$; $r \mapsto deg(r)$
 $\Rightarrow deg(r_h r_2) = deg(r_h) + deg(r_2) = Vr_h r_2 \in R^h \setminus EO3$

Most important: Z-grades rings and
$$Z/2Z$$
-graded rings.
A $Z/2Z$ -graded viny is also called a superring
Theorem: Let R be a Γ -graded ring. Then we have:
(i) $A \in R_0$ (ii) R_0 is subring of R (iii) R_Y is R_0 -bimodule (iv) $r \in R_Y$ unit
 $\frac{Proof:}{F_{F_{T}}}$
(i) $A \in R_0 \Rightarrow \Lambda = \underbrace{E}_{F_{T}} r_Y$. $S \in R_S \xrightarrow{\sim} S = S \cdot \Lambda = \underbrace{E}_{F_{T}} \underbrace{Sr_Y}_{F_{T}} \Rightarrow Sr_Y = 0$ $V_{0} \neq 0$
 $\Rightarrow V S \in R$: $Sr_Y = 0$ $V_0 \neq 0$ \Rightarrow $\Lambda r_0 = r_y = 0$ $V_0 \neq 0$
(ii) R_0 is subgroup of R and Ro $R_0 \in R_0$
(iii) R_y is subgroup of R and Ro $R_Y R_0 \leq R_Y$

(iv)
$$r \in F_{\gamma}$$
 unit, $r^{-1} = \sum_{s}^{r} F_{s} \Rightarrow \Lambda = rr^{-1} = \sum_{s}^{r} rs_{s} \Rightarrow rs_{s}^{r} = 0$ $V_{\sigma+s} \neq 0$
 $\Rightarrow r^{-1} = S_{-\gamma} \in R_{-\gamma}$

We also see: k Z-gracked Field => Ko = k and Ko = Ev3 Vol =0

Examples:

- R abitrary ring => R is P-grouted ring with Ro=R and Fr=E03 ty to > trivial grading
- V Vector Space \Rightarrow $T(v) = \bigoplus_{n \in N} V^{\otimes n}$, $S(v) = \bigoplus_{n \in N} S^n(v)$, $\Lambda(v) = \bigoplus_{n \in N} \Lambda^n(v)$ are \mathcal{Z} -graded rings.
- \mathcal{R} comm. \mathcal{R} ing $\Rightarrow \mathcal{R}\mathcal{E}_{x_{n}, \cdots, x_{n}}$ is \mathcal{U} -grounded ring with $\mathcal{R}\mathcal{E}_{x_{n}, \cdots, x_{n}}$ = $\{f \in \mathcal{R}\mathcal{E}_{x_{n}, \cdots, x_{n}}\} \mid f(\mathcal{I}_{x_{n}, \cdots, x_{n}}) = \mathcal{I}^{d}f(x_{n}, \cdots, x_{n}) \neq (x_{n}, \cdots, x_{n}) \in \mathcal{R}^{n}\}$

Det: (Subgrap and Quotient Grading)

$$R \ \Gamma$$
-graded ring and $\mathcal{N} \subseteq \Gamma$ subgrap. Then:
 $P_{\mathcal{N}} := \bigoplus_{\substack{\mathcal{V} \in \mathcal{N}}} P_{\mathcal{V}}$ is \mathcal{N} -graded ring
 $P_{\mathcal{V} \in \Gamma_{\mathcal{N}}} = \bigoplus_{\substack{\mathcal{V} \in \mathcal{N}}} P_{\mathcal{V} + \mathcal{N}}$ with $P_{\mathcal{V} + \mathcal{N}} := \bigoplus_{\substack{\mathcal{V} \in \mathcal{N}}} P_{\mathcal{V} + \mathcal{U}}$ is $\Gamma_{\mathcal{N}} - g$ -graded ring.
Permit:
Because we have the canonical frequentian $\pi: \mathcal{R} \to \mathcal{Z}_{\mathcal{I}_{\mathcal{D}_{\mathcal{V}}}}$ we can see every
 \mathcal{R} -graded ring as a $\mathcal{R}_{\mathcal{I}_{\mathcal{D}_{\mathcal{T}}}}$ -greded ring, i.e. supervisy
 $\neq T(\mathcal{V}), S(\mathcal{V}), \mathcal{N}(\mathcal{V})$ are supervises with e.g.
 $T(\mathcal{V}) = T(\mathcal{V}_{\mathcal{D}_{\mathcal{T}}} \in T(\mathcal{V}_{\mathcal{D}_{\mathcal{T}}} ; T(\mathcal{V}_{\mathcal{D}_{\mathcal{T}}} \in \bigoplus_{\substack{\mathcal{V} \in \mathcal{R}}} \mathcal{V}^{\otimes 2d+1}}, T(\mathcal{V}_{\mathcal{T}_{\mathcal{T}}} = \bigoplus_{\substack{\mathcal{U} \in \mathcal{N}}} \mathcal{V}^{\otimes 2d+1}$

Def.: (Graded Finghor.)
R, S P-graded rings.
$$f: P \rightarrow S$$
 is a graded ringhom. if we have
f is ringhom. and preserves the grading, i.e. $f(R_r) \leq S_r$ $V_r \in P$
Def.: (Graded-Commutative Fing)
R P-graded ring and $\varepsilon: \Gamma \rightarrow \mathcal{P}_{2r} = group hom.$
R is a (Γ, ε)-graded-commutative ring if we have
 $ab = (-n)^{-14181} ba = Vas \epsilon R^{h} 1603$ with $1.1 = (\varepsilonodeg)(.)$

Remark:

If
$$Eq. 57 = 0$$
 we say q superconnules with b .
We have: A grad. - conn. $\rightleftharpoons A = 2(A)$
The supercommutator fulfills:

The supercommutator fulfills:

$$[a_1b_3] = ab - (-a) [a_1b_3] = -(-a) [a_$$

• $[q_1[5_1,c]] + (-n)^{|c|(m|+151)}$ $[c_1[q_1,5]] + (-n)^{|q|(15|+121)}$ $[c_2[q_1,5]] + (-n)^{|q|(15|+121)}$ $[5_2[q_2]] = 0$

femark: If A is a supercorr. Finy that we have

$$a^2 = \frac{1}{2} [a, a] = 0$$
 for all at $A_{\mp} \Rightarrow All$ elevents of degree π
are nilpotent.

Def.: (Tensorproduct of Graded Rings)

$$R, S$$
 (Γ, ε) - graded rings. Then $R \otimes_{z} S$ is again a (Γ, ε) - graded
ring with ($R \otimes_{z} S$)_y := $\bigoplus_{\substack{\partial_{1}, \forall_{2} \in \Gamma \\ \partial_{n}, \forall_{2} \in \Gamma}} F_{\partial_{n}} \otimes_{z} F_{\partial_{z}}$.
 $\delta_{n} r_{z} = y$
The pion multiplication

$$(r_{n} \otimes s_{n}) \cdot (r_{2} \otimes s_{2}) = (-n)^{1} \frac{|s_{n}||r_{2}|}{r_{n}r_{2} \otimes s_{n}s_{2}} \qquad for \quad r_{n}, r_{2} \in \mathbb{R}^{h}|iv3$$
We have $(\mathbb{R} \otimes s_{2}) = (-n)^{1} \frac{|s_{n}|r_{2}|}{s_{2}} = (\mathbb{R} \otimes s_{2}) \frac{|s_{n}|s_{2}|}{s_{2}} = (\mathbb{R} \otimes s_{2}) \frac{|s_{n}|s_{2}|}{s_{n}s_{2}} = de_{2}(r_{n}s_{2}) + dg(s_{n}s_{2})$
because $de_{2}((r_{n}\otimes s_{n}) \cdot (r_{2}\otimes s_{2})) = de_{2}((-n)^{1} \frac{|s_{n}r_{2}|}{r_{n}r_{2}\otimes s_{n}s_{2}}) = de_{2}(r_{n}r_{2}) + dg(s_{n}s_{2})$

$$= de_{3}(r_{n}) + dy(r_{2}) + dg(s_{n}) + de_{3}(s_{2})$$

$$= de_{3}(r_{n}\otimes s_{n}) + dg(r_{2}\otimes s_{2})$$

The factor (-1) ^{1°2115}n) is needed because we want that when R₁S grad.-com. then also Real grad.-com.

•
$$(r_{A} \otimes S_{A})(r_{2} \otimes S_{2}) = (-A) \overset{|S_{A}||r_{2}|}{r_{A}r_{2}} \overset{r_{A}r_{2}}{r_{2}} \otimes S_{A}S_{2} = (-A) \overset{|S_{A}||r_{2}|+|S_{A}||S_{2}|}{r_{2}r_{A}\otimes S_{2}S_{A}}$$

$$= (-A) \overset{|S_{A}||r_{2}|+|r_{A}||r_{2}|+|S_{A}||S_{2}|+|r_{A}||S_{2}|}{r_{2}\otimes S_{2}} \cdot r_{A}\otimes S_{A}$$

$$= (-A) \overset{|S_{A}||r_{2}|+|r_{A}||r_{2}||}{r_{A}\otimes r_{2}||S_{A}|+|S_{A}||S_{2}|}$$

$$= (-A) \overset{|S_{A}||r_{2}|+|S_{A}||S_{2}|}{r_{A}\otimes r_{2}||S_{A}\otimes S_{2}|}$$

•
$$R, R', S, S'$$
 Γ -graded rings and $(: R = R', g: S = S' \text{ graded ringhom}, + \text{hen}$
for $g: Root S = R'ot S'; root + f(r)ot g(s)$ is again a graded ringhom.
We have: $root \in Root S_S$ with $r \in R_{Y_1}, S \in S_{Y_2}, X_1 + Y_2 = Y$
 $\implies for (root) = f(r)ot g(s) \in (R'ot S'), because f(r) \in R'ot g(s) \in S'ot S_{Y_2}$

•
$$f \otimes g(r \otimes s_{1} \cdot r_{2} \otimes s_{2}) = f \otimes g(r_{-1})^{|s_{1}||s_{2}|} r_{1} r_{2} \otimes s_{4} s_{2}| = (-n)^{|s_{1}||s_{2}|} f(r_{1} r_{2}) \otimes g(s_{4} s_{2})$$

= $(-n)^{|s_{1}||s_{2}|} f(r_{1} r_{2}) = (-n)^{|s_{1}||s_{2}|} f(r_{1} r_{2}) \otimes g(s_{4} s_{2})$

$$= \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{(-n)}_{=n} \underbrace{f(r_{n}) \otimes g(s_{n})}_{=n} \cdot f(r_{n}) \otimes g(s_{n}) \cdot f(r_{n}) \otimes g(s_{n})}_{=n} \cdot f(r_{n}) \otimes g(s_{n}) \cdot f(r_{n}) \otimes g(s_{n})$$

Analogous to graded rings:
$$M^{h} := \bigcup_{r \in \Gamma} M_{Y}$$

 $\cdot deg : M^{n} 1503 \rightarrow \Gamma; m + > deg(m) = Y \not = m \in M_{Y}$
 $\cdot deg(mr) = deg(m) + deg(r) + m \in M^{n} 1503, r \in R^{h} 1503$

Remark: The definitions for
$$\Gamma$$
-graded left module and Γ -graded bimable
are analogous. Again $\cdot \frac{7}{2}\frac{1}{22}$ - Jraded module over a $\frac{7}{2}\frac{1}{22}$ - graded ring
 \Longrightarrow Supermodule over a supervision
 $\frac{7}{2}\frac{1}{22}$ - graded module over a trivially graded field
 \oiint Supervectorspace

$$\frac{\text{froof:}}{(rs) \cdot m} = (-n) \qquad (rs) = (-n) \qquad (1rl + 1sl) |m| \qquad |s||n| \qquad |r||m| + |s||m| +$$

•
$$(r \cdot m) \cdot s = (-n)^{(n/1/m)} (m \cdot r) \cdot s = (-n)^{(r/1/m)} + (r/1/s) (m \cdot s) \cdot r = r \cdot (m \cdot s)$$

• It
$$f_1S$$
 are supervises and $f: F \Rightarrow S$ a supervise how. with $f(R) \leq Z(S)$,
then S becomes an sure Simodule over R with
 $V_n \cdot S := f(r_n) \cdot S$ and $S \cdot r_2 = S \cdot f(r_2)$

P-graded-comm. rings.

Def.: (Graded Module hom.)

$$M, N \ \Gamma$$
-graded right modules over Γ -graded right module ham
 $f: M \rightarrow N$ is a graded right module hom. if f is a right module ham
and $f(M_{g}) \leq N_{g}$ $K_{g} \in \Gamma$.
 $f: M \rightarrow N$ is a graded module hom. of degree g if f is module hom.
and $f(M_{g}) \leq N_{g+g}$ $K_{g} \in \Gamma$.

Notation:

•
$$Hom(M,N) = Hom(M,N)_0$$
 set of all graded roddelon. between M and N

Mr-Graded module. For each
$$S \in \Gamma$$
 we define the Γ -graded
module $M(s)$ with $M(s)_{2} := M_{8+8}$ and for $f: M = N$
graded modulehon. $f(s): M(s) \to N(s)$ with $f(s)(m) = f(m)$

$$f(s) \text{ is } q qain q graded modulehom. because}$$

$$me \mathcal{M}(s)_{s} = \mathcal{M}_{s+s} \Rightarrow f(d)(n) = f(m) \in \mathcal{N}_{s+s} = \mathcal{N}(s)_{s}$$
We also have $\mathcal{M}(s_{a})(s_{2}) = \mathcal{M}(s_{a}+s_{2})$ and the natural bijections
$$\operatorname{Hom}(\mathcal{M}_{i}\mathcal{N})_{s} \cong \operatorname{Hom}(\mathcal{M}(-s)_{i}\mathcal{N}) \cong \operatorname{Hom}(\mathcal{M}_{i}\mathcal{N}(s_{i}))$$

$$\operatorname{Permark:}_{---}$$
In the case of supermodules one a superring we write
$$\pi \mathcal{M} = \mathcal{M}(\pi), \ \pi f = f(\pi) \ \text{and call } \pi \text{ the parity change functor.}$$
Here we have $\pi \pi \pi \mathcal{M} = \mathcal{M}$.

 $f \in \underline{Hom}(M, N) \quad We \quad define \quad f_{S}(m) := \underset{\mathcal{F}}{\overset{\mathcal{F}}{\overset{\mathcal{F}}{\overset{\mathcal{F}}{\phantom{\mathcal{F}}}}} f(m_{\mathfrak{F}} - S)_{\mathcal{F}}$ Let $m \in \mathcal{M}_{\omega} \quad m \neq 0$. $\Rightarrow \quad f_{S}(m_{\omega}) = \underset{\mathcal{F}}{\overset{\mathcal{F}}{\phantom{\mathcal{F}}}} \delta_{\omega, \mathcal{F} - S} f(m_{\mathcal{F}} - S)_{\mathcal{F}} = f(m_{\omega})_{\omega + \mathcal{F}} \in \mathcal{N}_{\omega + \mathcal{F}}$

We also have
$$f(m) = \underset{\delta, \delta}{\leq} f(m_{\delta-\delta})_{\delta} = \underset{\delta}{\leq} f_{\delta}(m)$$

$$\Rightarrow \underbrace{Hom}(M, v) \cong \bigoplus_{\delta \in \Gamma} Hom(M, v)_{\delta}$$

We can define compatible Left and right multiplication on
$$\frac{Hom}{M,N}$$

via $(rf)(m) := r_f f(m)$ and $(f(r_e)(m) = f(r_em)$

Left structure:
$$(rf)(r_{1}+r_{2}) = rf(r_{1}+r_{2}) = rf(r_{1}) + rf(r_{2}) = (rf)(r_{1}) + (rf)(r_{2})$$

 $(rf)(r_{1}r_{2}) = rf(r_{1}r_{2}) = rf(r_{1})r' = (rf)(r_{1})r'$
 $((r_{1}r_{2})f)(r_{1}) = (r_{1}r_{2})f(r_{1}) = r_{1}(r_{2}f(r_{1})) = (r_{1}(r_{2}f))(r_{1})$

$$\begin{aligned} \text{Fight structure: } (fr)(m_1+m_2) &= f(r(m_1+m_2)) = f(rm_1) + f(rm_2) = (fr)(m_1) + (fr)(m_2) \\ (fr)(mr') &= f(rmr') = f(rm_1)r' = (fr)(m_1)r' \\ (f(r_1)r_2)(m) &= f((r_nr_2)m) = f((r_n(r_2m_1)) = ((fr_n)r_2)(m) \end{aligned}$$

They are compatible branse :

•
$$(f_r)(m) = f(rm) = (-n)^{r/m} f(mr) = (-1)$$

They are compatible because:
•
$$(fr)(m) = f(rm) = (-n)^{(r/lm)} + (mr) = (-n)^{(r/lm)} f(m)r$$

 $= (-n)^{(r/lm)} + (m) + (m)$
 $r + f(m) = (-n)^{(r/lm)} + (f(m))$
 $r + f(m) = (-n)^{(r/lm)} + (f(m))$
 $r + f(m)$

•
$$(rf)(n) = rf(n) = (-n)^{|r||f(m)|}$$

= $(-n)^{|r||f(m)|}$
= $(-n)^{|r||f(m)|}$
= $(-n)^{|r||f(m)|}$
= $(-n)^{|r||f(m)|}$

From this we also see:

$$f(mv) = f(m)r \quad b \to f(rm) = (-n)^{|l|+1}r + lm$$

Det: (Graded Algebra ove a Graded-conn. King)

graded singhon f: A => M with
$$f(A) \leq Z(M)$$
.

• Again the tensor product
$$M \otimes_{\mathbb{P}} N$$
 of two graded \mathcal{R} -algebra is a
graded \mathcal{R} -algebra by defining $\mathcal{M} \otimes \mathcal{M}_{1} \cdot \mathcal{I} \otimes \mathcal{M}_{2} = (-n)^{\mathcal{M}_{1} | \mathcal{I} \times 2} M_{1} \mathcal{I}_{2} \otimes \mathcal{H}_{2} \mathcal{I}_{2}$
Def.: (Craeled Algebraham.)
Let $\mathcal{M}_{1}N$ be two graded \mathcal{R} -algebras and $\{: \mathcal{M} \to \mathcal{N} \cap g$ -moded module have.
We call f an graded \mathcal{R} -algebra have. if $f(\mathcal{M}_{1}\mathcal{M}_{2}) = f(\mathcal{M}_{1})f(\mathcal{M}_{2})$ for all $\mathcal{M}_{1}\mathcal{N}_{2} \in \mathcal{M}_{2}$.
Alternatively:
The Diagram $\mathcal{J}_{1} \cap \mathcal{M}_{1} = f(\mathcal{G}_{1}(\mathcal{I})\mathcal{M}) = f(\mathcal{G}_{1}(\mathcal{I})) f(\mathcal{M}) = \mathcal{G}_{1}(\mathcal{I}) f(\mathcal{M})$
 $\mathcal{L}_{1} = f(\mathcal{M}_{1}) = f(\mathcal{M}_{2}(\mathcal{I})) = f(\mathcal{M}$

Det .: (Free Module) Let M be a supermodule over a supercontroline ring R. We call My free module if M has a basis of horogeneous elements If this basis is finile then we call M a free model of finile vente and write Srank M = (p1g) with p and g the number of even / odd basis elements.

Example:
Let
$$A$$
 be a suprement ring.
 $A \stackrel{Plg}{=} = \underbrace{A \oplus \cdots \oplus A}_{P} \oplus \underbrace{TA \oplus \cdots \oplus TA}_{q}$ is a free module of finite rank plg.
 A Basis of A^{Plg} is given by $(\underbrace{e_{a}, \cdots, e_{P}}_{even}, \underbrace{e_{Plg}, \cdots, e_{Plg}}_{odd})$
with $e_{a} = (\underbrace{e_{a}}_{i})_{i} = \underbrace{e_{a}}_{i} = \underbrace{e_{Plg}}_{even}$.
The rank of a free module over the suprement ving A is aniquely determined.
The rank of a free module over the suprement ving A is aniquely determined.

To see this we take $J_A = \langle A_n \rangle = A_{\overline{n}} \oplus A_{\overline{n}}^2$ the irrelevant ideal in A and build the quantient $A_{J_A} \cong \frac{A_{\overline{n}}}{A_{\overline{n}}^2}$. We have $A \notin J_A$ $\Rightarrow A_{J_A}$ is a conversion with white $\Rightarrow \overline{J}$ field F and right- $A_{J_A} \to F$

Let $M \leq e_{q}$ (ree spermodule of ronk p_{1q} over the superconsult. Then we have an even isonorphism $f: M \rightarrow A^{p_{1q}}$ that sounds the horogeneous basis of M to the horogeneous basis $(e_{q_{1}}, e_{p_{1q}})$ of $A^{p_{1q}}$. Every $a \in A^{p_{1q}}$ can now be written as p_{1q} $q \equiv \sum_{q \in q} a_{q_{1q}}$

But we also have
$$q = \sum_{i=n}^{p+q} e_i q^i = \sum_{i=n}^{p+q} (-n) \frac{|e_i|_{n+1}}{q'e_i}$$

•
$$q_{\ell}(A^{\lceil l_{q}}) = (a_{1}, \dots, a_{p}) \text{ odd } \& q_{\beta n}, \dots, q_{\beta l_{q}} \text{ even}$$

 $L^{2} = (a_{1}, \dots, a_{p}) \text{ odd } \& q_{\beta n}, \dots, q_{\beta l_{q}} \text{ even}$

•
$$f: A \xrightarrow{r/s} A$$
 a module hom.
• $x \in A^{r/q}$ with $x = \sum_{i=4}^{p+q} e_i x^i$; $f(x) = \gamma \in A^{r/s}$ with $\gamma = \sum_{j=4}^{r+s} e'_j \gamma^j$
We now home $f(e_i) = \sum_{j=4}^{r+s} e_j \gamma^j$;
with this $\gamma = f(x) = \sum_{j=4}^{r+s} e_j \gamma^j \gamma^j \chi^j$
 $\Rightarrow \left(\frac{\gamma^4}{\gamma^{r+s}} \right) = \left(\frac{T_4}{\gamma^{r+s}} \cdots \gamma_r \gamma^{p+q} \right) \left(\frac{\chi^4}{\chi^{r+q}} \right)$
 $= \left(\frac{T_6}{\gamma^{r+q}} \cdots \gamma_r \gamma^{p+q} \right) \left(\frac{\chi^4}{\chi^{r+q}} \right)$

We have
$$f \in Han (A \stackrel{p/q}{,} A^{r/s})_{\bar{o}} \iff \begin{pmatrix} T_{\bar{o}}^{\bar{o}} & T_{\bar{a}}^{\bar{o}} \\ T_{\bar{o}}^{\bar{o}} & T_{\bar{a}}^{\bar{a}} \end{pmatrix} = \begin{pmatrix} even & odd \\ odd & even \end{pmatrix}$$

 $\cdot f \in Hon (A \stackrel{p/q}{,} A^{r/s})_{\bar{a}} \iff \begin{pmatrix} T_{\bar{o}}^{\bar{o}} & T_{\bar{a}}^{\bar{o}} \\ T_{\bar{o}}^{\bar{o}} & T_{\bar{a}}^{\bar{a}} \end{pmatrix} = \begin{pmatrix} odd & even \\ even & odd \end{pmatrix}$
 $\cdot \text{Scalar multiplication :}$
 $(af)(x) = a f(x) = a \stackrel{ras}{\underset{j=a}{\overset{p/q}{\underset{z=a}{\overset{p}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\overset{p}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\overset{p}{\underset{z=a}{\underset{z=a}{\overset{p}{\underset{z=a}{\underset{z=a}{\overset{p}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\overset{p}{\underset{z=a}{\atopz=a}{\underset{z=a}{\atopz=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\atopz=a}{\underset{z=a}{\atopz=a}{\atopz=a}{\underset{z=a}{\atopz=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\underset{z=a}{\atopz=a}{\underset{z=a}{\atopz=a}{\atopz=a}{\underset{z=a}{\atopz$

)

 $(f_a)(\lambda) = f(a_x) \xrightarrow{P} q_x = q \underbrace{E}_{i} e_i x^{i} = \underbrace{E}_{i} e_i (c_{-1})^{|a||e_i|} i$

$$\Rightarrow f(a_{x}) = \underbrace{\mathcal{E}}_{j=n} \underbrace{\mathcal{E}}_{i \leq n} \underbrace{\mathcal{E}}_{j=1}^{r} \underbrace{\mathcal{E}}_{j=n}^{r} \underbrace{\mathcal{E}}_{i \leq n}^{r} \underbrace{\mathcal{E}}_{j=1}^{r} \underbrace{\mathcal{E}}_{i \leq n}^{r} \underbrace{\mathcal{E}}_{j=1}^{r} \underbrace{\mathcal{E}}_{i \leq n}^{r} \underbrace{\mathcal{E}}_{$$

· Parity trans pose :

~> TTAlly has rook (glp) and the basis $(\underbrace{e_{n}, \ldots, e_{p}}_{odd}, \underbrace{e_{rin}, \cdots, e_{piq}}_{even}) = (\underbrace{e_{pin}, \cdots, e_{riq}}_{even}, \underbrace{e_{n}, \cdots, e_{r}}_{odd})$ $\overrightarrow{=} \times EA = \underbrace{E}_{i=1}^{p|q} \times \underbrace{E}_{i=1}^{p|q} \times \underbrace{E}_{i=1}^{p|q|} \underbrace{\sum_{i=1}^{q|q|} \times E}_{i=1}^{p|q|} \underbrace{E}_{i=1}^{p|q|} \underbrace{E}_{i=1}^{p|$ is represented in $TT A^{n} A^{n} = TX \leftarrow \begin{pmatrix} x^{p} \\ x^{n} \\ x^{n} \end{pmatrix} \leftarrow \begin{pmatrix} x^{p} \\ x^{n} \\ x^{n} \end{pmatrix} \leftarrow \begin{pmatrix} x^{p} \\ x^{n} \\ x^{n} \end{pmatrix}$

We have $\Pi f(x) = f(x)$

$$\Rightarrow \begin{pmatrix} \mathcal{T}^{\overline{o}}_{\overline{x}} & \mathcal{T}^{\overline{o}}_{\overline{x}} \\ \mathcal{T}^{\overline{o}}_{\overline{x}} & \mathcal{T}^{\overline{o}}_{\overline{x}} \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} \mathcal{T}^{\overline{o}}_{\overline{x}} & \mathcal{T}^{\overline{o}}_{\overline{o}} \\ \mathcal{T}^{\overline{o}}_{\overline{o}} & \mathcal{T}^{\overline{o}}_{\overline{o}} \end{pmatrix}$$

We have:
$$(A+B)^{T} = A^{T} + B^{T}$$
, $(A\cdot B)^{T} = A^{T}$, B^{T} , $(A^{T})^{T} = A$

· Supertrans pose

Let
$$A$$
 be a supercomment, ring and M be a free supercodule one A of finit rank.
Then we have the dual module $M^* := \underline{Hom}(M, A)$.
Analogously to ordinary (inear algebra we have a evaluation maps
 $L_{1,2}: M^* \otimes_A M \rightarrow A$; woment to $L_{1,m} = W(m)$
For $f: M \rightarrow M$ we get now a maps $f^*: M^* \rightarrow M^*$
with the property $L f^*(w), m^2 = (-n)^{H(1)m} \leq w, f(n)^2 = (-n)^{H(1)m} W(f(n))$
 $= f^*(w)(n)$

Let A with basis (en, r, epiz) Then for (A 1/4) = Hom (A 1/4 (A) we have the dual basis (e1, ..., e⁽¹⁴) with e'(e;) = s; => Every we (A^{1/9})* with w(e;)=w; can be represented as W= E W; ei W= (W, ... Wp+q) row valor representation W () min min min min min min Colum vector representation

$$\Rightarrow w \text{ in row rev. and } m \text{ in colum vev. then } w, m = h(m) \text{ is just}$$

$$mahin m-lliptinglien: w/x) \Rightarrow (m_{m} \dots m_{p+q}) \begin{pmatrix} \chi^{n} \\ \vdots r_{q} \end{pmatrix}$$
We now have: $2f^{n}(m), x \ge (m_{n} \dots m_{p+q}) \begin{pmatrix} \chi^{n} \\ \vdots r_{q} \end{pmatrix}$

$$= (-n)^{lf(lm)} rac{rac}{rac} rac{r}{rac} rac} rac{r}{rac} rac} rac{r}{rac} rac} rac{r}{rac} rac{r}{ra$$

Especially ne hone:

$$\begin{pmatrix} \left(\begin{array}{c} T^{\circ}_{\sigma} & T^{\circ}_{\tau} \right)^{st} \\ \left(\begin{array}{c} T^{\circ}_{\sigma} & T^{\circ}_{\tau} \end{array} \right)^{st} \\ \left(\begin{array}{c} T^{\circ}_{\sigma} & T^{\circ}_{\tau} \end{array} \right)^{st} \\ \left(\begin{array}{c} -T^{\circ}_{\sigma} & T^{\circ}_{\tau} \end{array} \right)^{st} \\ \left(\begin{array}{c} -T^{\circ}_{\sigma} & T^{\circ}_{\tau} \end{array} \right)^{st} \\ \left(\begin{array}{c} T^{\circ}_{\sigma} & T^{\circ}_$$

The supertranspose fallfills:

$$(A_{1}B)^{St} = A^{St} + B^{St}$$

•
$$(AB)^{st} = (-1)^{|A||B|} B^{st} A^{st}$$

$$(A)^{S_{\ell}S_{\ell}S_{\ell}S_{\ell}S_{\ell}S_{\ell}} = A , A^{S_{\ell}S_{\ell}S_{\ell}} \neq A , (A^{T})^{S_{\ell}T} = A$$

· Supertrace :

We have
$$\underline{End}(M) = \underline{Hom}(M, M) \stackrel{\sim}{=} M^{*} \otimes M$$

for M with (inite rank S_{r} sending
 $f \in \underline{End}(M) \mapsto \widetilde{f} = \underbrace{S}(-n)^{|e_{j}|(n+1+1)} e^{j} \otimes f(e_{j}) \in M^{*} \otimes M$
and $\underbrace{S_{s}^{*} \otimes S_{i}}_{i} \in M^{*} \otimes M \mapsto \underbrace{(\underbrace{S}_{s}^{*} \otimes S_{i})(t)}_{i} = \underbrace{S}(-n)^{|S_{i}|/|t|} \underbrace{S_{i}^{*}(t)}_{S_{i}^{*}(t)} S_{i}$

 $2 \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{j} \sum_{j} \sum_$

The swertrace of f is now given by

$$\operatorname{str}\left(\frac{T^{\circ}_{\sigma}T^{\overline{\sigma}}_{\pi}}{T^{\circ}_{\sigma}T^{\overline{\sigma}}_{\pi}}\right) = \operatorname{tr}\left(T^{\overline{\circ}}_{\sigma}\right) - (-1)^{|f|}\operatorname{tr}\left(T^{\overline{\sigma}}_{\pi}\right)$$

· By definition str: End (m) -> A is a superophism of A-Moddles

• Str (++) =(-1) 1×11+1 str(++) • Str (++) = (-1) |x|1+) str(+x)

$$\Rightarrow Str(XY) - (-n) \xrightarrow{k(1)(Y)} str(Yx) = Str(XY - (-n) \xrightarrow{k(1)(Y)} (Yx)) = Str((XY,Y)) = 0$$

$$= \int Str(C \times C^{-n}) = \underbrace{(-n)}_{= n} I(4|xc^{-n}) \\ Str(xc^{-n}c) = Str(x) \\ Secure 14=0$$

~? Alternative way to see that supertrace is basis independent.

•
$$Str(x^{st}) = Str(x)$$
 and $Str(x^T) = -(-n)^{|x|} Str(x)$

· id rig E End (A Pla) is represented as (10.

$$\rightarrow$$
 Str(id pig) = $P-q$