Lie-Groups und Representation Theory Exercise Sheet 5

Summer Term 2019

Prof. Dr. Johannes Walcher, Sebastian Nill, Lukas Hahn

Deadline: 21.05.2019, 11:00 Uhr

Exercise 5.1 Relevance of the identity - 8 Points

- (a) Let G_1 , G_2 be topological groups and let $f: G_1 \to G_2$ be a homomorphism which is continuous at the identity $e \in G_1$. Show that f is continuous. *Hint*: A similar statement also holds for any other element $g \neq e \in G_1$, however the identity is usually most easily understood. Use the topological definition of continuity at a point¹.
- (b) Let G be a connected topological group and let $U \in G$ be a neighbourhood of the identity $e \in G$. For every $n \in \mathbb{N}$ we denote by U^n the set of elements $u_1 \cdots u_n$, with $u_i \in U$. Show that

$$\bigcup_{n\in\mathbb{N}_0} U^n = G,$$

i.e. U algebraically generates G. Hint: Assume without loss of generality $U = U^{-1}$ and remember that a topological space X is connected if and only if the only clopen (= closed and open) subsets are X and the empty set \emptyset .

Exercise 5.2 The center of topological groups - 8 Points Let G be a topological Group.

- (a) Show that if G is Hausdorff, the center Z(G) is closed in G.
- (b) Show that if G is path-connected, any discrete normal subgroup $H \triangleleft G$ is in the center Z(G). Hint: Consider the map $G \rightarrow H$, $g \mapsto ghg^{-1}$ for a fixed element $h \in H$.
- (c) Bonus: The fundamental group $\pi_1(G)$ of a connected Lie group G acts on the universal cover \widetilde{G} by deck transformations. By applying (b) to the kernel of the universal covering map $\widetilde{G} \to G$, show that $\pi_1(G)$ is commutative.

Exercise 5.3 Haar measure of a discrete group - 8 Points

Let G be a locally compact topological group with a left Haar measure μ . Show that G is discrete if and only if $\mu(\{e\}) > 0$, where $e \in G$ is the identity.

Exercise 5.4 "Essentially" a Lie group - 10 bonus points

As we will learn soon, a Lie group is a group which is also a smooth manifold such that both structures are compatible in a certain sense. Not every topological group is a Lie group: The rational numbers \mathbb{Q} equipped with the subspace topology of \mathbb{R} are a counterexample. But clearly, every Lie group is a topological group, simply by forgetting the smooth structure. The resulting object is still a topological manifold which in particular is locally homeomorphic to Euclidian space. As it turns out, this local model is sufficient to conclude a converse statement, which was the content of Hilbert's (by now solved) fifth problem: A locally Euclidian topological group is isomorphic to a Lie group. In

 $^{^1}f:X\to Y$ is continuous at $x\in X$ if for any given neighborhood N of f(x) there is a neighborhood M of x such that $f(M)\subseteq N$.

practice, verifying a topological group to be locally Euclidian might be very difficult, so one might hope to weaken the requirements for such a statement to be true. The goal of this exercise is to give an example which illustrates that *local compactness* is not enough.

Let p be a prime. We define the p-adic norm $\|\cdot\|_p$ on the integers \mathbb{Z} by defining $\|n\|_p := p^{-j}$, where p^j is the largest power of p that divides n (setting $\|0\|_p := 0$). The resulting metric space can be completed in the usual way to obtain the p-adic integers \mathbb{Z}_p .

(a) Show that $(\mathbb{Z}_p, +, 0)$ is a topological group with respect to the topology induced by the *p*-adic norm. *Hint*: Use the triangle inequality. You will not need the strong triangle inequality below.

For a metric space, being compact is equivalent to being complete and totally bounded. \mathbb{Z}_p is complete by construction, so in order to verify compactness it is enough to

(b) show that \mathbb{Z}_p is totally bounded. *Hint*: To prove that \mathbb{Z}_p can be covered by finitely many ϵ -balls, it is enough to consider p^{-n} -balls. All of these balls are cosets of the p^{-n} -ball around zero and it is $\mathbb{Z}_p/p^n\mathbb{Z}_p \simeq \mathbb{Z}/p^n\mathbb{Z}$.

Alternatively, show that every sequence in \mathbb{Z}_p contains a convergent subsequence.

Therefore the p-adic integers are also locally compact. Recall that locally Euclidian in particular implies locally connected. \mathbb{Z}_p can be seen to be very far from locally connected as follows.

(c) Show that the metric induced by the *p*-adic norm is even an *ultrametric*: A metric $d: \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{R}$ which satisfies the *strong* triangle inequality

$$d(x, z) \le \max\{d(x, y), d(y, z)\}$$

for $x, y, z \in \mathbb{Z}_p$. Hint: Consider elements in the representation $x = \pm p^m r$ and $y = \pm p^n s$.

(d) Show that an ultrametric space is totally disconnected, i.e. a space whose connected components are the one-point sets. *Hint*: If you can prove that in an ultrametric space an open ball is automatically closed you are essentially done.

As a totally disconnected space, \mathbb{Z}_p cannot be locally Euclidian and hence cannot be isomorphic to a Lie group. However, \mathbb{Z}_p is "almost" a Lie group in the sense that it becomes a Lie group after a minor modification, namely after dividing out the compact subgroups $p^j\mathbb{Z}_p$. One obtains the cyclic groups $\mathbb{Z}/p^j\mathbb{Z}$ which are discrete and therefore Lie groups. In general, the Gleason-Yamabe theorem² specifies how locally compact topological groups have to be modified in order to become Lie groups.

²See e.g. Hilbert's Fifth Problem and Related Topics by Terry Tao.