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1 Introduction

The holographic principle [1] is based on the idea that there is a limit on information
content of spacetime regions. For a given volume V bounded by an area A, the state
of maximal entropy corresponds to the largest black hole that can fit inside V . This
entropy bound is specified by the Bekenstein-Hawking entropy

S ≤ SBH =
A

4G
(1.1)

and the goings-on in the relevant spacetime region are encoded on "holographic screens".

The aim of these notes is to discuss one of the many aspects of the question in the title,
namely: "Is this feature of the holographic principle realized in string theory (and if so,
how)?". In order to adress this question we start with an heuristic account of how string
like objects are related to black holes and how to compare their entropies. This second
section is exclusively based on [2] and will lead to a key insight, the need to consider BPS
states, which allows for a more precise treatment. The most fully understood example is
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a bound state of D-branes that appeared in the original article on the topic [3]. The third
section is an attempt to review this construction from a point of view that highlights
the role of AdS/CFT [4, 5]. We will focus on a version of the story which touches part of
the subsequent mathematical physics literature related to the geometry of K3 surfaces
[6, 7, 8, 9, 10].

2 Classical Strings and Black Holes

We consider a heuristic model for a (classical bosonic) string made out of "string bits"
2.1. It can be thought of as arising from a random walk process in d-dimensional

Figure 2.1: We assume that the bits are of length l =
√
α′ and the whole string has mass

M , length L and number of bits N = L/l.

spacetime. For such processes the average end-to-end distance can be calculated and is
given by √

〈D2〉 =
√
lL ∼

√
M, (2.1)

while its Schwarzschild radius is

RS =
2GM

c2
∼M. (2.2)

By this analysis of the dependence on mass we deduce that sufficiently massive strings
are indeed expected to form black holes. This can be rephrased as follows: E.g. in the
case of open strings with zero momentum we have

M2 = E2 =
1

α′
(N − 1) ' N

α′
if N � 1. (2.3)

Therefore a string at zero momentum and sufficiently high degree of excitation will look
like a stationary Schwarzschild black hole for an outside observer.
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The Bekenstein-Hawking entropy of this black hole is given by (c = ~ = 1)

SBH =
A

4l2p
= 4πGM2, (2.4)

with the Planck-length lp and proportional to the mass2. What is the entropy of the
random-walk string? We can estimate the number of microstates as

Ω ∼ d
L�√α′ ∼ dM

√
α′ ∼ eM

√
α′ log(d), (2.5)

by using M ∼ TL ∼ 1�α′ L, where T is the tension. An approximation for the entropy
is therefore

Sstr = log Ω ∼
√
α′M. (2.6)

The result of this heuristic approach is not too far from the correct one [2]

Sstr = 4π
√
α′M (2.7)

and in any case the entropy is proportional to the mass1.

The disagreement of both calculations for the entropy is of course expected. In the
purely statistical derivation of Sstr the entropy will certainly be an extensive quantity
and adding string bits of a given chunk of the massM is expected to increase the entropy
linearly. That this is different from the gravitational situation and the expression for SBH

is a well-known feature of gravitational physics. There is however an obvious reason why
this comparison is questionable: A non-vanishing black hole entropy requires interactions
because

G ∼ g2α′, (2.8)
where g is the (closed) string coupling, while we treated the random-walk "string" as
free. Although there is further heuristic evidence that a Schwarzschild black hole is
the strong coupling version of a highly excited string [2], an exact computation is only
feasible if it remains valid when changing from g = 0 to g 6= 0. Unfortunately the
strong coupling regime in string theory is in general very hard to control. This means
we have to consider a state which is BPS, where a computation at weak coupling allows
for making statements about the strong coupling version.

3 The Strominger-Vafa
Construction

3.1 AdS/CFT for the D1/D5 System

The first and by now best understood example of such a BPS state is due to Strominger
and Vafa and constructed from a bound state of D1- and D5-branes in type IIB string
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theory [3], see also [11]. For a correct number of branes the system is BPS and we can
try to deduce some information of the strong coupling situation from the weak coupling
computation. Although the number of microstates will not be invariant there is a certain
topological index which acts as a bound on the degeneracy of BPS microstates.

Let X be a complex, projective1 and compact K3 surface and consider type IIB string
theory compactified to five dimensions on R1,4×X×S1 with stacks of Q1 D1-branes and
Q5 D5-branes wrapping cycles according to 3.1. Let (2π)4V be the volume of X and R
be the radius of the S1. Using the superposition principle for supergravity solutions of

Figure 3.1: The D5-branes wrap all of the compact space and the D1-branes only wrap
the S1. A five dimensional physicist sees a worldline in R1,4.

intersecting branes [12] the metric of the non-compact part of this spacetime looks like

ds2 = − (H1H5 (1 +K))−2/3 dt2 + (H1H5 (1 +K))1/3
(
dr2 + r2dΩ2

3

)
(3.1)

with
H1(r) = 1 +

r21
r2

H5(r) = 1 +
r25
r2

K(r) =
r2m
r2

(3.2)

and
r21 =

gQ1l
6
s

V
r25 = gQ5l

2
s r2m =

g2Nl8s
R2V

, (3.3)

where N is the momentum quantum number corresponding to motion along the S1. This
supergravity solution is valid if gQ1, gQ5, gN � 1 which we will enforce by assuming
a very high number of D1- and D5-branes as well as a very high momentum quantum
number.

1This assumption is only necessary for the viewpoint we want to take and will become clear later on.
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If the system is BPS this solution describes an extremal, Reissner-Nordström black hole
with Hawking temperature TH = 0. Its "macroscopic" entropy can be calculated by
using the Bekenstein-Hawking formula (the horizon is at r = 0)

SBH =
A

4G5

=
1

4G5

π2r3 (H1H5 (1 +K))3/6
∣∣
r=0

= 2π
√
Q1Q5N. (3.4)

The basic motivation behind the construction of Strominger and Vafa is to determine a
microscopic origin of this entropy at weak coupling. As it turns out, this is an applica-
tion of AdS/CFT.

To explain how the AdS/CFT correspondence enters into the story we consider a slightly
modified version of the geometry in which we unwrap the S1 (or, equivalently, set N =
0)2. In this case the supergravity solution for the five dimensional non-compact part of
the spacetime becomes

ds2 = H
−1/2
1 H

−1/2
5

(
−dt2 + dx2

)
+H

1/2
1 H

1/2
5

(
dr2 + r2dΩ2

3

)
. (3.5)

If we vary the coupling the system has two different descriptions 3.2, see [4, 5]. AdS/CFT

Figure 3.2: The black string case (left) is valid for gQ1, gQ5 � 1 and is related to a
system of (proper) D-branes whose worldvolume theory is a gauge theory
determined by open strings (right), valid for gQ1, gQ5 � 1, when we lower
the coupling and keep fixed the number of branes. The system of D-branes
has SO(1, 1)×SO(4) as symmetry group and preserves N = (4, 4) supersym-
metry. The gauge theory lives on the intersection of all branes. We omitted
the K3 surface on both sides.

will be valid in a further low-energy limit (α′ → 0), in which we keep all dimensionless
parameters fixed, in this case

r

α′
v :=

V

(2π)4(α′)2
g6 :=

g√
v
. (3.6)

There are two interpretations for this low energy limit, depending on the value of the
coupling.

2In this case the area of the horizon and the entropy shrinks to zero, but this will not interfere with
the point that is made.
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a) For weak coupling gQ � 1, we have a decoupling of supergravity in the bulk
and gauge theory on the branes. The gauge theory has a Coulomb branch, which
corresponds to varying expectation values of gauge fields, and (unlike for example
the N = 4 SYM on a D3) also a Higgs branch, corresponding to varying expec-
tation values of matter fields that arise from strings that stretch between the two
types of branes. There is an argument [5] how the Coulomb branch can be re-
moved by symmetries such that we are interested in the Higgs branch of the
(1+1) dimensional gauge theory with N = (4, 4) supersymmetry on the
worldvolume. This theory is known to be a SCFT.

b) For strong coupling gQ � 1 the supergravity solution is valid but also involves
a certain decoupling. As gtt is not constant, the energy measured by an observer
at infinity E∞ is different from the one measured at a fixed position p, Ep. The
difference is determined by the redshift factor

E∞ = H
−1/4
1 H

−1/4
5 Ep. (3.7)

This implies that the low energy limit above contains two kinds of particles: Mass-
less particles in the bulk, i.e. supergravity in the bulk, and any particle near the
horizon which is heavily redshifted when observed from a great distance. In the
limit these two systems decouple as on the one hand the wavelength of the bulk
particles grows indefinitely due to redshifting and interaction with the geometry
of fixed characteristic length scale becomes impossible, and on the other hand be-
cause near horizon particles cannot escape from the gravitational potential of the
branes. Applying the limit as described above to the five dimensional solution
(3.5) yields

ds2 =
r2

α′gl
√
Q1Q5

(
−dt2 + dx2

)
+ α′g6

√
Q1Q5

(
dr2

r2
+ dΩ2

3

)
. (3.8)

This near horizon geometry can be identified as AdS3×S3×X (after including
the K3 again).

In both interpretations the system decouples from bulk supergravity and identifying
what remains on both sides is the essence of the AdS3/CFT2-correspondence. The two
dimensional SCFT lives on the conformal boundary of the relevant AdS-space. This
identification at low energy remains valid when compactifying the x coordinate on a S1

and our hope is to gain insight into the microscopic origin of the Bekenstein-Hawking
formula by analysing the SCFT that is dual to type IIB string theory near the horizon.

3.2 The Instanton Moduli Space

One possibility [5, 11, 13] to fully characterize the low energy physics of the SCFT is to
start with the U(Q5) gauge theory on the D5-branes and think of the D1-branes a Q1

instantons in this gauge theory. These instantons live on X ×S1 and are translationally
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invariant with respect to time. We consider a limit in which Vol(X) � Vol(S1) such
that compactification naively yields an effective field theory on R1,0 × S1. The effective
field theory has an instanton configuration which is determined by a choice of classical
vacuum and these various effective versions are then related by moduli which parama-
trize families of classical solutions in the effective description. After compactification,
i.e. in the limit where the K3 is small compared to the S1, the instanton moduli will
depend on the geometric moduli of the K3 surface [3]. The dynamics of the effective
theory therefore depends on a background of moduli fields and our system is actually a
sigma model with worldvolume R1,0×S1 and the instanton moduli space as target space.
In the current situation there is an assumption for which there is an interesting geomet-
ric characterization of the instanton moduli space [6, 9, 13, 14].

Suppose the Poincaré dual PD([D5]) is a non-primitive class in the cohomology of X,
i.e. in the image of the Lefschetz operation

L : H2(X,R) −→ H4(X,R)

[η] 7−→ [η ∧ ω],
(3.9)

where ω is the symplectic form on the K3 surface. The fields that determine the instan-
ton moduli space depend on modular parameters of X. The assumption above ensures
that, instead of all moduli ofX, only those of a holomorphic3 two cycle C ⊂ X determine
the instanton moduli space. For the sake of simplicity, we further assume Q1 = Q5 = 1.
A generalization to a higher stack of branes is known [14].

Recall that there are 6 scalar fields

φi ∈ Γ(C,NC|Target)⊗ ad(U(1)) i = 1, ..., 6, (3.10)

where NC|Target is the normal bundle of C inside the target space of the string, R1,4×X×
S1. These come from string excitations that are orthogonal to the branes and can be
interpreted as Goldstone bosons for the spontaneous breakdown of Poincaré symmetry
due to the branes 3.3. Four of them correspond to the embedding into R4 while the
remaining two correspond to the embedding into X. As C is embedded holomorphically
into X the latter can be combined into one complex scalar field which we will denote as
Φ. There is a short exact sequence

0 −→ TC = K−1C −→ TX = K−1C ⊕NC −→ NC −→ 0 (3.11)

of vector bundles on C from which we can calculate

det(TX) = det(K−1C )⊗ det(NC)

= K−1C ⊗NC

= OX ,
(3.12)

3This condition is needed in order to respect supersymmetry [14].
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Figure 3.3: The modes of the string orthogonal to the brane allow for a description of
its deformation into the normal directions.

where the last equality follows from X being Calabi-Yau. This implies NC ' KC and in
particular

Φ ∈ Ω1(C)⊗ ad(U(1)), (3.13)

i.e. we can think of the complex scalar field as a complex differential form on C. As we
started with a gauge theory on R1,0×S1×X, taking the limit where the K3 is very small
is an example of dimensional reduction as studied in [13]. There is a set of equations,
the Hitchin equations, that need to be satisfied in order for the reduction to be well
defined and as the relevant moduli are those of C ⊂ X which are controlled by the field
Φ, these become

Fzz = [Φz,Φz]

DzΦz =0 = DzΦz,
(3.14)

after we specified local complex coordinates on X (and therefore on C). The Hitchin
equations simplify in this case as the gauge theory is abelian Fzz = 0. The first equation
therefore forces the U(1)-bundle to be flat while the second implies that Φ is holomorphic.
This holomorphic form Φ ∈ H0,1(C) can be further characterized by

H0,1(C) ' H1(C,Ω0
C) = H1(C,OC) (3.15)

by Dolbeault‘s theorem. The canonical bundle of C is related to the canonical bundle
of X by the adjunction formula

KC ' i∗ (KX ⊗O(C)) ' i∗(O(C)) (3.16)

using the fact thatX is Calabi-Yau. So Serre duality implies (we slightly abuse notation)

Φ ∈ H1(C,OC) ' H0(C,O(C)). (3.17)

Note that in such a setting O(C) is the normal bundle of C in X and there is an
isomorphism

H0(C,NC|X) ' T[C]H, (3.18)
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where H is the Hilbert scheme of X, i.e. the parameter space of closed subspaces of X.
In our projective situation these subspaces are determined up to scaling and therefore
the relevant parameter space is

PH0(C,O(C)) ' Pg, (3.19)

for a curve of genus g.

The space of solutions to the Hitchin equations (3.14) is called the Hitchin moduli space
and denoted byMH

g . What we really need, however, is its compactification [13, 14] (see
also [15]) for which we will use the same symbol. By what we have said the points of
MH

g are pairs (C ⊂ X , p ∈ Jac(X)) because a choice of flat U(1)-bundle corresponds
to the choice of a point on the Jacobian of the curve. There is a conjectural [3, 9, 14]
birational equivalence between the Hitchin moduli space of the D1/D5-system and the
symmetric product of the K3 surface

MH
g

∼
99K Symk(X) = X×k�Sk. (3.20)

Here, k = Q1Q5 is supposed to be the product of the number of branes. There is strong
(but quite subtle) field theoretic evidence [11] for this conjecture to be true but in the
special case at hand their is also geometric motiviation that the moduli space might
have something to do with the symmetric product [14].

Idea: We assume that X is an elliptic surface [16], i.e. there is a surjection X → P1

such that the generic fiber is an elliptic curve. Not all fibers can be smooth: If that was
the case the multiplicativity of the topological Euler number e(X) = e(P1)e(Xt) = 0
would be a contradiction to e(X) = 24. A generic K3 surfaces has exactly 24 singular
fibers where in this case the singularities are ordinary double points. Although a generic
K3 surface is not elliptic, elliptic ones are rather frequent and we assume that X is a
generic one of those.
The Hitchin moduli space is a fibration over the space of deformations of C in X

Jac(Xt) //MH
g

��

Pg.

(3.21)

The projection is simply forgetting the U(1)-bundle and the fiber over a t ∈ Pg is the
Jacobian of the corresponding curve.
In the case of g = 0 we have C ' P1 with normal bundle in X given by O(−2). It
follows that

dimH = dimH0(P1,O(−2)) = 0, (3.22)

which means that genus 0 curves are "rigid", i.e. they do not admit deformations into
nearby holomorphic cycles. Moreover, Jac(P1) = 0 and thereforeMH

g = {pt.}.
For the case of elliptic curves E, g = 1, the parameter space is P1 and Jac(E) = E. The
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Hitchin moduli space is the fibration over P1 with elliptic curves as generic fibers. By
the argument above such a fibration generically includes 24 singular fibers and indeed
reproduces the fibration of the (elliptic) K3 surface X with which we started.
The case of g ≥ 2 is more involved and we have to make another assumption: All line
bundles O(D) corresponding to any divisors D on C are of degree g. In such a setting
there is a map

Symg(C) −→ Picg(C)

D = x1 + · · ·+ xg 7−→ OC(D),
(3.23)

sending g arbitrary points on C, which naturally define an effective divisor on Symg(C),
to its associated line bundle of degree g. Let P be any rational point on C, then we
further have

Picg(C) −→ Jac(C)

OC(D) 7−→ OC(D)⊗OC(−g.P ).
(3.24)

The composition AJ : Symg(C)
∼→ Jac(C) can be thought of as a degree g variant of the

Abel-Jacobi map. It is automatically surjective and in this case also injective because we
only care about effective divisors. We can therefore think of a point inMH

g as a curve
C ⊂ X with g unordered points specified. By forgetting the curve, this data corresponds
to the K3 surface X with g unordered points specified or, put differently, a point in the
symmetric product. Conversely, fixing g points on X, all curves that pass through these
points are parametrized by hyperplanes in Pg. There are g of them and they generically
intersect at exactly one point. So for any g points there is generically one curve which
passes through all of them. In particular it has g marked points.

These arguments may provide motivation for believing the conjecture, but a proof would
involve an analysis of singularities [14]. Additionally it might be interesting to try to
relate the genus g as an exponent in the symmetric product with Q1Q5 which arises in
a more field theoretic description (3.20).

Remark: The objectMH
g ' Symg(X) is an orbifold with orbifold singularities. These

can be resolved in a certain way [9, 11] and the result is hyperkähler and Calabi-Yau.
Without further specification, we will treat this resolution as the correct instanton mod-
uli space and denote it by M. The important point is that their orbifold cohomologies
coincide [17], which somewhat justifies an often stated equivalence in the literature. It
also follows that the (complex) dimension of M is not 2Q1Q5, but 2(Q1Q5 +1) [5, 9, 11].

3.3 The Elliptic Genus

Now that we identified the target space of the effective field theory that is dual to type
IIB string theory near the horizon of the D1/D5-system, we can finally make a statement
about the black hole microstates. We want to count the BPS ground states of this sigma
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model on M in order to find an estimate of their degeneracy which remains valid even
when we vary the coupling. For such a task there is a very helpful tool in guise of a
topological index [8, 18].

Definition. LetM be a Kähler manifold of complex dimension d and consider an elliptic
curve E ⊂M with modulus τ and coordinate z. We define

q = exp(2πiτ) y = exp(2πiz). (3.25)

Then the quantity
χ(M ; q, y) = TrH (M)(−1)FyFLqL0− d

8 qL0− d
8 (3.26)

is called elliptic genus of the sigma model on M . Here, H denotes the Hilbert space
of states, F = FL + FR denotes the Fermion numbers and L0 is the level 0 Virasoro
operator.

It is instructive to recall Witten‘s index

TrH (M)(−1)F = χ(M ; 1, 1) (3.27)

which is an index for ground states of the associated sigma model and computes the Euler
characteristic of the target space. The basic idea behind Witten‘s index is that super-
symmetry leads to a cancellation of all non-ground states due to the factor (−1)F [19].
This index counts the number of zero energy bosonic ground states minus the number
of zero energy fermionic ground states, which is a geometric invariant of the target space.

The elliptic genus is much more closely related to the full partition function. Essentially
it is the specialization y = 1 of the full partition function in the Ramond-Ramond sector,
after choosing the boundary conditions for the fermions correctly. As a consequence of
the missing sign, as for Witten‘s index, there are no contributions of left moving states
with L0 − d/8 > 0. This means that only the right moving Ramond ground states
contribute to the expression such that the elliptic genus is holomorphic in q (or τ). An
equivalent definition would therefore be

χ(M ; q, y) = TrH (M)(−1)FyFLqL0− d
8 . (3.28)

χ being holomorphic requires the exponent L0− d
8
to be an integer, such that the elliptic

genus loses its dependence on modular parameters of M . A physical interpretation of
the elliptic genus as a "counting function" of perturbative BPS states is therefore not
quite correct: Such a function would certainly depend on the moduli. The topological
index χ(M ; q, y) will therefore only be useful to compute a bound on the degeneracy of
BPS states and therefore the microstates of the black hole.

The power of the elliptic genus in the current situation is based on a mathematical fact:
If the target space is Calabi-Yau, χ(M ; q, y) is a weak Jacobi form [18, 20] of weight
w = 0 and index r = d/2, a function

F : H× C −→ C, (3.29)
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where H is the upper half plane, which behaves somewhat like a modular form. Its
transformation behavior with respect to the action of SL(2,C) is

F

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)w exp

(
πi

rcz2

cτ + d

)
F (τ, z)

F (τ, z +mτ + n) = exp
(
−πir(m2τ + 2mz)

)
F (τ, z),

(3.30)

with integers m,n,w and (possibly) half-integer r (there are subtleties for odd d [8]).

At this point we will cheat: The instanton moduli space M is an orbifold, rather than
a manifold. Strictly speaking we would have to compute the orbifold version of the
elliptic genus which, fortunately, is strongly related to the elliptic genus of X in our
case. We will ignore this subtlety and refer the reader to [7]. When we assume M to be
a Calabi-Yau manifold we have an expansion [7, 20]

χ(M; q, y) =
∑

n≥0,FL

c(n, FL) qnyFL . (3.31)

The index n is determined by the level-matching condition4

L0 − L0 = L0 = N (3.32)

where N is the quantized momentum along the S1 and because the operator L0 does
not affect the elliptic genus. This implies n = N . The coefficients c(N,FL) correspond
to the degeneracy of the BPS state for the given parameters. For very large N , a
condition we assumed throughout, their leading asymptotics can be obtained from a
Hardy-Ramanujan formula5 (see also [10])

c(N,FL) ∼ exp

(
4π

√
d

8
N

)
. (3.33)

Using the dimension of M as explained at the end of the last section, the leading degen-
eracy of BPS states for N � 1 is given by

c(N,FL) ∼ exp
(

2π
√

(Q1Q5 + 1)N
)
. (3.34)

The statistical or "microscopic" entropy is then bounded by

S = log c(N,FL) ∼ 2π
√

(Q1Q5 + 1)N, (3.35)

which for Q1, Q5 � 1 agrees to leading order with the Bekenstein-Hawking formula.

4This really is an expression for the eigenvalues of the operator L0. They are fixed to be integers.
5In the literature such an approximation is sometimes also attributed to Cardy [21].
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