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Abstract

This summary contains two talks held in the seminar on "Holography and large-N dualities" in summer
2018. The first two sections summarise the talk held by Torben Skrzypek who explained the mathematical
prerequisites to conformal quantum field theory, as they are needed in the following. He worked out the
specific form of conformal transformations, identified the conformal group and showed, how in the quantisa-
tion process the Lie algebra has to be extended to find a unitary represention. The first part mainly follows
Schottenloher [1] but has also taken inspiration from Blumenhagen and Plauschinns book [2].

The last two sections outline the talk given by Jannik Fehre on the key techniques and features of two
dimensional conformal field theory. As an example, he applied these insights to the free boson on the
cylinder. The second part focusses on a discussion close to Blumenhagen and Plauschinn [2] but also uses
some details from the lecture notes by Qualls [3].
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1 Conformal transformations and the conformal group

1.1 Local conformal transformations

Definition 1.1. Let (M, g), (N, g′) be smooth Pseudo-Riemannian manifolds, U ⊂ M,V ⊂ N open subsets of
M and N and φ : U → V a smooth, non singular map. φ is called conformal if there exists a smooth map
Ω : U → R+ (the conformal factor) such that

φ∗g′ = Ω2g.

In local coordinates
g′ρσ(x′)∂x

′ρ

∂xµ
∂x′σ

∂xν
= Ω2(x)gµν(x).

For simplicity, we will work in flat space and with transformations from M to M and use ηµν to denote the
metric diag(−1,−1, ....1) with signature (p, q). For an infinitesimal transformation φ : x 7→ x′ = x+ε(x)+O

(
ε2
)

we get
ηρσ(δρµ + ∂µε

ρ)(δσν + ∂νε
σ) +O

(
ε2
)

= Ω2(x)ηµν .

Computing the left hand side yields

ηµν + (∂µεν + ∂νεµ) +O
(
ε2
)

= Ω(x)2ηµν = ηµν + κ(x)ηµν

where we defined κ : U → R by κ(x) = Ω2(x)−1. This leaves us with a restricting equation for the infinitesimal
transformations up to first order of the form

(∂µεν + ∂νεµ) = κ(x)ηµν .

Tracing with ηµν yields
2∂µεµ = κ(x)d ⇒ κ(x) = 2

d
(∂ · ε)

with d = p+ q the dimension of the manifold. Thus we get the conformal Killing equation

(∂µεν + ∂νεµ) = 2
d

(∂ · ε)ηµν . (1)

For d = 2 we can explicitly solve this system of two differential equations. For d ≥ 3 we can perform further
contractions to get

[−gµν� + (d− 2)∂µ∂ν ](∂ · ε) = 0 (2)

2∂µ∂νερ = 2
d

(−ηµν∂ρ + ηρµ∂ν + ηνρ∂µ)(∂ · ε). (3)

Equation (2) implies a linear structure of (∂ · ε), thus we can make the widest possible ansatz

(∂ · ε) = A+Bµx
µ

εµ = aµ + bµνx
ν + cµνρx

νxρ

with aµ, bµν , cµνρ constant and cµνρ = cµρν . We can further decompose bµν in a symmetric and an antisymmetric
part. Another application of (2) requires the symmetric part to be proportional to the metric, which yields
bµν = α · ηµν +mµν , where mµν is the antisymmetric part. As for cµνρ, we can apply equation (3) to express it
by the vector bµ = d−1 · cρρµ, which gives the general form for an infinitesimal conformal transformation

x′µ = xµ + aµ + α · xµ +mµ
νx

ν + 2(x · b)xµ − (x · x)bµ.
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We can consider each parameter as the action of a generator on x, which correspond to the following transfor-
mations

Parameter Transformation Generator
aµ x′µ = xµ + aµ Translation Pµ = i∂µ (Momentum)
α x′µ = (1 + α)xµ Dilation D = −ixµ∂µ
mµν x′µ = xµ +mµ

νx
ν Rotation Lµν = i(xµ∂ν − xν∂µ) (Ang. Momentum)

bµ x′µ = xµ + 2(x · b)xµ SCT Kµ = −i(2xµxν∂ν
−(x · x)bµ −(x · x)∂µ)

.

We see that except for the usual Poincaré-group transformations of translation and rotation (which include
Lorentz-boost), we also get a dilation, which scales the whole space and a special conformal transformation
(SCT), which can be written in its finite form as

x′µ = xµ − (x · x)bµ

1− 2(b · x) + (b · b)(x · x)

corresponding geometrically to an inversion at the unit sphere, a subsequent translation by −bµ and yet another
inversion. However, it is possible that the translation hits the coordinate origin and x′ is sent to infinity by
the last inversion. This is precisely the case when the denominator vanishes. Therefore we have to restrict our
attention to regions, where the transformation is not singular, which breaks any arising global group structure.
To find a conformal group, we have to conformally compactify the flat space we were working on thus far.

1.2 Conformal compactification and the conformal group

The goal is to find a manifold Np,q, where all conformal transformations are defined as smooth non-singular
maps and enjoy a group structure. More explicitly we want to find a conformal embedding τ : Rp,q ↪→ Np,q

such that for every conformal φ : U 7→ V with U, V ⊂ Rp,q a diffeomorphism φ∗ : Np,q 7→ Np,q with commuting
diagram

U V

Np,q Np,q

φ

τ τ

φ∗

exists. A Manifold Np,q with those caracteristics is a conformal compactification of Rp,q.

To that end, we embed Rp,q into the projective space RPd+1 by

τ : Rp,q → RPd+1

xµ 7→ (1− xµxµ
2 : x1 : x2 : . . . : xd : 1 + xµxµ

2 )

where homogeneous coordinates have been used for RPd+1. Now the closure τ(Rp,q) is precisely given by the
quartic

Np,q := {(ξ0 : . . . : ξn+1) ∈ RPd+1|〈ξ, ξ〉Rp+1,q+1 = 0}

which again can be double-covered by the manifold Sp × Sq ⊂ Rp+1,q+1 and thus has an induced metric. It
can be shown by explicit calculation that τ maps conformally on Np,q. Now we have to check, if we can find
diffeomorphisms φ∗, that correspond to all possible conformal transformations according to the upper diagram.
We use that the group of orthonormal transformations O(p+1, q+1) on Rp+1,q+1 acts diffeomorphic on Sp×Sq

and because Np,q is double covered, we can restrict our attention to the subgroup SO(p + 1, q + 1). Indeed,
an explicit calculation shows that there is a one to one correspondence between the matrix-representation of
SO(p+ 1, q + 1) and conformal transformations on Rp,q, e.g.
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1 0 0
0 Λ 0
0 0 1

 ∈ SO(p+ 1, q + 1)↔ Rotation Λ ∈ SO(p, q).

Such we have found the conformal group Conf(Rp,q) ∼= SO(p+1, q+1) acting diffeomorphic on the conformal
compactificationNp,q of Rp,q. If we only want the connected part containing the identity, we get SO(p+1, q+1)+.
The conformal group is a Lie group, so it should be possible to find a Lie algebra of dimension dimSO(p+ 1, q + 1) =
(d+1)(d+2)

2 . Going back to the generators defined in the table of conformal transformations, the specific combi-
nations

J0,ν = 1
2(Pν −Kν) J0,d+1 = D

Jµ,ν = Lµν Jµ,d+1 = 1
2(Pµ +Kµ)

with Jij = −Jji have the the familiar commutator structure for so(p+ 1, q + 1)

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac).

This reassures us that

Theorem 1.1. The conformal group Conf(Rp,q) of flat spacetime with signature (p, q) is isomorphic to SO(p+
1, q + 1).

1.3 Special case of d = 2

In the derivation of the conformal transformations, the conformal Killing equation(1) was said to be directly
solvable for the case of dimension d = 2. Especially in equation (2) we see that the second term will vanish in
two dimensions, so our discussion so far didn’t account for this less restrictive case. The global results will turn
out quite similar, but locally we will face a different situation. In the following, we will work in Euclidean space
with signature (0, 2). For a Lorentzian situation our results can be applied by Wick rotation of one coordinate.
Going back to the conformal Killing equation (1)

(∂µεν + ∂νεµ) = 2
d

(∂ · ε)ηµν ,

we only have two equations to solve due to the symmetry:

∂0ε0 + ∂0ε0 = ∂0ε0 + ∂1ε1 ⇒ ∂0ε0 = ∂1ε1

∂0ε1 + ∂1ε0 = 0 ⇒ ∂0ε1 = −∂1ε0.

which are precisely the Cauchy-Riemann equations of complex analysis. We will therefore go to a complex
description of the Euclidean plane by setting

z = x0 + ix1 ε = ε0 + iε1 ∂z = 1
2(∂0 − i∂1)

z̄ = x0 − ix1 ε̄ = ε0 − iε1 ∂z̄ = 1
2(∂0 + i∂1).

The Cauchy-Riemann equations now simply state that

∂z̄ε = 0 ∂z ε̄ = 0
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or in words ε(z) is a holomorphic function and ε̄(z̄) is an antiholomorphic function. We see now that every
holomorphic or antiholomorphic function gives a conformal transformation z′ = z+ ε(z) = f(z). We could even
use meromorphic functions f as conformal transformation, if we restrict our attention to a region U with no
singular points of f . This is convenient, because we can expand meromorphic functions as Laurent series and
write a general conformal transformation as

z′ = z +
∑
n∈Z

εn(−zn+1)

where the minus sign and the counting is conventional. This is nothing else then expanding the transformation
in a basis of generators, which are given by

ln = −zn+1∂z l̄n = −z̄n+1∂z̄.

We get a countably infinite number of local conformal generators, which is a special characteristic of 2-d
conformal theory. We can compute the commutators of those generators and find two independent copies of
the so-called Witt-algebra W

[lm, ln] = zm+1∂z(zn+1∂z)− zn+1∂z(zm+1∂z) = (m− n)lm+n

[l̄m, l̄n] = (m− n)l̄m+n

[lm, l̄n] = 0.

This is again only the local structure of the conformal transformations and fails to compose a group due to
possible singular points. To get to the conformal group, we again have to conformally compactify C. We guess
that this will be diffeomorphic to the Riemann sphere, which is the one point compactification of C to C∪{∞}.
Now we have to find all conformal transformations, that are non-singular on this space. If we take a look at
the generators, we find, that for ln = −zn+1∂z to be non-singular at z = 0 we have to have n ≥ −1 and for the
point at infinity, we can instead transform to the coordinate z = −w−1 and we find that ln = −(−w)−n+1∂w

is only finite for n ≤ 1. So only the generators {l−1, l0, l1} are globally well defined. When we decompose l0 in
radial coordinates, we get

l0 = −z∂z = −1
2r∂r + i 12∂φ.

Now we can again write all globally defined conformal transformations and their geometrical interpretation as

Transformation Generator
Translation l−1 = −∂z
Dilation l0 + l̄0 = −r∂r
Rotation i(l0 − l̄0) = −∂φ
SCT l1 = −∂w

.

If we put all of those transformations together in a general transformation, we get exactly the Möbius transfor-
mations

z 7→ z′ = az + b

cz + d

where a, b, c, d ∈ C and as a further requirement det
(
a b

c d

)
6= 0. We can indeed set this determinant to 1

because an overall factor does not change the transformation. This constitutes the group SL(2,C). Note further-
more, that (a, b, c, d) ∼ (−a,−b,−c,−d) give the same transformation, so we actually only have SL(2,C)�Z2

.
We have thus found the global conformal group Conf(R2,0) ∼= SL(2,C)�Z2

.
Of course we could also simply use the formalism from the last section, embed R2,0 in the projective space and
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find a correspondence between the SO(3, 1)+ and the conformal transformations. So to sum up all results for
the 2-d case:

Theorem 1.2. The local conformal transformations are generated by two copies of the infinite dimensional
Witt-algebra W.
The global conformal group is given by Conf(R2,0) ∼= SL(2,C)�Z2

∼= SO(3, 1)+.

2 Central extensions and the Virasoro algebra

In the process of quantising a classical theory, we move from a desription in the classical phase space to
a description in a complex Hilbert space H. A physical state is now given by an equivalence class [ψ] =
{eia |ψ〉 |a ∈ [0, 2π)} so it lives on a projective space P. On this projective space, we can construct a transition
probability δ : P× P → R by taking arbitrary representatives |φ〉 , |ψ〉 of the equivalence classes [φ], [ψ] and
defining

δ([φ], [ψ]) := |〈φ |ψ〉|2

〈φ|φ〉2 〈ψ|ψ〉2
.

This is not a metric, but induces a topology on P. Now the group of transformations T : P→ P, which leave δ
invariant is called Aut(P). The very important subgroup U(P) thereof is induced by the group U(H) of unitary
operators of the Hilbert space. It is part of the exact sequence

1 U(1) U(H) U(P) 1t π

which shall be our motivation and first example of a central extension.

2.1 Central extensions in quantising symmetries

Definition 2.1. An extension of a group G by the group A is given by an exact sequence of group homomor-
phisms

1 A E G 1.t π

It is central if A is abelian and im(t) is in the center of E, that is ∀a ∈ A,∀b ∈ E : t(a) · b = b · t(a).

The same definition can be made for Lie algebras with the exact sequence

0 a e g 0.t π

and [a, e] = 0 in the central case. To give a few examples:

• The trivial central extension is just

1 A A×G G 1.t π

• For every extension of a Lie group, also the Lie algebras are extended as

0 Lie(A) Lie(E) Lie(G) 0t π

but in general not the other way around.

• The Lorentz group SO(1, 3)+ is extended to

1 {1,−1} SL(2,C) SO(1, 3)+ 1.t π
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• Another beautiful example are the Euclidean or Poincaré groups

1 Rp,q O(p, q)nRp,q O(p, q) 1t π

with the semidirect product defined by the group operation (g, x)·(g′, x′) := (gg′, xτ(g)x′) onO(p, q)×Rp,q,
where τ : O(p, q) → Aut(Rp,g) is a representation. Thus the Euclidean or Poincaré groups are central
extensions of the orthonormal or Lorentz groups.

Going back to the quantisation process, we are especially interested in whether or to which extend symmetries
of the classical theory (e.g. conformal symmetry) are carried over to the quantum theory. We propose that
at least the physical states in P should still obey the symmetry. This makes intuitive sense, but has to be
postulated. Let the classical theory be symmetric under the group action of a Lie group G. Then we propose
the existence of a projective representation s : G→ U(P) such that we get the diagram

1 U(1) E G 1

1 U(1) U(H) U(P) 1.

t′

id

π′

s′ s
?

t π

The existence of a representation s′ : E → U(H) is automatically implied, but is it also possible to find a
unitary representation of G in U(H)? This would be called a lift of G ("?" in the diagram). The answer to
this question lies in the cohomology theory of the corresponding Lie algebra. The necessary definitions are:

• Alternating group Alt2(g, a) := {Θ : g × g→ a|bilinear and alternating}

• Cocycles Z2(g, a) := {Θ ∈ Alt2|Θ(x, [y, z]) + Θ(y, [z, x]) + Θ(z, [x, y]) = 0}

• Coboundaries B2(g, a) := {Θ : g × g→ a|∃µ ∈ HomK(g, a) : θ(x, y) = µ([x, y])}

• Cohomology H2(g, a) := Z2(g, a)/B2(g, a)

With this setup we can quote a theorem by Bargmann, which states that:

Theorem 2.1. (Bargmann) Let G be a simply connected finite-dimensional Lie group with second cohomology

H2(Lie(G), A} = 0,

then every projective representation has a lift as a unitary representation.

Thus the second cohomology of the Lie algebra can be seen as obstructing the lift. If it doesn’t vanish, we
cannot use the classical symmetry group, but have to use its central extension in the quantum theory instead.
We can further use the second cohomology to classify all possible central extensions. In fact, if we were given
a central extension

0 a e g 0,t π

the commutation relations in e are given by a cocycle Θ as

[ã, b̃] = ˜[a, b] + Θ(a, b)

Where the tilde over some a ∈ g denotes some element of the respective pre-image of π. Now two different
central extensions are group theoretically equivalent, if the cycycles in the commutation relations only differ by
some coboundary. If, moreover, the cocycle is itself a coboundary, it is equivalent to the 0 of the cohomology
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and therefore the central extension splits and is equivalent to the trivial extension

0 a e g 0

0 a a × g g 0.

t′

id

π′

s

id
t π

Thus the cohomology measures the non-triviality of the central extension and serves as classification.
The theory of central extensions has been applied to describe anomalies in quantum theory and quantum field
theory. For example, a number of chiral anomalies is discussed in this form in the book by Fujikawa [4] . There
have also been attempts to explain the Higgs-mechanism as a cohomological artefact [5].

2.2 Quantising conformal symmetry - the Virasoro algebra

We will restrict our discussion to the two-dimensional case, since it is the most important one for the discussions
following this talk. In the spirit of conformal symmetry, we will now project from H by also dropping the
magnitude of the elements. Thus, we now have a central extension by C instead of U(1). It has become clear in
the discussion above that to quantise a theory with conformal symmetry, we will have to compute the second
cohomology of it’s Lie algebra, which in the two dimensional case is nothing else then the Witt algebra W.

Theorem 2.2. The second cohomology of the Witt algebra is H2(W,C) ∼= C and generated by

ω(ln, lm) := δn+m
n

12(n2 − 1).

Proof. The proof consist of three steps, which we will only sketch

• ω ∈ Z2(W,C)

• ω /∈ B2(W,C)

• Θ ∈ Z2(W,C)⇒ ∃λ ∈ C : Θ ∼ λω.

ω is clearly bilinear and alternating. A direct computation of the definition of Z2 shows the first step.
For the second step we assume the existence of µ ∈ HomC(W,C) with ω(x, y) = µ([x, y]). Then

ω(ln, l−n) = µ([ln, l−n])
n

12(n2 − 1) = 2nµ(l0)

µ(l0) = 1
24(n2 − 1) ∀n ∈ N,

which is a contradiction. For the last part, we take a general Θ and insert it into the cocycle equation with the
elements l0, lm, lm to get restrictions on its structure. Then by adding coboundaries, we can always get to the
form

Θ′(ln, lm) = δn+mh(n)

with h(0) = h(1) = 0 and h(k) = h(−k). Upon another use of the cocycle equation, we can prove the
proportionality to ω.

The denominator 12 has been chosen for convenience in conformal field theory and is simply conventional. Now
the only possible central extension of the Witt-algebra is

0 Cc Vir W 0t π
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with the Virasoro algebra
[ln, lm] = (n−m)ln+m + δn+m

n

12(n2 − 1)c.

Having found the central extension, we are free to quantise conformal symmetry according to

0 Cc Vir W 0

1 C U(H) U(P) 1.

t′

id

π′

sX

t π

To round up our discussion of the conformal group and the Virasoro algebra, we can take a look at the only
elements of the Witt-algebra, that are defined globally and constitute the conformal group. We notice that
W̄ = {l−1, l0, l1} is closed and the second cohomology vanishes on this subgroup. So for the actual conformal
group, there exists a lift

0 C C× W̄ W̄ 0

1 C C× Conf Conf 1

1 C U(H) U(P) 1.

t′′

id

π′′

s′

t′

id

π′

s

t π

Thus, global conformal symmetry is carried over to the quantum theory, while local conformal transformations
have to be modified by the use of the Virasoro algebra.

3 Conformal field theory in 2 dimensions

3.1 Radial quantisation

We consider 2 − d Euclidean conformal field theory with coordinates (x0 = it, x1) which we combine into one
complex variable w = x0 + ix1. We will deal with a compactified space which means we identify w ∼ w + 2πi.
This lets us naturally define a mapping back to the complex plane via z = expw. As usually done in QFT, we
treat z and z̄ as independent variables rather than x0 and x1.
Of central importance are the following definitions for fields φ(z, z̄):

• φ(z, z̄) is called chiral / anti-chiral if ∂z̄φ = 0 / ∂zφ = 0.

• φ(z, z̄) has conformal dimension (h, h̄) if under z 7→ λz (λ ∈ C) it transforms as

φ(z, z̄) 7→ λhλ̄h̄φ(λz, λ̄z̄).

• φ(z, z̄) is called a primary field of conformal dimension (h, h̄) if under conformal transformations z 7→ f(z)
it transforms as

φ(z, z̄) 7→
(
∂f

∂z

)h(
∂f̄

∂z̄

)h̄
φ(f(z), f̄(z̄)). (4)

φ is called quasi-primary if this only holds for global transformations f ∈ SL(2,C)�Z2
.

In order to quantise a field φ of conformal dimension (h, h̄) we first Laurent expand it,

φ(z, z̄) =
∑
n,n̄∈Z

z−n−hz̄−n̄−h̄φn,n̄,
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such that φn,n̄ has scaling dimension (n, n̄), and then promote the φn,n̄ to operators.
For later reference we state the general commutation relation for the Laurent modes of two chiral quasi-primary
fields

φi(z) =
∑
m

φi,mz
−m−hi , φj(z) =

∑
n

φj,nz
−n−hj ,

[φi,m, φj,n] =
∑
k

Ckijpijk(m,n)φk,m+n + dijδm,−n

(
m+ hi − 1

2hi − 1

)
(5)

with

pijk(m,n) =
∑
r,s∈Z+

0
r+s=hi+hj−hk−1

Aijkr,s

(
−m+ hi − 1

r

)(
−n+ hj − 1

s

)
,

Aijkr,s = (−1)r (2hk − 1)!
(hi + hj + hk − 2)!

s−1∏
t=0

(2hi − 2− r − t)
r−1∏
u=0

(2hj − 2− r − u).

The constants Ckij and dij will appear later.
We will also use the commutator of the generators for conformal transformations Lm and the Laurent modes
of a chiral primary field φn

[Lm, φn] = ((h− 1)m− n)φm+n. (6)

Under Hermitian conjugation the Euclidean coordinates transform as (ix0, x1) 7→ (−ix0, x1) which means that
z 7→ z̄−1. This motivates the definition

φ†(z, z̄) := z̄−2hz−2h̄φ

(
1
z̄
,

1
z

)
= z̄−2hz−2h̄

∑
n,n̄∈Z

z̄n+hzn̄+h̄φn,n̄ =
∑
n,n̄∈Z

z̄n−hzn̄−h̄φn,n̄

from which follows that (φn,n̄)† = φ−n,−n̄.

We define the vacuum to be the state with the highest number of symmetries, that means Ln|0〉 = 0 for as
many n as possible. Due to the Virasoro algebra (with c 6= 0) we have to restrict ourselves to n ≥ −1.

Now considering the asymptotic in-state, defined as

|φ〉 := lim
z,z̄→0

φ(z, z̄)|0〉,

in order for |φ〉 to be regular at z = 0, we have to require that

φn,n̄|0〉 = 0 for n > −h, n̄ > −h̄.

Those are the annihilation operators, analogously for the asymptotic out-state we see that φn,n̄ with n ≤
−h, n̄ ≤ −h̄ are creation operators.

3.2 2- and 3-point function

Let φi be chiral quasi-primary fields labelled by the index i. Then, by exploiting the required symmetry of
correlation functions and the transformation properties of quasi-primary fields, we are able to constrain the
structure of the 2- and 3-point function up to a constant.
We consider first the 2-point function 〈φi(z)φj(w)〉 =: g(z, w).

10



• The invariance under L−1 (translations) implies g(z, w) = g̃(z − w).

• The invariance under L0 (dilations) implies g̃(z − w) = λhi+hj g̃(λ(z − w))⇒ g̃(z − w) = dij

(z−w)hi+hj .

• The invariance under L1 (special conformal transformations which especially contain z 7→ −z−1) implies
g̃(z − w) = g̃(−z−1+w−1)

z2hiw2hj ⇒ hi = hj .

Summarising we have

〈φi(z)φj(w)〉 =
dijδhihj

(z − w)2hi
, (7)

where dij are constants of the theory.
The same reasoning can be applied to the 3-point function yielding

〈φi(z1)φj(z2)φk(z3)〉 = Cijk
(z1 − z2)hi+hj−hk(z2 − z3)hj+hk−hi(z1 − z3)hk+hi−hj , (8)

where again Cijk are constants.
dij and Cijk are called structure constants.
Since we only employed the global symmetries which also are present in higher dimensions, similar results hold
for CFTs in d > 2.
In order the 2-point function to be invariant under the rotation z 7→ exp(2πi)z we have that for quasi-primary
fields h ∈ 1

2Z.

3.3 The energy-momentum tensor

In a classical field theory of arbitrary dimension defined by the Lagrangian L, there is the Noether theorem
stating that if L is invariant under the simultaneous infinitesimal transformations xµ 7→ xµ + δxµ, φr 7→ ∆φr
(here r labels the fields of the theory), then the current

jµ = ∂L
∂(∂µφr)

∆φr − Tµνδxν

with Tµν = ∂L
∂(∂µφr)

∂νφr − Lgµν

is conserved (∂µjµ = 0). The energy-momentum tensor Tµν is in general not symmetric, but may be symmetrised
via a gauge transformation L 7→ L+ ∂µf

µ.

In the case of a CFT (of arbitrary dimension) a Lagrangian not always exists, so we define the energy-momentum
tensor instead as the linear map from infinitesimal conformal transformations z 7→ z+ ε(z) to the corresponding
conserved current j,

jµ = Tµνεν . (9)

This agrees with the Noether theorem for translations ε(z) = const. We also require T to be symmetric. Note
that the normalisation of T remains open here, we will address this later.
For ε = const. we observe that T is conserved:

0 = ∂µj
µ = ∂µ(Tµνεν) = (∂µTµν)εν ⇒ ∂µT

µν = 0.

Using this, the symmetry of T and the conformal Killing equation (1) we see, by considering arbitrary ε now,
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that T is traceless:

0 = ∂µj
µ = (∂µTµν)εν + Tµν(∂µεν) = 1

2T
µν(∂µεν + ∂νεµ)

= 1
2T

µνηµν(∂ · ε)2
d

= 1
d

(∂ · ε)Tµµ ⇒ Tµµ = 0.

Coming back to 2 dimensions, we get for our coordinates

Tzz̄ =
(
T (z) 0

0 T̄ (z̄)

)
,

so T is diagonal and consists of a chiral and an anti-chiral part.

3.4 Operator product expansion

An operator product expansion is an expansion (OPE) of the (radial ordered) product of two operators at
different spacetime points in terms of operators at just one of those points.

As a first example we consider a primary field φ and the energy-momentum tensor. To that end, we derive two
expressions for the transformation behaviour of φ under an infinitesimal conformal transformation ε(z).
One of them is obtained by using (4), a Taylor expansion and the residual theorem:

δε,ε̄φ(z, z̄) = (h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄)φ(z, z̄)

=
˛
C(z)

dw
2πi ε(w)

[
h

(w − z)2φ(z, z̄) + 1
w − z

∂zφ(z, z̄)
]

+ anti-chiral.

Here C(w) is some adequate contour around w.
For the second expression we recall that in QFT a conserved current jµ induces a conserved charge

Q =
ˆ

dx1j0 at x0 = const.

(here in 2 dimensions) which generates the corresponding symmetry transformation for an operator A as δA =
[Q,A]. In radial quantisation x0 = const. translates to |w| = const., therefore:

Q =
˛
C(0)

dw
2πi T (w)ε(w) + anti-chiral

⇒ δε,ε̄φ(z, z̄) =
˛
C(0)

dw
2πi [T (w)ε(w), φ(z, z̄)] + anti-chiral.

Here arises the ambiguity of |z| lying inside or outside of C(0). We address this issue with time ordering known
from QFT in mind, which here becomes radial ordering:

R(A(w)B(z)) :=

A(w)B(z), |w| > |z|

B(z)A(w), |z| > |w|
.

We define:
˛
C(0)

dw[A(w), B(z)] :=
˛
|w|>|z|

dwA(w)B(z)−
˛
|w|<|z|

dwB(z)A(w)

=
˛
C(z)

dwR(A(w)B(z))

12



From now on, R will be implicit. Using this expression for the contour integral over the commutator, δε,ε̄φ(z, z̄)
becomes

δε,ε̄φ(z, z̄) =
˛
C(z)

dw
2πi ε(w)T (w)φ(z, z̄) + anti-chiral.

Comparing both expressions yields

T (w)φ(z, z̄) = h

(w − z)2φ(z, z̄) + 1
w − z

∂zφ(z, z̄) + reg., (10)

where reg. denotes contributions regular at w = z. This is the OPE we were looking for.

As a second example we take a look at the OPE of T with itself. It will be useful to know the fact that the
Laurent modes of the energy-momentum tensor are the generators of the conformal transformations. In order
to see this, we Laurent expand T (with conformal dimension h = 2):

T (z) =
∑
n∈Z

z−n−2Ln,

where Ln =
˛
C(0)

dz
2πi z

n+1T (z).

Choosing the particular conformal transformation ε(z) = −εnzn+1 the corresponding conserved charge gets

Qn = −εn
∑
n∈Z

˛
C(0)

dz
2πiLmz

n−m−1 = −εnLn.

The identification of the Laurent modes of T with the conformal generators fixes the normalisation of T . One
can now check that these modes satisfy the Virasoro algebra only if the OPE is given by

T (w)T (z) =
c�2

(w − z)4 + 2T (z)
(w − z)2 + ∂zT (z)

w − z
+ reg.

This shows that T is not a primary field, but it is indeed quasi-primary.

It can be shown that the OPE of two chiral quasi-primary fields can be expressed in terms of only the chiral
quasi-primary fields of the theory and their derivatives, so we can make the ansatz

φi(w)φj(z) =
∑
k,n≥0

Ckij
anijk
n!

1
(w − z)hi+hj−hk−n (∂z)nφk(z), (11)

where the constants are split such that anijk only depends on hi, hj , hk and n. The coefficients can be determined
by looking at the 3-point function

〈φi(z)φj(1)φk(0)〉.

One can use directly the formula for the 3-point function (8), or first expand φj(z)φj(1) with (11) and then use
the formula for 2-point functions (7). Comparing both expressions yields

anijk =
(

2hk + n− 1
n

)−1(
hk + hi − hj + n− 1

n

)
,

Ckijdkl = Cijl,

where
(
·
·

)
are the binomial coefficients and dkl, Cijl the structure constants.
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The regular part of an OPE gives rise to a notion of normal ordering where creation operators are put to the
left and annihilation operators to the right. For the OPE of two chiral fields φ(w) and χ(z) we can write

φ(w)χ(z) = sing. +
∞∑
n=0

(w − z)n

n! N (χ∂nφ)(z).

The first term
ψ(z) :=

˛
C(z)

dw
2πi

φ(w)χ(z)
w − z

=
∑
n∈Z

z−n−hφ−hχψn

can be shown to be of the form
ψn =

∑
k>−hφ

χn−kφk +
∑

k≤−hφ

φkχn−k.

Higher orders work analogously. This defines the normal ordering operator N .

3.5 Conformal Ward identity

Ward identities are manifestations of classical symmetries at quantum level. Here we derive an expression for
the primary fields φ1, . . . , φN using the OPE (10) (ε is some infinitesimal conformal transformation):

˛
C(0)

dw
2πi ε(w)〈T (w)φ1(z1, z̄1) · · ·φN (zN , z̄N )〉

=
N∑
i=1
〈φ1(z1, z̄1) · · ·

(˛
C(zi)

dw
2πi ε(w)T (w)φi(zi, z̄i)

)
· · ·φN (zN , z̄N )〉

=
N∑
i=1
〈φ1(z1, z̄1) · · ·

(˛
C(zi)

dw
2πi ε(w)

(
hi

(w − zi)2 + 1
w − zi

∂zi

)
φi(zi, z̄i)

)
· · ·φN (zN , z̄N )〉

=
˛
C(0)

dw
2πi ε(w)

N∑
i=1

(
hi

(w − zi)2 + 1
w − zi

∂zi

)
〈φ1(z1, z̄1) · · ·φN (zN , z̄N )〉,

where |w| > |zi| ∀i. Since this holds for any ε(z) = −εnzn+1, we can cancel the integral of both sides:

〈T (w)φ1(z1, z̄1) · · ·φN (zN , z̄N )〉 =
N∑
i=1

(
hi

(w − zi)2 + 1
w − zi

∂zi

)
〈φ1(z1, z̄1) · · ·φN (zN , z̄N )〉.

This is the conformal Ward identity for primary fields.

4 The free boson

As an example we look at the free boson living on a cylinder. We start with the action for a real scalar field
X(x0, x1)

S = 1
4πκ

ˆ
dx0 dx1

√
|h|hαβ∂αX∂βX

with the metric hαβ and h = dethαβ . In Euclidean space the metric becomes after our coordinate transforma-
tion: (

x0

x1

)
7→

(
z

z̄

)
,

hαβ 7→ gab = ∂xα

∂xa
∂xβ

∂xb
.
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Therefore the action now reads
S = 1

4πκ

ˆ
dz dz̄∂zX∂z̄X.

The classical equation of motion is obtained by varying the action with respect to X:

δS

δX
= − δ

δX

1
4πκ

ˆ
dz dz̄(∂z∂z̄X)δX = − 1

4πκ∂z∂z̄X
!= 0 ⇒ ∂z∂z̄X = 0.

This motivates the definition of

j(z) := i∂zX,

j̄(z̄) := i∂z̄X.

Clearly j(z) is a chiral and j̄(z̄) an anti-chiral field.
To have the action S be conformally invariant, X must have the conformal dimension (0, 0) and j(z) and j̄(z̄)
are primary fields of dimensions (1, 0) and (0, 1), respectively.

From QFT we know that the 2-point function

K(z, z̄, w, w̄) := 〈X(z, z̄)X(w, w̄)〉

is the Green’s function for the equation of motion,

∂z∂z̄K = −2πκδ(z − w),

from which follows that
K = −κ log |z − w|2.

Comparing this to (7) shows us that X cannot be a quasi-primary field. On the other hand we have

〈j(z)j(w)〉 = −∂z∂z̄K = κ

(z − w)2

which indeed is consistent with (7) for djj = κ. Similarly we se that dj̄j̄ = κ and djj̄ = 0.

The energy-momentum tensor can be computed as the functional derivative of the action with respect to the
metric:

Tab = 4πκγ 1√
|g|

δS

δgab
= γ

(
jj 0
0 j̄j̄

)
with the normalisation γ. Strictly speaking, we would have to verify that this definition of T coincides with our
earlier definition (9). However, we see that the formal requirements on the structure are satisfied.
We want the expectation value of T as an operator to vanish, therefore we write

T (z) = γN (jj)(z)

⇒ Tn = Ln = γN (jj)n = γ
∑
k>−1

jn−kjk + γ
∑
k≤−1

jkjn−k.

The normalisation can be fixed by considering

[Lm, jn] = −2γκnjm+n
!= ((hj − 1)m− n)jm+n = −njm+n ⇒ γ = 1

2κ,
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where we employed (6).

As the final result here we will derive the central charge c for this theory. To this end we compute

〈0|L+2L−2|0〉 = 〈0| [L+2L−2] |0〉 = c

2 .

On the other hand we have

L−2|0〉 = 1
2κj−1j−1|0〉,

〈0|L+2 = 1
2κ 〈0|(j2j0 + j1j1) = 1

2κ 〈0|(−j0j2 + j1j1) = 1
2κ 〈0|j1j1

⇒ 〈0|L−2L+2|0〉 = 1
4κ2 〈0|j1j1j−1j−1|0〉 = 1

2

The last equality follows by commuting the js through with the general formula (5) for commutators of chiral
quasi-primary fields which simplifies to

[jm, jn] = κmδm,−n.

Combining both expressions yields
c = 1.

This is no coincidence since the factor of 1
12 in the Virasoro algebra was chosen such that here c = 1.
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