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Abstract. This note represents a summary of a talk given at the 2018 Summer Mathe-
matical Physics seminar, with focus on the physical and the mathematical concepts of the
holography principle and large-N dualities. Here, we present an elementary overview of
the p-brane solutions in supergravity, setting up a stage for a fairly broad topics on the
AdS/CFT correspondence.
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0 Introduction

At the level of general relativity, various spacetime configurations arise as generic solution to
the Einstein field equations, some of which are known to be physical and thus play very impor-
tant roles in the discussion of physical problems. Examples include the Friedmann-Lemaître-
Robertson-Walker metric of the standard model of Big Bang cosmology. Another are the black
hole spacetime configurations such as the Schwarzschild solution [1], the Reissner-Nordström
metric [2] and the Kerr-Newman solution [3, 4]. The inclusion of the cosmological constant
led to some spacetime solutions that are asymptotically (A)dS. Example of such solution is the
Kottler black holes [5], also known as the Schwarzschild-(A)dS solution. The failure of GR to
adequately describe gravity, for instance in some spacetime regime such as black hole singularity,
led to the quest for a consistent theory of quantum gravity [6], and Supergravity (SUGRA) arise
along the history of development with its important role in string theory.
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There are various reasons for studying the classical configuration that arise in SUGRA, especially
in higher dimensions. One is the possibility it offers for studying the non-perturbative structure
of string theories through solitonic objects such as D-branes. D-branes are nothing but the
extended objects in string theories on which open strings ends, and has been identified with the
classical solution of the 10D SUGRA which are essentially the low energy limit of superstring
theories. Alongside with the open strings that ends on it, the gravitational cloud of D-branes
serves to provide a link between string theories and black hole physics.

Another motivation for studying p-brane solutions to higher dimensional supergravity theories
is the due to the gauge/gravity duality which provide new important tools to study quantum
field theories. This is at the heart of the discovery of the AdS/CFT correspondence [7, 8] which
conjectures that string/M-theory on certain SUGRA background geometry is dual to a conformal
field theory on the boundary of the geometry. This remarkable discovery has been a subject
of study for about two decades, and it has shared many suprising links with different areas of
theoretical physics and mathematics. This is in fact the subject of our focus this semester’s
seminar. Towards this ends, we shall review some important classical background solution of
the various superstring/M-theories which are crucial in the study of the correspondence.

We begin in chapter 1 by introducing black holes and their extension into p-branes. We then
give provide some elements of supergravity in chapter 2 and highlight the low energy limit of
superstrings and M- theories. The bosonic sector of this theory is what we eventually solved
in chapter 3. The near horizon geometry of the elementary p-brane configurations are then
introduced. Some brane configurations open up a path towards making contact with physics
in lower dimension from superstring/M-theory via compactification. These are manifolds with
special holonomies which retains some amount of supersymmetry. The configurations exhibit
some interesting properties, such as mirror symmetry, that makes them of special interest to
both mathematics and physics. We shall briefly highlight a little of this towards the end.

1 Black Holes: Towards p-branes

Black holes arise as a physical prediction of Einstein’s GR. In four spacetime dimensions, they are
just point-like, and in the absence of angular momentum have SO(1,3) symmetry. The boundary
of this compact object, beyond which no causal signal can escape to infinity, is called the event
horizon and it is crucial in a formal definition of black hole. We begin here by presenting some
elementary class of classical black hole solutions with GR, and expand the concept to that of
extended configurations in higher dimensions called p-branes.

1.1 Black Holes within GR

The simplest stationary solution to the vacuum Einstein-Maxwell equations (EFE) describing
compact objects are spherically symmetric, having a metric of the form

ds2 = −A(r)dt2 + dr2

B(r) + r2dΩ2
2 (1)

where dΩ2
2 is the metric of the 2-sphere, and A(r) and B(r) are some lapse functions. The first

encounter with black hole solution was by Karl Schwarzschild who constructed a vacuum solution
to the EFE. The geometry of this solution is Ricci flat, Rµν = 0. Following Birkhoff’s theorem,
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for d ≥ 4, any d-dimensional spherically symmetric solution of the vacuum EFE belongs to
the family of Schwarzschild metric parametrized by mass M . The Schwarzschild-Tangherlini
solution is given as [1, 9]

ds2 = −
(

1− µ

rd−3

)
dt2 + dr2

1− µ
rd−3

+ r2dΩ2
d−2, (2)

where
µ ≡ 16πGdM

(d− 2)Ωd−2
, (3)

and Gd is the Newton’s coupling in d-dimensions. In the limit r →∞, this solution approaches
a Minkowski space, showing that it is asymptotically flat in the weak field limit. In this limit,
one can recover the Newtonian gravity. The structure of this solution is well known. Apart from
the existence of the event horizon, one can establish the existence of a curvature singularity
by observing that in four dimensions, the Kretschmann invariant, RµνρσRµνρσ = 48G2M2/r6,
diverges as r → 0. At singularity, the regularity of the spacetime metric is lost and the energy
density of the collapsing matter blows up. In essence, the classical description of gravity can no
more provide an adequate description of spacetime in the neigbourhood of the singularity.

In four spacetime dimensions, the no hair theorem postulates that all black-hole solutions to
the Einstein-Maxwell equations are uniquely characterized by just three observable classical
parameters: the mass (M), the electric charge (Q), and angular momentum (J), so that other
black-hole solutions within GR are classifed in what follows.

• Reissner-Nordström (RN) or Charged Black Hole is the solution to EFE-Maxwell
field equations for a spherically symmetric system with a radial electric field and zero
4-current density [2]. The metric takes the form

f(r) = ds2 = −(r − r+)(r − r−)
r2 dt2 + r2

(r − r+)(r − r−) + r2dΩ2, (4)

with event horizons located at the coordinate singularites

r± = GM ±
√
G2M2 −GQ2 for M < |Q| (Sub− Extremal). (5)

We note that for M < |Q|, the spacetime possesses a naked singularity at r = 0. This
is the super-Extremal limit. At extremality, where M = Q, the event horizons coincide
at the extremal radius r± = GM = |Q|. In particular, the extremal black hole metric is
given by

ds2 = −
(

1− GM

r

)2
dt2 +

(
1− GM

r

)−2
dr2 + r2dΩ2. (6)

• Kerr Solution or Rotating Black Hole: represents the spinning generalization of the
Schwarzschild solution and is relevant for astrophysical black holes [3]. The metric takes
the the form

ds2 = −∆
Ξ
[
dt− a sin2 θdϕ

]
+ Ξ

∆dr2 + Ξdθ2 + sin2 θ

Ξ
[
(r2 + a2)dϕ− adt

]2
(7)

where
∆ := r2 − 2GMr + a2, Ξ := r2 + a2 cos2 θ. (8)

This solution describes a rotating black hole with angular momentum J = aM . One can
observe that in the limit of very large mass, the a→ 0, so that the Schwarzschild solution
is recovered.
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• Kerr-Newman Solution: represents the spinning generalization of RN and the electri-
cally charged Kerr solution [4]. The relevant metric is obtained by replacing ∆ in the Kerr
solution by

∆Q := r2 − 2GMr + a2 +GQ2. (9)

1.1.1 Extremal RN Black Holes

We have seen that the extremal limit of the RN black hole take the form (6). The maximal
charge of this black hole is given by its mass. We shall later see that such solution for which
M = Q is realized are stable supersymmetric objects.

As a warm up, let us look at the near horizon limit of the extremal limit of the RN black hole
solution. Define ρ = r −GM, solution (6) can be written as

ds2 = −
(

1 + r0
ρ

)−2
dt2 +

(
1 + r0

ρ

)2 (
dρ2 + r2

0dΩ2
)
, (10)

where r0 = GM. In this way, the horizon of the extremal RN black hole is at ρ = 0. This
doesn’t change the structure of the horizon, and in particular, the RN black hole spacetime is
still regular there. In the near horizon limit, one observes that

lim
ρ→0

(
1 + r0

ρ

)−2
=
(
r0
ρ

)−2
and lim

ρ→0

(
1 + r0

ρ

)2
=
(
r0
ρ

)2
, (11)

so that the geometry in the near-horizon limit is given as

ds2 = −
(
r0
ρ

)−2
dt2 +

(
r0
ρ

)2
dρ2 + r2

0dΩ2. (12)

By setting r = r2
0
ρ and up to redefinition, one obtain the near horizon geometry as

ds2 =
(
r0
r

)2 (
−dt2 + dr2

)
+ r2

0dΩ2. (13)

Along the r-t direction, one sees that the geometry has negative curvature, while the angular
direction has a geometry of a two sphere S2 of radius r2

0. As such, the geometry of RN black
holes in the near-horizon limit is AdS2 × S2. Later, we shall see how near horizon solution arise
from the higher dimensional configurations of supergravity theory.

1.1.2 Spacetime with a cosmological constant

The simplest example of asymptotically (A)dS black hole is the Kottler solution [5], also known
as the Schwarzschild-(A)dS solution. In the presence of Λ, the solution (2) receives a modification
leading to the metric

ds2 = −
(

1− µ

rd−3 −
2Λ

(d− 1)(d− 2)r
2
)
dt2 + dr2

1− µ
rd−3 − 2Λ

(d−1)(d−2)r
2

+ r2dΩ2
d−2. (14)

This spacetime solution is 
Schwarzschild-AdS for Λ < 0,
Schwarzschild for Λ = 0,
Schwarzschild-dS for Λ > 0.

(15)
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This class of solution has regular horizon for any mass parameter µ > 0. In d = 4, the
Kretschmann invariant for the Schwarzschild-(A)dS solution is given as

RµνρσR
µνρσ = 48G2M2

r6 + 8Λ2

3 , (16)

indicating that the solutions posses a real spacetime singularity at r = 0. It has been shown that
this solution is stable against linearized gravitational perturbation [10].

In the limit of vanishing mass of solution (14), one can obtain an ordinary (anti) de-Sitter space-
time of constant (negative) positive curvature. The simplest (A)dS spacetime is the maximally
symmetric spacetime solution of the vacuum Einstein equations with a cosmological constant.

The d-dimensional de Sitter space dSd can be viewed as a hyperbloid

−X2
0 +X2

1 + ....+X2
d = `2 (17)

embedded in (d + 1)-dimensional Minkowski spacetime R1,d, where ` is the radius of dSd. The
metric in the embedding space R1,d when expressed in global coordinate, X0 = ` sinh (t/`), Xi =
`ωi cosh (t/`), with ωi constrained within a unit sphere ~ω = 1 is given as

ds2 = −dt2 + `2 cosh2 (t/`)dΩ2
d−1. (18)

This coordinate covers the entire hyperbloid and so, it is global. The geometry of dSd in the
static coordinate is

ds2 = −
(

1− r2

`2

)
dt2 +

(
1− r2

`2

)−1

dr2 + r2dΩ2
d−2, (19)

solving the vacuum EFE with positive cosmological constant which is related to the dSd radius
by

Λ = (d− 1)(d− 2)
2`2 . (20)

The geometry of an ordinary AdSd in the static coordinate is

ds2 = −
(

1 + r2

`2

)
dt2 +

(
1 + r2

`2

)−1

dr2 + r2dΩ2
d−2, (21)

which solves the vacuum EFE with negative cosmological constant Λ = − (d−1)(d−2)
2`2 . While

the negative cosmological constant is incompatible with our present universe, spacetimes with
negative cosmological constant have some features that allow for an interesting duality between
string theory on spacetimes asymptotic to AdSn × Xd−n, where Xd−n is a compact manifold,
and conformal field theory (CFT) defined on the conformal boundary of AdSn - this is the the
AdS/CFT correspondence. This duality is the starting motivation of this lecture.

1.2 Extended Objects: p-Branes

We started with the concept of black hole as a point-like object that enjoys SO(1, 3) symme-
try. Furthermore, we recollect that the starting philosophy of string theory is underlay by the
generalization of the concept of zero-dimensional point particle in the standard QFT to a one-
dimensional string. In fact. these concepts can be generalized to describe the geometry and
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fields corresponding to (p+ 1)-dimensional objects that sweep out a certain worldvolume. They
are regarded as p-branes. When these extended objects feature the event horizon, expecially
in d > 4, they represent the higher dimensional analog of black holes. The important role of
D-branes is in its appearance as solitons for probing the non-perturbative properties of string
theories. The generic picture of Dp-brane is depicted in figure 1.

Figure 1. D-brane configuration featuring our (3 + 1)-dimensional world alongside d‖ parallel and d⊥

tranverse internal directions [11].

As we shall see, these configurations arise as the classical solutions to various effective super-
gravity theory and their presence would break the initial lorentzian symmetry from

SO(1, d− 1)→ SO(1, p)× SO(d− p− 1), (22)

where SO(1, p) describes the lorentz symmetry along the brane and SO(d − p − 1) along the
direction perpendicular (transverse) to the brane.

p-brane configuration of supergravity theories feature various AdS geometries in their near hori-
zon limits. Asymptotically AdSd black hole solutions of the d = 4, 5, 6, 7 gauged supergravity
theories also arises from dimensional reduction of d = 10 or d = 11 supergravity on spheres.
Along the way, one finds that by replacing D-brane and open strings by their gravitational cloud,
one obtain an analogous black hole physics. This represents the origin of the connection between
string theory and black hole physics and has motivated many exciting topics.
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2 Elements of Supergravity

Supergravity is now over 40 year old into its development [12]. So, we shall not attempt to
provide a full detail into its constructions. Interested readers can consult the reviews in [13, 14].
Rather, we shall provide a brief introduction to supergravity, and then focus on 10D and 11D
supergravity theories, which respectively provide the low energy effective field theory of the
massless sector of superstring theory and M-theory.

2.1 Supergravity: Reminder

Supergravity (SUGRA) is simply a supersymmetric extension of ordinary classical gravity the-
ory, so that the least of such extension unfies GR and supersymmetry in a consistent way.
Supersymmetry (SUSY) on itself was born out of curiosity of finding a stabilisation mechanism
to resolve the “hierarchy problem”, and as it turned, the possible resolution led to a spacetime
symmetry that exhanges boson for fermions. Schematically,

Q |Boson〉 = |Fermion〉
Q |Fermion〉 = |Boson〉 , (23)

where Q is the SUSY fermionic generator i.e. they are spacetime spinors. As Q changes the
spin of particles, it ultimately changes the properties of spacetime. Thus, SUSY is a spacetime
symmetry that extends Poincare symmetry and its algebra. The structure of super-algebra was
explored to circumvent the classical no-go theorems that constrain any possibility of unifying
spacetime symmetries with internal symmetry. In particular, Q commutes with translation
generator Pµ and internal symmetry G (e.g. gauge and global symmetries), but it does not
commute with Lorentz generators Mµν . Schematically,

[Q, Pµ] = 0, [Q,G] = 0, [Q,Mµν ] 6= 0, (24)

and the anticommutation relation is {Q, Q̄} ∼ Pµ. As such, the most general symmetry group
of the S-matrix can enjoy is

SuperPoincaré× Internal Symmetries

Obviously, Poincaré symmetry is a subset of the SuperPoincaré symmetry. Aside from the
(Poincaré × Internal Symmetries) algebra, the SUSY algebra includes the following:

[Mµν ,QIα] = i(σµν)βαQIβ, (25)

{QIα,QJβ} = εαβZ
IJ , ZIJ = −ZJI , (26)

{QIα, Q̄Jβ̇} = 2σµ
αβ̇
Pµδ

IJ , (27)

where ZIJ is called the central charge and the index I = {1, .., k} for N = k SUSY.

According to Wigner classification, particles are nothing but the irredcible representation of the
Poincaré group. Based on the Casimir of Poincaré algebra, such representations are constructed
in ordinary quantum mechanics. In SUSY, the Wigner classification is combined with the
structure of SUSY algebra to construct SUSY representations. Here, we shall not linger on
such construction, and interested readers are encouraged to exercise through the construction of
these representations. Hint on how to construct them are found in, for example [13, 14, 15, 16].
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What is however important to take along is that, in a model where SUSY is realized, each 1-
particle state in the supermultiplet has at least one superpartner related to it by SUSY generator
and thus, one only deal with supermultiplets of particle states in a SUSY universe. As such,
(24) implies that particles belonging to the same supermultiplet have different spin/helicity
but same mass/energy and internal quantum numbers. The difference in spin/helicity can be
straightforwardly understood from (25) since [M12,QI2] = −1

2Q
I
2 and [M12, Q̄I2̇] = 1

2Q
I
2̇, implying

that operator QI2 and Q̄I2̇ lower, respectively raise, the helicity (spin) by half unit. In table
1, we collect the massless supergravity multiplet corresponding to some extended supergravity
theories i.e beyond N = 1 SUGRA.

Contents of Supergravity Multiplets
h N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8
+2 1 1 1 1 1 1 1 1
+3

2 1 2 3 4 5 6 7+1 8
+1 1 3 6 10 15+1 21+7 28
+1

2 1 4 10+1 20+6 35+21 56
0 1+1 5+5 15+15 35+35 70
−1

2 1 4 10+1 20+6 35+21 56
−1 1 3 6 10 1+15 7+21 28
−3

2 1 2 3 4 5 6 7+1 8
−2 1 1 1 1 1 1 1 1

Table 1. Massless Supergravity representations for d = 4, [17].

As one may notice, beyond N = 1, supergravities generally contain vector fields Aµ, spinor fields
ψ and scalar φ fields in addition to the gravitational field eµa and a field Ψµ

a corresponding to spin-
3/2 particle. In order to couple gravity to spinor, the use of the veilbein, eµa (a = 0, 1, ..., d− 1),
representing the gravitational field becomes necessary in some formulation. The metric is related
to the vielbein as

gµν ≡ eaµ(x) ebν(x) ηab, (28)
and we choose eaµ such that e = √−g.

In SUSY, the variation of a generic field Φ(x) is given as

δQ(ε)Φ(x) = −i[ε̄αQα,Φ(x)] , (29)

and as a consequence, the commutator of two SUSY variation gives

[δQ(ε1), δQ(ε2)]Φ(x) = [ε̄1Q, [Q̄ε2,Φ(x)]]− (ε1 ↔ ε2), (30a)
= ε̄α1 [{Qα, Q̄β̇},Φ(x)]εβ2 , (30b)

= 1
4 ε̄1γ

µε2∂µΦ(x). (30c)

This is nothing but an infinitesimal spacetime translation with parameter 1
4 ε̄1γ

µε2.

In SUGRA, the spinorial SUSY parameter ε is promoted to a local gauged parameter ε(x), so
that SUSY is gauged. Due to the spinorial nature of ε(x), the gauge field of the local SUSY is the
Rarita-Schwinger field Ψµ

a representing a spin-3/2 field called gravitino. The Rarita-Schwinger
field has two indices: the world index µ and the spinor index a. Just like in electromagnetic
theory, the two form ∂µΨa

ν − ∂νΨa
µ is a gauge invariant under the gauge transformation

Ψa
µ → Ψa

µ + ∂µε
a(x). (31)
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From table 1, we already saw that the SUGRA multiplet of the N = 1, D = 4 Poincaré su-
pergravity theory consists of representation (3

2 , 2) ⊕ (−2,−3
2) corresponding to a pair of fields

{eµa ,Ψµ
a}. The basic element of SUGRA is encoded in the “1.5 order formalism” :

S = 1
2κ2

∫
d4x e [eµa eνb Rµν ab(ω)− 1

2Ψ̄µγ
µνρDν(ω)Ψρ] ,

∂S

∂ω
= 0 =⇒ Dµe

ν
a −Dνe

µ
a = 1

4Ψ̄µγ
aΨν , (32)

δQe
a
µ = 1

4 ε̄γ
aΨµ , δQΨµ = Dµε,

where ω is the spin connection corresponding to the gauge field of the local lorentz transformation
δL(λ) enjoyed by the theory. In addition, the theory is invariant up to total divergences under
general coordinate transformation δG(ξ). Altogether, the local transformations satisfy, among
others, the commutation relation

[δQ(ε1), δQ(ε2)] = δG(ξ) + δL(λ) + δQ(ε) , (33)

where the transformation parameters are

ξµ = 1
4 ε̄2γ

µε1 , λab = −ξµωµab , ε = −ξµΨµ.

The field equations under (32) are known to have Minkowski space preserving SUSY as a classical
solution. Theories with this kind of solution are regarded as Poincaré supergravity. Matter and
gauge multiplets can be coupled to the SUGRA multiplet, but this is not of our primary interest.

The field content of the SUGRA multiplet of the (d,N ) theory are listed in chapter 3 of [14].
The configurations of interest to us are those arising as the classical solution to 10D and 11D
supergravity, which are known to respectively provide the low energy effective field theory of
superstring theories and M-theory. Thus, we shall first collect the massless sectors of these theo-
ries. While we shall list their full particle spectrum, the bosonic sector will be the main content
of the theory we wish to solve since the classical configurations arising from the corresponding
SUGRA solution are purely bosonic.

Various ranks of anti-symmetric tensors field arise in SUGRA in higher dimension. As a con-
sequence, further restriction on the corresponding field equation might arise. Without loss of
generality, consider SUGRA theory featuring a rank p gauge potential Aµ1µ2...µp . The corre-
sponding field strength is given as

Fp = Fµ1µ2...µp+1 = (p+ 1) ∂[µ1Aµ2...µp+1], (34)

and can be shown to be invariant under the gauge transformation δAµ1µ2...µp = p ∂[µ1εµ2...µp],
where εµ1...µp−1(x) is the gauge parameter. The following are taken into consideration while
studying SUGRA in higher dimension:

• SUGRA described by a gauge potential Aµ1µ2...µp can be equivalently described by the
dual gauge potential Ãµ1...µD−p−2 since they have equal degrees of freedom.

• In even dimension d = 4k + 2, self-duality equation

Fµ1µ2...µ2k+1 = ?Fµ1µ2...µ2k+1 (35)

must be imposed on the field equation. ? is the Hodge dual operator on the field strength.
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BPS Property

In an extended supersymmetric field theory, some extremal supermultiplets do retain some
amount of supersymmetries. An important physical invariant to characterize this is the fraction

ν = NQ
NQ0

, (36)

of supersymmetry that are preserved by supersymmetric vacuum solution, where NQ0 is the
total number of supercharges of an N = k SUSY and NQ is the number of supercharges that
are left unbroken by the solution.

Following (26), an N = k SUSY algebra contains central charges Z, which are generators
commuting with any generator of the algebra. Consider N = 2 in D = 4. We define

Q±α = 1
2
(
Q1
α ± εαβ(Q2

β)†
)
. (37)

In the rest frame, Pµ = (M, 0, 0, 0), so that the algebra (27) becomes{
Q±α , (Q±β )†

}
= δαβ(M ± |Z|). (38)

Now, a state of mass M and of central charge Z satisfies the inequality

0 ≤ ‖Q−α |M,Z〉 ‖2 + ‖(Q−α )† |M,Z〉 ‖2

= 〈M,Z|
{
Q−α , (Q−β )†

}
|M,Z〉

= M − |Z|.

(39)

|M,Z〉 saturates the Bogomol’nyi-Prasad-Sommerfield (BPS) bound M ≥ |Z|.

This means that the mass of a given irreducible representation is always larger or equals to the
eigenvalue of the central charge. We thus define a BPS state as a state |M,Z〉 satisfying the
BPS bound M = |Z|.

When ν = 1/2, such solution saturates the so called Bogomol’nyi-Prasad-Sommerfield bound
and are thus called the BPS bound state.

Whenever a state satisfies this requirement, such a state is annihilated by half SUSY i.e. Q−α ,
and form an irreducible representation under the remaining SUSY algebra. As a consequence,
BPS states organize themselves into short multiplets as opposed to the long multiplets of the
non-BPS state. Following this, supersymmetric vacuum solution that preserves ν = 1/2 SUSY
saturates the BPS bound and are thus called the BPS bound state.

An important comment is in order. Suppose a state |M,Z〉 is BPS at weak coupling g �
1, renormalization group implies that both M and Z would recieve some form of corrections
at strong coupling g, either perturbatively or non-perturbatively. Despite this correction, the
number of state inside |M,Z〉 does not vary with g and as such, short multiplet cannot become
long multiplet along renormalization group flow. Thus, BPS property is preserved also at strong
coupling regime. This property makes BPS object a very stable object.

If |M,Z〉 is BPS at g � 1, then |M,Z〉 is BPS for all g.

We have already encountered a similar feature before, namely, the extremal limit of the RN
black hole has the property that its mass is equivalent to its charge. Thus, violation of the
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BPS bound could translate to the appearance of naked singularity, which is forbidden by cosmic
censorship. As we shall later see, the classical p-brane configurations that we shall construct are
BPS. This makes these objects of physical relevance for studying the strong coupling regime of
the corresponding higher dimensional theory.

p-Brane Charge

In section 1.2, we introduced p-brane as a generalization of the concept of zero-dimensional
point particle to a (p+ 1)-dimensional objects, sweeping out a certain worldvolume. Just like in
the classical electromagnectic U(1) gauge theory, where particles are charged by the U(1) gauge
field, the explicit p-brane solutions that we shall construct are charged under Abelian higher
rank gauge fields. Thus, there ought to be a generalization of the Maxwell’s theory to extended
objects. The classical electromagnetism is described by the classical U(1) gauge theory

S =
∫
d4x

(
−1

2F ∧ ?F −A ∧ ?J
)
, (40)

where J = Jµdx
µ and Jµ = (ρ , ~j) is the 4-current. The EOM is simply the Maxwell field

equation
d ? F = ?Je , dF = ?Jm. (41)

We can already see that, in vacuum, the theory is invariant under F → ?F, i.e. ( ~E, ~B) →
( ~B,− ~E). This is the electric-magnetic duality.

For a point-like electric source

ρe = qeδ
3(~r) with electric charge qe =

∫
S2
?F, (42)

and its point-like magnetic dual source

ρm = qmδ
3(~r) with magnetic charge qm =

∫
S2
F. (43)

Dirac quantization condition
qe.qm ∈ 2πZ, (44)

is satisfied.

Thus, in higher dimension, an extended object with (p + 1)-dimensional worldvolume would
coupled electrically to a (p+ 1)-form gauge ptential. This is described by the action

S =
∫
M
ddx

(
−1

2Fp+2 ∧ ?Fp+2 −Ap+1 ∧ ?Jep+1

)
, (45)

and one finds the electric charge

Qe = (−1)p
∫
Sd−p−2

?Fp+2. (46)

The magnetic dual object, which sweep out a (d−p−3)-dimensional worldvolume, corresponds to
a (d−p−4)-brane coupling magnetically to a (d−p−3)-form gauge potential. The corresponding
magnetic charge is given as

Qm =
∫
Sp+2

Fp+2 , (47)

and the Dirac quantization has a straightforward generalization Qe.Qm ∈ 2πZ.
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2.2 Superstring/M-theory: Towards 10D and 11D SUGRA

There are 5 manifestation of superstring theories, all consistent in 10 spacetime dimensions and
related by various string dualities (cf. Figure 2). String duality has also led to the prediction
of an 11D theory called M-theory. The classical limit of superstring theories and M-theory are
respectively given by the 10D and 11D supergravity theories. The later are the theories whose
classical solution we demand. Thus, we shall first collect the massless sectors of these theories
towards providing an effective field theories describing them. Towards our study on p-brane
solutions which are purely bosonic extended objects, we shall provide the supergravity action
for only the bosonic content, and discuss less of the corresponding string dynamics. In this case,
we maintain GMN = eaM ebN ηab as the carrier of the gravitational field.

Figure 2. Various String theories related by string dualities – Wiki

2.2.1 Massless Sectors of Superstring Theories

In the following, we provide the massless sector of superstring theories. The spectrum are those
of the corresponding 10D supergravity theories. We denote the fermionic field chiralities by the
subscript ±. The superscript ± on the antisymmetric tensor fields denotes the (anti-)self-duality.

1. Non-chiral Type IIA Superstring Theory: This is a 10D theory of closed strings whose
low energy effective theory gives the d = 10, N = (1, 1) supergravity (maximal SUSY with 32
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supercharges). The massless field content is

NS-NS Sector: GMN , BMN , Φ,
R-R Sector: CMN , CMNP ,

NS-R, R-NS Sectors: ΨM+ , ΨM− , λ+ , λ−.

(48)

The leading order supergravity action of the bosonic sector is given by

S = 1
2κ2

10

∫
d10x
√
−G

{
e−2Φ

(
R+ 4 (∇Φ)2 − 1

2 |H3|2
)
− 1

2 |F2|2 −
1
2 |F4|2

}
− 1

4κ2
10

∫
B2 ∧ F4 ∧ F4 ,

(49)

with gravitational coupling κ2
10 = 1

4(4π2α′)4.We have used the notation |Fp|2 = 1
p!FM1...MpF

M1...Mp .

2. Chiral Type IIB Superstring Theory: This is a 10D theory of closed strings whose
low energy effective theory gives the d = 10, N = (2, 0) supergravity (maximal SUSY with 32
supercharges). The massless field content is

NS-NS Sector: GMN , BMN , Φ,

R-R Sector: C , CMN , C
(+)
MNPQ,

NS-R, R-NS Sectors: 2ΨM+ , 2λ−.
(50)

The leading order supergravity action of the bosonic sector is given by

S = 1
2κ2

10

∫
d10x
√
−G

{
e−2Φ

(
R+ 4 (∇Φ)2 − 1

2 |H3|2
)
− 1

2 |F1|2 −
1
2 |F3|2 −

1
2 |F5|2

}
− 1

4κ2
10

∫
C4 ∧H3 ∧ F3.

(51)

3. Type I Superstring Theory: This is a 10D theiry of closed and open strings whose low
energy effective theory gives the d = 10, N = (1, 0) supergravity (with 16 supercharges) coupled
to Super Yang-Mill theory with gauge group G = SO(32). The massless field content is

Closed NS-NS Sector: GMN , Φ,
Closed R-R Sector: CMN ,

Closed NS-R, R-NS Sectors: ΨM+ , λ−,

Open NS Sector: AM ,
Open R Sector: χ+.

(52)

The leading order supergravity action of the bosonic sector is given by

S = 1
2κ2

10

∫
d10x
√
−G

{
e−2Φ

(
R+ 4 (∇Φ)2

)
− 1

2 |F3|2
}

− 1
2g2

10

∫
d10x
√
−G e−Φ Tr |FYM |2 .

(53)

The field strength of the R-R antisymmetric 2-form receives additional contributions

F3 = dC2 −
α′

4 (ΩYM − ΩL) , (54)
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where ΩYM and ΩL are the Yang-Mills and Lorentz the Chern-Simons 3-forms

ΩYM = Tr
(
A ∧ dA− 2i

3 A ∧A ∧A
)
,

ΩL = Tr
(
A ∧ dA− 2i

3 ω ∧ ω ∧ ω
)
,

(55)

and ω is the spin connection. FYM = F aYMT
a is the Yang-Mills field strength and the trace is

over the vector representation of the gauge group with Tr (T aT b) = δab.

4. Heterotic String theory: There are two Heterotic string theories consistent in 10D
describing closed strings, whose effective field theory is given by d = 10, N = (1, 0) supergravity
(with 16 supercharges) coupled to Super Yang-Mill theory with gauge group G = SO(32) or E8×
E8. The massless field content is

NS Sector: GMN , BMN , Φ , AM ,

R Sector: ΨM+ , λ− , χ+.
(56)

The supergravity action of the bosonic sector in the leading order is given by

S = 1
2κ2

10

∫
d10x
√
−G e−2Φ

(
R+ 4 (∇Φ)2 − 1

2 |H3|2
)
− 1

2g2
10

∫
d10x
√
−G e−2Φ Tr |FYM |2. (57)

The field strength of the NS-NS antisymmetric 2-form receives contributions

H3 = dB2 −
α′

4 (ΩYM − ΩL) . (58)

2.2.2 Massless Sectors of M-theory

M-theory is an 11D theory whose low energy effective field theory is given by d = 11, N = 1
supergravity (maximal SUSY with 32 supercharges). The massless field content is

GMN , CMNP , ΨM . (59)

The action of the bosonic sector of the 11-dimensional supergravity is given as

2κ2
11S =

∫
d11x
√
−G

(
R− 1

2 |F4|2
)
− 1

6

∫
C3 ∧ F4 ∧ F4, (60)

where κ11 denotes the 11D gravitational coupling.

3 The p-Brane Solution

We noted earlier on that the extended object with (p + 1)-dimensional worldvolume would
coupled electrically to a (p+1)-form gauge ptential and magnetically to a (d−p−3)-form gauge
potential. This suggest that a p-brane solution to the classical field equation would necessarily
contains a non-trivial (p + 1)-form in the background configuration. The non-trivial classical
solution is, thus, expected to be purely sourced by the energy momentum tensor of the (p+ 1)-
form background. The extended charged configuration that we anticipate in superstring and
M-theory can be explored by studying the various corresponding bosonic field contents. Brane
configurations were first constructed in [18], with earlier review in [19, 20].
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Without loss of generality, we begin by considering a bosonic string propagating in the back-
ground of its own massless excitation, namely {GMN , BMN ,Φ}1. These are the sectors that
couple directly with the string worldsheet. This is well described by a non-linear σ-model – a
natural generalization of the closed Polyakov action [21, 22]

Sσ = 1
4πα′

∫
Σ
d2ξ
√
−h

{(
habGMN (X) + iεabBMN

)
∂aX

M∂bX
N + α′R(2)Φ(X)

}
. (61)

R(2) is scalar curvature of the 2D worldsheet and Φ(X) is the background dilaton field of
spacetime. The last term is the generalization of the topological term 1

4π
∫
d2ξ
√
−hR(2)λ with

λ = Φ(X). Thus, the string coupling is given as

gs = eΦ = eΦ(X), (62)

suggesting that the string coupling is dynamical.

String theory is not consistent in just any spacetime background, rather, it is consistent in those
background that satisfies some required conditions on the worldsheet, namely the cancellation of
anomaly in the local worldsheet symmetries. In particular, the σ-model is classically invariant
under the worldsheet Weyl symmetry hab → e2Λ(ξ)hab whose consequence is the tracelessness
of the energy momentum tensor i.e. T aa = 0. However, this invariance is broken at quantum
level by the dilaton part of the action (61) since there are ovarall non-zero contributions to the
β-function such that scale invariance is lost. As a consequence, the corresponding T aa vanishes
classically but proportional to the non-vanishing β-function at the quantum level. The general
structure of the trace is given as

2πT aa = βΦ√−hR(2) + βGMN

√
−hhab∂aXM∂bX

N + βBMN ε
ab∂aX

M∂bX
N , (63)

where βΦ, βG and βB are 1-loop β-functions associated with Φ, GMN and BMN respectively.
They are given as

βGMN = α′RMN + 2α′∇M∇NΦ− α′

4 HMPQH
PQ
N +O(α′2),

βBMN = −α
′

2 ∇
PHPMN + α′∇PΦHPMN +O(α′2),

βΦ
MN = D − 26

6 − α′

2 ∇
2Φ + α′∇PΦ∇PΦ− α′

24HMNPH
MNP + +O(α′2).

(64)

Thus, requiring the anomalies cancellation of the Weyl symmetry at the quantum level lead to a
system of coupled effective equations βGMN = βBMN = βΦ

MN = 0 as restrictions on the background
fields. The corresponding coupled equations are captured by an effective field theory with action

Seff = 1
κ2
d

∫
ddx
√
−Ge−2Φ

[
(d− 26)− 3

2α
′
(
R+ 4∇MΦ∇MΦ− 4(∇Φ)2

)
− 1

12HMNPH
MNP

]
.

(65)
This action already depicts the critical dimension 26 as a requirement for the consistency of the
worldsheet theory of the bosonic string. One would arive at a effective action for superstring
theories, with the replacement of the bosonic criticality by (d − 10) criticality term of the
superstring theories.

The appearance of the prefactor e−2Φ shows that the effective action (65) is in string frame. By
making a Weyl rescaling GMN → eapΦGMN and up to relabelling, this action can be written in

1These are the NS-NS sectors in superstring models.
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the Einstein frame. Choosing ap = 1/2, we obtain the Einstein frame effective action

Seff = 1
κ2

10

∫
d10x
√
−G

[
R− 1

2∇MΦ∇MΦ− 1
12e

ΦHMNPH
MNP

]
. (66)

As we have seen in section (2.2.1), there are further bosonic fields in the R-R sectors, namely the
various antisymmetric tensor gauge fields of various ranks. These must be taken into account
while considering solving 10D and 11D supergravity field equations.

Following this, let us generalize into (66) into a classical supergravity system in an arbitrary D
dimensions featuring {GMN ,Φ} and a rank (p+ 1) gauge potential Ap+1, with a corresponding
field strength Fp+2. We shall drop the Chern-simon terms as it is a topological term. The
low-energy effective action describing these excitations is

S = 1
κ2
d

∫
ddx
√
−G

[
R− 1

2G
MN∇MΦ∇NΦ− 1

2(p+ 2)!e
apΦFp+2 ∧ ?Fp+2

]
. (67)

Thus, looking into this action, we can already extract the effective actions we presented in
section (2.2.1). For example, dropping the dilaton and setting d = 11, p = 2, and ap = 0,
one realize back the 11D supergravity action (60). For the effective supergravity theories from
superstrings, one can realize (67) by following the splitting of dilaton Φ = Φ0 +Φ′ with eΦ0 ≡ gs.
The metric is then rescaled and Φ′ is relabelled as Φ. In turn, for various 10D SUGRA, ap takes
a specific value e.g. Including NS-NS 2-form requires a−1 = −1 while the R-R sectors requires
ap = (3 − p)/2. Furthermore, we should note that the parameter ap controls the coupling of
the dilaton with the field strength Fp+2. For type IIB theory, we must separately impose the
self-dulaity condition F5 = ?F5.

The field equations following (67) are
2Φ = ap

2(p+2)!e
apΦF 2 ,

∇M
(
eapΦFMM1...Mp+1

)
= 0 ,

RMN = 1
2∇MΦ∇NΦ + eapΦ

2(p+2)!

(
F 2
MN −

(p+1)
(d−2)(p+2)GMNF

2
)
.

(68)

We now seek for brane configuration satisfying the above field equations. The presence of such
configuration would break the SO(1, d− 1) symmetry to (cf. (22))

SO(1, d− 1)→ SO(1, p)× SO(d− p− 1).

Let us begin by denoting the dimension of the p-brane worldvolume by n = p + 1 and as a
consequence, the dimension of the worldvolume of the dual object as ñ = p̃ + 1 = d − n − 2 =
d−p−3, so that the brane configuration we seek enjoys the folllowing corresponding symmetries:

p− brane : (Poincaré)n × SO(d− n), (69)
Dual Object : (Poincaré)ñ × SO(d− ñ). (70)

Non-extremal solution to (68) would further break the Lorentz symmetry along the brane into
a subgroup. For our basic study, we shall not seek for this kind of configurations. Rather, we
shall seek for brane solutions that preserve some amount of SUSY, in particular, solutions that
are BPS. These are the higher-dimensional analogs of the extremal and near-extremal Reissner-
Nordström black hole that was introduced in section 1.1. Obviously, these objects satisfy the
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BPS properties. Given the p-brane world symmetry that we demand, we shall split of the
spacetime indices as follows:

xM = (xµ, yi) , with
{
µ = 0, 1, ..., n− 1 ,
i = 1, ..., d− n.

(71)

The most general ansatz for a brane configuration at yi = 0 satisfying the field equations (68)
and the symmetry requirement (69) is given as{

eΦ = eΦ(r) ,

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)δijdy

idyj ,
(72)

with r = yiyjδij . The field strength corresponding to the gauge potential the are

F elec
p+2 = Ξe ? e−apΦεSd−p−2 , Fmag

p+2 = Ξm ? εSp+2 , (73)

where εSd−p−2 is the volume form of the (d− p− 2)-sphere surrounding the p-brane, and Ξe and
Ξm are proportional to the electric and magnetic charge of the brane. Subtituting the ansatz into
the field equations, we thus have a system of coupled non-linear differential equations subject
to the following boundary conditions:

lim
r→∞

GMN = ηMN , lim
r→∞

Φ(r) = 0. (74)

Even with the general ansatz and the boundary conditions, it is still very challenging to solve
the coupled non-linear differential equation. Certain class of solution can be obtain from the
requirement that the solution preserves half SUSY i.e. solutions are BPS. The BPS requirement
lead to an extra condition

nA+ ñB = 0. (75)

This futher requirement, when imposed on the general ansatz, relaxes the complexity of the field
equations. Details into solving the system of coupled non-linear differential equations can be
found in [18, 19, 20]. Here, we shall straightforwardly state the main result.

The classical solution to (68) is characterized by an harmonic function H(r) and the number
N is introduced for the case of coincident brane solution, the large limit of which the brane
solutions makes sense. The brane solution is expressed as follows:


ds2 = H

− 4ñ
∆(d−2) ηµνdx

µdxν +H
− 4n

∆(d−2)
(
dr2 + r2dΩd−n−1

)
,

eΦ = H
2ap
ξ∆ , with ξ =

{
+1 , electric brane
−1 , magnetic brane ,

(76)

F el
p+2 = (−1)pd+1 2N√

∆
αñ ?

(
e−apΦεSñ+1

)
, F el

p+2 = 2N√
∆
αnεSn+1 , (77)

with
H(r) = 1 + Nα

rñ
(ñ > 0) , ∆ = a2

p + 2nñ
d− 2 , (78)

where α is related to the brane tension τ as2

α = 2κ2
dτn−1

ñΩñ+1

∆
4 . (79)

2For d = 10 and d = 11 SUGRA, one can check that ∆ = 4.
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For elementary/electric brane, the normalized conserved electric charge density is given as

Qe ≡ Nqe = (−1)p√
2κd

∫
Sñ+1

eapΦ ? F ele
p+2 =

√
2κnNτp, (80)

while the normalized conserved magnetic charge density solitonic/magnetic brane is given as

Qm ≡ Nqm = 1√
2κd

∫
Sn+1

Fmag
p+2 =

√
2κnNτp̃. (81)

As a consequnce, the tension of the elementary brane and its solitonic dual satisfy the Dirac
quantization condition Qe.Qm ∈ Z leading to

τp.τp̃ = π

κ2
d

n , with n ∈ Z. (82)

At this point, few comments are in order. In particular, string theory has a rich spectrum of
extended objects analogous to some supergravity p-brane solution.

• First, the validity of the p-brane solutions is in the weak string coupling limit. Thus, for
a characteristic p-brane length scale L set by α ∼ Nτpκ2

d ∼ Ld−p−3, the p-brane solutions
are only valid for large N i.e. for large number of coincidental branes.

• It has been shown that D-brane tension

τp = 2π
gs`

p+1
s

, (83)

of the type II string theories satisfy the matching with the charge (80) of the electric p-
brane, as well as the Dirac quantization condition (82) corresponding to p-brane solution
with n = 1. This suggests that, despite the fact that these two objects arise from different
description of gravity, they are in fact the same object.

• As the classical p-brane solution are charged, one expect that there would be some sort of
competition among forces existing between two p-branes, namely, there is attractive force
due to various exchange of gravitons and dilatons between the branes, and repulsive force
due to the exchange of the (p+ 1)-form. In type II string theories, these Ap+1 corresponds
to the exchange of the R-R form. It has been shown in that these forces precisely cancel
out, independent of the distance between the two branes. This is in consonant with the
fact that the constructed configurations are BPS and thus, they are stable due to the
equality between the brane tension and the charge (τ = Q).

• As the p-brane configuration we constructed are BPS i.e. preserves ν = 1/2 SUSY, they
thus satisfy the BPS bound requirement mass = |charges|, which in turn makes these
object extremal p-brane solutions with just one horizon. Non-extremal p-brane solutions
exist, and they satisfies mass ≥ |charges|. These solutions ultimately breaks all SUSY.
As a higher dimensional Reissner-Nordström black holes, they have two horizons and
there exist no naked singularities forbidden by the cosmic censorship hypothesis. Solution
that features naked singularities i.e. mass ≤ |charges|, are thus forbbiden by the BPS
requirement.

At this point, let us now collect some of the most simplest BPS brane solutions.
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3.1 Extremal Supermembranes

The 11-dimensional SUGRA has four kinds of solutions BPS solutions, namely the pp-waves
[23], the Kaluza-Klein monopole [24, 25], and the two elementary extremal membrane solutions
– the electric M2-brane [26] and the its magnetic dual M5-brane [27]. Here, we shall collect the
elementary membrane solution of (60). In the following, the notation x‖ denotes the directions
that are parrallel to the brane i.e. xµ, while x⊥ corresponds to those directions that are per-
pendicular to the brane i.e. yi. We should not forget that the metric solution is lorentzian in
the former direction and euclidean in the later direction.

• The Elementary M2-brane: The membrane or the M2-brane solution is electrically
sourced by the 4-form flux and enjoys SO(1, 2)× SO(8) symmetry. The geometry is given
as

ds2 = H(r)−
2
3 dx2

‖ +H(r)
1
3 dx2

⊥,

F4 = dx0 ∧ dx1 ∧ dx2 ∧ dH(r)−1,
(84)

with
H(r) = 1 + α

r6 and α = 32π2`611N. (85)

• The Solitonic M5-brane: The fivebrane or the M5-brane solution is magnetic dual of
the M2-brane. Thus, this solution is magnetically sourced by the corresponding dual form
flux and further enjoys SO(1, 5)× SO(5) symmetry. The geometry is given as

ds2 = H(r)−
1
3 dx2

‖ +H(r)
2
3 dx2

⊥,

F4 = ?
(
dx0 ∧ dx1 ∧ ... ∧ dx5 ∧ dH(r)−1

)
,

(86)

with
H(r) = 1 + α

r3 and α = π`311N. (87)

One can show that the above two solutions have horizons at r = 0 where curvature diverges in
the geometry. This suggest that there exist a source at r = 0 whose strength is proportional to
the corresponding M-brane charge and in turn, the number N of corresponding stacked M-brane.

3.2 Extremal Dp-branes

To construct the extremal D-brane solution, we require the type II SUGRA action. We shall not
include the NS-NS 2-form since it vanishes. Thus, we are left with only the R-R (p + 1)-forms
and the corresponding field strength Fp+2 enters the SUGRA action as expected. The action in
the string frame boils down to

S = 1
κ2

10

∫
d10x

√
−G

[
e−2Φ

(
R+ 4(∇Φ)2

)
− 1

2Fp+2 ∧ ?Fp+2

]
. (88)

Now we have non-trivial dialton Φ which must be solved simultaneously. This actions represents
the type IIA SUGRA when p is even and type IIA SUGRA when p is odd. Furthermore, we
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should not forget that for the case p = 3, self-duality equation F5 = ?F5 must be imposed
alongside the field equations. The geometry is given as

ds2 = H(r)
p−7

8 dx2
‖ +H(r)

p+1
8 dx2

⊥, (p < 7) ,
Fp+2 = dH(r)−1 ∧ dx0 ∧ dx1 ∧ ... ∧ dxp,

eΦ = gs Hp(r)
3−p

4 ,

(89)

with
Hp(r) = 1 + α

r7−p and α = (4π)
5−p

2 Γ
(7− p

2

)
(α′)

7−p
2 gsN. (90)

Comments:

• First, apart from the above solutions, there are more solutions to classical SUGRA. For
instance, there are solutions to type II theories which are charged under the Kalb–Ramond
B-field. Exmples are the fundamental F1 string and the NS5 brane. The geometry of
fundamental F1 string, corresponding to p = 1, is given as

ds2 = H(r)−
3
4 dx2

‖ +H(r)
1
4 dx2

⊥,

B(2) =
(
H(r)−1 − 1

)
dx0 ∧ dx1, eΦ = gs H(r)−1/2

(91)

with
H(r) = 1 + α

r6 and α = 32π2(α′)3gsN. (92)

In the string frame, one can rewrite the metric as ds2 = H(r)−1 dx2
‖ + dx2

⊥ for which
the curvature scales as R ∼ r−2. This shows that the curvature diverges at the core of
the fundamental string. However eΦ approaches a vanishing limit at the core. At an
asymptotically far away regime from the fundamental string, Φ→ Φ0, so that gs → 0. In
this regime, the fundamental string is weakly coupled and perturbation theory make sense.
The opposite is the case for the magnetic dual of the fundamental F1 string called the NS5
brane, charcterized by coupling eΦ = gs

(
1 + α

r2

)1/2
, the metric ds2 =

(
1 + α

r2

)− 1
4 dx2

‖ +(
1 + α

r2

) 3
4 dx2

⊥ and B(6) =
((

1 + α
r2

)−1
− 1

)
dx0 ∧ ...∧ dx5. At the core of this object, eΦ

diverges, making NS5 brane a non-perturbative object and thus, a solitonic solution.

• D1 and D5 shares the same metric with the fundamental F1 string and NS5 brane respec-
tively, but are related differently to the dilaton and thus, their couplings.

• Other brane solution can be straightfowardly constructed out from (89). One should note
that the electric D3 brane turns out to be its own magnetic dual. This self dual object
will play a very important role later in AdS/CFT correspondence, which is our ongoing
topic of discussion. What is more is the important realization that for p = 3, the dilaton
is constant i.e. eΦ = gs.

Theory Brane solutions
Type IIA Superstring D0, D2, D4, D6, D8
Type IIB Superstring D(-1), D(1), D(3), D(5), D(7)
M-theory M2, M5

Table 2. Elementary p-brane solutions.
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3.3 The Near-Horizon Geometries

Earlier in the lecture, we introduced the near-horizon geometry of the extremal RN black hole.
The geometry of the near-horizon is AdS2 × S2 (cf. section 1.1.1). In general, any near-horizon
geometry of the p-brane solution has the form AdSp+2 ×Xd−p−2. Now, we would like to know
the corresponding near-horizon geometry of the p-brane configurations constructed in the last
section.

Let us start by reminding ourselves that the p-brane solution we constructed has the property
that it is asymptotically flat i.e. the solution asymptotically approaches the flat Minkowski space
Rd1 far away from the brane. This can be further understood from the boundary condition we
imposed in (74) and the fact that the solution features only an harmonic function H(r) for which
limr→∞H(r) = 1. Thus, the various p-brane solutions interpolate between the flat Minkowski
space Rd1 and the near-horizon geometry AdSp+2×Xd−p−2. What is then the compact manifold
Xd−p−2 admitted by the various p-brane solutions?

Let us look for the near-horizon geometry of the D3 brane in type IIB superstrin theory. The
geometry of D3 brane, corresponding to p = 3 in solution (89), is given as

ds2 = H(r)−
1
2 dx2

‖ +H(r)
1
2 dx2

⊥,

F5 = (1 + ?)εR1,3 ∧H(r)−1, eΦ = gs ,
(93)

with
H(r) = 1 + α

r4 and α = 4π(α′)2gsN. (94)

This solution corresponds to N parallel D3 branes at sourced at r = 0 and further enjoys
SO(1, 3)× SO(6) symmetry. We can write the metric more explicitly as

ds2 = H(r)−
1
2 dx2

(1+3) +H(r)
1
2
[
dr2 + r2dΩ2

(5)

]
, (95)

where Ω2
(5) is the metric of the S5. By setting α = r4

3 and then demand the near horizon limit,
one observes that

lim
r→0

H(r)−1/2 = lim
r→0

(
1 + r4

3
r4

)−1/2

=
(
r

r3

)2
,

lim
r→0

H(r)1/2 = lim
r→0

(
1 + r4

3
r4

)1/2

=
(
r

r3

)−2
,

lim
r→0

r2 H(r)−1/2 = r2
3 ,

(96)

so that the geometry in the near-horizon limit is given as

ds2 '
(
r

r3

)2
dx2

(1+3) +
(
r3
r

)2
dr2 + r2

3dΩ2
(5). (97)

A change of variable u = r2
3
r and up to redefinition led to the near horizon metric

ds2 ' r2
3
dx2

(1+3) + du2

u2 + r2
3dΩ2

(5). (98)

Obviously, the first term describes an AdS5 space with radius r3, so that the near-horizon
geometry of D3 brane has a topology AdS5 × S5. Thus, D3 brane interpolate between the flat
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Minkowski space R10
1 and the near-horizon geometry AdS5×S5. This can be generalized to any

p-brane solution in superstring or M-theory. This is a very important result. Indeed, it was
conjectured by Maldacena [28] that the large N limit of the N = 4 super Yang-Mills theory is
dual to the type IIB superstring theory on AdS5 × S5. Understanding this idea is, in fact, our
starting motivation for for this lecture.

The three p-brane solutions we constructed above have the metric of the form

ds2 = H(r)−γ1 dx2
‖(p+1) +H(r)

2
γ2 dx2

⊥ , (99)

with
H(r) = 1 +

(
α

r

)γ2

, (100)

where γ1 = 1− 2
γ2
, with γ2 = 4, 6, 3 for D3, M2 and M5 branes respectively. Following a similar

evaluation, the near horizon geometry of supermembranes can be constructed. The summary of
the near horizon geometries is contained in table 3:

Brane Solution Near-horizon Topology
D3-brane AdS5 × S5

M2-brane AdS4 × S7

M5-brane AdS7 × S4

Table 3. The near-horizon geometry of some p-brane solutions.

Comment:

One observe that the near-horizon geometries of these brane solutions can be brought to the
form

AdSp+2 × Sd−p−2. (101)

However, we emphazise that the near-horizon geometry of the Dp-brane in the type II string
theories are not generally of the form (101). In fact, D3 brane is only an exception. For p 6= 3,
the near horizon geometry is only conformal to (101), with singular non-trivial conformal factor
for p < 3 and zero for p > 3. Rather, geometries with topology

AdSp+2 × SD ×Md−p−2, (102)

for some space M, arise as the near horizon solution of the Dp-brane. One can then arrive at
AdSp+2 × SD geometry by compactifying onM.

Further account on the near horizon geometries can be found in [29, 30]. The near horizon
geometry of coincident KK-monopoles in 11D SUGRA is further discussed in [31].

3.4 Special Holonomy Manifold in M-theory

Let us make a return back to d = 11 SUGRA which is the low energy limit of M-theory. The
bosonic part of the action is given in (60) as

2κ2
11S =

∫
d11x
√
−G

(
R− 1

2F4 ∧ ?F4

)
− 1

6

∫
C3 ∧ F4 ∧ F4 , (103)
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with the corresponding field equations

d ? F4 = 1
2F4 ∧ F4,

RMN −
1
2GMNR = TMN (C) ,

dG = 0.

(104)

which are invariant under SUSY transformations

δεG ∼ ε Ψ , δεC3 ∼ ε Ψ ,

δεΨ ∼ ∇ε+ εΨΨ.
(105)

Earlier on, we have sought for the bosonic configurations that preserves some amount of SUSY
i.e. solution with Ψ = 0 that are invariant under (105) such that

δεΨM ≡ ∇M ε+ 1
288

(
ΓPQRSM FPQRS − 8ΓPQRFMPQR

)
ε = 0. (106)

In particular, we saw a class of two elementary supermembrane solutions of this theory, namely
the electric M2-brane and its magnetic dual, M5-brane, which are BPS as they preserve 1/2-
SUSY. The appearance of the non-trivial solution of C3 or equivalently F4 in these solutions
implies that these supermembranes are sourced by C3 and thus have non-vanishing F4 flux.

Nevertheless, for vanishing 4-form flux, there is a different class of supersymmetric configurations
of D=11 SUGRA. In this case, we seek for configurations satisfying

RMN = 0 , ∇M ε = 0. (107)

These are nothing but Ricci-flat manifolds that admit covariantly constant spinors ε. Solution
to (107) are classified by their holonomy group and they play important roles in M-theory.

Of important phenomenology interest in higher dimensional theory is to make contact with the
physics in 4 or lower dimensions. In doing so, one compactify the theory on the manifolds in
the extradimensions. We shall now go by the fact that the admittance of covariantly constant
spinor gaurantees that an d = 11 background manifold of the form R1,10−D ×XD solves d = 11
SUGRA. Thus, the metric GMN take the structure of (72) i.e. as a product of Minkowski metric
R1,10−D and euclidean metric gMN (X) on XD. As a reminder, this prescription of the 11D metric
GMN would explicitly break the origninal SO(1, 10) to SO(1, 10 −D) × SO(D) (cf. (22)). In
this regard, we split the the spinorial SUSY parameter as ε = η ⊗ θ, where η is the basis of the
covariant constant spinor on the minkowski space and θ the corresponding one on X. In order
to retain some amount of SUSY, it is thus sufficient to seek for those configurations admitting
θ such that

∇g(X)θ = 0. (108)

Manifolds admitting this conditions thus haveHol (g(X)) .OnXD, the holonomy groupHol (g(X))
is a proper subgroup of the special orthogonal group SO(D), and their choices are very lim-
ited to few classes according Berger [32]. The possible holonomy groups for simply connected
Riemannian manifolds XD that admit covariantly constant spinor θ are listed in table 4.

Thus, we see that for D = 7, 8, there are respectively XD = G2, Spin(7) manifolds such that
the background manifold of the form R1,10−D × XD solves d = 11 SUGRA. Compactification
of M-theory on G2 manifold and Spin(7) manifold respectively yield d = 4 and d = 3 QFT.
For SU(n)-Holonomy manifold in D = 2n, the relevant case for d = 11 SUGRA are those
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dimRXD Manifold XD Metric gMN (X) Hol(g(X))
n Orientable manifold Tn SO(n)
2n Kähler manifold Kähler U(n)
2n Calabi–Yau n-fold CYn Ricci-flat, Kähler SU(n)
4n Quaternion-Kähler Einstein Sp(n).Sp(1)
4n Hyperkähler HKn Ricci-flat, Kähler Sp(n)
7 G2 manifold Ricci-flat G2
8 Spin(7) manifold Ricci-flat Spin(7)

Table 4. Classification of Berger’s holonomy groups.

Calabi–Yau n-fold (CYn) with n = 2, 3, 4, 5. In the case of Sp(n)-Holonomy manifold in D = 4n,
only n = 1, 2 Hyperkähler manifold (HKn) are relevant for d = 11 SUGRA.

For these classical configurations, one then ask the question about the amount of SUSY they
preserve. The answer to this has to do with the relationship between the holonomy of a manifold
solution and the supersymmetric nature of it. Basically, holonomy is a geometric feature of a
manifold that describes the amount of symmetry of the manifold. For our case, the amount of
SUSY preserved by XD is related to its holonomy group. The larger the holonomy group of Xd,
the smaller the fraction of SUSY it preserves. In [33], M-theory compactifications on manifolds
of exceptional holonomy was reviewed, and a relationship the holonomy group and SUSY was
highlighted. This we summarize in table 5. More on this is contained in [34].

Manifold XD Tn CY3 XG2 XSpin(7)
dimRXD n 6 7 8
Hol(XD) 1 SU(3) G2 Spin(7)
SUSY 1 1/4 1/8 1/16

Table 5. The amount of SUSY preserved by some holonomy manifolds. As the holonomy get larger,
the fraction of SUSY preserved gets smaller.
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