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1. Introduction/Motivation

We will look at the A-model and will see how their correlation functions motivate
the definition of Gromov-Witten invariants in mathematics. These invariants can
be interpreted as counting holomorphic curves in a Kähler manifold X in a special,
virtual way. But they are rather difficult to determine. In the B-model, it is
much simpler to calculate the correlation functions, as this only involves wedging
differential forms on the target space X and their integration. Since the two
models are connected by mirror symmetry, the computation of the Gromov-Witten
invariants gets dramatically simplified by linking the correlation functions of the
two models.

Concerning the physical part, we mainly follow section 16.4.1 in the book “Mirror
Symmetry” [1] by Hori et al. Moreover, the lecture notes [2] by Collinucci and
Wyder as well as the paper [3] by Witten were used. This talk continues Robert’s
talk “Topological Twist of 2d Field Theories” [5] and is also related to the talk [6]
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presented by Fabio. For the mathematical part, i.e. the definition of the Gromov-
Witten invariants, see chapter 21 ff. in “Mirror Symmetry” [1]. If this is your first
contact with the topic, the book “Enumerative Geometry and String Theory” [4]
by Katz can be recommended, as Katz explains in an easy, intuitive way, how the
Gromov-Witten invariants arise from physics and why they are that important in
mathematics.

2. The twisted A-model

Let (Σ, h) be a Riemann surface of genus g and (X,ω) be a Kähler manifold of
complex dimension d ..= dimCX. In local coordinates we write the Kähler form as

(2.1) ω = gījdz
īdzj .

Consider the 2-dimensional N = (2, 2) supersymmetric non-linear sigma model

(2.2) φ : Σ −→ X

introduced in Robert’s talk “Topological Twist of 2d field theories” [5]. In his talk
we also saw that twisting with respect to the RV -symmetry yields a new theory
called the A-model.

2.1. Action and SUSY. The action of the A-model is given by

S = Sbosonic + Sfermionic(2.3)

Sbosonic = 2t

∫
Σ

d2z
(
gij̄∂zφ

i∂z̄φ
j̄ + gij̄∂z̄φ

i∂zφ
j̄
)

Sfermionic = 2t

∫
Σ

d2z
(

igījρ
ī
zDz̄χ

j + igij̄ρ
i
z̄Dzχ

j̄ + 1
2Rij̄kl̄ρ

i
z̄ρ
j̄
z
χkχl̄

)
where t is a positive real parameter, which is actually only needed in section 4
and can be neglected most of the time by setting t = 1. We denote the canonical
bundle of Σ by K = (T 1,0Σ)∗. After twisting, two of the four fermions have become
fermionic vectors, i.e. they transform as vectors on the worldsheet Σ, but remain
anti-commuting. The other two fermions get twisted to fermionic scalars.

ρz ∈ Γ
(
Σ,K ⊗ φ∗T 0,1X

)
ρz̄ ∈ Γ

(
Σ,K ⊗ φ∗T 1,0X

) }
fermionic vectors

χ ∈ Γ
(
Σ, φ∗T 1,0X

)
χ̄ ∈ Γ

(
Σ, φ∗T 0,1X

) }
fermionic scalars

(2.4)
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We neglect half of the supersymmetry and only look at the SUSY-trafos given by

δφi = iαχi

δφī = iα̃χī

δρīz = −α∂zφī − iα̃χk̄Γīk̄m̄ρ
m̄
z

δρiz̄ = −α̃∂z̄φi − iαχkΓikmρ
m
z̄

δχi = 0

δχī = 0

(2.5)

where the two SUSY-parameters α and α̃ are now fermionic scalars. This is one
big advantage of the twisted model, because the scalars α and α̃ can now easily
been chosen to be non-vanishing everywhere, e.g. constant. Due to this stronger
supersymmetry, it is much easier to evaluate correlation functions in the A-model,
as we will see. Before twisting, the SUSY-parameters were sections of K−1/2 or
K̄−1/2. In many cases, a nowhere-vanishing section does not even exist for those
bundles. The same holds for K−1 and K̄−1, whose spaces of sections would have
contained the two neglected SUSY-parameters.

We will mostly look at SUSY-trafos with α = α̃. The corresponding BRST-
operator will be denoted by

(2.6) QA = Q+ +Q−.

By setting α = α̃, we overlook the Hodge decomposition of the moduli space.

First, we rewrite the action S in (2.3) and get the following identity which holds
modulo terms vanishing by the e.o.m. for ρ.

(2.7) S ' it

∫
Σ

d2z {QA, V }+ t

∫
Σ

φ∗(ω) ,

where we have defined

(2.8) V ..= gīj

(
ρīz∂z̄φ

j + ∂zφ
īρjz̄

)
.

Here, we see that we are dealing with a topological field theory, because the first
term in the rewritten action is QA-exact and the second term only depends on
φ up to homotopy. In relation to this, we know the energy-momentum tensor is
QA-exact, i.e. Tµν = {QA, Gµν} for some fermionic symmetric tensor Gµν , leading
to correlation functions which are independent of the worldsheet metric hµν .

2.2. Localization. From last semester we know that the path integral localizes to
loci with vanishing variation of the fermions. In view of the SUSY-trafos (2.5)

⇒ δρīz = 0 = δρiz̄

⇒ ∂zφ
ī = 0 = ∂z̄φ

i , since α and α̃ are independent

⇒ φ : Σ −→ X is holomorphic

and V = 0.

(2.9)
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Thus, including localization we see that the important part of the action (2.7) is
given by

(2.10) t

∫
Σ

φ∗(ω) = t

∫
β

ω where β ..= φ∗[Σ] ∈ H2(X) .

Hence, it is reasonable to introduce for β ∈ H2(X) the space MΣ(X,β) of holomor-
phic maps φ : Σ→ X satisfying φ∗[Σ] = β. Since we work in Euclidean signature,
the partition function Z can now be rewritten in the following way

(2.11) Z =

∫
DφDχDρ e−S(φ,χ,ρ) =

∑
β∈H2(X)

e−t
∫
β
ω

∫
φ∗[Σ]=β

DφDχDρ e−SQ

where SQ ..= it
∫

Σ
d2z {QA, V } is the first term appearing in the rewritten action

(2.7). As we will see later, SQ will modifiy the path integral measure when we
restrict the domain of integration due to localization. See also §5 in [3], where
Witten first gives an even stronger localization principle and then explains how the
new measure arises as the one-loop determinants of the degrees of freedom being
transverse to the fixed point locus of QA. He shows that the path integral localizes
to the fixed point locus of QA, i.e.

δφi = δφī = δρīz = δρiz̄ = δχi = δχī = 0

(2.5)⇒ χi = 0 = χī and thus ∂zφ
ī = 0 = ∂z̄φ

i

⇒ χi = 0 = χī and φ : Σ −→ X is holomorphic

(2.12)

Here, we did not use the independence of α and α̃, but still get the same results.

2.3. Anomaly. Since in many cases the Grassmann integration over the zero modes
of the fermions in the path integral is unsaturated, the result is zero. As we are
interested only in non-trivial correlation functions, we do an anomaly calculation
telling us which operators we should insert into the path integral in order to get a
non-zero result. Because of

(2.13) Dzχ̄ = (Dz̄χ)∗ and Dzρz̄ = (Dz̄ρz)
∗

the number of χ zero modes is equal to number of χ̄ zero modes. We denote this
number by lχ. Analogue is true for ρ. lρ is defined as the number of ρ zero modes.
Each fermion zero mode gives a contribution to the measure of the path integral. If
we look at the action S in (2.3), we see that in each summand ρz is always paired
with χ and same for ρz̄ and χ̄. This balance is not satisfied when we look at the
fermion zero modes in the measure. Thus, we have to compensate for the difference
k ..= lχ − lρ by adding appropriate operators. But first let us calculate this anomaly,
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which is described by the number k.

lχ = dim{χ | Dz̄χ = 0} = dim{χ̄ | Dzχ̄ = 0}(2.14)

= dim H0
(
Σ, φ∗(T 1,0X)

)
lρ = dim{ρz | Dz̄ρz = 0} = dim{ρz̄ | Dzρz̄ = 0}

= dim H0
(
Σ,K ⊗ φ∗(T 0,1X)

)︸ ︷︷ ︸
∼=

Serre
duality

H1(Σ,φ∗(T 1,0X))

Now, we use the Atiyah-Singer index theorem for the bundle φ∗(T 1,0X) on Σ to
compute the difference of the numbers of zero modes lχ and lρ.

k = lχ − lρ =

∫
Σ

ch
(
φ∗(T 1,0X)

)
td(TΣ)(2.15)

=

∫
Σ

(
d+ φ∗c1(T 1,0X)

) (
1 + 1

2c1(TΣ)
)

=

∫
Σ

φ∗c1(T 1,0X) + d
2

∫
Σ

c1(TΣ)︸ ︷︷ ︸
= 2−2g ( Euler characteristic )

=

∫
β

c1(X) + d(1− g)

This number k tells us that the operators, we put into the path integral, should
have exactly k more χ’s than ρz’s in total and k more χ̄’s than ρz̄’s, if we would
like to have a non-vanishing correlation function.

2.4. Physical Operators. Our physical operators are zero-form operators which
are QA-exact and depend only on φ and χ. If we also used their derivatives or ρ,
we would have to contract the appearing worldsheet indices using the worldsheet
metric hµν leading to a QA-exact operator and hence zero correlation function. Let
O be a physical operator inserted at the point P ∈ Σ. We can write the operator as

(2.16) O(P ) = Oω(P ) = ωi1,...,ip,j̄1,...,j̄q (φ(P ))χi1 . . . χipχj̄1 . . . χj̄q

where ω... is a smooth function on X being antisymmtric in its indices. Thus, we
can interpret ω as a (p, q)-form on X. By (2.5) we get the proportionality

(2.17) {QA,Oω(P )} ∼
∂ωi1,...,ip,j̄1,...,j̄q (φ(P ))

∂φI
χIχi1 . . . χipχj̄1 . . . χj̄q = Odω(P )

where dω is the exterior derivative of the differential form ω. Thus, we identify
physical operators with closed differential forms on X according to the rule

(2.18) φi ↔ zi φī ↔ z̄ ī χi ↔ dzi χī ↔ dz̄ ī

and finally get the correspondence

(2.19) { physical operators mod QA-exactness } ∼= H•dR(X) .
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Representing the physical operator Oi by the closed form ωi ∈ Ωpi,qi(X), the
correlation function 〈O1 . . .On〉 is only non-vanishing, if ω1 ∧ · · · ∧ ωn ∈ Ωk,k(X),
i.e. k =

∑
pi =

∑
qi, as we have seen in the previous section.

2.5. Correlation Functions. For i = 1, . . . , n let Oi be a physical operator in-
serted at the point Pi on the worldsheet Σ. Let ωi be the closed form on X corre-
sponding to Oi. We will first compute the correlation function 〈O1(P1) . . .On(Pn)〉
under the assumption that MΣ(X,β) is a smooth manifold and that there are no ρ
zero modes, i.e. lρ = 0 and in particular k = lχ > 0. This is the so called generic
case.

〈O1(P1) . . .On(Pn)〉 =
∑

β∈H2(X)

e−t
∫
β
ω 〈O1(P1) . . .On(Pn)〉β

with 〈O1(P1) . . .On(Pn)〉β ..=

∫
φ∗[Σ]=β

DφDχDρ O1(P1) . . .On(Pn) e−SQ
(2.20)

From the SUSY-trafos (2.5) we know δφI ∼ χI . We want φ to stay holomorphic,
so we should also take χ holomorphic, i.e. Dz̄χ = 0. Hence, we see that the χ zero
modes span the tangent space of MΣ(X,β).

TφMΣ(X,β) = {χ | Dz̄χ = 0}
dimCMΣ(X,β) = lχ = k.

(2.21)

As discussed before, localization causes the path integral in 〈O1(P1) . . .On(Pn)〉β to

reduce to an integral over the finite dimensional spaceMΣ(X,β). The new measure
is given by integration of the infinitely many non-zero modes, giving just one due to
the cancellation of bosonic and fermionic determinants. Define the evaluation maps

(2.22) evi :MΣ(X,β)→ X, φ 7→ φ(Pi).

In view of (2.16) and by the definition of the pullback of a differential form, we can
write the correlation function after localization as

(2.23) 〈O1(P1) . . .On(Pn)〉β =

∫
MΣ(X,β)

ev∗1(ω1) ∧ . . . ∧ ev∗n(ωn) ..=〈ω1, . . . , ωn〉β

Next, we look at what is called the non-generic case. We allow for ρ zero modes,
but want their number lρ to be constant along MΣ(X,β), which we still assume to
be a smooth manifold. Thus, the ρ zero modes form a vector bundle V of rank lρ over
MΣ(X,β) with fiber H0

(
Σ,K ⊗ φ∗(T 0,1X)

)
. As k never depends on φ ∈MΣ(X,β),

the number of χ zero modes lχ = lρ + k does not vary along MΣ(X,β) either. Like
in the generic case, TφMΣ(X,β) is spanned by the χ zero modes and its dimension
is given by

(2.24) dimCMΣ(X,β) = lχ = lρ + k.

During localization, the integration over the infinitely many non-zero modes in the
quadratic approximation gives one as before. But regarding the zero modes, another
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part of the action survives, since there are ρ zero modes now.

(2.25) S0 = t

∫
Σ

d2z
(

1
2ρ
i
z̄Rij̄kl̄χ

kχl̄ρj̄z − 1
4ρ
i
z̄
χk̄∂zφ

lRij̄k̄lG
zz̄ j̄iχk∂z̄φ

l̄Rj̄ikl̄ρ
j̄
z

)
Here, the first term is already part of the original action S in (2.3). The second term
arises from completing the square of the bosonic nonzero modes, which is necessary,
because the covariant derivative of χ in the action S involves a term containing φ.

(2.26) Dz̄χ
k = ∂z̄χ

k + ∂z̄φ
iΓkijχ

j

Partial integration turns the Christoffel symbol into the Riemann curvature tensor
appearing twice in the second term of S0. After another partial integration, the
Laplacian Dz̄Dz is part of the bosonic kinetic term. When completing the corre-
sponding square, we need the inverse of Dz̄Dz appearing as the “Green’s function”
Gzz̄ in S0. In order to perform the path integral with the remnant action S0 over
the fermionic zero modes, one can endow the vector bundle V of ρ zero modes with
an Hermitian inner product (· , ·), such that

(2.27) S0 = (ρ, FVρ),

where FV is the curvature of an Hermitian connection on V . Here, we identify χ with
one-forms on MΣ(X,β), such that FV becomes indeed a two-form on MΣ(X,β),
as S0 is purely quadratic in χ. The integration of e−S0 = e−(ρ,FVρ) over ρ modes
yields the Pfaffian of FV , which is proportional to the Euler class of the bundle V,
i.e. Pf(FV) ∼ e(V). Hence, the correlation function can be written as

(2.28) 〈O1(P1) . . .On(Pn)〉β =

∫
MΣ(X,β)

e(V) ∧ ev∗1(ω1) ∧ . . . ∧ ev∗n(ωn)

The Euler class e(V) is represented by an (lρ, lρ)-form. Therefore, the integration
over the (lρ + k)-dimensional manifold MΣ(X,β) can only be non-vanishing, if
k =

∑
pi =

∑
qi, as we have already discussed at the end of the previous section.

3. Gromov-Witten Invariants

The correlation functions, we computed in the previous section, are interesting
invariants of the symplectic manifold (X,ω) and hence motivate the Gromov-Witten
invariants in the following way. Let n ∈ N0 and β ∈ H2(X). We introduce the
moduli space Mg,n(X,β) of holomorphic maps φ : Σ → X satisfying φ∗[Σ] = β.
This means we look at the quotient space of all tuples (Σ, P1, . . . , Pn, φ), where Σ
is a closed Riemann surface of genus g and Pi are distinct points in Σ, modulo a
certain equivalence relation defined as follows

Mg,n(X,β) ..= {(Σ, P1, . . . , Pn, φ) | φ : Σ −→ X holom., φ∗[Σ] = β} / ∼
where (Σ, P1, . . . , Pn, φ) ∼ (Σ′, P ′1, . . . , P

′
n, φ
′)

⇐⇒ ∃ ψ : Σ→ Σ′ biholomorphic, such that

φ = φ′ ◦ ψ and ψ(Pi) = P ′i .

(3.1)
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Unfortunenately,Mg,n(X,β) is in general a very singular space having the structure
of a Deligne-Mumford stack. At least locally one can think of a stack as the quotient
of a scheme by a finite group. In this way, it is an algebraic generalization of an
orbifold. But in contrast to an orbifold, a stack has in general a non-trivial isotropy
group at a generic point and there is no notion of dimension any more. In order
to make contact with the previous section, we first assume that Mg,n(X,β) is a
smooth manifold. Compared with MΣ(X,β), the holomorphic structure of the
underlying Riemann surface Σ can now vary. If the genus g > 2, the moduli space
of holomorphic structures on a closed Riemann surface of genus g has dimension
3g − 3. For every point Pi, we add to the surface, the dimension increases by one.
Thus, with Mg,n shorthand for Mg,n(pt, 0) we get

(3.2) dimCMg,n = 3g − 3 + n ,

We assume, we are in the generic case dimMΣ(X,β) = k, defined in the previ-
ous section. For every structure (Σ, P1, . . . , Pn) there are holomorphic maps in
MΣ(X,β), i.e. locally Mg,n(X,β) =̂ MΣ(X,β)×Mg,n and therefore

dimMg,n(X,β) = dimMΣ(X,β) + dimMg,n

=

∫
β

c1(X) + (d− 3)(1− g) + n
(3.3)

One can show that this formula is also true for g = 0, 1. If we are not in the generic
case, but Mg,n(X,β) is still non-singular, there are obstructions to deformations
of the holomorphic map φ, see chapter 24.4 in [1]. These obstructions constitute a
vector bundle Ob over Mg,n(X,β) with fiber Ob(Σ, P1, . . . , Pn, φ), similar to the
bundle V of ρ zero modes before. Then one defines the virtual fundamental class by
caping the fundamental class of Mg,n(X,β) with the Euler class of Ob.

(3.4) [Mg,n(X,β)]
vir ..= [Mg,n(X,β)] ∩ e(Ob)

This is a homology class of degree equal to the dimension calculated in eqn (3.3)

(3.5) vdimMg,n(X,β) ..=

∫
β

c1(X) + (d− 3)(1− g) + n ,

where this number is called the virtual dimension of Mg,n(X,β). For cohomology
classes ωi ∈ H•dR(X), the Gromov-Witten invariants are then defined as

(3.6) 〈ω1, . . . , ωn〉Xg,β ..=

∫
[Mg,n(X,β)]vir

ev∗1(ω1) ∧ . . . ∧ ev∗n(ωn) ,

where the i-th evaluation map is now given as

(3.7) evi :Mg,n(X,β)→ X, [Σ, P1, . . . , Pn, φ] 7→ φ(Pi).

IfMg,n(X,β) fails to be smooth, there exists in general neither a fundamental class
[Mg,n(X,β)] nor a vector bundle like Ob. Nevertheless, one can always define a

virtual fundamental class [Mg,n(X,β)]
vir

in the homology of Mg,n(X,β) in degree
vdimMg,n(X,β), such that the Gromov-Witten invariants can be defined and
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computed as above. One often combines the Gromov-Witten invariants for different
β into a total Gromov-Witten invariant

〈ω1, . . . , ωn〉Xg ..=
∑

β∈H2(X)

e−t
∫
β
ω 〈ω1, . . . , ωn〉Xg,β

=
∑

β∈H2(X)

〈ω1, . . . , ωn〉Xg,β qβ ,
(3.8)

where we have adopted the shorthand notation qβ ..= e−t ω·β = e−t
∫
β
ω, motivated

by the formal identity qβ1+β2 = qβ1qβ2 .

4. Quantum Cohomology

The Gromov-Witten invariants give rise to a new product on cohomology

(4.1) ∗ : H•dR(X)×H•dR(X) −→ H•dR(X) .

Let ω, η ∈ H•dR(X) be cohomology classes and (T k)k be a basis for the cohomology
H•dR(X) with dual basis (Tk)k regarding the intersection pairing (· , ·), i.e.

(4.2)
(
T i, Tj

)
..=

∫
X

T i ∧ Tj = δij ,

where the intersection pairing (· , ·) is non-degenerate due to Poincaré duality on
the manifold X. Then we define the (small) quantum product as

(4.3) ω ∗ η ..=
∑
k

〈ω, η, Tk〉Xg T
k .

Note the dependence on the genus g. There is also a big quantum product involving
not just the 3-pt functions but all correlation functions and hence more information.
We knowMg,n(X,β) consists of classes of holomorphic maps φ satisfying φ∗[Σ] = β.
As the integral of the Kähler form ω over a holomorphic curve is non-negative, we
have

(4.4)

∫
β

ω =

∫
Σ

φ∗ω > 0 .

Hence, if we take the real parameter t to infinity, we get

(4.5) 〈ω, η, Tk〉 =
∑

β∈H2(X)

〈ω, η, Tk〉β e−t
∫
β
ω −−−→

t→∞
〈ω, η, Tk〉0 ,

where we have neglected the X and the g in the indices. Thus, only the β=0-term of
the GW invariant survives this limit. Now assume g = 0, i.e. Σ is a Riemann sphere.
Then by some version of Liouville’s theorem, a holomorphic map φ with φ∗[Σ] = 0
has to be the constant map. Consequently,M0,n(X, 0) ∼=M0,n×X. Since we want
to compute the 3-point function, we take n = 3 and look for complex structures on
the Riemann sphere with 3 punctures. By the uniformization theorem there exists
a unique complex structure on the sphere. The automorphisms on the Riemann
sphere are given by Möbius transformations, which are uniquely determined by
specifying the image of 3 distinct points. This tells us that M0,3

∼= pt, such that
9



the evaluation map evi becomes the identity on X and [M0,3(X, 0)]
vir

= [X]. In
summary, the zeroth summand of the GW invariant simplifies to

〈ω, η, Tk〉0 =

∫
X

ω ∧ η ∧ Tk(4.6)

=⇒ ω Y η = ω ∧ η =
∑
k

(∫
X

ω ∧ η ∧ Tk
)
T k =

∑
k

〈ω, η, Tk〉0 T
k

Hence, if g = 0, we get the usual cup product in cohomology in the limit t→∞.

(4.7) ω ∗ η −−−→
t→∞

ω Y η

In this sense, the β 6= 0-terms in the quantum product ∗ can be interpreted as
quantum corrections to the usual cup product Y, when the parameter t is large.

5. Interpretation

Let ωi ∈ H•dR(X) be cohomology classes. Then their Poincaré dual classes in
homology can be represented by complex submanifolds Zi in general position. In
special cases, e.g. in the generic or non-generic case we discussed before, the GW
invariant counts the number of holomorphic curves of given genus g in X representing
a prescribed homology class β and intersect the submanifolds Zi non-trivially.

(5.1) 〈ω1, . . . , ωn〉Xg,β = #

{
φ : Σ→ X holomorphic

∣∣∣∣ φ∗[Σ] = β

φ(Σ) ∩ Zi 6= ∅

}
However, in general this counting takes place in some virtual way, as the GW
invariants do not need to yield integral numbers, but can be truly rational.
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