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In this short write up, we will follow chapter 12 of [1] with a few minor details taken from
[2].
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1 Superfield Formalism

1.1 Superspace and Superfields

The superspace is spanned by the usual spacetime coordinates along with a number of
fermionic (or Grassmannian) coordinates. In particular, in 2D N = (2, 2) supersymmetry

we have the θ+, θ−, θ
+
, θ
−

fermionic coordinates in addition to the usual xµ with µ = 0, 1.
All together we have

Superspace = {xµ, θ±, θ±}. (1)

Due to the anticommuting nature of θ±, θ
±

we have (θ±)2 = 0 = (θ
±

)2. The ± superscript
stands for the chirality (or spin) under a Lorentz boost, i.e.

θ± 7−→ e±γ/2θ± (2)

θ
± 7−→ e±γ/2θ

±

where γ is the pseudorapidity. The corresponding transformation of the spacetime coordi-
nates is given by the familiar

(
x0

x1

)
7−→

(
cosh γ sinh γ
sinh γ cosh γ

)(
x0

x1

)
. (3)

Functions defined on the superspace are called superfields. Since θ±, θ
±

all square to zero we

can Taylor expand superfields in to monomials in θ± and θ
±

, namely

F(xµ, θ±, θ
±

) = f0(x
µ) + θαfα(xµ) + θ

α
f̃α(xµ) + θ+θ−f+−(xµ) + ... (4)

where we sum over α = +,−. The functions f0, fα, ... are called the components of the
superfield. We see that a given superfields can have at most 24 = 16 components. A
superfield F is said to be bosonic if [F , θα] = 0 and fermionic if {F , θα} = 0.

Next we will introduce two set of differential operators. The first set of differential operators
is given by

Q± :=
∂

∂θ±
+ iθ

±
∂±, Q± := − ∂

∂θ
± − iθ

±∂±, (5)
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where

x± := x0 ± x1, ∂± :=
∂

∂x±
=

1

2

(
∂

δx0
± ∂

∂x1

)
. (6)

These will turn out to be a representation of the supersymmetry generators, the same way
−i ∂

∂x1
is a representation of the generator of translation, i.e. the momentum operator p̂.

They satisfy the anticommuting relations

{Q±,Q±} = −2i∂± (7)

with all other anticommutators vanishing.

The second set consists of the operators

D± :=
∂

∂θ±
− iθ±∂±, D± := − ∂

∂θ
± + iθ±∂±, (8)

which satisfy

{D±, D±} = 2i∂±. (9)

These can be thought of as covariant derivatives in the sense that if a superfield is invariant
under supersymmetry, then the covariant derivative of that field is also invariant. This is a
direct consequence of the fact that they anticommute with the supersymmetry generators

{D±,Q±} = 0, {D±,Q±} = 0, (10)

{D±,Q±} = 0, {D±,Q±} = 0.

The outcome of the action of δ := ε+Q− − ε−Q+ − ε+Q− + ε−Q+ on superfields is

eiδF(x±, θ±, θ
±

) ≈
(
1 + iε+Q− − iε−Q+ − iε+Q− + iε−Q+

)
F(x±, θ±, θ

±
) (11)

=

[
1 + iε+

∂

∂θ−
− iε−

∂

∂θ+
+ iε+

∂

∂θ
− − iε−

∂

∂θ
+

+
(
ε−θ

+
+ ε−θ

+
)
∂+ +

(
−ε+θ

− − ε+θ−
)
∂−

]
F(x±, θ±, θ

±
)

≈ F(x± ± ε∓θ
± ± ε̄∓θ±, θ± ∓ iε∓, θ

± ∓ iε̄∓)
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where everything has been evaluated to first order. Alluding to the comment after equation
(5) we see that supersymmetry transformations correspond to translations in the spacetime
and fermionic coordinates.

Apart from translation, one can also define rotations in the fermionic direction. Let us
therefore introduce vector R-rotations and axial R-rotations defined respectively by

eiαFV : F(x±, θ±, θ
±

) 7−→ eiαqVF(x±, e−iαθ±, eiαθ
±

), (12)

eiαFA : F(x±, θ±, θ
±

) 7−→ eiαqAF(x±, e∓iαθ±, e±iαθ
±

). (13)

Here, the quantities qV and qA are the vector R- and axial R-charge of the superfield F .

Finally, let us define the following fields, which will prove to be particularly useful in con-
structing supersymmetric actions.

A chiral superfield satisfies

D±Φ(x±, θ±, θ
±

) = 0. (14)

The most general chiral superfield can be written as

Φ(x±, θ±, θ
±

) = φ(y±) + θαψα(y±) + θ+θ−F (y±) (15)

where y± := x±−iθ±θ±. One can check that the product and the sum of two chiral superfields
is also a chiral superfield. On the other hand, if the field satisfies

D±Φ(x±, θ±, θ
±

) = 0 (16)

it is said to be an anti-chiral superfield. As the notation suggests, chiral and anti-chiral fields
are complex conjugate of each other. Keep in mind that for any two Grassmann numbers
η, θ we have ηθ = θη.

Furthermore, a twisted chiral superfield obeys

D+U(x±, θ±, θ
±

) = 0 = D−U(x±, θ±, θ
±

). (17)

The most general twisted chiral field has the form

U(x±, θ±, θ
±

) = v(ỹ±) + θ+χ+(ỹ±) + θ
−
χ−(ỹ±) + θ+θ

−
E(ỹ±) (18)
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where ỹ± := x± ∓ iθ±θ±.

Lastly, the twisted anti-chiral superfield satisfies

D+U(x±, θ±, θ
±

) = 0 = D−U(x±, θ±, θ
±

) (19)

where again U and U are conjugate.

As a final comment, the components of these fields are said to form a multiplet. Therefore,
for example, the chiral multiplet consists of the components of the chiral field and similarly
for the other fields.

We now have all the tools to construct supersymmetric actions.

1.2 Supersymmetric Actions

We are looking for actions which are invariant under the transformation

δ := ε+Q− − ε−Q+ − ε+Q− + ε−Q+. (20)

The following three types of actions all fulfil this condition.

1. The D-term

This functional is of the form

∫
d2xd4θK(Fi) :=

∫
d2xdθ+dθ−dθ

+
dθ
−
K(Fi), (21)

where K is an arbitrary differentiable function of the superfields Fi. Any such func-
tional is invariant under (20). To see this let us check the variation of the D-term
induced by ε+Q− as an example.

∫
d2xd4θε+Q−K(Fi) =

∫
d2xd4θε+

(
∂

∂θ−
+ iθ∂−

)
K(Fi). (22)

The d4θ integral picks out the coefficient of θ4 := θ+θ−θ
+
θ
−

in the Taylor expansion
of K. Since the first term in the integral does not contain θ− we see that this term
vanishes. The second is just a total derivative and therefore vanishes as well. The
same arguments apply to the ε−, ε± cases.
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2. The F-term

F-terms are given by functionals of the form

∫
d2xd2θW (Φi) :=

∫
d2xdθ−dθ+W (Φi)

∣∣∣
θ
±
=0

(23)

with W an arbitrary holomorphic function of the chiral superfields Φi. The same
arguments as for the D-term can be used to show that the variations proportional to
ε± vanish. For the ε± terms, notice first that Q± = D± − 2iθ±∂±. The first term now
vanishes because the fields Φi are chiral and the second term is again a total derivative.
1

3. The Twisted F-term

This final action is of the form

∫
d2xd2θ̃ W̃ (Ui) :=

∫
d2xdθ

−
dθ+W̃ (Ui)

∣∣∣
θ−=0=θ

+
(24)

where W̃ is an arbitrary function of the twisted anti-chiral fields Ui. The invariance of
this term under δ can be shown using similar arguments as for the F-term.

1The name F-term is due to the fact that the integral picks out the F-component of W (Φi). Remember
that the product and the sum of two chiral superfields is also a chiral field. Therefore any holomorphic
function of chiral fields is also chiral and can thus be expanded into the form (15). We see that the integral
(23) over the fermionic degrees extracts the coefficient of θ+θ− in the expansion of W which is exactly the
F-component of W . We will see later that supersymmetry acting on superfields induces a transformation
on its components. In particular, the transformation of the F-component of a chiral superfield is a total
derivative. Thus, an action build from this component is automatically invariant under supersymmetry (a
fact which we explicitly checked by calculating the variation of the action under supersymmetry). Similarly,
for a generic superfield, the coefficient of θ4, typically called D(x), transforms as a total derivative and can
therefore be used to build supersymmetric actions. This is exactly what we have done in the D-term, which
also explains the origin of its name.
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2 An Example: Theory of a Chiral Superfield

Let us now give an example to illustrate the power of the machinery developed in the previous
chapter.

Consider a theory composed of a D-term and a F-term. Of interest to us will be the D-term

SKin =

∫
d2xd4θΦΦ (25)

with Φ a chiral field. The suggestive subscript Kin stands for kinetic. In order to treat this
term we will further expand equation (15) into

Φ = φ(y±) + θαψα(y±) + θ+θ−F (y±) (26)

= φ(x±)− iθ+θ−∂+φ(x±) + .. (27)

exposing all the θ-dependance and collect the terms proportional to θ4 in ΦΦ. After inte-
grating over the fermionic coordinates we will be left with coefficient of this term.

The F-term we will consider is

SW =

∫
d2xd2θW (Φ) + c.c. (28)

Performing the d2θ integral we are left with

W (Φ)|θ2 = W ′(φ)F +W ′′(φ)ψ+ψ−. (29)

where the prime denotes differentiation with respect to the argument of the function, in this
case φ. A similar expression holds for the complex conjugate term. Putting it all together
the total action is given by

S = SKin + SW =

∫
d2x
(
|∂0φ|2 − |∂1φ|2 − |W ′(φ)|2 + iψ−(∂0 + ∂1)ψ− (30)

+ iψ+(∂0 − ∂1)ψ+ −W ′′(φ)ψ+ψ− −W
′′
(φ)ψ−ψ+

)
where we have used integration by parts. Also, in this expression, the term |W ′(φ)|2 has

been added and subtracted to complete the square, producing a term |F+W
′
(φ)|2. Since the

action contains no kinetic term for the field F (making it an auxiliary field) we can integrate
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it out, using its equation of motion F = −W ′
(φ). This explains why the field F does not

appear in the action.

Now, a number of comments are in order here. First, notice that we have recovered the
action of a complex scalar fields φ with potential |W ′(φ)|2 and the action for a left and

a right chirality Weyl spinor, along with the interaction terms W ′′(φ)ψ+ψ−,W
′′
(φ)ψ−ψ+

(which include the fermion mass term and a Yukawa coupling term). By construction, this
theory is invariant under supersymmetry.

Secondly, the scalar field and the spinors are not arbitrary. Supersymmetry imposes restric-
tions which can be seen by the fact that the the potential of the scalar and the mass term
of the spinor are related through the function W (φ). In particular, the two fields have equal
mass. To see this, assume we can Taylor expand the function W into

W (φ) =
1

2
mφ2 +

1

3
gφ3 + ... (31)

with m and g real. The potential of the scalar is then given by |W ′(φ)|2 = m2|φ|2 + .... We
can now go back and see in retrospect why we ommitted the constant and first order term
in (31). The usual arguments in Quantum Field Theory are that the linear term vanishes
because we want to place our field at a minimum (in order to have a stable vacuum) and
the constant term is irrelevan since it does not enter into the equations of motion. Now the
mass squared of a scalar field is given my m2

φ = d2|W ′(φ)|2/dφ2|φ=0 = m2. On the other

hand, the mass of the fermions is given by mψ = W ′′(φ)|φ=0 = m.2

Now, the action of δ on a superfield induces a transformation on the components. Let us
see how this works for the chiral field. Observe that if Φ is a chiral field, then δΦ is also
chiral. This is a consequence of the fact that the D’s and the Q’s anticommute since we
have D±δΦ = δD±Φ = 0. We can therefore define

δΦ = δφ+ θαδψα + θ+θ−δF, (32)

calculate the action of δ on Φ and identify the components.

Consider ε± cases. We need to calculate the effect of ε±Q∓ on Φ. Since for any function
H(y±)

Q±H(y±) =

(
∂

∂θ±
+ iθ

±
∂±

)
H
(
x± − iθ±θ±

)
(33)

= −iθ±H ′(y±) + iθ
±
H ′(y±) = 0

2Furthermore, W ′′ will also produce the Yukawa coupling −2gφψ+ψ−, which is related to the scalar field
self coupling −g2|φ|4, coming from the expansion of |W ′(φ)|2. This is the source of the so called miraculous
cancellation of divergent terms in 4D SUSY perturbation theory.
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we have

Q±Φ = Q±
[
φ(y±) + θαψα(y±) + θ+θ−F (y±)

]
(34)

= ψ±(y±)± θ∓F (y±).

The next step is to demand

(ε+Q− − ε−Q+) Φ = ε+ψ− − ε−ψ+ − ε+θ+F − ε−θ−F (35)

!
= δφ+ θ+δψ+ + θ−δψ− + θ+θ−δF

from which we read off

δφ = ε+ψ− − ε−ψ+, (36)

δψ± = ε±F,

δF = 0.

Following the same steps for the ε̄± and putting it all together one finds

δφ = ε+ψ− − ε−ψ+, (37)

δψ± = ±2iε∓∂±φ+ ε±F,

δF = −2iε+∂−ψ+ − 2iε−∂+ψ−.

In what follows we will be needing the variations of the components of the anti chiral-field
as well. These are obtained by taking the complex conjugate of the above variations

δφ = −ε+ψ− + ε−ψ+, (38)

δψ± = ∓2iε∓∂±φ+ ε±F ,

δF = −2iε+∂−ψ+ − 2iε−∂+ψ−.

Since the classical system has a symmetry we can exploit Noether’s Theorem and obtain
conserved currents and charges. After further sprinkling around the word ”super” we have
the four supercurrents
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G0
± = 2∂±φψ± ∓ ψ∓W

′
(φ), G1

± = ∓2∂±φψ± − ψ∓W
′
(φ), (39)

G
0

± = 2ψ±∂±φ± ψ∓W ′(φ), G
1

± = ∓2ψ±∂±φ± ψ∓W ′(φ),

and by integrating the supercurrents over the spatial volume the four supercharges

Q± =

∫
dx1G0

±, Q± =

∫
dx1G

0

±. (40)

The supercharges are in one to one correspondence to the fermionic coordinates. Under a
Lorentz boost they transform as

Q± 7−→ e±γ/2Q±, Q± 7−→ e±γ/2Q±. (41)

Let us now demonstrate the derivation of the supercurrents, taking Gµ
− as an example. This

supercurrent corresponds to the ε+Q− term in the variation (20). The Lagrangian is given
by

L = |∂0φ|2 − |∂1φ|2 − |F (φ)|2 + iψ−(∂0 + ∂1)ψ− + iψ+(∂0 − ∂1)ψ+ (42)

+ F
′
(φ)ψ+ψ− + F ′(φ)ψ−ψ+

where we have traded W for F using F = −W ′
. The equations of motion for the fields φ, ψ+

and ψ− are given by

∂µ∂
µφ+ F (φ)F ′(φ) + F ′′(φ)ψ−ψ+ = 0, (43)

i(∂0 − ∂+)ψ+ − F ′(φ)ψ− = 0, (44)

i(∂0 + ∂+)ψ− − F
′
(φ)ψ+ = 0, (45)

along with their complex conjugate for the fields φ, ψ− and ψ+.

Now, by writing the variation of a given field ϕi as δϕi =: ε+∆ϕi and the shift by a total
derivative of the Lagrangian as δL =: ε+∂µV

µ the current is given via Noether’s procedure
as

Gµ
+ =

∂L
∂ (∂µϕi)

∆ϕi − V µ (46)
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where we sum over all fields labelled i.

Treating the action as a function of φ, ψ+, ψ− and their complex conjugate only, the variations
which will be of interest to us are

δφ = ε+ψ−, δφ, (47)

δψ+ = ε+F, δψ− = 0,

δψ+ = 0, δψ− = ε+2i∂−φ.

From these we can calculate

δF = F ′δφ = 0, δF = F
′
δφ = ε+F

′
ψ−. (48)

Notice that, by use of the equation of motion (44), these are consistent with (37) and (38).
The second ingredient we will need is the function V µ, which we can find by explicitly
calculating the variation of the action. We have

δL = ∂0(δφ)∂0φ− ∂1(δφ)∂1φ− F (φ)δF (φ) + iδψ−(∂0 + ∂1)ψ− + iψ+(∂0 − ∂1)δψ+ (49)

+ δF
′
(φ)ψ+ψ− + F

′
(φ)δψ+ψ− + F ′(φ)δψ−ψ+.

After plugging in all the corresponding variations we are left with

δL = ε+
(
−∂0φ∂1ψ− + ∂1φ∂0ψ−

)
(50)

which we can rewrite as

δL = ε+

(
∂0
(
∂1φψ−

)
− ∂1

(
∂0φψ−

))
. (51)

From this we can read off

T 0 = ∂1φψ−, T 1 = −∂0φψ−. (52)

Finally, with this now at hand along with the variations (47) we can go back to (46) and
conclude
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G0
− = (∂0φ)ψ− + (−iψ+)F − ∂1φψ− (53)

= 2∂−φψ− − iψ+F

= 2∂−φψ− + iψ+W
′

G1
− = (−∂1φ)ψ− + (iψ+)F − (−∂φψ−)

= 2∂+φψ− + iψ+F

= 2∂−φψ− − iψ+W
′

where we have used F (φ) = −W ′
(φ).

Now, our action contains more symmetry. We have seen that the only relevant terms for

the D-term is the θ4 = θ+θ−θ
+
θ
−

and for the F-term the θ2 = θ+θ− (and its complex

conjugate). Both are invariant under θ± 7−→ e∓iαθ±, θ
± 7−→ e±iαθ

±
, which is precisely the

axial R-rotation defined earlier. Via Noether’s procedure again we have the axial R-current

J0
A = ψ+ψ+ − ψ−ψ−, J1

A = −ψ+ψ+ − ψ−ψ− (54)

and the axial R-charge

FA =

∫
dx0J0

A. (55)

Under the axial R-symmetry the supercharges transform as

Q± 7−→ e∓iαQ±, Q± 7−→ e±iαQ±. (56)

If and only if the potential W (φ) has a vector R-charge equal to 2, then the action (30) is
also vector R-symmetric. The vector R-current, JµV and vector R-charge, FV are again given
by Noether’s Theorem.

Under the vector R-symmetry the supercharges transform as

Q± 7−→ e−iαQ±, Q± 7−→ eiαQ±. (57)

As a final remark, observe that if in all the above formulae we had exchanged θ− ←→ −θ−

we would have ended up with a theory of a twisted chiral superfield. This is evident from
looking at the definitions of the D’s and the (twisted) chiral field.
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3 N = (2, 2) Supersymmetric Quantum Field Theories

In the absence of anomalies, symmetries of the classical theory get passed down to the quan-
tum theory. Of course in any Poincaré invariant theory we will have the charges H,P,M , i.e.
the Hamiltonian, the Momentum and the Lorentz boost which correspond to the generators
of translations in time, space and rotations in spacetime. In our case, we also have the gen-
erators of supersymmetry, the four supercharges, Q±, Q± which generate the transformation
δ, i.e.

δO = [δ̂,O] (58)

where δ̂ := iε+Q− − iε−Q+ − iε+Q− + iε−Q+.

If in addition our theory is invariant under vector- and axial R-symmetry we also have the
corresponding generators FV and FA.

These generators satisfy the N = (2, 2) supersymmetry algebra

Q2
± = 0 = Q

2

±, (59)

{Q±, Q±} = H ± P, (60)

{Q+, Q−} = 0, {Q+, Q−} = 0, (61)

{Q−, Q+} = 0, {Q+, Q−} = 0, (62)

[iM,Q±] = ∓Q±, [iM,Q±] = ∓Q±, (63)

[iFV , Q±] = −iQ±, [iFV , Q±] = +iQ±, (64)

[iFA, Q±] = ∓iQ±, [iFA, Q±] = ±iQ±. (65)

As a matter of fact, equations (61) and (62) can be relaxed to the form

{Q+, Q−} = Z, {Q+, Q−} = Z∗ (66)

{Q−, Q+} = Z̃, {Q+, Q−} = Z̃∗. (67)

Here, Z and Z̃ are central charges, i.e. they commute with all the symmetry generators. If
FV is conserved then Z must vanish and if FA is conserved then Z̃ must vanish. 3

3Given the set of generators one can uniquely determine the supersymmetry algebra by demanding that
it be closed. One could then proceed in defining the superspace as the manifold corresponding to the Lie
supergroup of the supersymmetry algebra - which we shall call super Poincaré - quotiented out by the
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4 Statement of Mirror Symmetry

Remarkably the algebra itself turns out to have a symmetry. Specifically, it is invariant
under a Z2 outer automorphism

Q− ←→ Q+ (70)

FV ←→ FA

Z ←→ Z̃.

Two N = (2, 2) supersymmetric theories are said to be mirror to each other, if they are
equivalent Quantum Field Theories where the isomorphism of the Hilbert spaces transforms
the generators of N = (2, 2) according to the above transformation.

Due to the exchange of the vector and axial R-charge, if a theory has broken (unbroken)
vector R-symmetry, then the mirror theory has broken (unbroken) axial R-symmetry.

Moreover, chiral superfields are mapped to twisted chiral superfields and visa versa. To show
this consider following relations which hold for the components of a chiral field

[Q±, φ] = 0 (71)

ψ± = [iQ±, φ]

F = {Q+, [Q−, φ]}

and

[Q+, v] = 0 = [Q−, v] (72)

χ+ = [iQ+, v], χ− = −[iQ−, v]

E = −{Q+, [Q−, v]}

manifold generated by the Lorentz group. In particular, an element of the supergroup can be written as

g = exp
(
i(ωM + xµPµ + θαQα + θαQα)

)
(68)

where P 0 = H and P 1 = P . We then have

superspace =
super Poincaré

Lorentz
=
{ω, xµ, θ±, θ±}

{ω}
= {xµ, θ±, θ±}. (69)

This is true for all dimensions.
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which hold for the components of the twisted chiral field. One could use these relations to
construct the respective superfield. Given a field φ, for example, one can construct a chiral
field using the second and third relation in (71). It is evident from the above relations, that
the exchange of Q− ←→ Q+ results in the exchange of chiral superfields with twisted chiral
superfields.

5 N = (1, 1) Supersymmetry

As a final topic, we will discuss supersymmetric theories with half as many supercharges
in this section. Since the supercharges are in one-to-one correspondence with the fermionic
coordinates it is clear that restricting the superspace to a subspace will result in decreasing
the number of supercharges. In particular, for aN = (1, 1) supersymmetry the corresponding
subspace is given by the following identification

e−iν
+

θ+ + eiν
+

θ
+

= 0 (73)

e−iν
−
θ− + eiν

−
θ
−

= 0

for arbitrary but fixed ν±. Define

θ± =: ieiν±θ±1 . (74)

Plugging this in to the identification (73), we see that the θ±1 are real. We will now follow
the same steps as in the analysis of the N = (2, 2) supersymmetry and therefore present
only the key steps.

Let us start by defining the set of differential operators, namely

Q1
± := eiν±Q± + e−iν±Q± = −i ∂

∂θ1
+ 2θ±1 ∂± (75)

D1
± := eiν±D± + e−iν±D̄± = −i ∂

∂θ1
− 2θ±1 ∂±. (76)

These operators obey

{Q1
±,Q1

±} = −4i∂, {Q1
+,Q1

−} = 0 (77)

{D1
±, D

1
±} = 4i∂, {D1

+, D
1
−} = 0 (78)

{Q1
α,Q1

β} = 0 (79)

15



and are consistent with the above identification, (73). A general superfield Φ can be Taylor
expanded into

Φ = φ+ iθ+1 ψ+ + iθ−1 ψ− + θ+1 θ
−
1 f. (80)

Functionals of the form

∫
d2d2θ1F :=

∫
d2dθ+1 dθ

−
1 F
(
Φi, D

1
±Φi, ...

)
(81)

are invariant under δ1 := iε1−Q1
+ − iε1+Q1

−.

Consider now the action,

S =

∫
d2xd2θ1

(
1

2
D1
−ΦD1

+Φ + ih(Φ)

)
. (82)

By performing the θ±1 integrals we get

S =

∫
d2x

(
1

2
(∂0φ)2 − 1

2
(∂1φ)2 − 1

2
(h′(φ))

2
(83)

+
i

2
ψ−(∂0 + ∂1)ψ− +

i

2
ψ+(∂0 − ∂1)ψ+ − ih′′(φ)ψ+ψ−

)

where we’ve integrated by parts and integrated out the auxiliary field f . Again we get the
action for a scalar field with potential U(φ) = 1

2
(h′(φ))2 and that of a left and right chirality

Weyl spinor with a Yukawa-like interaction term.

After quantisation we get the Noether supercharges, Q1
± which generate the supersymmetry

transformation. They satisfy the algebra

{Q1
±, Q

1
±} = 2 (H ± P ) , {Q1

+, Q
1
−} = 0. (84)

Similarly one could obtain a N = (0, 2) supersymmetric theory. The subspace which would
result in such a theory is

θ− = 0 = θ
−
. (85)
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Following again the same steps one arrives at a quantum field theory with two supercharges,
Q+ and Q̄+ which satisfy the algebra

{Q+, Q̄+} = H + P, Q2
+ = 0 = Q̄2

+. (86)
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