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1 INTRODUCTION

1 Introduction

1.1 General

These notes will introduce the concept of quantum cohomology, a technique that has
made it possible to prove deep results in enumerative geometry. It has been a long
standing problem to find the correct number of curves going through a number of
general points, basically higher degree analogues of the fact that there is only one
straight line going through two distinct points. It should be noted, that throughout
these notes we will work over the complex numbers.

It has also been long known [3], that there is only one smooth conic passing through
five general points in the plane, up to projective equivalence. For the next degree,
rational plane cubics, it took till 1848 when Steiner [3] determined that there are 12
going through 8 general points in the plane. Then Zeuthen [3] showed that there 620
different plane rational quartics through 11 points in 1873. But a general formula was
elusive till 1994. The general problem may be phrased as:

Determine the number Nd of rational curves of degree d passing through
3d− 1 points in general position in the complex projective plane. [3]

The word rational in this context comes from algebraic geometry and basically means
that the curves is birationally equivalent to the line CP1. The degree d refers to the
degree of the homogeneous polynomials specifying it. For the exact definition of the
degree check [3].

These notes are heavily based on the book ’An Invitation to Quantum Cohomology’
[3], thus except at very important or ambiguous parts the reference will be omitted.

These enumerative geometry questions are usually phrased in projective space, so
not the highest generality for definitions will be sought. We will mostly work with
a target space CPn, n denoting the complex dimension of the space. One fact that
will be used is the form of the cohomology groups of CPn and its ring structure. The
groups can be computed via the Mayer-Vietoris sequence and an induction argument.
This works for all coefficient rings, so the most general (integers) has been chosen.
The ring structure (cup-product) is induced (for the de Rham complex) by the normal
wedge-product of differential forms. The more general cup-product on the simplicial
cohomology will have the same structure, so the following results can be entirely
phrased over the integers. Alternatively, use supersymmetric quantum mechanics to
obtain the same result.
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1.2 Moduli Spaces 1 INTRODUCTION

Fact. The cohomology groups of CPn are given by

Hk(CPn) ∼=

Z for k even and 0 ≤ k ≤ 2n

0 otherwise.
(1)

Let h be a generator of H2(CPn), the hyperplane class. Then there is a ring isomorphism

H∗(CPn) ∼= Z[h]
/
(hn+1) . (2)

1.2 Moduli Spaces

Definition (Moduli spaces). Generally speaking, moduli spaces arise in classifying chosen
geometric objects up to a chosen equivalence. The space needs to be in natural bijection with
those equivalence classes, and provide some structure (from algebraic geometry: variety or
scheme). Some moduli spaces that are important for the notes will be defined here. The notion
of equivalence here is projective equivalence.

• M0,m: This space can have two interpretations in our context. Firstly, it is the space
for classifying m-tuples up to projective equivalence. For a quadruple (p1, p2, p3, p4)

there exists a unique automorphism φ of CP1, such that φ(p1) = 0, φ(p2) = 1 and
φ(p3) = ∞. Then the point λ(p4), the cross ratio of the quadruple is the image
of p4 under φ. Now, two m-tuples (p1, . . . , pm), (p′1, . . . , p′m) are called projectively
equivalent if all the cross ratios

λ(p1, p2, p3, pi) = λ(p′1, p′2, p′3, p′i) (3)

match (i = 4, . . . , m). So we already found a description for the two spacesM0,3 and
M0,4, namely that all triples are projectively equivalent and that all quadruples are
characterized by their cross ratio. Thus,

M0,3 = {pt.} (4)

M0,4 = CP1\{0, 1, ∞}. (5)

Then the moduli spaceM0,m can be described via these easier spaces.

M0,m 'M0,4 × · · · ×M0,4︸ ︷︷ ︸
m−3 times

\
⋃

diagonals (6)
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1.2 Moduli Spaces 1 INTRODUCTION

Now, to the second interpretation: An m-pointed smooth rational curve (C, p1, . . . , pm)

is a projective smooth rational curve C equipped with a choice of m distinct marks.
An isomorphism between two such curves is an isomorphism ϕ : C →̃ C′ such that
ϕ(pi) = p′i ∀i = 1, . . . , m. It then turns out, that M0,m is the moduli space for
classifying m-pointed smooth rational curves up to isomorphism (m ≥ 3).

• M0,m: One of the issues with the space M0,m is that it is non-compact. Obvious
compactifications could be (CP1)m−3 orCPm−3. But this will lead to issues with limits.
As an example [3] consider the two families of quadruples

Ct = (0, 1, ∞, t), Dt = (0, t−1, ∞, 1). (7)

In the cases t 6= 0, 1, ∞, those are families of 4-pointed smooth rational curves. They
also have the same cross ratio t, thus they are isomorphic. But the limit at t = 0 involves
coincident points: C0 = (0, 1, ∞, 0) and D0 = (0, ∞, ∞, 1). These two configurations
are not projectively equivalent, which is undesirable. The right way to approach this
is to allow trees of projective lines, that is a connected curves with at most double
points and a notion of stability, to ensure arithmetic genus zero, or equivalently, that
each irreducible component is automorphism free. In the case of the example, this creates
a new irreducible component for the limit t→ 0. First for Ct:

t

p4

→ 0

p1

1

p2

∞

p3
−→

p4

p1
p2 p3

Then for Dt:

0

p1

1

p4

∞

p3

← t−1

p2
−→

p2

p3
p1 p4

Now these two configurations are equivalent as stable m-pointed rational curves, as de-
sired. Then, the associated moduli space for classifying these is the smooth projective
varietyM0,m (m ≥ 3), andM0,m is a dense subset. In the case ofM0,4, the compacti-
fication can be realized as a blowup of CP1\{0, 1, ∞} in the three points 0, 1, ∞.

• W(n, d): Now we are turning to the main object we wanted to study in the first place,
namely rational curves. As they can always be parametrized by the projective line CP1,
investigate maps µ : CP1 → CPn. Giving such a map of degree d is equivalent to
specifying n + 1 binary forms (functions defined by homogeneous polynomials in two
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1.2 Moduli Spaces 1 INTRODUCTION

variables) of degree d, nowhere vanishing simultaneously [3]. This condition defines a
setW(n, d). There are several issues with this space, for starters it is not compact, and
different reparametrizations of the same curve are distinct objects.

• M0,m(CP
n, d): To avoid these redundancies, one considers again projective equiva-

lence, that is we go to the space M0,0(CP
n, d) = W(n, d)

/
Aut(CP1) . An issue

here is, that automorphisms can exist. To suppress those, one considers again marked
curves. Those m-pointed rational maps µ : C → CPn are defined as maps from C, a tree
of projective lines, with m distinct marked smooth points of C (i.e. the marked points
are not the intersections points of irreducible components). The associated moduli space
to classifying those is for m ≥ 3:

M0,m(CP
n, d). (8)

• M0,m(CP
n, d): The last issue we have to overcome is thatM0,m(CP

n, d) is not com-
pact. This is fixed by considering Kontsevich stable m-pointed rational maps. The
property of being stable is equivalent to having only a finite number of automorphisms.
The moduli space associated to those maps isM0,m(CP

n, d), which is a projective nor-
mal irreducible variety. Its dimension is given by

dim(M0,m(CP
n, d)) = nd + n + d + m− 3. (9)

Now some tools and properties of these moduli spaces will be introduced shortly, so
that later the underlying ideas of the proof can be communicated:

• There are forgetful morphisms (for m ≥ 3)

M0,m(CP
n, d)→M0,m, (10)

M0,m+1(CP
n, d)→M0,m(CP

n, d), (11)

M0,m+1 →M0,m. (12)

The first just forgets the map µ, as the underlying tree of projective lines has m
marks. Unstable components need to be stabilized, but that is always possible.
The two other morphisms just forget one of the m+ 1 marks on the curve. Again
the curve might need to be stabilized.

• In the case ofM0,m(CP
n, d) an element can be represented as (C; p1, . . . , pm; µ),

where C is the tree of projective lines, (p1, . . . , pm) are the distinct marks and
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1.2 Moduli Spaces 1 INTRODUCTION

µ : C → CPn is a map of degree d. From that data one can construct the evalua-
tion maps νi given by

νi : M0,m(CP
n, d)→ CPn

(C; p1, . . . , pm; µ) 7→ µ(pi).
(13)

Additionally, define the "total" evaluation map

ν : M0,m(CP
n, d)→ CPn × · · · ×CPn

(C; p1, . . . , pm; µ) 7→ (µ(p1), . . . , µ(pm)) .
(14)

It should be noted, that this operation is compatible with the process of forget-
ting a mark. These maps will prove useful in pulling back differential forms
from CPn to the moduli space.

• Another important concept are boundary divisors. Those are the closure of a
given labelled configuration in M0,m, that have codimension 1. To illustrate
this, denote by S the marking set {p1, . . . , pm}. There is a boundary divisor for
each partition S = A ∪ B with A and B disjoint and |A| ≥ 2, |B| ≥ 2. Then a
general point in D(A|B) is a curve with two irreducible components, with the
marks of A on one component, and the marks of B on the other.

Firstly, there is a canonical isomorphism which is responsible for the recursion
occurring later

D(A|B) 'M0,A∪{x} ×M0,B∪{x}, (15)

given by:

A B ←→
x

×

x
A B

Secondly, consider the forgetful mapM0,m → M0,4 for m ≥ 4. OnM0,4 there
are only three boundary divisors, and all of them linearly equivalent asM0,4 '
CP1. Pulling that relation back via the forgetful map gives the relation

∑
i,j∈A
k,l∈B

D(A|B) = ∑
i,k∈A
j,l∈B

D(A|B) = ∑
i,l∈A
j,k∈B

D(A|B) (16)
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1.3 Gromov-Witten Invariants 1 INTRODUCTION

inM0,m.

Thirdly, this can also be done inM0,m(CP
n, d), by distributing the degree d as

well on the two irreducible components as dA and dB. Then composition of the
two forgetful maps M0,m(CP

n, d) → M0,m → M0,4 produces the following
fundamental relation

∑
A∪B
i,j∈A
k,l∈B

dA+dB=d

D(A|B) = ∑
A∪B
i,k∈A
j,l∈B

dA+dB=d

D(A|B) = ∑
A∪B
i,l∈A
j,k∈B

dA+dB=d

D(A|B). (17)

1.3 Gromov-Witten Invariants

It is then shown in [3], that indeed counting these stable maps does count rational
curves. For this counting intersection theory is used. The intersection numbers are
basically the Gromov-Witten invariant, which will be defined after that. There are
technical details which need to be considered for the integration, check [3] for those.

Definition. The Gromov-Witten invariant of degree d associated with the classes γ1, . . . , γm ∈
H∗(CPn) is

Id(γ1 · · · γm) :=
∫

M0,m(CP
n, d)

ν∗(γ1, . . . , γm). (18)

(19)

Properties 1. Here are three important properties of Gromov-Witten invariants:

(1) These numbers are only non-zero when the sum of the codimensions of the γi is equal to
the dimension ofM0,m(CP

n, d). The term codimension is a slight abuse of notation,
consult [3] for details.

(2) They are invariant under the permutation of the γi.

(3) They are linear in each of their arguments.

As a corollary to a more general statement (4.1.5 in [3]) from intersection theory in
M0,m(CP

n, d) we get a connection between the sought after numbers Nd and the
Gromov-Witten invariants.
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1.3 Gromov-Witten Invariants 1 INTRODUCTION

Corollary 2. For CP2 we have

Id( h2 · · · h2︸ ︷︷ ︸
3d−1 f actors

) = Nd. (20)

Here we can give a reason, why 3d− 1 general points is the right amount: We have
the condition, that the codimensions must sum to the dimension of the moduli space.
Thus in the present case we have

2d + 2 + d + m− 3 = 2m (21)

⇒ m = 3d− 1. (22)

Now follow several lemmas concerning more properties of the Gromov-Witten in-
variants.

Lemma 3. For d = 0, only those Gromov-Witten invariants with m = 3 and ∑ codim = n
are non-zero. In that case, we have

I0(γ1 · γ2 · γ3) =
∫
(γ1 Y γ2 Y γ3) X [CPn]. (23)

Lemma 4. For m < 3, only

I1(hn · hn) = 1 (24)

is non-zero. This corresponds to the fact that there is a unique line passing through two
general points.

Lemma 5. If one of the γi is the fundamental class 1 = h0 ∈ H0(CPn), then the only
non-zero Gromov-Witten invariant occurs with d = 0 and m = 3.

Lemma 6. If one of the γi is the hyperplane class h ∈ H2(CPn), then we have the divisor
equation:

Id(γ1 · · · γm · h) = Id(γ1 · · · γm) · d (25)

Thus in the case of CP2, it is enough to consider the Id(h2 · · · h2) = Nd to compute
all the Gromov-Witten invariants. One can prove an even stronger result. Firstly,
because of the isomorphism in equation (15) one can prove the splitting lemma (4.3.2
in [3]), with the important corollary:

7



1.3 Gromov-Witten Invariants 1 INTRODUCTION

Corollary 7. The following recursion holds:∫
D(A,B; dA,dB)

ν∗1 (γ1) Y · · ·Y ν∗m(γm) = ∑
e+ f=n

IdA(∏
a∈A

γa · he) · IdB(∏
b∈B

γb · h f ) (26)

This in turn can the be used to prove (with several other lemmas)

Theorem 8 (Reconstruction for CPn). All the Gromov-Witten invariants for CPn can be
computed recursively, and the only necessary initial value is I1(hn · hn) = 1.

8



2 QUANTUM COHOMOLOGY OF CPN

2 Quantum Cohomology of CPn

After this rather lengthy introduction/reminder, start with the definition of the quan-
tum cohomology in the case of CPn. First, a rather easy but very useful concept needs
to be introduced.

2.1 Generating Functions

For a sequence of numbers {Nk}∞
k=0 define the (exponential) generating function as a

formal power series

F(x) =
∞

∑
k=0

xk

k!
Nk. (27)

Its derivative Fx = d
d x F is the generating function for the sequence {Nk+1}∞

k=0, which
can be easily seen by explicit calculation:

Fx =
∞

∑
k=0

d
d x

xk

k!
Nk =

∞

∑
k=1

k · xk−1

k!
Nk =

∞

∑
k=1

xk−1

(k− 1)!
Nk

=
∞

∑
k=0

xk

k!
Nk+1

(28)

This gives a hint, that generating functions can be used to switch between differential
equations and recursions of numbers. Another relation we will need later is the prod-
uct of two generating functions: Let { fk}∞

k=0, {gk}∞
k=0 be two sequences of numbers

and let F, G be their generating functions. Then their product (F ·G) is the generating
function for the sequence

hk =
k

∑
i=0

(
k
i

)
figk−i. (29)

Again, this can be easily verified directly.
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2.2 Gromov-Witten Potential 2 QUANTUM COHOMOLOGY OF CPN

2.2 Gromov-Witten Potential

As a reminder, we have a basis for H∗(CPn) as a graded ring given by

{h0, h1, . . . , hn−1, hn}. (30)

Then by linearity of the Id, the possible input classes for the Gromov-Witten invari-
ants are

(h0)·a0(h1)·a1 · · · (hn)·an , (31)

parametrized by a = (a0, . . . , an) ∈ Nn+1 (the dot in the exponent denotes the i-fold
insertion into Id, not an i-fold product with itself).

Then, to get rid of the parameter d, define the "collected" Gromov-Witten invariants:

I(γ1 · · · γm) =
∞

∑
d=o

Id(γ1 · · · γm) (32)

It should be noted, that no information is lost, as at most one term in the sum on the
right hand side is non-zero. This is because the sum of codimensions must equal the
dimension of the moduli space. Thus:

∑
i

codim(γi) = nd + n + d + m− 3 (33)

⇒ d =
∑i codim(γi)− n−m + 3

n + 1
(34)

Finally, define the Gromov-Witten potential Φ as the generating function for the num-
bers I((h0)·a0(h1)·a1 · · · (hn)·an):

Φ(x0, . . . , xn) = ∑
a0,...,an

xa0
0 · · · x

an
n

a0! · · · an!
I((h0)·a0(h1)·a1 · · · (hn)·an) (35)

Now, for practical purposes, rewrite this in multi-index notation. For that, use x =

(x0, . . . , xn) and a = (a0, . . . , an) together with the rules xa = xa0
0 · · · x

an
n , a! = a0! · · · an!

and ha = (h0)·a0(h1)·a1 · · · (hn)·an to write Φ as

Φ(x) = ∑
a

xa

a!
I(ha). (36)

Another formal manipulation is needed for later. Interpret the formal variables {x0,

10
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. . . , xn} as generic coordinates on CPn with respect to the chosen basis. Thus, a gen-
eral element γ ∈ H∗(CPn) can be written as

γ =
n

∑
i=0

xihi. (37)

Now, the formal variables in Φ can be hidden and the following relation holds:

Φ = I(exp(γ)) =
∞

∑
m=0

1
m!

I(γ·m) (38)

This can be seen by applying I to the following equation and using its linearity.

exp(γ) = exp(
n

∑
i=0

xihi) =
n

∏
i=0

exp(xihi)

=
n

∏
i=0

(
∞

∑
ai=0

xai
i

ai!
(hi)·ai

)
= ∑

a

xa

a!
ha

(39)

At last, the partial derivatives of the Gromov-Witten potential will prove to be in-
teresting. Taking a partial derivative with respect to xi is the same as inserting an
additional hi, i.e.

Φi = ∑
a

xa

a!
I(ha · hi) (40)

and

Φijk = ∑
a

xa

a!
I(ha · hi · hj · hk). (41)

2.3 Classical and Quantum Product

The classically we have

∫
CPn

hi
Y hj =

1 for i + j = n

0 otherwise
(42)

or, more generally

hi
Y hj = hi+j. (43)

11
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This can then be rewritten using the zero-degree Gromov-Witten invariants.

hi
Y hj = ∑

e+ f=n
I0(hi · hj · he)h f (44)

This holds, because the zero-degree invariant is given by (lemma 3)

I0(hi · hj · he) =
∫
CPn

hi
Y hj

Y he. (45)

So, the degree-zero invariants appear as the structure constants for the classical prod-
uct on the cohomology. The idea is then, to define a quantum product, using all the
Gromov-Witten invariants

hi ? hj := ∑
e+ f=n

Φijeh f . (46)

This defines a product on H∗(CPn)⊗ZQ[[x]], the (large) quantum cohomology ring (the
authors in [3] chose rational coefficients).

The easiest property to see is that this product is commutative, as the Φijk are invari-
ant under permutation of the (i, j, k). Additionally, the fundamental class h0 is the
identity for the product ?. This can be seen via

h0 ? hi = ∑
e+ f=n

Φ0ie h f = ∑
e+ f=n

 ∫
CPn

h0
Y hi

Y he

 h f = hi, (47)

using lemma 5 and equation (42). The last property is lengthy and hard to prove, but
it will prove to be quite fundamental.

Theorem 9. The quantum product is associative, i.e.

(hi ? hj) ? hk = hi ? (hj ? hk). (48)

Proof. Only a brief sketch will be given here. Start by writing down the associativity
in terms of the Gromov-Witten potential:

(hi ? hj) ? hk = ∑
e+ f=n

∑
l+m=n

ΦijeΦ f kl hm

= ∑
e+ f=n

∑
l+m=n

ΦjkeΦ f il hm = hi ? (hj ? hk)
(49)

12
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Then, as the hm are linearly independent, this is equivalent to having

∑
e+ f=n

ΦijeΦ f kl = ∑
e+ f=n

ΦjkeΦ f il (50)

for every i, j, k, l. Those are the so-called WDVV equations after Witten, Dijkgraaf,
Verlinde and Verlinde. This equation in turn is proven using the fundamental equiv-
alence of boundary divisors, as detailed in equation (17). So in other words, all this
boils down to the equivalence of the two boundary divisors

D(p1p2|p3p4) = D(p2p3|p1p4), (51)

or as a diagram:

x1
x2 x3 x4 ∼ x2

x3 x1 x4

All of this can also be brought into a different, broader context. Let X be a projective
homogeneous variety. Then consider the vector space V = H∗(X,C) as a smooth
manifold. Let T0, . . . , Tm be a basis of that and ∂0, . . . , ∂m be the corresponding vector
fields. Then one can define the Poincaré metric gij =

〈
∂i|∂j

〉
and as well a (formal) con-

nection via its Christoffel symbols A f
ij = ∑e Φijege f . Then associativity of the quan-

tum product is equivalent to the connection being flat [3]. Making this integrability a
condition leads to the concept of a Frobenius manifold.

13



3 KONTSEVICH’S FORMULA

3 Kontsevich’s Formula

Split the Gromov-Witten potential into a degree-zero and a positive-degree part

Φ = Φcl + Γ. (52)

Then the classical part Φcl is given by

Φcl =
∞

∑
m=0

1
m!

I0(γ
·m) = ∑

i,j,k

1
3!

I0(hi · hj · hk), (53)

using again lemma 3 to considerably simplify the expression. Then as expected,
the third derivatives, the structural constants, are given by the degree-zero Gromov-
Witten invariants

Φcl
ijk = I0(hi · hj · hk). (54)

The quantum part Γ cannot be simplified any further and is given by

Γ =
∞

∑
m=0

1
m! ∑

d>0
Id(γ

·m) =:
∞

∑
m=0

1
m!

I+(γ·m). (55)

Then the quantum product splits into a classical and a quantum part:

hi ? hj = ∑
e+ f=n

(I0(hi · hj · he) + Γije) h f (56)

= hi
Y hj + ∑

e+ f=n
Γije h f (57)

As we are ultimately interested in counting rational planar curves, we are now going
to specify to CP2. The multiplication between elements is given by

h1 ? h1 = h2 + Γ111 h1 + Γ112 h0

h1 ? h2 = Γ121 h1 + Γ122 h0

h2 ? h2 = Γ221 h1 + Γ222 h0

h0 ? h1 = h1

h0 ? h2 = h2.

14



3 KONTSEVICH’S FORMULA

Then use the associativity constraint to derive a relation between the Γ:

(h1 ? h1) ? h2 = h1 ? (h1 ? h2) (58)

Simply multiplying this out gives the relation

Γ221 h1 + Γ222 h0 + Γ111(Γ121 h1 + Γ122 h0) + Γ112 h2

= Γ121(h2 + Γ111 h1 + Γ122 h0) + Γ112 h1 (59)

Then comparing the h0-coefficients gives the (after checking all other constraints)
unique relation between the Γ:

Γ222 + Γ111Γ122 = Γ121Γ112 = Γ112Γ112 (60)

Now it can be argued, that x0 and x1 in γ = ∑2
i=0 xihi can be set to zero without

loosing information. The argument for x0 is that Gromov-Witten invariants involving
the fundamental class are only non-zero in degree zero, and these are not a part of
Γ. For x1 remember the divisor equation from lemma 6, which basically says that
those Gromov-Witten invariants can be reduced to cases without h1 without loosing
information. Thus set x = x2 and look at the third derivatives of Γ:

Γijk =
∞

∑
m=0

1
m!

I+(γ·m · hi · hj · hk) (61)

=
∞

∑
m=0

xm

m!
I+((h2)·m · hi · hj · hk) (62)

The crucial observation is then, that Γijk is the generating function for the numbers
{I+((h2)·m · hi · hj · hk)}∞

m=0. Thus it is plausible that there is a recursive relation be-
tween these numbers (and hopefully also between the Nd) instead of the differential
equation (60).

Using equation (29) for the product of two generating functions gives the recursive
relation

I+((h2)·m h2 h2 h2) +
m

∑
i=0

(
m
i

)
I+((h2)·i h1 h1 h1) I+((h2)·(m−i) h1 h2 h2)

=
m

∑
i=0

(
m
i

)
I+((h2)·i h1 h1 h2) I+((h2)·(m−i) h1 h1 h2).

(63)
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Then apply a formal manipulation to the sum to obtain

I+((h2)·m h2 h2 h2) + ∑
mA+mB=m

m!
mA!mB!

I+((h2)·mA h1 h1 h1) I+((h2)·mB h1 h2 h2)

= ∑
mA+mB=m

m!
mA!mB!

I+((h2)·mA h1 h1 h2) I+((h2)·mB h1 h1 h2).
(64)

Now use that the codimensions of the inputs must sum up to the dimension of the
moduli space. Do this for the five appearing Gromov-Witten invariants:

(1) Here the moduli space is M0,m+3(CP
2, d), which has dimension 3d + 2 + m.

The sum of the codimensions is 2m + 6, thus

m = 3d− 4. (65)

Accordingly we get

I+((h2)·(3d−4) h2 h2 h2) = I+((h2)·(3d−1)) = Nd, (66)

using corollary 2 from intersection theory.

(2) This time the moduli space in question isM0,mA+3(CP
2, dA) of dimension 3dA +

2 + mA. This gives mA = 3dA − 1 and with the help of lemma 6 we get

I+((h2)·(3dA−1) h1 h1 h1) = NdA d3
A. (67)

(3) In this case we have mB = 3dB − 3 and thus

I+((h2)·(3dB−3) h1 h2 h2) = NdB dB. (68)

(4) Here we have mA = 3dA − 2, which gives

I+((h2)·(3dA−2) h1 h1 h2) = NdA d2
A. (69)

(5) This case is equivalent to the last one. Thus mB = 3dB − 2 and

I+((h2)·(3dB−2) h1 h1 h2) = NdB d2
B. (70)
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3 KONTSEVICH’S FORMULA

So, just on the basis of the associativity and the enumerative properties of the Gromov-
Witten invariants we have shown the following long sought-after theorem:

Theorem 10 (Kontsevich 1994). The following recursive relation holds for Nd, the number
of rational curves of degree d passing through 3d− 1 general points in the plane.

Nd + ∑
dA+dB=d

(3d− 4)!
(3dA − 1)!(3dB − 3)!

d3
ANdA dBNdB

= ∑
dA+dB=d

(3d− 4)!
(3dA − 2)!(3dB − 2)!

d2
ANdA d2

BNdB

(71)

The only input needed is N1 = 1.

17
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4 Small Quantum Cohomology Ring

Now in this last chapter, we want to illustrate a version of the quantum product
which arose first in the context of mathematical physics. For that go back to general
CPn. Instead of using the full information content of the Gromov-Witten invariants,
use information only from divisor classes, that is those with codimension 1. Thus
consider only γ = x1h1 in the Gromov-Witten potential. Then we can use the divisor
equation from lemma 6 to simplify the third derivatives of Φ:

Φijk =
∞

∑
m=0

xm
1

m! ∑
d≥0

Id(h·m · hi · hj · hk)

=
∞

∑
m=0

xm
1

m! ∑
d≥0

dm Id(hi · hj · hk)

(72)

For dimensional reasons we need nd + n + d = i + j + k, which is only possible for
d = 0 (classical) and d = 1 (quantum part). Setting q = ex gives a nice formula for the
quantum product

hi ? hj =

hi+j for i + j ≤ n

q hi+j−n−1 for n < i + j ≤ 2n.
(73)

So, classically we had the ring isomorphism H∗(CPn) ∼= Z[h]
/
(hn+1) . This calcula-

tion then gives the small quantum cohomology ring, which for CPn is isomorphic to

Z[h, q]
/
(hn+1 − q) . (74)

Here one can also take a more physical approach as in the original paper by Wit-
ten. Here the idea is to look at twisted N = 2 supersymmetric sigma models in two
dimensions with a target manifold X which is Kähler. Then the cohomology of the
supersymmetry Q can be identified with the cohomology of X. Considering further-
more the ring structure, these rings are called the chiral rings, see [4] for more. The
classical version of the chiral ring is the cohomology ring, but there are quantum cor-
rections. Thus the chiral ring of the sigma model is called the quantum cohomology
of the Kähler manifold X [1].

Now specify again to the case of CPn. Consider the sigma model CP1 → CPn as in
[2]. This theory is twisted with an A-twist and it flows in the infrared to the Landau-
Ginzburg model [1]. It has n + 1 vacua with a mass gap. So set the field σ simply

18



4 SMALL QUANTUM COHOMOLOGY RING

equal to their expectation value. This is given by (formula 4.7 in [2])

σ = Λe
2π i k
n+1 , k = 1, . . . , n. (75)

So again we have recovered the same idempotents as before and we have the relation
σn+1 = Λn+1e2π i k. [1] offers another calculation of the small quantum cohomology
ring for the case of Fano hypersurfaces. It should be noted that for CPn the small
quantum cohomology carries no enumerative interpretation, but it is useful for more
complex spaces, as it is easier to calculate than the full version [3].
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