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Abstract

The aim of the present write-up is to discuss solitons in N = 2 supersymmetric Landau-
Ginzburg models, focusing on a third-order superpotential. Previously, we discuss in depth the
original discovery of fermion number fractionization as well as its intimate connections to index
theory.
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1 Introduction

There exists an intriguing topological and quantum mechanical aspect of fermion-soliton interactions:
the resulting quantum states carry fermionic quantum numbers, which can have fractional or even
irrational values [8].

In a quantum field theory the vacuum state is characterized by its trivial physical quantum num-
bers. Particularly, the vacuum fermion number must vanish. Superselection rules of field theories
imply that local operators can always be regarded as carrying integer fermion numbers. Thus, every
state accessible from the vacuum by the operation of local operators must have an integer fermion
number, and only through nonlocal, nontrivial deformations of the quantum system can one expect to
arrive at a state with a noninteger fermion number.
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Among the possibilities of such a realization are the spontaneous breakdown of the fermion num-
ber symmetry, resulting in a superconducting phase with the fermion number being not well-defined,
as well as to consider field theory models with topological solitons. The latter models have sectors
characterized by their nontrivial topological quantum numbers that are disconnected from the vacuum
sector by an infinite energy barrier. As a consequence of the nonlocal nature of the soliton configura-
tions, the fermion number operator may now have noninteger eigenvalues.

The present notes are structured as follows: we start with a brief introduction to solitons in general,
following the lines of the original paper by Jackiw and Rebbi [7]. A simple but illustrative example,
the polymer story, will serve to explain basic principles behind fractional fermion numbers. We will
proceed by pointing out in section 2 a remarkable link between fermion numbers and an open space
generalization of the Atiyah-Patodi-Singer index theorem (APS). Finally, in section 3 we will discuss
the actual goal of the talk, soliton states in N = 2 supersymmetric Landau-Ginzburg models.

The main resource for sections 1 and 2 was an excellent review by Niemi and Semenoff [8], while
section 3 mainly draws from two insightful papers by Fendley and Intriligator [4, 5].

1.1 Soliton states

Following [2], solitons, obeying classical field equations of motion in the Minkowski space-time,
are characterised by three central properties: (i) they are of permanent form, (ii) they are localized
within a certain region, and (iii) upon interaction with other solitons they emerge unchanged from the
collison, except for a phase shift. Hence, in that they are non-dispersive localised packets of energy
moving uniformly, solitons resemble extended particles, even though they are solutions of non-linear
wave equations. A correspondence between classical soliton solutions and extended-particle states
of quantised field theories could be established in 1974-1975 by investigating fluctuations about the
soliton, giving rise to whole series of excitated states as well. From this, also instantons arose as
localized finite-action classical solutions of the Euclidean version of the field equations of any given
model, which turned out to lead to tunnelling effects that can significantly affect the structure of the
theories’ vacuum states.

Typically, soliton and instanton solutions are characterised by some topological index, related to
their behaviour at spatial infinity [9]. For solitons, this index turns out to be a conserved quantity
which, in the quantised theory, becomes a conserved quantum number characterising the soliton state,
while in the case of instantons, the existence of a non-zero topological index leads to the generation
of a family of vacuum states, characterised by some vacuum angle θ .

1.2 Discovering fermion number fractionization

In principle, the fermion number is a conserved charge corresponding to the continous U (1) phase
invariance of a Lagrangian with Dirac fermions. It is a c-number that is odd under C or CP. Fur-
thermore, in field theory models with a charge conjugation symmetry general considerations, as those
mentioned before, indicate that the eigenvalues of the second quantised fermion number operator are
always either integers or half-integers. Indeed, let N,N′ be the fermion number of any two quantum
states. Their difference in a given sector is always an integer,

N −N′ = n, (1)

and consequently, since under charge conjugation C for all states with fermion number N, a state with
fermion number −N must also exist, we find that 2N = n, i.e.

N =
1
2

n. (2)
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In particular, if a single state with half-integer N exists, by (1) every state that can be built from the
action of local operators on it must have half-integer fermion number.

The first to actually investigate such a state were Jackiw and Rebbi in 1976 [7]. We review their
calculation here analogously to [8]. They considered 1+1 dimensional theories involving a scalar field
Φ and a spinor field Ψ with a Hamiltonian

H =

ˆ
dx

{
1
2

Π
2 +

1
2

(
d
dx

Φ

)2

+V (Φ)+Ψ
†
(
−iα

d
dx

+βΦ

)
Ψ

}
, (3)

where Π is the canonical momentum conjugate to Φ and V (Φ) is the scalar field potential energy
density. We assume V (Φ) to be a symmetric potential with doubly degenerate minimum, being given
by

V (Φ) =
λ 2

2Φ2
0

(
Φ

2 −Φ
2
0
)2

= V (−Φ) . (4)

The two Dirac matrices present in 1+1 dimensions can be represented by

α = σ
2 =

(
0 −i
i 0

)
, β = σ

1 =

(
0 1
1 0

)
. (5)

We perform a weak-coupling expansion in the model (3) by first identifying the minima of the bosonic
energy functional (for static fields):

EB =

ˆ
dx

{
1
2

(
d
dx

Φ

)2

+V (Φ)

}
. (6)

For a double-well potential as (4) is one EB has several local minima. Soliton states can be found
by minimizing (6) with an x-dependent Φ, subject to the condition of energy-finiteness. Generically,
soliton states exist whenever the potential energy V (Φ) has degenerate minima. In the case of (4) the
ground state is double degenerate, which implies the existence of a soliton interpolating between −Φ0
at x = −∞ and Φ0 at x = +∞, and an antisoliton interpolating between Φ0 at x = −∞ and −Φ0 at
x =+∞.

Having found the minima of (6) we quantize the Dirac Hamiltonian treating Φ as a background
field. Since we consider here an adiabatic approximation, we ignore the bosonic quantum fluctuations
about the classical background configurations. This approximation is semiclassical in nature but, in
the case of ground state quantum numbers, can be expected to brovide very accurate results unless the
phase symmetry is broken.

In the ground state, the minimum of V (Φ), given by (4), is at Φ = ±Φ0 and the reflection sym-
metry Φ ↔−Φ is spontaneously broken. We find the Dirac Hamiltonian to reduce to the translation
invariant free field Hamiltonian(

−iα
d
dx

+βΦ0

)
u(±) (x) = E±u(±) (x) = ±

√
k2 +Φ2

0u(±) (x) , (7)

where charge conjugation is implemented by σ3:

u(−)
k (x) = σ

3u(+)∗
k (x) , (8)

σ
3 = iσ2

σ
1 =

(
1 0
0 −1

)
. (9)
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We introduce the usual eigenmode expansion for the second quantized field:

Ψ(t,x) =

ˆ
dk
{

u(+)
k (x)e−iEktak +

(
σ

3u(+)∗
k (x)

)
eiEktb†

k

}
, (10)

where ak,a
†
k and bk,b

†
k are the creation and annihilation operators for fermion and antifermions re-

spectively. Upon imposing the standard equal-time anticommutation relations,{
Ψ(t,x) ,Ψ† (t,y)

}
= δ (x− y) , (11)

{Ψ(t,x) ,Ψ(t,y)} =
{

Ψ
† (t,x) ,Ψ† (t,y)

}
= 0, (12)

we find the conventional nonvanishing anticommutators{
a†

k ,aq

}
=

{
b†

k ,bq

}
= δ (k−q) . (13)

The fermion number operator is defined as

Q =

ˆ
dx : Ψ

† (x)Ψ(x) : =
1
2

ˆ
dx
[
Ψ

† (x) ,Ψ(x)
]
, (14)

where we have implemented normal ordering using the standard Dirac commutator prescription. This
has the virtue, that under C the fermion number is odd, Ψ → σ3Ψ∗. We find furthermore

Q =

ˆ
dk
{

a†
kak −b†

kbk

}
. (15)

The eigenstate spectrum can be built inter alia on the Φ =±Φ0 vacuum, for which

Q |Ω〉 = 0, (16)

|Ω〉 being the vacuum state, holds.
Explicit soliton profiles can be found now as solutions to the classical equations of motion,

− d2

dx2 Φ(x)+V ′ (Φ) = 0, (17)

subject to the boundary conditions Φ(+∞) =−Φ(−∞) =±Φ0, which imply that these solitons inter-
polate between the two vacua. Specializing to the potential (4), the soliton solutions can be explicitely
given by

Φ(x) = ±Φ0 tanh(Φ0 (x− x0)) , (18)

where x0 denotes the position of the soliton. + and − refer to the soliton S and the antisoliton S̄,
respectively, both of which have finite energy, computed via (6),

ES =
4
3

λΦ
2
0, (19)

which we interpret as the mass of the soliton. To second quantize the fermions around the soliton, we
need to solve the eigenvalue equation

HψE (x) =

(
−iα

d
dx

+βΦ(x)
)(

u
v

)
= EψE (x) = sign(E)

√
k2 +Φ2

0

(
u
v

)
, (20)
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where Φ(x) denotes the soliton solution. Iterating the component form of this we find u and v to
satisfy the following Schrödinger equations(

− d2

dx2 −Φ
′ (x)+Φ

2 (x)
)

u(x) = E2u(x) ,
(
− d2

dx2 +Φ
′ (x)+Φ

2 (x)
)

v(x) = E2v(x) . (21)

However, it suffices to solve only one of these equations. The charge conjugation symmetry

ψ−E (x) = σ
3
ψ

∗
E (x) (22)

again pairs positive and negative energy modes. Surprisingly, the situation markedly changed: in ad-
dition to the continuum modes, the Dirac Hamiltonian also admits a normalizable zero-energy eigen-
mode,

ψ0 (x) = N
(

1
0

)
exp
(
−
ˆ x

0
dy Φ(y)

)
, (23)

which is charge self-conjugate. Hence, a new bound state appears at the mass gap center.
An example of a solution for u to (20) can be found in a closed form, if the soliton (18) is imple-

mented: the continuum normalized energy eigenstates are

u(x) = − Φ0

Φ0 + ik

(
tanh Φ0x− ik

Φ0

)
eikx, (24)

while the zero-energy mode is obtained by substituting (18) into (23). As before, the quantization
happens by expansion in eigenmodes:

Ψ(t,x) = ψ0 (x)d +

ˆ
dk
{

ψk (x)e−iEktak +
(
σ

3
ψ

∗
k (x)

)
eiEktb†

k

}
. (25)

Here, the operators a†
k ,ak and b†

k ,bk create and annihilate fermions and antifermions in the soliton
sector. However, since d is associated with a zero-energy eigenmode, when operating on the soliton
state it produces another state with the same energy. Hence, the ground state is doubly degenerate and
in order to distinguish these states we label them as |±,S〉.

Still imposing anticommutation relations (11) we find{
ak,a†

q
}

=
{

bk,b†
q
}

= δ (k−q) , (26){
d,d†} = 1, (27)

with all other anticommutators vanishing. This implies, that the ground states |±1,S〉 form a two-
dimensional representation of the algebra (27),

d |+,S〉 = |−,S〉 , (28)

d† |−,S〉 = |+,S〉 , (29)

d |−,S〉 = d† |+,S〉 = 0. (30)

We obtain for the fermion number operator

Q = d†d +

ˆ
dk
{

a†
kak −b†

kbk

}
− 1

2
. (31)

This implies, that the ground states now carry a nonvanishing fermion number,

Q |±,S〉 = ±1
2
|±,S〉 . (32)
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Fig. 1: (a) the two degenerate ground states for the electronic structure of polyacetylene, (b) an
imperfection interpolating between the two ground states, and (c) a chain with two imperfections.
Taken from [6].

The soliton state is doubly degenerate with each state carrying a fractional fermion number ±1/2.
Furthermore, since other states in the soliton sector are obtained by the action of local operators on the
states |±,S〉 the fermion number of all other states must also be a half-integer. In the system discussed
here, Q is diagonal in the number representation, as a consequence of the orthogonality of positive
and negative energy eigenfunctions of the Dirac Hamiltonian. Consequently, the fermion number has
not only half integral expectation values, but also vanishing fluctuations.

In the context of conventional quantum field theory the appearance of a fractional fermion number
is best understood as an effect of vacuum polarization, i.e. a modification of the fermionic Dirac sea
by its interaction with solitons.

1.3 The polymer story

Even though Jackiw and Rebbi concluded in their famous paper [7],

“The existence of states with fermion number ±1/2 in a theory where all fundamental fields have
integral fermion number is truly remarkable, yet the practical significance of this is in no way

obvious.”,

fermion number fractionization has found an important phenomenological realization in the physics
of linearly conjugated polymers, reviewed inter alia in [6]. There exist fractionally charged solitons on
polyacetylene, a caricature model of which is shown in Fig. 1 (a). In the ground state we have alter-
nating electronic single and double bonds, which may be arranged in two inequivalent, but degenerate
forms A and B.

Upon implementation of an imperfection the configuration cannot be brought anymore to either
pure A or pure B by any finite rearrangement of electrons, so it will relax to a topologically stable
configuration, giving rise to a domain-wall soliton. Asymptotically in one direction the polymer is
in phase A, whereas asymptotically in the opposite direction it is in phase B. In between, there must
be a region of finite energy density where the bond alternation pattern interpolates between these two
phases. This is the location of the soliton.

If we put two imperfections together as in Fig. 1 (b), we find a configuration which asymptotically
begins and ends as A. Compared to the corresponding segment of pure A, it is missing one bond.
If we add an electron to the two-imperfections strand, we can deform this configuration by a finite
rearrangement into a pure A strand. Interpreting this, we see a two-soliton state is equivalent to the
ground state, if we add an electron. Hence, by symmetry, each separated soliton must carry electron
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number 1/2 per spin degree of freedom. Indeed, we find that such domain-wall solitons in polymers
display anomalous quantum numbers as a signature of fermion fractionization.

There has even been experimental evidence for this. In polyacetylene chains the charged solitons
interact with each other to form a soliton band which can eventually merge with the band edge to
create true metallic conductivity. The Polyacetylene can show conducting behaviour. The discovery
and development of conducting polymers were reason enough to award the Nobel prize in chemistry
in 2000 to Heeger, MacDiarmid and Shirakawa, which would not have been possible, if Jackiw and
Rebbi had not came accross the phenomenon of fermion number fractionization.

2 Solitons in QFT and index theory

In the following section we will link solitons in quantum field theory to index theory, especially to
indices of the respective fermion number operators. The Atiyah-Patodi-Singer index theorem (APS)
and respective η-invariants will play a major role in their computation.

2.1 APS for manifolds with boundary revisited

In the Atiyah-Patodi-Singer index theorem the manipulation of characteristic classes plays an essential
role. Characteristic classes allow for the distinction between inequivalent fiber bundles.

Characteristic classes

The description follows basically [3]. Let α be a complex k× k matrix and P(α) be a polynomial in
the components of α . Then P(α) is called a characteristic polynomial, if

P(α) = P
(
g−1

αg
)
∀g ∈ Gl(k,C) . (33)

If α has eigenvalues {λ1, . . . ,λk}, P(α) is a symmetric function of the eigenvalues. If S j (λ ) is the jth
symmetric polynomial, i.e.

S j (λ ) = ∑
i1<i2<···<i j

λi1λi2 . . .λi j , (34)

P(α) becomes a polynomial in the S j (λ ). If a matrix-valued 2-form Ω is substituted for the matrix α

in an invariant polynomial, we find the following properties to hold: (i) P(Ω) is closed, (ii) P(Ω) has
topologically invariant integrals.

The Chern form of a complex vector bundle E over a manifold M is obtained by substituting the
curvature 2-form Ω into the invariant polynomical Det(1+α). We define the total Chern form as

c(Ω) = Det
(

I +
i

2π
Ω

)
= 1+ c1 (Ω)+ c2 (Ω)+ . . . , (35)

with the individual Chern forms c j (Ω) being polynomials of degree j in Ω,

c0 = 1, c1 =
i

2π
TrΩ, . . . (36)

The sum in (35) is always finite: c j = 0 for 2 j > n = dimM. Since P(Ω) is closed, any homogeneous
polynomial in the expansion of an invariant polynomial P(Ω) is closed: dc j (Ω) = 0. Thus, the Chern
forms c j (Ω) define the 2 jth cohomology classes. This cohomology class, which we denote by c j (E),
is independent of the connection because P(Ω)−P(Ω′), Ω′ being the curvature of another connection
on the manifold, is exact for any characteristic polynomial.
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Upon diagonalizing Ω as

g−1 iΩ
2π

g = diag(λ1, . . . ,λk) , (37)

the Chern class becomes

c(Ω) =
k

∏
i=1

(1+λi) . (38)

Another occurring characteristic polynomial is the Chern character, defined as

ch(Ω) ≡ Trexp
(

iΩ
2π

)
=

k

∑
i=1

exp(λi) , (39)

as well as the Todd class, defined as

Td(Ω) ≡ ∏
i

λi

1− exp(−λi)
. (40)

However, the Euler class is assigned to the tangent bundle T M of the manifold M,

e(T M) =
k/2

∏
i=1

λi. (41)

Index theorem for manifolds without boundary

The index theorem states the existence of a relationship between the analytic properties of differential
operators on fiber bundles and the topological properties of the fiber bundles themselves.

In the following M is defined to be a compact smooth manifold without boundary of dimension n.
Let E,F be vector bundles over M and D : C∞ (E)→C∞ (F) be a first-order differential operator. We
choose local bundle coordinates for E and F , with {xi} being local coordinates on M. This allows us
to decompose D,

D = a j (x)
∂

∂x j
+b, (42)

where a j,b are matrix-valued. D is said to be an elliptic operator, if E = F and if its Fourier transform
is invertible for the Fourier-transform variable k 6= 0. Similarly, higher-order elliptic operators can be
defined.

The index of an operator, determined by the number of zero-frequency solutions to a generalized
Laplace’s equation, is expressed in terms of the characteristic classes of the fiber bundles involved. It
can be defined as

index(D) ≡ dimkerD−dim ker D†. (43)

Let {Ep} be a finite sequence of vector bundles over M and let Dp : C∞ (Ep) → C∞ (Ep+1) be a
sequence of differential operators, that is furthermore a complex. Let D†

p : C∞ (Ep+1)→ C∞ (Ep) be
the adjoint map and let

∆p = D†
pDp +Dp−1D†

p−1 (44)
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be the associated Laplacian. We define the complex to be elliptic, i.e. ∆p to be an elliptic operator on
C∞ (Ep). We denote the elliptic complex by (E,D) = ({Ep} ,{Dp}). Its cohomology groups can be
defined as

H p (E,D) = ker Dp/imageDp−1. (45)

Since each cohomology class contains a unique harmonic representative, we find to have an isomor-
phism

H p (E,D) ∼= ker∆p. (46)

Thus, the index of an elliptic omplex (E,D) may be defined as

index(E,D) ≡ ∑
p
(−1)p dimH p (E,D) (47)

= ∑
p
(−1)p dim ker ∆p. (48)

We now roll up the complex and construct a convenient two-term elliptic complex with the same index
as a given complex (E,D). Let

F0 =
⊕

p
E2p, F1 =

⊕
p

E2p+1 (49)

be the even and odd bundles, respectively. We consider operators

A =
⊕

p

(
D2p +D†

2p−1

)
, A† =

⊕
p

(
D†

2p +D2p−1

)
, (50)

where A : C∞ (F0)→C∞ (F1) , A† : C∞ (F1)→C∞ (F0). Associated Laplacians are

�0 = A†A =
⊕

p
∆2p, �1 = AA† =

⊕
p

∆2p+1. (51)

Consequently, we find

index(F,A) = dim ker �0 −dim ker �1 (52)

= ∑
p
(−1)p dim ker ∆p = index(E,D) . (53)

Now, we are able to describe the general index theorem. Let (x,k) be local coordinates for T ∗ (M) and
choose the “symplectic orientation” dx1 ∧dk1 ∧ ·· · ∧dxn ∧dkn. Let D(M) be the unit disk bundle in
T ∗ (M) defined as D(M) =

{
(x,k) : |k|2 ≤ 1

}
, and S (M), the unit sphere bundle, be its boundary. We

take two copies D± (M) of the unit disk bundles and glue them together along their common boundary
S (M) to define a new fiber bundle Ψ(M) over M with fiber Sn, the compactified tangent bundle, and
the orientation on Ψ(M) chosen to be that of D+ (M). ρ : Ψ(M)→ M be the projection onto M, ρ±
be the restrictions of ρ to the “hemisphere bundles” D± (M), ρ± : D± (M)→ M.

Subsequently, we consider the pullback bundles

F+ = ρ
∗
+ (F0) over D+ (M) , F− = ρ

∗
− (F1) over D− (M) . (54)

We define the symbol bundle Σ(A) as F+ and F− glued together using a transition function Ã(x,k) =
σL (A)(x,k) mapping from F+ to F− over S (M) = D+ (M)∩D− (M). Define td(M) ≡ Td(T M) and
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ch(Σ(A)) be the Chern character of the symbol bundle. The Atiyah-Patodi-Singer index theorem
states, that

index(E,D) = index(F,A) =

ˆ
Ψ(M)

ch(Σ(A))∧ρ
∗td(M) , (55)

where in the integrand only those terms of dimension 2n = dimΨ(M) are included, the others vanish.
For the four classical elliptic complexes, this formula reduces to

index(E,D) = (−1)n(n+1)/2
ˆ

M
ch

(⊕
p
(−1)p Ep

)
td(M)

e(M)

∣∣∣∣
vol

, (56)

which we encountered already in the previous talk on APS.

Index theorem for manifolds with boundary

So far, the index theorem holds only for bundles with base manifolds M which are closed and com-
pact without boundary. As shown in [3] topological indices may change upon the manifolds having
nonempty boundaries. We will extend APS here to base manifolds M which may have nonempty
boundaries or which, for M noncompact, can be treated as limiting cases of manifolds with boundary.

First, we must investigate the boundary conditions which determine the spectra of the operators.
However, there exist topological obstructions to finding good local boundary conditions, such that for a
general index theorem for a manifold with boundary we must consider non-local boundary conditions
as well. Atiyah, Patodi and Singer discovered, that appropriate non-local boundary conditions could
indeed be used to formulate an index theorem for elliptic complexes over manifolds with boundary.

Let us start outlining the general nature of the APS index theorem. We begin by considering a
classical elliptic complex (E,D) over a manifold M with nonempty boundary ∂M. For simplicity,
one may assume {E} being rolled up to a 2-term complex, D : E0 → E1. In order to fomulate the
index theorem, we require analytic information on the boundary in addition to the purely topological
information which sufficed in the case without boundary.

For the time being we assume that M admits a product metric

ds2 = f (τ0) dτ
2 +gi j (τ0,θk) dθ

idθ
j (57)

on the boundary, where τ = τ0 defines the boundary manifold ∂M. We construct from D a Hermitian
operator whose eigenfunctions φ are subject to the boundary condition

φ ∼ e−kr, k > 0 (58)

near the boundary. Cohomology classes H p (E,D,∂M) are defined and the corresponding index is
taken to be

index(E,D,∂M) = ∑
p
(−1)p H p (E,D,∂M) . (59)

The extended APS index theorem for manifolds with boundary takes the general form

index(E,D,∂M) = V [M]+S [∂M]+ξ [∂M] . (60)

Here V [M] is the integral over M of the same characteristic classes as in the ∂M = /0 case. Thus, V is
computable from the curvature alone. S [∂M] is the integral over ∂M of the Chern Simons form and
only present if one uses a metric on M which does not become a product metric on the boundary. S
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is computable from the connection, the curvature, and the second fundamental form determined by a
choice of the normal to the boundary. However, we will not describe S in more detail here. For the
interested reader we may refer to [3] for more details. ξ [∂M] = cη [M] is proportional the η-invariant
of the boundary determined by the eigenvalues of the tangential part of D restricted to the boundary
∂M.

The η-invariant

We again consider our 2-term elliptic complex from the above. We choose ∂/∂τ to represent the
outward normal derivative on ∂M and write D as

D = A ·∂ +B
∂

∂τ
= B

(
B−1A ·∂ +

∂

∂τ

)
, (61)

where A and B are matrices and A · ∂ represents the tangential part of D. Whereas D itself might not
have a true eigenvalue spectrum since in general E0 6= E1, the operator

D̂ = B−1A ·∂ |∂M (62)

maps E0 → E0 on ∂M and does indeed have a well-defined spectrum. By {λi} we denote the eigen-
values of the tangential operator D̂ acting on ∂M.

The η-invariant of APS may finally be defined as

ηD [s,∂M] = ∑
{λi},λi 6=0

sign(λi) |λi|−s , s > n/2. (63)

Despite the apparent singularities at s = 0, it can be shown that this expression possesses a regular
analytic extension to s = 0, which defines the η-invariant,

ηD [∂M] ≡ ηD [s = 0,∂M] . (64)

If the elliptic operator D of interest admits zero eigenvalues, then one must be careful to account
for them in the definition of ηD. The correct prescription is to add hD (∂M) ,which is the dimension of
the space of function harmonic under D̂,

ηD → ηD +hD. (65)

Intuitively, ηD counts the asymmetry between the number of positive and negative eigenvalues on the
boundary. Furthermore, ηD is independent of the scale of the metric and consequently independent of
the numerical values of the {λi}.

2.2 Linking fermion numbers to index theory

Topological indices popping up

We shall now compute the fermion number in 1+1 dimensions for a background soliton, which has the
additional complication that it does not exhibit a conjugation symmetry. This calculation gives rise to
topological indices and thus shows up the intimate connection between fermion numbers and index
theory.

We start by defining two elliptic differential operators D,D† by

D =− d
dx

+ϕ (x) , D† =
d
dx

+ϕ (x) , (66)
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assuming the background field ϕ (x) to have a soliton profile, ϕ (x →±∞)→±ϕ0. We may write the
fermion Hamiltonian as

H =

(
m D
D† m

)
= H0 +mσ

3. (67)

Since
{

H0,σ
3
}
= 0 we conclude that H2 = H2

0 +m2 ≥ m2, such that consequently all eigenvalues of
H,

HψE = H
(

u
v

)
= E

(
u
v

)
= EψE , (68)

satisfy E2 ≥ m2. The components of (68) read

D†u = (E +m)v, Dv = (E −m)u, (69)

which upon iteration result in

DD†u =
(
E2 −m2)u, D†Dv =

(
E2 −m2)v. (70)

Notice, that (69) implies that every solution of (70) yields two solutions of (68) in the case of E 6=±m
and one solution if E =±m.

If m 6= 0, no constant 2× 2 matrix anticommutes with H, such that this Hamiltonian does not
admit of any norm-preserving symmetry such as charge conjugation symmetry relating its positive
and negative energy eigenmodes. However, due to

1
2
[
H2,σ3] =

{
H,

1
2
[
H,σ3]} = 0, (71)

we conclude, that the operator

1
2
[
H,σ3] =

(
0 −D

D† 0

)
(72)

maps all positive energy eigenmodes of H not annihilated by D or D† to its negative energy eigen-
modes and vice versa.

If we take u to be a properly normalized solution of (70) with E 6=±m, then

ψE (x) =

√
E +m

2E

(
u
v

)
, (73)

while similarly, if v is properly normalized with E 6=±m, then

ψE (x) =

√
E −m

2E

(
u
v

)
. (74)

Upon application of (72) to these wavefunctions we obtain

ψ̃E (x) =
1
2
[
H,σ3]

ψE (x) =

√
E +m

2E

(
(m−E)u

D†u

)
= −sign(E)

√
E2 −m2ψ−E (x) ,(75)

and if we assume ψE (x) being (continuum) normalized to unity, we find that ψ̃E (x) is normalized to
ˆ

dx ψ̃
†
E1
(x) ψ̃E2 (x) =

(
E2

1 −m2)
δ (E1 −E2) . (76)
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Thus, the symmetry operator (72) annihilates all zero modes of D and D† and maps all other bound
states and continuum state solutions of (68) into the corresponding bound and continuum states with
the opposite energy. However, we do not expect in general that a mapping like (75) preserves the
density of continuum states.

We shall now compute the expectation value of the fermion number operator in the soliton sector.
First, we introduce the second quantized fermion field operator,

Ψ(x) = ∑
n

ψ
(+)
n (x)an +∑

n
ψ

(−)
n (x)b†

n +

ˆ
dk
{

ψ
(+)
k (x)ak +ψ

(−)
k b†

k

}
, (77)

where the ψ
(±)
n (x) denote positive and negative energy bound state solutions of (68) and the ψ

(±)
k (x)

denote continuum solutions, respectively. The continuum operators ak,b
†
k are defined analogously

to those in section 1, and an,b†
n are creation and annihilation operators for the fermion and and an-

tifermion bound states. The usual anticommutation relations are imposed to hold, such that{
am,a†

n
}

=
{

bm,b†
n
}

= δmn (78){
ak,a†

q
}

=
{

bk,b†
q
}

= δ (k−q) . (79)

Substituting (77) and its Hermitian conjugate into (14) yields

N =
1
2

ˆ
dx 〈0|

[
Ψ

† (x) ,Ψ(x)
]
|0〉 = −1

2

ˆ
dx
ˆ

dE ψ
†
E (x)ψE (x)sign(E) , (80)

where |0〉 denotes the (eventually degenerate) ground state of the theory, and the ψE are defined as
above. We rewrite this as

N = −1
2

ˆ
∞

−∞

dx ∑
E=±|m|

ψ
†
E (x)ψE (x)sign(E)

−1
2

ˆ
∞

−∞

dx
ˆ

∞

−∞

dk
2π

∑
±E

ψ
†
E (x)ψE (x)sign(E) , (81)

where the first term is the sum over the zero modes of D and D†, while the second term is an integral
over the continuum states with

E = ±
√

k2 +m2 +ϕ2
0 . (82)

Notice, that the normalizable eigenstates with energy E 6=±m have disappeared in this formula. Sub-
stituting (73) into the second term we obtain

N = −1
2

sign(m) index(H0)−
1
2

ˆ
∞

−∞

dx
ˆ

∞

−∞

dk
2π

∑
±E

sign(E)
{

2+m
2E

u†
E (x)uE (x)

+
1

2E (E +m)

(
D†uE (x)

)† (
D†uE (x)

)}
, (83)

where the index of H0 is defined analogously to its definition in section 2.1 as

index(H0) = dim ker D† −dim ker D, (84)

here the index acquires values of +1(−1) for a soliton (antisoliton). Note that here we defined the
index of H0 as the negative of the definition in section 2.1, (43). We further integrate (83) by parts and
introduce asymptotic forms of the continuum solutions to (70),

u(x) =

{
eikx +RDD†e−ikx if x →−∞

TDD†eikx if x →+∞.
(85)
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We thus arrive at

N = −1
2

sign(m) index(H0)−
ˆ

∞

−∞

dk
2π

∑
±E

ϕ0sign(E)
4E (E +m)

(
|T |2 + |R|2 +1

)
. (86)

Using unitarity, |TDD† |2 + |RDD† |2 = 1, this integral can be evaluated, such that we finally find the
fermion number to be

N = − 1
π

arctan
(

ϕ0

m

)
. (87)

In the limit m → 0 this reduces indeed to the Jackiw and Rebbi case (32), i.e.

N = −1
2

sign(m) . (88)

Thus we find, that in the absence of a conjugation symmetry relating positive and negative energy
eigenmodes of the Dirac Hamiltonian, the fermion number generally acquires a nontrivial contrinuum
state contribution.

The spectral density and η-invariants

This paragraph serves to relate the spectral density to the fermion number following the review [8].
Contrary to the preceding calculation, the boundaries may result in significant difficulties when dealing
with inter alia topological solitons such as magnetic monopoles, since the soliton field may have a
nontrivial topology on the boundary. We will here formulate the problem in an open space, avoiding
such difficulties.

Consider a Hermitian Dirac operator H with eigenfunctions

Hψλ (κ,x) = λ (κ)ψλ (κ,x) , (89)

that form a complete set of states. We assume there to be N parameters κi : 1, . . . ,N labelling eigen-
functions and eigenvalues. Some of these parameters may be continous, some of them may be discrete,
and we normalize the eigenfunctions by

∑

ˆ
dκ ψλ (κ,x)ψ

†
λ
(κ,y) = δ (x− y) , (90)

ˆ
dxψ

†
λ
(κ,x)ψλ (κ̃,x) = δ (κ − κ̃) . (91)

Momentarily, assume H to not have zero eigenvalues. Define space-dependent ξ - and η-functions (cf.
section 2.1) as

ξH (s,x,y) = ∑

ˆ
dκ ψλ (κ,x)ψ

†
λ
(κ,y) |λ (κ)|−s , (92)

ηH (s,x,y) = ∑

ˆ
dκ ψλ (κ,x)ψ

†
λ
(κ,y)sign(λ (κ)) |λ (κ)|−s . (93)

Here, s is a complex number, and in the s → 0 limit both, ξH and ηH exist in the sense of distributions
with support on the x,y space.

Now we perform a variable-change by means of using λ ,α j, j = 1, . . . ,N − 1 instead of the κi,
where the α j’s are some conveniently chosen parameters. The parameter space integration measure
changes to dκ = J (λ ,α) dλ dα with J (λ ,α) a Jacobian determinant. We introduce the density matrix
ρH ,

ρH (λ ,x,y) = ∑

ˆ
dα J (λ ,α)ψλ (α,x)ψ

†
λ
(α,y) . (94)
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After substituting (94) into (92) and (93), taking a trace over spinor indices and integrating over the
space we get the ξ -function

ζH (s) =

ˆ
dxdyδ (x− y) tr

[ˆ
dλ ρH (λ ,x,y) |λ |−s

]
. (95)

To obtain a meromorphic ζH (s) with a finite s → 0 limit we redefine it by subtracting a suitable
comparison Hamiltonian expression, i.e.

ζH (s) =

ˆ
dxdyδ (x− y) tr

[ˆ
dλ (ρH (λ ,x,y)−ρH0 (λ ,x,y)) |λ |

−s
]
. (96)

Similarly, we may obtain the finite s → 0 limit having η-invariant

ηH (s) =

ˆ
dxdyδ (x− y) tr

[ˆ
dλ ρH (λ ,x,y)sign(λ ) |λ |−s

]
, (97)

which we in general encountered already in section 2.1 when we dealt with the open space extension
of APS. We wish to find a spectral density ρH (λ ) with the properties

ζH (s) =

ˆ
∞

−∞

dλ ρH (λ ) |λ |−s , (98)

ηH (s) =

ˆ
∞

−∞

dλ ρH (λ )sign(λ ) |λ |−s . (99)

Upon introducing the even and odd parts of ρH (λ ),

ρH (λ ) =
1
2
(ρH (λ )+ρH (−λ ))+

1
2
(ρH (λ )−ρH (−λ )) ≡ τH (λ )+σH (λ ) , (100)

we can rewrite these properties to find

ζH (s) = 2
ˆ

∞

0
dλ τH (λ )λ

−s, (101)

ηH (s) = 2
ˆ

∞

0
dλ σH (λ )λ

−s. (102)

By inverting these so-called Mellin transformations we obtain

τH (λ ) =
1

4πi

ˆ c+i∞

c−i∞
dsζH (s) |λ |s−1 , (103)

σH (λ ) =
1

4πi

ˆ c+i∞

c−i∞
dsηH (s) |λ |s−1 , (104)

which we shall interpret as the definitions of τH (λ ) and σH (λ ). We may thus redefine the spectral
density by

ρH (λ ) ≡ 1
4πi

ˆ c+i∞

c−i∞
ds{ζH (s)+ sign(λ )ηH (s)}|λ |s−1 , (105)

which we can expect to be well-defined on the real-line by a proper subtraction description.
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To find a relation between the spectral density and the fermion number we introduce the second
quantized Dirac fields: at time t = 0 the (ζ -function regulated) second quantized field has the expan-
sion

Ψs (x) = ∑

ˆ
dκ
{

uκ (x)aκ + vκ (x)b†
κ

}
|λ (κ)|−s/2 , (106)

where uκ (x) and vκ (x) are the positive and negative energy solutions to the eigenvalue equation (89).
The operators aκ ,b

†
κ and their Hermitian conjugates are annihilation and creation operators for the

fermion and antifermion bound states, respectively. Insisting on the equal-time anticommutator{
Ψ(t,x) ,Ψ† (t,y)

}
= ζH (s,x,y) (107)

with all other anticommutators vanishing we find as usual{
aκ ,a†

µ

}
=

{
bκ ,b†

µ

}
= δ (κ −µ) . (108)

We now wish to introduce a normal ordered fermion number operator: demanding that the fermion
number operator is bilinear in the quantized fields, its most general form is

Qs =

ˆ
dx : Ψ

†
s (x)Ψs (x) : (109)

= A
ˆ

dx
[
Ψ

†
s (x) ,Ψs (x)

]
+B
ˆ

dx
{

Ψ
†
s (x) ,Ψs (x)

}
, (110)

where A and B are c-numbers and A+B = 1/2. Substituting (106) and using completeness of the
eigenfunctions, we find

Qs = 2A
ˆ

dκ

{
a†

kak −b†
kdk

}
|λ (κ)|−s −AηH (s)+BζH (s) . (111)

To fix A,B we require the fermion number being odd under charge conjugation. Since a†
κaκ ↔ b†

κbκ

under charge conjugation, this is possible only if B = 0. Thus, the c-number part of the (regulated)
fermion number operator is

Ns = −1
2

ηH (s) . (112)

The ground state fermion number now finally reads

N = lim
s→0

Ns = −1
2

ηH (0) , (113)

and the fermion number of all other states differs from this only by integers as mentioned before.
To conclude this section, upon combination of (113) and (102) we obtain the following relation

between the spectral density and the fermion number,

N = − lim
s→0

ˆ
∞

0
dλ σH (λ )λ

−s. (114)

Hence, the fermion number of the ground state is (essentially) the Mellin transformation of the odd
spectral density evaluated at s = 0.
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2.3 The general case

The foregoing computations of the fermion number have always been performed in 1+1 dimensions.
However, the employed techniques are useful in higher dimensions only, if the background field has
spherical symmetry and if we restict ourselves to partial wave analysis. In this section we briefly want
to examine the general case as reviewed in section 15 of [8].

We consider an arbitrary Dirac Hamiltonian of the form

H = iγ0
γ

i
∂i +Q(x) , (115)

where the γµ ’s are the (Minkowski space) Dirac matrices and Q(x) includes all background fields.
Promote Q(x) to a one-parameter family of background fields Q(x;τ) with τ ∈ (−∞,+∞) such that

lim
τ→+∞

Q(x;τ) = Q(x) , lim
τ→−∞

Q(x;τ) = Q0 (x) , (116)

where Q0 (x) is a background field defining a comparison Hamiltonian. We then consider a one-
parameter family of Dirac Hamiltonians Hτ , such that in the τ → +∞ limit we recover our original
Hamiltonian. We further define

�Dz =

(
0 D

D† 0

)
+ z
(

1 0
0 −1

)
≡�D+ zΓ

c, (117)

where z is a positive constant and

D = iγ0 (∂τ +Hτ) , D† = i(∂τ −Hτ)γ
0, (118)

Γ
0 ≡

(
0 γ0

γ0 0

)
, Γ

i ≡
(

0 iγ i

iγ i 0

)
. (119)

A short calculation reveals that the index of�D can be computed as

index(�D) = − lim
z→0+

η (�Dz) , (120)

where analogously to section 2.2 we defined the η-invariant with the following regularization:

η (�Dz) = lim
β→0+

ˆ
∞

−∞

dλ ρ
�Dz
(λ )sign(λ )e−β |λ |. (121)

This can be rewritten with σ ≡
√

ω2 + z2 as

η (�Dz) =
1

2π
lim

β→0+

ˆ
∞

−∞

dω e−iβω z
ω2 + z2

{
2Td+1 +

˛
R=∞

dSi tr〈x| iΓi
Γ

c 1
�Dz + iσ

|x〉
}
, (122)

with Td+1 being the pertinent Pontryagin index of the operator �Dz on the d + 1-dimensional Eu-
clidean space obtained by adding an imaginary time τ to the d-dimensional subspace of the original
Minkowski-space.

The surface integral on the right-hand side of (122) gives rise to three different contributions,

η (�Dz) = Td+1 +
1

2π
lim

β→0+

ˆ
∞

−∞

dω e−iβω z
ω2 + z2 {I1 (z)+ I2 (z)+ I3 (z)} (123)

≡ Td+1 +∆1 +∆2 +∆3, (124)

I1 (z) =

ˆ
τ=∞

ddx tr〈x| iΓ0
Γ

c 1
�D+ iσ

|x〉 , (125)

I2 (z) = −
ˆ

τ=−∞

ddx tr〈x| iΓ0
Γ

c 1
�D+ iσ

|x〉 , (126)

I3 (z) =

˛
Rτ=∞

dσ
µ tr〈x| iΓµ

Γ
c 1
�D+ iσ

|x〉 . (127)
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Explicit computations of the Ii reveal, that ∆1 =
1
2 ηH + dim ker H, ∆2 = −1

2 ηH0 with H0 being a the
initial Hamiltonian H0 = iγ0γ i∂i +Q0 (x), and ∆3 =

1
2 η (Re(M)) with Re denoting the real part of M,

which is further defined as

M ≡ −γT ·∂T + iγ0
∂

0 + iγ0Q. (128)

(γT ·∂T ) is the part of γ i∂ i tangential to the asymptotic spatial surface.
We thus find that the fermion number corresponding to the Hamiltonian H is given by

N ≡ −1
2

ηH = Td+1 + index(�D)− 1
2

ηH0 +
1
2

η (Re(M)) . (129)

Therefore, we can compute N from the index of�D (calculable from η (�Dz)), the anomaly contribution
Td+1, which is the standard chiral anomaly corresponding to the Dirac operator �D, the comparison
Hamiltonian contribution ηH0 (often H0 is chosen such that this vanishes), and η (Re(M)), that is the
flux of fermions into the system through spatial surfaces.

Regard, that (129) is equivalent to the Atiyah-Patodi-Singer index theorem for the Hamiltonian
H as given in (60), assuming the analytical indices being computed as performed here. The ξ -term
in the theorem directly corresponds to the η-terms in (129), the corresponding V -term is the fermion
number N itself and the anomaly contribution Td+1, and S vanishes on the boundary.

3 Solitons in integrable N = 2 supersymmetric models

We will in the following show that there are solitons with fractional fermion number in integrable
N = 2 supersymmetric models according to [4]. We will start by examining their soliton structure
with an effective Landau-Ginzburg description, followed by a section on the effective superpotentials
characterizing minimal models perturbed in the least relevant chiral primary field, which give rise
to Chebyshev polynomial superpotentials. Subsequently, a proposed scattering theory for the N =
2 supersymmetric minimal models perturbed in the least relevant operator is reviewed, following
closely [4]. Finally, we review the relation of these models in the Landau-Ginzburg description to
supersymmetric sigma-models as done in [5].

3.1 N = 2 soliton structure

We consider a two-dimensional N = 2 theory with an effective Landau-Ginzburg description char-
acterized by some superpotential W (X), where X is a chiral superfield consisting of a complex boson
and a Dirac fermion. Due to nonrenormalization theorems many properties of those models are exactly
calculable and the Landau-Ginzburg description becomes very powerful: many properties of N = 2
theory follow solely from its Landau-Ginzburg potential, without requiring knowledge of the kinetic
term [5].

Since the bosonic part of the potential is |W ′ (X)|2, the vacua are the points in the complex X plane
where dW = 0. The solitons Xi j are the finite energy solutions to the equations of motion connecting
the ith and the jth vacua: X (σ =−∞) = X (i), X (σ =+∞) = X ( j), while it has to be emphasized that
not all such kinks are to be regarded as fundamental solitons. Kinks are solitons with a permanent
profile.

In the soliton sector corresponding to a soliton Xi j with mass m and rapidity θ , the N = 2 super-
algebra reads

Q2
+ = Q2

− = Q̄2
+ = Q̄2

− =
{

Q+, Q̄−
}

=
{

Q−, Q̄+

}
= 0,{

Q+, Q̄+

}
= 2∆W,

{
Q−, Q̄−

}
= 2(∆W )∗ ,

{Q+,Q−}= 2meθ ,
{

Q̄+, Q̄−
}
= 2me−θ , (130)
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where ∆W =W
(
X ( j)

)
−W

(
X (i)
)
. It follows from this algebra that we find a Bogomolny mass bound

m ≥ |∆W | in the theory. The basic supermultiplet irreducible representation of (130) for solitons
saturating this mass bound, which will be the only type of solitons in consideration here, is a doublet
consisting of solitons u(θ) and d (θ) with

Q− |u(θ)〉=
√

2meθ/2 |d (θ)〉 , Q̄+ |u(θ)〉= ω
√

2me−θ/2 |d (θ)〉 ,
Q+ |d (θ)〉=

√
2meθ/2 |u(θ)〉 , Q̄− |d (θ)〉= ω

∗√2me−θ/2 |u(θ)〉 , (131)

where ω = ∆W/m. All other actions annihilate the states.
The supersymmetry is defined on multi-particle states in the usual manner. Since Q is fermionic,

one picks up phases when Q is brought through a particle with fermion number. For example, bringing
Q through a fermion results in a minus sign. Since we consider solitons with eventually fractional
charges, we need to generalize this notion to

Q± |e1e2〉 =
∣∣(Q±e1

)
e2
〉
+ e±iπe1

∣∣e1
(
Q±e2

)〉
, (132)

where the action on one soliton (Q±e) is defined as in (131). The charges Q̄∓ act with the same phases
as Q±. Using notation analogous to the one used for coproducts in a quantum group, (132) reads

∆
(
Q±) = Q±⊗1+ e±iπF ⊗Q±, (133)

with F again being the fermion-number operator. This similarity with the quantum-group action is
not a coincidence, since N = 2 supersymmetry is a special case of a quantum group. In here, the
fractional fermion number is crucial for obtaining the correct soliton content and S-matrices.

The theory we investigate has a conserved U (1) charge F corresponding to the fermion number.
The generators Q± have fermion number ±1, whereas Q̄± corresponds to fermion number ∓1. As
shown in section 2, in the soliton sectors the fermion number operator F generally picks up an additive
constant piece, leading to fractional fermion numbers. Using inter alia the index theorem techniques
developed in section 2 it can be shown that the fractional part of the fermion number in a soliton sector
Xi j of the theory is given by

f = − 1
2π

(
ℑ ln W ′′ (X)

)
|X ( j)

X (i) . (134)

In the soliton doublet of interest u(θ) has fermion number e, while d (θ) has fermion number e− 1,
which is why they have not been labelled as boson and fermion. We will often label the solitons by
their fermion number.

3.2 Chebyshev superpotentials

In 1991, when our main reference for this section [4] was published, there was considerable evidence
that the N = 2 minimal models perturbed in the least relevant chiral primary field (the Φ(1,3) per-
turbation) are integrable, such that in a collision all momenta are conserved individually, and that the
n-body S-matrix factorizes into a product of two-body ones. Subsequently, the enormous number of
constraints this implies means that the exact S-matrix can often be conjectured. In the perturbed theory
we find the action

S 7→ S+λ

ˆ
d2xΦ(1,3). (135)
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The effective superpotentials characterizing these perturbed theories are given by Chebyshev polyno-
mials,

Wk+2 (X = 2cosθ) =
2cos(k+2)θ

k+2
, (136)

such that W (X) = Xk+2/(k+2)−Xk + . . . For convenience, we have set the perturbing parameter to
one. However, powers of this parameter can be put back in by charge counting. These perturbed theo-
ries are intimately connected with SU (2)k, noting for example, that the chiral ring structure constants
are the fusion rules of SU (2)k. Note, that for k = 1 the Chebyshev superpotential

W3 (X) = X3/3+βX (137)

directly relates to the Lagrangian considered by Jackiw and Rebbi, which can be easily computed
from (3). From (137) we find for the bosonic potential with φ being the scalar field component,

−V (φ) =

∣∣∣∣∂W (φ)

∂φ

∣∣∣∣2 =
(
φ

2 +β
)2
, (138)

which up to prefactors equals the double-well potential considered in section 1.2, 4). The very same
we find for the Yukawa term, since

−∂ 2W (φ)

∂φ 2 ψ+ψ−−
∂ 2W̄

(
φ̄
)

∂ φ̄ 2 ψ̄−ψ̄+ = −2φψ+ψ−−2φ̄ ψ̄−ψ̄+, (139)

where ψ± and ψ̄± denote fermionic fields.
The vacua of our theory (136) are the k+1 solutions to dW (X) = 0,

X (r) = 2cos
πr

k+2
, r = 1, . . . ,k+1. (140)

Hence, all vacua lie on a line in the X-plane, which is characteristic for the N = 0 analog theories as
well, whereas in that case there are also fermions.

As mentioned in [4], one can show that there exists a fundamental soliton connecting each of the
adjacent critical points (140). Consequently, the spectrum consists of k solitons Xr(r+1) for r = 1, . . . ,k
and their k antisolitons X(r+1)r. Any other possible soliton will break apart into two or more of these
solitons. If we take the solitons of consideration to saturate the mass bound m ≥ |∆W | and use the
value of the superpotential (136) at the critical points,

W
(

X (r)
)

=
2(−1)r

k+2
, (141)

we see that our fundamental solitons connecting adjacent vacua all have equal mass m = |∆W | =
4/(k+2).

Each of these solitons is a supermultiplet: the doublet discussed in the last subsection. Applying
(134), we find that the soliton ur(r+1) (θ) has fermion number 1/2, and dr(r+1) (θ) has fermion number
-1/2. The corresponding 2k antisolitons have opposite fermion numbers. The k = 1 directly gives rise
to the Jackiw and Rebbi case [7]: the Dirac equation has one zero mode in the presence of a soliton,
and supersymmetry requires that there is at least one. Effectively, it turns out that there is exactly one.
Upon quantization, this Dirac zero mode results in a doublet of states, and the charge-conjugation
symmetry requires them to have charges ±1/2.
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3.3 The S-matrices

X3/3−βX (sine-Gordon at its N = 2 point)

The perturbed theory (136) with k = 1 corresponds to the sine-Gordon model, with coupling at the
N = 2 point: β 2 = (2/3)8π in the conventional normalization. The N = 2 symmetry is a spe-
cial case of the general quantum group symmetry of the sine-Gordon model at any coupling. Even
though the X3/3− βX model is the “same” as the sine-Gordon at this coupling, we find the action
of supersymmetry in the two descriptions being very different. The difference arises from the fact
that sine-Gordon and the X3/3−βX are different local projections of the same theory, analogously to
the Ising model, where the spectrum can be either a free fermion or a strongly-interacting boson with
S-matrix S =−1. They can be mapped onto each other by a non-local Jordan-Wigner transformation,
but they most definitely are not identical. The same type of behaviour happens in our N = 2 model.
The standard sine-Gordon S-matrix at this point does not have an obvious supersymmetry, it must be
realized nonlocally on the sine-Gordon solitons. Even though the S-matrix in this section is formally
the same as that of sine-Gordon at the appropriate coupling, the one we investigate does in fact allow
a local action of supersymmetry.

Starting from fermion-number conservation the S-matrix for the process

|J (θ1) K̄ (θ2)〉 → |L(θ2)M̄ (θ1)〉 , (142)

corresponding to a soliton X12 colliding with a soliton X21, has to be of the following form,

uū dd̄
uū
dd̄

(
c b
b c

) ud̄ dū
dū
ud̄

(
0 a
a 0

)
, (143)

where as before u and d carry charges ±1/2, respectively, with the antiparticles having opposite
charges. Upon demanding, that the S-matrix commutes with the supersymmetry generators with ac-
tions (131) and (133), the S-matrix elements are required to be

a = Z (θ)cosh
θ

2
, (144)

b = Z (θ) isinh
θ

2
, (145)

c = Z (θ) . (146)

Crossing, unitarity and the stipulation that there be no extra bound states fixes Z (θ) to read

Z (θ) =
1

coshθ/2
exp
(

i
4

ˆ
∞

−∞

dt
t

sinθ

cosh2 (πt/2)

)
. (147)

It may be remarked, that it is crucial in this derivation that ∆W/m is 1 for the X12- and −1 for the
X21-soliton.

This S-matrix is the same as that of the sine-Gordon model at β 2 = (2/3)8π , if we identify u and
d̄ with the soliton of that model and d, ū with the antisoliton, whereas the fermion number in the local
description becomes the topological charge in sine-Gordon.

N = 2 minimal models with Φ(1,3) perturbation

As previously mentioned, the soliton structure resulting from the Chebyshev superpotential is that of
the corresponding N = 0 minimal model with additional N = 2 structure. However, it is not an
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immediate consequence that the S-matrices are a direct product of the N = 0 soliton S-matrix and
a N = 2 part, because the representation of the supersymmetry algebra depends on ∆W/m, and this
can depend on which solitons are being scattered. For this reason, the S-matrices for the N = 2
minimal models perturbed by the most relevant operator cannot be a tensor product. But, with the
Φ(1,3), least-relevant perturbation, ∆W/m just alternates between ±1, i.e. ∆W/m = (−1)r for Xr(r+1),
and thus all of the two-dimensional supermultiplets obey the same supersymmetry algebra as the
X3 −βX model discussed previously. From the points of supersymmetry, every scattering process for
all Chebyshev superpotentials looks the same. Thus, the S-matrix for (136) is a direct product,

SN =2
k (θ) = SN =0

k (θ)⊗SN =2
k=1 (θ) , (148)

where SN =0
k is the S-matrix for the massive scattering theory coming from the N = 0 minimal model

SU (2)1 ⊗ SU (2)k /SU (2)k+1 perturbed as in (135), and the S-matrix SN =2
k=1 for the supersymmetric

part is the one discussed in the previous subsection. Again, the S-matrix allows a local action of
supersymmetry, whereas the sine-Gordon S-matrix allows a nonlocal action. Both choices give rise
to the same thermodynamics. However, the Landau-Ginzburg analysis gives the Chebyshev potential
and therefore the soliton structure directly.

3.4 Relating LG to supersymmetric CPn−1 sigma-models

Supersymmetric sigma-models on CPn−1 are closely related to the perturbed Landau-Ginzburg theory
[5],

W (X) =
Xn+1

n+1
−βX , (149)

which we similarly encountered before. Since CPn−1 is Kähler, the supersymmetric sigma-model
has N = 2 supersymmetry, but since CPn−1 is not Ricci flat due to the non-vanishing first Chern
class, the sigma-model is not conformally invariant. The supersymmetric CPn−1 sigma-model is,
however, integrable. While integrability of the non-supersymmetric CPn−1 sigma-models is spoiled
for n 6= 2 by anomalies, such anomalies cancel in the supersymmetric case. To see a connection with
the perturbed LG theory note that if we denote the Kähler form of CPn−1 by X , then the classical
cohomology ring of CPn−1 is generated by powers of X with the ideal Xn, where powers are wedge
products. Instantons modify this to the quantum deformed cohomology ring generated by powers of
X with the modified ideal Xn = β = exp(−Sinst), where Sinst = R+ iθ is the holomorphic instanton
action. This is precisely the ring of the deformed theory (149). Although it appears, that there are
no solitons in supersymmetric CPn−1, the fundamental particles are indeed solitons resulting from a
spontaneously broken Zn symmetry, just as the solitons we encountered before interpolate between
vacua corresponding to a spontaneously-broken Zn symmetry [5].

However, naturally the two theories are different. For example, the UV limit of the CPn−1 sigma-
model has central charge 3(n−1), whereas the UV limit of (149) is the minimal model with central
charge 3(n−1)/(n+1). In the IR limit both theories are massive, flowing to c = 0. It was further
found, that the differential equations for the metric on the space of Ramond ground states as a function
of β are the same for the two theories with the only difference laying in the boundary conditions at
β → 0.

The soliton content of the CPn−1 = SU (n)/SU (n−1)⊗U (1) model exhibits the SU (n) structure:
for r = 1, . . . ,n−1 there are n!/r!(n− r)! solitons corresponding to the fundamental weight represen-
tation Λr of SU (n). Each of these solitons is a doublet (urα ,drα) under the N = 2 supersymmetry
with r = 1, . . . ,n−1, α = 1, . . . ,n!/r!(n− r)!. The fermion numbers of the N = 2 multiplets turn out
to be multiples of 1/n.
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Finally, we want to mention that the supersymmetric CPn−1 sigma-model S-matrix also exhibits a
tensor product structure,

SN =2 (θ) = SN =0 (θ)⊗SN =2 [n] (θ) . (150)
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