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In this talk, we want to investigate the so called chiral ring of physical opera-
tors. After some basic definitions, we will see how to use three-point correlation
functions to calculate the chiral ring. Furthermore, we are going to determine
the dependence on parameters and finally find correspondences between the
chiral ring and vacuum states.
We mainly follow chapter 16 and 17 of [1].

1. Introduction

We want to focus only on B-twisted theories, i.e. Q = QB = Q+ + Q− and restrict
onto the case where Z =

{
Q+, Q−

}
= 0. Thus, we have that Q2 = 0, so we can

consider cohomology classes of operators. As usual, we demand for a physical
operator O to commute with Q:

[Q,O] = 0. (1)

For a B-twisted theory, we call these operators chiral operators. As an example,
consider a chiral superfield Φ. In the second talk, we have seen that we can
expand these fields as

Φ = φ + Θαψα + Θ+Θ−F (2)

As a Φ satisfies D±Φ = 0 it follows that
[
Q±, φ

]
= 0, i.e. φ is a chiral operator.

Properties of chiral operators

• The worldsheet derivative is Q-exact.
To show this, we rewrite the derivatives by brackets with the generators
and use the following relation

{A, [B, C]} = [{A, B}, C]− {[A, C], B} (3)
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which follows directly by expanding the (anti-)commutators. Let O be a
chiral operator.

i
2

(
∂

∂x0 +
∂

∂x1

)
O = [(H + P),O] =

[{
Q+, Q+

}
,O
]

3=
{
[Q+,O], Q+

}
+
{

Q+,
[
Q+,O

]}
1=
{
[Q+,O], Q+

}
−
{

Q+,
[
Q+,O

]}
3=
{
[Q+,O], Q+

}
−
[{

Q+, Q−
}

,O
]︸ ︷︷ ︸

=0

+
{

Q−, [Q+,O]
}

= {Q, [Q+,O]}

(4)

Thus, we conclude that the cohomology class of O is independent of the
worldsheet-position.

• The product of two chiral operators is chiral
This follows directly from the product rule for commutators

[A, B · C] = [A, B] · C + B · [A, C] (5)

if one sets A = Q and B, C chiral operators.

From this we get a ring structure on the cohomology classes of chiral operators.
This ring is called chiral ring.
Note: The same analysis can be done for A-twisted (QA = Q+ + Q−) theories
where we call the physical operators twisted chiral operators. This will lead to the
so called twisted chiral ring.
In order to get a better intuition for the chiral ring, let {φi} be a basis of the
Q-cohomology group of operators (in the sense that the physical operators also
form a vector-space) and expand the product of two such basis elements

φiφj = φkCk
ij + [Q, Λ]. (6)

We call the Ck
ij structure constants of the chiral ring (with respect to the basis

{φi}). They satisfy the following relations:

• The structure constants are antisymmetric in i↔ j if φi and φj are fermionic
and symmetric in i↔ j else.

• From the associativity of the operator product (φiφj)φk = φi(φjφk) it follows
that

Cm
il Cl

jk = Cm
lkCl

ij (7)

• If we denote the identity operator in this basis by 1 = φ0, we get

Ck
i0 = Ck

0i = δk
i (8)

as the product with other basis elements is trivial.
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2. Three-point functions on Σ = S2

As we have seen in the previous talk on Topological Twisting correlation functions
of physical operators are independent of the choice of the metric. Also remember
from 1 that the Q-cohomology class is independent of the worldsheet coordinate.
Before we get to three-point functions, let us first consider two-point functions

ηij =
〈
φiφj

〉
. (9)

For the theories we are interested in ηij is an invertible matrix. We denote the
inverse by ηij, such that ηijη

jk = δk
i . The invertible two-point function can be

considered as determining a metric on the parameter space. Hence, we call ηij
topological metric.
Now we come to three-point functions. We want to denote them by

Cijk :=
〈
φiφjφk

〉
. (10)

Inserting the expansion given in 6, we get

Cijk =
〈

φi

(
φlCl

jk + [Q, Λ]
)〉

= 〈φiφl〉Cl
jk = ηilCl

jk,
(11)

where in the second step we used that the expectation value of a Q-exact term
vanishes. As η was invertible we follow the interesting result

Cl
jk = ηilCijk. (12)

We conclude that the chiral ring is fully determined by the calculation of three
point function of chiral operators.

3. Dependence on Parameters

After we have seen how to calculate the chiral ring we now want to study how
the chiral ring depends on the parameters of the theory. Remember that there
were three term in the supersymmetric action, namely the D-term, the F-term
and the twisted F-term (cf notes on 2d SUSY Introduction section 1.2).

i) Variation of the D-term in the action
This corresponds to an insertion of an operator in the path integral which
is of the form ∫

d4Θ∆K. (13)

Using the rules of fermionic integration, we find that the operator is pro-
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portional to {
Q+,

[
Q−,

∫
dΘ+

∫
dΘ− ∆ K

∣∣∣∣
Θ±

]}
Q2
−=0

=
{

Q+ + Q−,
[

Q−,
∫

dΘ+
∫

dΘ− ∆ K
∣∣∣∣
Θ±

]}
=
{

Q,
[

Q−,
∫

dΘ+
∫

dΘ− ∆ K
∣∣∣∣
Θ±

]}
.

(14)

Thus, we have seen that the inserted operator is Q-exact, which means that
it’s contribution to the correlation function vanishes.

ii) Dependence on (anti-)twisted chiral parameters
We only discuss the case of twisted chiral parameters as the anti-twisted
case is a similar calculation. A deformation by a twisted chiral parameter
corresponds to an insertion of an operator∫

d2x
√

h
∫

dΘ
−
∫

dΘ+ ∆W̃(Φ̃) ∝
∫

d2x
√

h
{

Q+,
[
Q−, ∆W̃(Φ̃)

]}
=
∫

d2x
√

h
{

Q+,
[
Q− + Q+, ∆W̃(Φ̃)

]}
=−

∫
d2x
√

h
{

Q,
[
Q+, ∆W̃(Φ̃)

]}
+ total derivative,

(15)
where in the first step we used the rules of fermionic integration, in the
second step the fact that W̃ is a twisted chiral operator, i.e.

[
Q+, W̃

]
= 0,

and in the third step the relation 3. Thus, we again have seen that the
inserted operator is Q-exact.

iii) Dependence on anti-chiral parameters
Such a deformation corresponds to an insertion of an operator∫

d2x
√

h
∫

dΘ
−
∫

dΘ
+

∆W(Φ) ∝
∫

d2x
√

h
{

Q+,
[
Q−, ∆W(Φ)

]}
=
∫

d2x
√

h
{

Q+ + Q−,
[
Q−, ∆W(Φ)

]}
=
∫

d2x
√

h
{

Q,
[
Q−, ∆W(Φ)

]}
,

(16)
where in the second step we used that Q2

− = 0. Once more we have an
insertion of a Q-exact operator.

iv) Dependence on chiral operators
We recall that chiral operators are Q-closed, so we can use the descent
relations to define the corresponding 2-form

O(2) = dz dz {Q+, [Q−,O]}. (17)
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A chiral deformation corresponds to an insertion of an operator∫
d2x
√

h
∫

dΘ+dΘ−∆W(Φ) ∝
∫

d2x
√

h{Q+, [Q+, ∆W(Φ)]}

∝
∫

∆W(2)(Φ),
(18)

where we have used the descent relation 17 for the chiral operator W. Thus,
we have an expression that is not Q-exact.

We conclude that in a B-twisted theory correlation functions are only dependent
on chiral parameters and the dependence is holomorphic. As we discussed in
2, the chiral ring is determined by calculation three-point functions of chiral
operators. Hence, we have that the chiral ring is only holomorphic dependent
on chiral parameters.

4. Chiral Ring and vacuum states

In the last section of this talk we want to investigate if there is a correspondence
between the chiral ring and vacuum states.
Consider the space of ground states

V = {|α〉 ∈ H|Q |α〉 = Q† |α〉 = 0}. (19)

As the ground states can depend on the parameters of the theory we denote
V = V(m) with m ∈ M the parameter space. However, it has a fixed dimension
as the number of ground states stays constant. Let φ be a chiral field. It can
be viewed as an operator by acting on a ground state |α〉 ∈ V(m), as φ |α〉 ∈ H
defines a state in the Hilbert space of the theory. Consider the projection of
φ |α〉 onto V(m). We observe that the projection is only dependent on the Q-
cohomology class, as we can transform φ → φ + [Q, ρ] without changing the
result by the definition of the ground states. Hence, we can use chiral fields
to relate different ground states. Furthermore, it can be shown that in fact all
ground states can be obtained by acting with chiral fields on a canonical ground
state.
We now want to define this canonical ground state. Consider the path-integral
on the hemisphere with H based on the boundary. We can interpret the path-
integral (PI) as a state in the Hilbert space as it defines a map

PI : {boundary field configurations} 7→ numbers. (20)

The projection of a boundary state onto V(m) can be obtained in the following
way. We glue a flat cylinder of length T to the S1-boundary of the hemisphere.
This corresponds to a evolution of boundary states with the operator e−TH

|ψ〉 → e−TH |ψ〉 , (21)

where H is the Hamiltonian. Taking the limit T → ∞ is then equivalent to the
projection onto a ground state, as contributions of states with non-zero eigen-
value of H will vanish. Remember that the twisted and untwisted theory do
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not differ on a flat space, so the construction is well defined. Also note that the
state we obtain is independent of the metric, as varying the metric yields to an
insertion of a Q-trivial operator that gets annihilated by the evolution operator
e−TH. Hence, we get that the path-integral picks up a distinguished element of
the Hilbert space H which we denote by |0〉.
Similar, by inserting a chiral field φi into the path-integral, we get a ground state
we denote by |i〉. Remember that changing the position of φi does not modify
the state, so we can ”move” φi to the boundary of the hemisphere. Doing this,
we get the relation

|i〉 = φi |0〉 . (22)

From this, we get
φi |j〉 = φiφj |0〉 = Ck

ijφk |0〉 = Ck
ij |k〉 , (23)

so we see that the ground states provide a realization of the chiral ring. However,
we do not always get a one-to-one correspondence (e.g. topological Landau-
Ginzburg models with A-twist), but for many theories it is. Especially for the
Sigma model with A-twist, which is the theory we are interested in most, there
is a one-to-one correspondence. But note that this does not imply that both
are equal. If we stick to the Sigma model, we have that Q = d the exterior
derivative, hence the chiral ring is given by the De-Rham cohomology classes
but the Hamiltonian H is proportional to the Laplacian ∆, so V(m) is given by
the harmonic forms.

One can do even more: In N = (2.2) theories the number of ground states
does not change if we change the superpotential terms in the action. As we have
discussed in 3, the chiral ring does depend on chiral parameters. As it turns out,
there is further information about the structure of the vacuum states encoded in
the chiral ring.
As V(m) has fixed dimension ∀m ∈ M and the states, etc. are continuous
functions of m, {V(m)}m∈M forms a bundle over M, which is called vacuum
bundle. It is obvious that H itself does not change with m. Thus it forms a trivial
bundle overMwith the vacuum bundle as a sub bundle. On a trivial bundle, we
can always define a connection and via projection we get an induced connection
on V(m).
If we use similar constructions with the path integral as described above, it is
possible to show that the connection on the vacuum bundle is compatible with
the complex structure on the parameter space. Furthermore, one can show the
so called tt∗-equations which are equivalent to the existence of an improved
connection which is flat. This improved connection can be constructed with the
given connection and the action of chiral fields on vacuum states (cf [1] chapter
17).
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