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1. Introduction

The aim of these notes is to discuss aspects of the CP™ ~! nonlinear sigma model, in

particular how it kind of magically arises as a certain limit of the gauged linear sigma
model and the occurence of N massive vacua that are due to quantum corrections
of the twisted superpotential and not at all expected from the classical point of
view. These vacua will become important when investigating instanton effects
in the CPY~! nonlinear sigma model and historically they are one of the main
discoveries that led to mirror symmetry. Before adressing these topics a short
introduction/revision of the gauged linear sigma model in general is given.

The talk and these notes are strongly oriented on [1] and [2].

2. Revision: Gauged linear sigma model

Consider a two dimensional supersymmetric linear sigma model with bosonic fields
¢ :R? - RY and .4/ = (2,2) supersymmetry. The kinetic term of the Lagrangian
is given by

(2.1) Lyin = /d40 DO,

where ® is a chiral superfield with component expression ® = ®(¢,91,1+) as
usual. It enjoys a global U(1) symmetry

(2.2) D e?d  acR,

for which all ®’s are supposed to have ”charge 1”. In a local QFT, however, we
have to demand that these transformations only depend on local coordinates for
locality to be respected. For supersymmetric theories in superspace formalism this
amounts to require

(2.3) a = az", 0%,6%),

i.e. dependence on all superspace coordinates. By this redefinition invariance of
the Lagrangian is destroyed, as

(2.4) PP s Pe TP,
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This issue can be dealt with in a completely analogous way as it is usually done in
standard QFT with gauge symmetries: Introducing a vector field (or connection)
which will be denoted as V' (z#,0%,0%) and called vector superfield. By definition,
it has to exhibit the transformation behaviour

(2.5) ViV +ia—a)

and the problem is fixed if the Lagrangian is modified to
(26) £kin = /d49 @ evq),

which is now invariant under the combined transformations (2.2)) and (2.5). As for
every superfield, V' allows a finite expansion in terms of the Grassmann variables
such that it depends on component fields

(2.7) VZV()\:bj\ZbD,m&,Uo,Ul),

where the \’s are Dirac spinors, the D is a real scalar, the ¢’s are complex scalars
and the v’s are vector (or 1-form) fields. There is a certain choice of gauge fix-
ing which is usually used in this context called Wess-Zumino gauge in which this
expression will take the form

98 V=06 (1]0—1)1)+8+§+ ('UO+U1) -0 0o -0 c

(28) HOTOT (07 +0TNL) +i0T07 (0" A +0FAL) + 0767070 D.

The v,’s (note, that the y denotes a worldsheet index) are left with a residual gauge
symmetry

(2.9) v () — vu(x) — 0,6(x)

in Wess-Zumino gauge and for some real function 3, as can be read off from (2.8]).
Recall, that the covariant derivative for the supersymmetry is given by

0

and accordingly for Ds. We define the super-field strength by

(2.11) N=D,D_V

which turns out to be the super-analog for the standard field strength in non-
supersymmetric theories. As can be seen by direct computation, it is gauge invari-
ant (in the above sense) and a twisted chiral superfield (i.e. D.X = D_¥ =0). It
takes values in the adjoint of U(1) for some U(1) bundle over 2 | 4 superspace.
Finally, taking into account all restrictions that are imposed by the requirement of
supersymmetry as well as the properties of Grassmann integrals the gauged linear
sigma model (GLSM) Lagrangian is found to be of the general form

_ 1 _ 1 —
(2.12) Lonsm = /d49 ((13 o — EZ) + 3 (/ d?0 Wrre(3) + c.c.)

2e2

where the factor in front of the gauge-kinetic term is due to fixing the dimension and
the tilde over # means that the right components of the Grassmann coordinates are
chosen such that Wgyy is a twisted chiral superfield called twisted superpotential.
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We assumed that there are no non-twisted superpotentials of any kind which is for
now unjustified but will be automatically satisfied later on. In particular we are
interested in the linear twisted superpotential

(2.13) Wipg = —t%

with a complex parameter
(2.14) t=r—id,

where r and 9 are called Fayet-Iliopolous parameter and theta-angle, respectively
(which explains the subscript). Both of them are dimensionless parameters of the
theory.

In components, Wess-Zumino gauge and for this particular choice the GLSM La-
grangian is given by

N

Larsm = Z [ = D*$;Dud; + ivhj— (Do + D1) ;- + ithjq (Do — D1) ¥y
=1

—|o?¢; > — iy — Vjraj— —idiA_tjy +idj ALY+ ithj LA
o 1 _ _
—ih_ Ay ;] + ¥ (=0"50,0 +iA_ (0o + O1)A— + iX (Do — O1) Ay + v5y)

o2 N 2
§ : 2
+19'U10 — ( |¢z| — r) .

i=1

(2.15)

Here, the worldsheet covariant derivative is defined with respect to the residual
gauge symmetry of v, in Wess-Zumino gauge, i.e. D, = 0, + v, and v, is the
related curvature

(2.16) Vo = Opy — Op0y,.

of the gauge transformation (2.9)).

3. CPV~! NLSM as limit of the GLSM

Consider again such a U(1) gauge theory with N chiral superfields obeying the
GLSM Lagrangian. One can read off the potential for the ¢’s and o’s as

N o2 (N 2
(3.1) U@) =) loPloil’ + 5 (Z il = r) :
i=1 i=1

Whenever such a potential is present, those field configurations for which the poten-
tial vanishes is called, at least under the reasonable assumptions of non-emptiness
and smoothness, vacuum manifold and denoted by M,,.. Quite generally, starting
from the linear sigma model (i.e. a QFT in affine space) a theory on a submanifold
of RY can be obtained by turning on a potential whose zero-locus is given by this
manifold. Further, theories on quotients of these submanifolds by the action of a
continuous group are obtained in a similar way but for the related gauged linear
sigma model. The CPY ! NLSM will reveal itself to be one of those cases.

For the potential at hand we will assume from now on that r > 0. Then the
zero-locus is given by



N
(3.2) {(gbl, e dN) | D |l? = r} = gN-1,

i=1

Note, that in this case we are forced to set o = 0. Taking the gauge symmetry into
account we end up with the vacuum manifold

(3.3) Moo = SV /U(1) 2 CPV!

as can be seen by thinking of SV ~! as embedded in C" in the standard way (N is
the complex dimension) and noting that the U(1) transformation acting on the ¢’s
by

(3.4) (1, .0y &) — (€71, .., e D)

acts on the sphere as a rotation along equatorial circles. Quotienting out the group
action will identify all points on these. On the other hand all subspaces of CV
of complex dimension 1 that go through the origin intersect the sphere in exactly
those equatorial circles and the identification above corresponds one-to-one to iden-
tifying complex 1 dimensional subspaces. This is exactly what the symbol CP™~*
is standing for.

The general outline of how the NLSM on CPY ™! arises is as follows: The only
massless field excitations will turn out to be given by the ¢’s and the v’s that are
tangent to My,.. All the rest aquires mass in some way and by making the masses
very big they effectively ”decouple” in a way that has to be made precise. Their
equations of motion will pose algebraic constraints on the GLSM Lagrangian in
such a way that the theory of massless fields on M, is precisely the CPYY~! NLSM.

e ¢ fields

As can be read off from the component expression above, the masses of these
fields are given by |o|. As the potential is only minimized for ¢ = 0 the ¢’s that
are tangent to My, have to be massless. The other configurations, i.e. the ones
that are transverse to My, aquire mass in the usual way: The potential U(¢)
admits a perturbative expansion ﬁ(d)) around each point on the vacuum manifold
whose Hessian 8¢8j(~] (¢) (or rather its eigenvalues) determines the mass of these
fields. By direct computations the mass is found to be m = ey/2r.

e 1) fields
One of the algebraic constraints that are determined below is given by

N B N B
(3.5) > Githir =Y i =0,
=1 i=1

for the tangent ¢;’s. This is nothing but the vector (¢4, %) also being tangent to
M. (remember: locally, the ¢’s are just tangent vectors). Further, the masses
of the remaining v’s is in a similar way as above found to be again m = ev/2r.

e )\ o, D and v fields
First of all, the D is in any case only auxiliary and already integrated out in
order to arrive at the component expression in Wess-Zumino gauge . For A
and o the same argument as above holds and the mass is again determined to be
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m = ev/2r. For the v an exermination of the Higgs mechanism reveals the same
mass in this case.

We formulate the large mass limit in the equivalent way of taking e — oo which,
as we have seen, affects all the fields except the ¢’s and ¢’s living on CPY 1. In
particular we get

1

—— [d Ty =0
2¢2

(3.6)
which renders all the fields in the ¥ multiplet non-dynamical. This justifies in-
tegrating them out by computing their equations of motion and plug them into
the Lagrangian as the algebraic constraints advertised before. They are given as
follows:

e constraints by A
The constraint equations are given by (3.5)) and restrict the massless ¥’s to Myac.

e constraints by v
Integrating out the equations of motion for v, yields

N 7 *
3.7) o [pIne (¢i0udi — 0,0i9:)
. = ~ .
2 2 j=1 1957
In the NLSM the kinetic term for the ¢’s depends on the metric of the target
geometry. In our case it is governed by the covariant derivative with respect to

the gauge field v,. By plugging in this equation the metric in the above sense
can be read off to be

-
. d2:7 FS
(3.8) s 27Tg

with the Fubini-Study metric

N-1 N-1,_
FS Dim1 |dzi‘2 D1 ‘Zid2i|2

(3.9) g = N—1 - 2
-1, 2 _
1+35 |zl (1 +> ZN=11 |zz|2)
in homogeneous coordinates z; = (fN This is also the natural choice of metric

on CPN—1 by considering the maps
(3.10) cN — {0} — sVt — cPVL
and determining the respective induced metric.

e constraints by o
Here the equations of motion read

N -
_ Zi:l ¢i+wi—
N
Zj:l ‘¢j|2
and will provide us after a very tedious calculation with the typical term ~

Rijklwiwjz/;k@l that includes the curvature into the NSLM Lagrangian.
5
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Altogether in the large mass limit and by applying the logic explained above, the
GLSM Lagrangian reduces to

L=—gE50"'0,¢" +ighS 0’ (Do + D1) ¥l + igh*, (Do — D1) ',

(3.12) Co
+REZ ! 9 gl

where Rf;fl is the Riemann curvature tensor with respect to the Fubini-Study met-

ric connection. This is exactly the CPMN~! NLSM Lagrangian. However, this holds
for now only classically. We will now take quantum effects into account.

Quantum corrections

We consider the corresponding QFT with GLSM Lagrangian. The large mass limit
is realised in this context by specifying an energy scale u < ev2r = m. Even if
classically the massless fields vanish in the large mass limit and will have no impact
on any physical effect, there is the possibility for those fields to have a nonzero
vacuum expectation value that enters the potential energy terms in the Lagrangian
and originates in processes beyond our characteristic energy scale. Furthermore, in
order to arrive at the effective theory we are also forced to integrate out massless
field excitations characterised by momentum k in the range p < |k| < Ayy for
some UV-cutoff Ayy. This effect will only be important for the potential terms
proportional to |¢|?, i.e. . Applying our logic we have to replace

(3.13) 61> — (I8I*) = (¢" (2)(2)).

This correlation function is essentially given by the isolated 1-loop diagram of the
scalar field

Aove gl 2
(3.14) = / T
po (2m)2 k2 4o

where the propagator can as always be determined from the Lagrangian but is
not too surprisingly just the standard propagator for massive, scalar fields (the
additional factor of 27 is just a matter of convention). The result is given by

(3.15) log (AEV> +log (@) 7

where the second term is finite but the first one suffers from an UV-divergence in
the limit Ayy — oco. Note that for the massless excitations the loop integral is

Avv 2k on
(3.16) / — =
L (2m)2 k2

and leads to the same divergence but the finite term is zero. In order to cope
with the divergence we note that there is a dimensionless parameter, namely the
Fayet-Iliopolous parameter, that is still a bare input. I.e. we can use the standard



methods of renormalisation to cancel the divergence in terms of a redefinition of r
that is characteristic for the energy scale u. To be precise consider

A
(3.17) ro =1+ log (UV) ,
W

where g and 7 are the bare and renormalised FI parameters, respectively. We have
to demand a scale dependence of r = r(p) in such a way that

(3.18) (i) = N log (%)
exactly cancels the divergences in all loop diagrams of the N scalar fields (hence
the additional factor of V). For this to happen, A has to be chosen accordingly but
is fixed for given rg and cutoff Ayy. In any case, however, it is a finite parameter
of mass dimension in contrast to the dimensionless bare FI parameter in the full
theory. This phenomenon, sometimes called dimensional transmutation, is common
in renormalised QFT’s: A mass scale is dynamically generated by processes beyond
our characteristic energy scale in a former scale invariant theory. A is called renor-
malisation scale and determines the renormalisation group flow equations that in
this case govern the scale dependence of the parameter r(u). We refer for a more
detailed discussion on these topics to the standard literature or [5].

The final observation is the matching behaviour of the RG-flow: As can be seen
directly from the definition (3.18]) the FI parameter r’ at a smaller scale y’ is in a
simple relationship with r

(3.19) r=1+N log (fj) .

Remember, that from the NLSM perspective the running parameter is the ”radius”
of CPN™! ie. the factor r in the Fubini-Study metric. It is a general feature of
this metric that it is in principle determined by the Ricci tensor:

FS _ FS
(3.20) R[® =N gf

Following chapter 14 of [I] the scale dependence of the metric in the NLSM is given
by

1
FS yFS H FS
(3.21) 9i;" =95 T %bg (N’) Rz‘j )

where some of the aspects of NSLM RG-flow can be found in [6]. By using the
identification for the Fubini-Study metric (3.20) this can be rewritten as

; 1 p
(3.22) g5 = ° (r — N log (u)) 957,

which is exactly the metric obtained from the GLSM reduction at the lower energy
scale 1’ upon using . The remarkable observation is: The RG-flow equations
that are obtained for 7(x) in the GLSM precisely match the ones that are deter-
mined in the pure CPY~! NLSM where the (initially dimensionless) parameter ()
is just the "radius” of CPY ™1, i.e. the parameter in the Fubini-Study metric.

With this in mind the final conclusion is that not only classically the GLSM re-
duces to the CPY =1 NLSM but also in the related QFT: Quantum corrections will
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not pose any problems with our previous analysis in the classical world, but rather
render the theory scale dependent in precisely the way that we hoped for.

As a final remark, note that this seems to only hold at the 1-loop level: There may
be higher order loop corrections to the VEV calculated above. For higher loops,
however, the finite terms in receive factors ~ 1/|o| which will be killed in the
large mass limit. Similarly the renormalisation of the UV-divergence by utilising
the FI parameter will go through in each order in a BPHZ-like way [2].

4. Massive Vacua

We are now ready to discuss the main statement of this talk: The existence of IV
massive vacua in the CPY~! NLSM. First of all note, that this is not expected
classically as we introduced no potential terms in the Lagrangian that would lead
to the related minima. Therefore the occurence of these vacua is exclusively due to
quantum effects that can be determined in two different ways:

Either from starting with the CP™~! NLSM and discussing the effective quantum
theory in the large radius limit or from thinking of this NLSM as a certain regime of
the GLSM (as we have explained above) and determining a special effective theory
in this picture. We carry out the second plan which amounts to considering the
large mass limit in the GLSM

(4.1) lo| =m =ev2r — o

and a comparatively low energy scale ;1 < |o|. l.e. we are looking at an effective
GLSM for this energy scale with Lagrangian that is generally of the form

(4.2) Seft(X) = / d'0 (—Kea(2,5)) +% ( / 4?0 Wer(S) + c.c.) 7

as classically we can set the massive matter chiral superfields to zero ® — 0 in the
large mass limit. Here we reinstated the possibility of non-chiral superpotentials
that are in general given by an effective Kahler potential as above.

Until now there was no mention about R-symmetries whatsoever, but note that
as CPY~! is not Calabi-Yau, cl((CPN_l) = N # 0, the B-twisted NSLM is in
this case not even well defined as it suffers from sigma model anomalies [3]. So
in order for all of this to make sense we have to demand A-twisted R-symmetries
throughout: In this case it suffices to have a K&hler target, which is of course the
case here. It was shown in one of the talks [4] that in A-twisted theories there can
be no impact of non-chiral superpotentials by which we justify setting the effective
Kahler potential to zero

(4.3) Keg(3,5) =0 in the A-twisted theory.

Further, we have to again take quantum corrections into account. These are in a
quite similar manner as above obtained by (path-) integrating out all massive ®
modes and all ¥ modes in the range p < |k| < Ayv, i.e. beyond the characteristic
energy scale. At the 1-loop level the correction may be expressed as

(4.4) ST / GG, i@

Here we denote the operation explained above by symbolically writing these path

integrals. In principle this calculation can be carried out explicitly after mode

expanding the fields in the measure: A quite detailed survey is given in the mirror

symmetry book [1]. As it is rather lengthy, it will not be written down in these
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notes. We will only state the two main discoveries:

First, the integration over 2% will only yield corrections to the effective Kahler
potential, K.g(X,Y), that is killed in the A-twist anyway so it suffices to carry out
the integral over the matter fields 2®. It turns out that these corrections have an
effect on the twisted superpotential and are 1-loop exact: The explicit calculation
is quite similar to the loop integral above and the one loop exactness is for the
same reason as discussed beforehand in this context. What we end up with is the
(quantum) corrected effective twisted superpotential

(4.5) Weg(X) = —tX —NY (log (f) - 1),

1-loop corrections

where A’ is a slightly modified renormalisation scale whose details will not bother us.
Note, that this regime of very large masses of the matter fields and comparatively
low energy scale exactly matches the low energy regime of the CP™Y~! NLSM by
the previous discussion. To summarise, by considering the broader picture of the
GLSM it is possible to compute quantum corrections to the twisted superpotential
that will enter the Lagrangian of the CPY~! NLSM as an additional potential
term, namely the second term in . The minima of this new potential that has
a purely quantum nature, are the vacua we are searching for.

We are interested in the critical points with respect to the mass o, i.e. those (still
very large) masses that minimise the potential

1517 1-loop _ g\
(4.6) 0, WP () = N log (A> Lo.

The solutions to this equation are

27

N k=0,.,N—1

(4.7 oc=~Ne ,
the N massive vacua of the CPY ™1 NLSM that were advertised from the very
beginning. Note, however, that as we only considered the critical points with
respect to o it is not clear if those are really all vacua of the twisted superpotential
correction. It turns out to be true by using methods related to mirror symmetry
but there is at least a hint for this from our present understanding: Using standard
methods the Euler characteristic of CPY ™! is given by

(4.8) x(CPY Y =T (1) = N.

So the number of massive vacua determined above exactly matches Witten’s index
that counts the number of supersymmetric ground states. That is no proof, as we
are still in a particular limit, but a strong confirmation.
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