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Abstract. Let p be an odd prime number, k a number field and S
a set of primes of k containing some, but not all primes of k above
p. We study under which conditions GS(k)(p) is a mild pro-p-group of
deficiency one, and apply our results to the case of imaginary quadratic
number fields.

1. Introduction

Let k be a number field, p an odd prime number and S a finite set of primes
of k. The pro-p-group GS(k)(p) = Gal(kS(p)/k), i.e. the Galois group
of the maximal p-extension of k unramified outside S contains interesting
information on the arithmetic of k. Let Sp denote the set of primes of k
above p. There are three cases that have to be distinguished:

• the wild case: Sp ⊂ S,
• the tame case: S ∩ Sp = ∅,
• the mixed case: ∅ 6= Sp ∩ S $ Sp.

In the wild case, it is known that GS(k)(p) is of cohomological dimension less
or equal to 2, and it is often a duality group, see [NSW], Ch. X, §7. The
strict cohomological dimension of GS(k)(p) is conjecturally 2 (Leopoldt’s
conjecture). In the tame case, only little had been known on the structure
of GS(k)(p) until recently. Labute([L]) showed that pro-p-groups whose
presentation in terms of generators and relations is of a certain type, so-
called mild pro-p-groups, are of cohomological dimension 2. Then he used
results of Koch to show that GS(Q)(p) is a mild pro-p-group if S is a strictly
circular set of prime numbers. In [V], Labute’s techniques were applied to
the case where k is an imaginary quadratic number field. Schmidt([S1],[S2])
extended the results of Labute by arithmetic methods and could show that,
under some conditions on k and p, for any given finite set S′ of primes of k of
norm ≡ 1 mod p, there exists a finite set S ⊃ S′ of primes of k of norm ≡ 1
mod p, such that GS(k)(p) is mild. In the tame case, if the group GS(k)(p)
is mild, then it is a duality group of strict cohomological dimension 3. The
mixed case has been studied in papers of Wingberg([W]) and Maire([M])
using the theory of elliptic curves and Iwasawa theory. In particular it is
shown that if K/k is an abelian extension of an imaginary quadratic number
field and S is a non-empty subset of Sp(K) stable under Gal(K/k), then the
cohomological dimension of GS(K)(p) is less or equal to 2, see [M], Prop.
3.5.
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The objective of this paper is the study of the mixed case, making use of
Labute’s results on mild groups. In §2 we study under which conditions the
group GS(k)(p) is a mild pro-p-group of deficiency one. In §3 the result is
applied to the following situation. Let k be an imaginary quadratic number
field whose class number is not divisible by p, and assume furthermore that
p splits in k, pOk = pp̄. Let S′ be a set of primes of k of norm ≡ 1 mod p,
and let S = S′ ∪ {p}. We will prove criterions for GS(k)(p) to be a mild
pro-p-group and hence, of cohomological dimension 2. Explicit examples
will be given as well.
I would like to thank Alexander Schmidt and Kay Wingberg for interesting
discussions on the subject and valuable suggestions.

2. Mild pro-p-groups of deficiency one in the mixed case

Let p be an odd prime number and let k be a number field. For a prime q
of k, let kq denote the completion of k with respect to q and Uq its group of
units. We put

nq = dimFp Uq/U
p
q .

Let S be a finite set of primes of k. Let BS(k) denote the dual of the
Kummer group

VS(k) = {a ∈ k× | a ∈ k×pq for q ∈ S and a ∈ Uqk
×p
q for q 6∈ S}.

We remark that we have an exact sequence

(1) 0 −−−−→ O×k /p −−−−→ V∅(k) −−−−→ p Cl(k) −−−−→ 0,

and for each subset T ⊂ S we have an exact sequence

(2) 0 −−−−→ VT (k) −−−−→ V∅(k) −−−−→
∏

q∈T Uq/U
p
q ,

see [K], §11.3. We let h(k) denote the class number of k, and we set

δq =

{
1 if µp ⊂ kq,

0 otherwise.

Definition 2.1. We say that the triple (k, S, p) has the property (∗) if the
following holds:

• p - h(k),
• δq = 1 for q ∈ S, q 6∈ Sp,
• δq = 0 for q ∈ S ∩ Sp,
• BS(k) = 0,
•

∑
q∈S∩Sp

[kq : Qp] = r, where r = r1 + r2 is the number of archime-
dean primes of k.

We remark that in this case µp 6⊂ k and

nq =

{
1 if q ∈ S, q 6∈ Sp,
[kp : Qp] if q ∈ S ∩ Sp.

We denote the maximal p-extension of k unramified outside S by kS(p), and
we put GS(k)(p) = G(kS(p)/k). For q ∈ S, let {αq,1, . . . , αq,nq} be a basis
of the Fp-vector space Uq/U

p
q , and let πq be a uniformizer of kq. Let Q be

an extension of q to kS(p). We let σq be an element of GS(k)(p) with the
following properties:
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(i) σq is a lift of the Frobenius automorphism of Q;
(ii) the restriction of σq to the maximal abelian subextension k̃/k of

kS(p)/k is equal to (π̂q, k̃/k), where π̂q denotes the idèle whose q-
component equals πq and all other components are 1.

For i = 1, . . . , nq, let τq,i denote an element of GS(p) such that
(i) τq,i is an element of the inertia group TQ of Q in kS(p)/k;

(ii) the restriction of τq,i to k̃/k equals (α̂q,i, k̃/k), where α̂q,i denotes
the idèle whose q-component equals αq,i and all other components
are equal to 1.

We set

hi(GS(k)(p)) = dimFp(H i(GS(k)(p),Z/pZ), i = 1, 2.

We say that a finitely presented pro-p-group G is of deficiency one if h1(G)−
h2(G) = 1.

Proposition 2.2. Assume that the triple (k, S, p) satisfies the property (∗).
Let S \ Sp = {q1, . . . , qn}. Then

h1(GS(k)(p)) = 1 + n

and
h2(GS(k)(p)) ≤ n.

If BS∩Sp(k) = 0, then the group GS(k)(p) has a presentation GS(k)(p) =
F/R where F is the free pro-p-group on generators x1, . . . , xn+1, and R is
generated as a normal subgroup of F by relations r1, . . . , rn which are given
modulo F3 by

ri ≡ xN(qi)−1
i

n+1∏
j=1
j 6=i

[xi, xj ]aij mod F3, i = 1, . . . , n.

Here F3 denotes the third step of the descending p-central series of F .

Proof. Since (k, S, p) satisfies (∗), we have by [NSW], Thm. 8.7.11,

h1(GS(k)(p)) = 1 +
∑
q∈S

δq + dimFp BS(k) +
m∑
i=1

[kpi : Qp]− r

= 1 + n

and
h2(GS(k)(p)) ≤

∑
q∈S

δq + dimFp BS(k) = n

An explicit construction of a presentation of GS(k)(p) in terms of generators
and relations is carried out in [K],§11.4. We sketch it here. The set of n+ r
automorphisms M = {τq,i | q ∈ S, i = 1, . . . , nq} constitutes a system of
generators of GS(k)(p) which is not minimal unless r = 1. In order obtain a
minimal generating set, we have to remove r−1 elements from the above set.
Which generators can be omitted is determined by the following method:
By construction, the set N = {αq,i | q ∈ S, i = 1, . . . , nq} is a basis of the Fp-
vector space

∏
q∈S Uq/U

p
q . Let ε1, . . . , εr−1 be a system of fundamental units

of k. Since BS(k) = 0, the elements ε1, . . . , εr−1 are linearly independent in
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q∈S Uq/U

p
q . We have to omit elements from N such that the remaining

elements, together with ε1, . . . , εr−1, form a basis of
∏

q∈S Uq/U
p
q . In this

way, we arrive at a subset N0 ⊂ N of cardinality n+1. A minimal system of
generators of GS(k)(p) is then given by the subset M0 ⊂M corresponding
to N0.
Assume that BS∩Sp(k) = 0. Then ε1, . . . , εr−1 are linearly independent in
the r− dimensional Fp-vector space

∏
q∈S∩Sp

Uq/U
p
q . This implies that there

exists a prime p ∈ S ∩ Sp and k ∈ {1, . . . , np} such that {ε1, . . . , εr−1, αp,k}
is a basis of

∏
q∈S∩Sp

Uq/U
p
q . Then {ε1, . . . , εr−1, αp,k, αq1,1, . . . , αqn,1} is a

basis of
∏

q∈S Uq/U
p
q . Therefore {τq1,1, . . . , τqn,1, τp,k} is a minimal system

of generators of GS(k)(p). Let F be the free pro-p-group on generators
x1, . . . , xn+1. We define a presentation

1 −−−−→ R −−−−→ F
ψ−−−−→ GS(k)(p) −−−−→ 1

by ψ(xi) = τqi,1, i = 1, . . . , n, ψ(xn+1) = τp,k. Let yi be a preimage of σqi

for i = 1, . . . , n. Then

yi ≡
n+1∏
j=1
j 6=i

x
aij

j mod F2.

for aij ∈ Z/pZ. The relation subgroup R is generated as a normal subgroup
of F by the relations

ri = x
N(qi)−1
i [x−1

i , y−1
i ], i = 1, . . . , n,

We obtain

ri ≡ xN(qi)−1
i [xi, yi] ≡ xN(qi)−1

i [xi,
n+1∏
j=1
j 6=i

x
aij

j ] ≡ xN(qi)−1
i

n+1∏
j=1
j 6=i

[xi, xj ]aij mod F3,

which finishes the proof. �

By applying Thm. 3.10, Thm. 3.18 and Thm. 3.19 of [L], we immediately
obtain:

Theorem 2.3. Let p be an odd prime number, k a number field and S a set
of primes of K. Assume that (k, S, p) satisfies (∗) and BS∩Sp(k) = 0. As-
sume that a presentation of GS(k)(p) as obtained in 2.2 is given: GS(k)(p) =
F/R, where F is the free pro-p-group on generators x1, . . . , xn+1, n =
#(S \ Sp), R is the normal subgroup of F generated by relations r1, . . . , rn
which satisfy a congruence of the form

ri ≡ xpai
i

n+1∏
j=1
j 6=i

[xi, xj ]aij mod F3, i = 1, . . . , n.

with ai, aij ∈ Z/pZ. Assume that one of the following conditions is fulfilled:
(i) ai,n+1 6= 0 for 1 ≤ i ≤ n
(ii) an,n+1 6= 0 and ai,n 6= 0 for i < n.

Then GS(k)(p) is a mild pro-p-group of deficiency one. In particular, we
have cdGS(k)(p) = 2.
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An interesting example in which (k, S, p) fulfills (∗) and BS∩Sp(k) = 0 can
be obtained if k is an imaginary quadratic number field. This case will be
studied in more detail in §3. Here we are going to point out another situation
in which the above conditions are fulfilled.

Proposition 2.4. Let p be a prime and k a CM-field with maximal real
subfield k+ such that

• p is inert in k+/Q,
• p splits in k/k+, pOk = pp̄,
• δp = 0,
• p - h(k),

and one of the following two conditions holds:
(i) p - h(k(µp)),

(ii) p - h(k+(µp)) and p - (O×k : O×
k+)

If S′ is any set of primes of k of norm ≡ 1 mod p and S = S′ ∪ {p}, then
(k, S, p) satisfies (∗), and BS∩Sp(k) = B{p}(k) = 0.

Proof. By our assumptions, [kp : Qp] = [k : Q]/2 = r. Since BS(K) ⊂
B{p}(K) it remains to show that B{p}(K) = 0. By virtue of the exact
sequences (1) and (2), this is equivalent to the injectivity of the map

O×k /p→ Ukp/U
p
kp
.

Let us assume (i). Suppose x ∈ O×k /p is a non-trivial element of the kernel
of this map. Then x is contained in the kernel of

O×k /p→ Ukp/U
p
kp
× Ukp̄

/Upkp̄
.

as well. Therefore k( p
√
x)/k is a non-trivial unramified extension. By Kum-

mer theory, the abelian extension k(µp, p
√
x)/k(µp) is unramified of degree p,

contradicting (i). Now we assume that (ii) is fulfilled. Since p - (O×k : O×
k+)

and p splits in k/k+ we have a commutative diagram

O×k /p // Ukp/U
p
kp

O×
k+/p //

OO

Uk+
p
/Up

k+
p

OO

in which the vertical maps are isomorphisms. Thus it suffices to show the
injectivity of the map O×

k+/p → Uk+
p
/Up

k+
p

. This is proved in the same way

as in case (i). �

Example 2.5. Let k = Q(
√

3,
√
−7) and p = 5. Computations with the

computer algebra system MAGMA([MAG]) show that the assumptions of
Prop.2.4 are fulfilled.

3. The case of imaginary quadratic number fields

Let p be an odd prime number and k an imaginary quadratic number field
whose class number is not divisible by p, and which is different from Q(

√
−3)

if p = 3. Assume furthermore that p splits in k, pOk = pp̄. Let S′ =
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{q1, . . . , qn} be a set of primes of k whose norm is congruent to 1 mod p.
Put S = S′ ∪ {p}.

Proposition 3.1. The triple (k, S, p) has property (∗), and BS∩Sp(k) = 0.

Proof. It suffices to show that BS∩Sp(k) = 0. We have

V∅(k) ∼= O×k /p = 0.

The result follows since VS∩Sp(k) ⊂ V∅(k). �

In the above situation, the set of automorphisms {τq1,1, . . . , τqn,1, τp,1} con-
structed in §2 is a minimal system of generators of GS(k)(p). Let Ik denote
the idèle group of k, and for a subset T of S let UT be the subgroup of Ik
consisting of those idèles whose components for q ∈ T are 1 and for q 6∈ T
are units. We remark that for each subset T of S we have isomorphisms

H1(GT (p),Z/pZ) ∼= Ik/(UT I
p
kk
×) ∼= U∅/UTU

p
∅
∼=

∏
q∈T

Uq/U
p
q
∼= (Z/pZ)#T ,

see [K],§11.3. For the following considerations we set qn+1 = p. We make
the same definition as in [V].

Definition 3.2. For two primes qi, qj ∈ S, the linking number `ij ∈ Z/pZ
of qi and qj is defined by the formula

σqi ≡ τ
`ij
qj

mod G{qj}(p)
p

where, by abuse of notation, σqi and τqj , respectively, denote the images of
σqi ∈ GS(k)(p) and τqj ∈ GS(k)(p), respectively, in G{qj}(p).

In other words, `ij is the image of the Frobenius automorphism σqi ∈
GS(k)(p) in H1(G{qj}(p),Z/pZ) which we identify with Z/pZ by means of
its generator τqj . Note that `ii = 0 for all i = 1, . . . , n. The linking number
`ij is independent of the choice of the uniformizer πqi of kqi (this follows
from the above isomorphism for the case T = {qj}), but it depends on the
choice of αqj . If αqj would be replaced by αsqj

, where s is prime to p, then
`ij would be multiplied by s. The defining equation of the linking number
`ij is equivalent to

π̂qi ≡ α̂
`ij
qj

mod U{qj}I
p
kk
×.

Proposition 3.3. Under the above assumptions, we have

h1(GS(k)(p)) = n+ 1

and
h2(GS(k)(p)) ≤ n.

The group GS(k)(p) has a presentation GS(k)(p) = F/R where F is the
free pro-p-group on generators x1, . . . , xn+1, and R is generated as a normal
subgroup of F by relations r1, . . . , rn which are given modulo F3 by

ri ≡ xN(qi)−1
i

n+1∏
j=1
j 6=i

[xi, xj ]`ij mod F3, i = 1, . . . , n.

Proof. This is immediate from the construction of the presentation carried
out in the proof of 2.2. �
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Theorem 2.3 now implies

Theorem 3.4. Let p be an odd prime number, k an imaginary quadratic
number field whose class number is not divisible by p, and which is different
from Q(

√
−3) if p = 3. Assume furthermore that p splits in k, pOk = pp̄.

Let S′ = {q1, . . . , qn} be a set of primes of k whose norm is congruent to 1
mod p. Put qn+1 = p and S = S′∪{qn+1}. Assume that one of the following
conditions is fulfilled:

(i) `i,n+1 6= 0 for 1 ≤ i ≤ n.
(ii) `n,n+1 6= 0 and `i,n 6= 0 for i < n.

Then GS(k)(p) is a mild pro-p-group of deficiency one. In particular, GS(k)(p)
is of cohomological dimension 2.

Corollary 3.5. Let p be an odd prime number, k an imaginary quadratic
number field whose class number is not divisible by p, and which is different
from Q(

√
−3) if p = 3. Assume furthermore that p splits in k, pOk = pp̄.

Let q1, . . . , qn be prime numbers which are inert k/Q with qi ≡ 1 mod p,
qi 6≡ 1 mod p2 for i = 1, . . . , n. Put S = {(q1), . . . , (qn), p}. Then GS(k)(p)
is a mild pro-p-group.

Proof. We set qi = (qi) for 1 ≤ i ≤ n, qn+1 = p. We will verify condition
(i) of 3.4, i.e. we will show that `i,n+1 6= 0 for 1 ≤ i ≤ n. For 1 ≤ i ≤ n,
πqi = qi is a uniformizer of kqi , and an element of Uq for all primes q 6= qi of
k. Hence, the idèle π̂qi , when considered modulo U{qn+1}I

p
kk
×, is equivalent

to the idèle whose q-component is equal to 1 for q 6= qn+1 and equal to q−1
i

for q = qn+1. Since we are only interested in the non-vanishing of `i,n+1

we may assume without loss of generality that αn+1 = 1 + p. In particular,
`i,n+1 is given by

qi ≡ (1 + p)−`i,n+1 mod Upp .

By our assumptions, `i,n+1 6= 0 �

Example 3.6. Let k = Q(
√
−5), p = 3, S = {(13), (31), (3, 1 +

√
−5)}.

Then GS(k)(p) is a mild pro-p-group.
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