
A Database of Invariant Rings�Gregor Kemper, Elmar K�ording, Gunter Malle,B. Heinrih Matzat, Denis Vogel, and Gabor WieseMay 18, 2001AbstratWe announe the reation of a database of invariant rings. This database ontains a largenumber of invariant rings of �nite groups, mostly in the modular ase. It gives information ongenerators and strutural properties of the invariant rings. The main purpose is to provide atool for researhers in invariant theory.1 IntrodutionInvariant theory of �nite groups is a subjet whih has a large variety of appliations, but also dis-plays many open questions. This applies in partiular to the modular ase, where the harateristiof the ground �eld divides the group order. Consequently, muh of the reent researh ativity wentinto this area (see Benson [1℄, Smith [16℄ and the referenes there). For a general introdution intothe invariant theory of �nite groups we refer the reader to the survey artile by Stanley [17℄, or thebook by Smith [15℄, whih gives a problem-oriented presentation.Researh in invariant theory (and, in fat, many other areas of mathematis as well) greatlybene�ts from the availability of examples. Examples provide a means to gain experiene andunderstanding, to �nd or test onjetures, searh for interesting (ounter-)examples, and sometimesto prove results. In invariant theory, new algorithms and the emergene of faster omputers havemade it possible to study problems in a way that would be impossible by hand alulations andad ho methods. In fat, the omputational aspets of invariant theory have reently enjoyedonsiderable interest in their own right (as is doumented by the book by Sturmfels [18℄ and manymore reent papers suh as Derksen and Kraft [6℄ or Kemper [10℄). With this in mind, we havedeided to assemble a olletion of examples, in the form of a database, and to provide it to the publias a researh tool. All omputations were done in the omputer algebra system Magma (Bosmaet al. [2℄), whih has an eÆient pakage for invariant theory (see Kemper and Steel [12℄). We usedthe Sun omputers at the IWR in Heidelberg. Currently the database ontains 5922 examples,almost all modular, and takes about 100 Mbytes of storage spae. The database, together withsoftware for the retrieval of data and doumentation, an be downloaded via anonymous ftp fromthe site ftp.iwr.uni-heidelberg.dein the diretory /pub/kemper/DataBase/The database runs with Unix operating systems. More spei�ally, we have tested the databasewith Linux and Solaris operating systems.We ask users to quote this paper when they write artiles on researh whih involved thedatabase.�This projet was supported by the Deutshe Forshungsgemeinshaft under the projet Ma 1062/8-2 (\Invari-antentheorie endliher Gruppen"). 1



2 Kemper, K�ording, Malle, Matzat, Vogel, Wiese2 Conepts of the databaseRetrieval funtions. To use the database, one annot look at all the several thousand exampleswith the \naked idea". Instead, signi�ant examples must be retrieved by systemati searhes. Forexample, a user might want to� see examples where Noether's degree bound [13℄ is violated (i.e., the maximal degree of agenerating invariant exeeds the group order jGj),� know whether in all examples the Hilbert ideal (i.e., the ideal in the polynomial ring K[V ℄generated by all invariants of positive degree) is generated by homogeneous elements of degreeat most jGj,� �nd the invariant ring of some partiular group, or of a group whih is onjugate to it.It should be lear from these examples that there is no way to de�ne a �xed atalogue of riteriafor whih users an searh the database. Therefore it seemed impossible to us to implement ourretrieval funtions within some standard database program. In fat, the only pratial way how suhriteria an be formulated in a language understandable to a omputer is within some omputeralgebra system. Moreover, a user should be able to manipulate the data retrieved from the databaseand not just look at it. Therefore we have deided to base our retrieval funtions on the omputeralgebra systems Magma (Bosma et al. [2℄) and Maple (Char et al. [4℄). There is the hoie to useeither one of these systems (whih of ourse must be available). We provide aess funtions thattake a boolean-valued funtion in Magma or Maple as an argument. Users an de�ne searh riteriawith suh funtions. After a searh has been done, the examples whih meet the searh riterionan be loaded into Magma or Maple, respetively, for loser examination. In the following setionwe present an example session whih shows how this works. What made it easier for us to abandonthe idea of using standard database software is the fat that we are dealing with a relatively smallnumber of items, but the data stored for eah item is quite large.Inomplete data. A further problem that we had to �nd a way to handle is the inherent diÆultyof omputations in invariant theory. The algorithms require the omputation of Gr�obner bases andthe solution of large systems of linear equations (see Kemper [9℄, Kemper and Steel [12℄). Thereforethere are examples in the database where not all information ould be omputed. For example,it may happen that for some invariant ring the primary invariants ould be omputed, but theseondary invariants were found to be out of reah. We also used an algorithm, found by Hughesand Kemper [8℄, whih for groups of order divisible by p := har(K) but not by p2 alulates theHilbert series and the depth of the invariant ring with a omputational ost that is similar to theevaluation of Molien's formula. Thus for (almost) all groups in the database of order not divisibleby p2 we have the Hilbert series, depth, Cohen-Maaulay property, and the Gorenstein property ofthe invariant ring, although in many ases not even a set of primary invariants is known. We did notwant to exlude suh examples from the database. As a onsequene, the retrieval funtions haveto be able to deal with inomplete information. For example, a searh funtion supplied by a usermight ask something about seondary invariants. Suh a searh funtion, when applied to a ringwhere the seondary invariants are not known, should not return \true" or \false", but \unknown".This feature was espeially hard to implement in Magma, where there is no traperror mehanism.Computational diÆulty. The omputational diÆulty also led to some problems in the re-ation of the database. Usually when one performs diÆult omputations on a omputer, one hasthe omputer run for a while and at some point when patiene runs out, one hooses to interruptthe omputation and tries a di�erent method. Obviously this approah is not feasible for omputingseveral thousand of examples. Instead, we implemented a sheme where di�erent steps (or groups ofsteps) in the omputation of eah invariant ring are performed by di�erent Magma proesses whih



A Database of Invariant Rings 3are run with a time and memory limit. If suh a proess terminates within the limit, it stores itsresults to a �le for subsequent use in later steps. Otherwise, the invariant ring is transferred to a\problem queue", where it an then be worked on by ad ho or semi-automati methods.EÆient information transfer. When running the retrieval funtions, information from thedatabase is automatially read into Magma or Maple in order to apply the searh funtion to theinvariant rings. For reasons of eÆieny it is important to transfer only that part of the informa-tion about eah invariant ring into Magma or Maple whih is atually needed for the evaluationof the searh funtion. To deide what the relevant data is, one might subjet the searh fun-tion to a syntax analysis. Sine this seemed impratial to us, we hose to implement a tehniquefor dynamially determining the required information. More preisely, information that is foundto be missing for the evaluation of the searh funtion on some ring is reloaded for this ring, andthen inluded into the list of neessary information for subsequent evaluations of the searh funtion.We believe that the spei� diÆulties we enountered in this projet generalize to many othermathematial databases, and we hope that the onepts we developed will also be appliable inother ontexts as well.3 An example sessionAfter the database has been downloaded, it requires a minimal amount of installation. For detailssee the doumentation supplied with the database. Then the retrieval funtions in Magma or Maplean be used. We present an example session in Magma, and remark that the usage in Maple isfor the most part analogous. We start by alling the exeutable InvSearh. This starts Magma,reads in the retrieval funtions and sets up the ommuniation with the database. In the sequel weassume some basi familiarity with Magma.(a) As a �rst example, suppose we are interested in the invariants of the group G = SO3(F5 ) inthe natural representation. The hanes of �nding the invariants of G in the database aremuh higher if we searh for groups whih are onjugate to G in GL3(F5 ), rather than onlyfor G itself. A test for this is provided by the funtion IsGroupConjugateTo, whih is partof the retrieval funtions. So we type:> G := SO(3,5);> T,F,U := SearhInvariants(fun<R | IsGroupConjugateTo(R,G)>);> T;[ 10077 ℄The searh through the database took 75 seonds. The funtion SearhInvariants is alledwith a boolean-valued funtion (the \searh funtion") as argument. This funtion has aninvariant ring R as input and returns true if R is the invariant ring of a group onjugate toG. SearhInvariants returns three lists, T,F, and U, whih stand for the invariant rings forwhih the searh funtion yielded true, false, or ould not be evaluated, respetively. Thuswe have found exatly one invariant ring of a group onjugate to G. Every invariant ring isidenti�ed by a unique integer, its ExampleID. These ExampleID's are listed in T,F, and U. Sofar, no invariant ring has been loaded into Magma. We load the one we are interested in now,and look at some of its properties.> R := RequestInvariants(T[1℄);> DegreePrimaries(R);[ 2, 6, 20 ℄> DegreeSeondaries(R);



4 Kemper, K�ording, Malle, Matzat, Vogel, Wiese[ 0, 25 ℄> Hypersurfae(R);true(b) Next we want to test the onjeture (Conjeture 1 below) that if K[V ℄G is Cohen-Maaulay,then Noether's degree bound holds.> CM,nCM,U := SearhInvariants(fun<R | CohenMaaulay(R)>);> #CM,#nCM,#U;3330 1116 1476This searh took 19 seonds. So we have 3330 examples of Cohen-Maaulay invariant rings,1116 examples of non-Cohen-Maaulay rings, and 1476 examples where the Cohen-Maaulayproperty ould not be evaluated. Now we wish to single out those examples whih satisfyNoether's bound from the Cohen-Maaulay invariant rings. This an be done by giving asearh range as a seond argument to SearhInvariants. The minimal number k suh thatan invariant ring R an be generated by invariants of degree at most k is given by the funtionBeta(R).> NB,nNB,U := SearhInvariants(fun<R | Beta(R) le GroupOrder(R)>,CM);> #NB,#nNB,#U;3105 0 225Thus the onjeture ould be veri�ed in 3105 ases, and there is no ounter-example.4 Soures of examples and attributes storedAll �nite groups with non-yli Sylow p-subgroup (p = har(K)) have an in�nite number of non-isomorphi indeomposable representations over K. Thus there is no way in whih the repre-sentations overed in our database an reah any level of omprehensiveness, and some degree ofarbitrariness is therefore unavoidable in the hoie of what linear groups we inluded in the database.This also means that for a user it will be a matter of luk if an invariant ring he or she is interestedin will be ontained in the database. In order to obtain a seletion of examples whih is not toobiased in one diretion or another, we deided to take our examples from the following soures:(1) all subgroups of GL4(F2 ),(2) all 2-subgroups of GL5(F2 ),(3) all 3-subgroups of GL4(F3 ),(4) all subgroups of GL4(F3 ) whih an be generated by at most two elements,(5) the exeptional irreduible omplex reetion groups in harateristi 0, aording to thelassi�ation by Shephard and Todd [14℄ (Here the generating invariants for the groups withnumbers 36 and 37 (E7 and E8) are not inluded in the data base beause of storage problems,but they an be obtained from the authors upon request),(6) a number of misellaneous examples that seemed of speial interest to us, inluding some smallrepresentations of quasi-simple groups,(7) an assortment of representations up to degree 7 of groups of small order.



A Database of Invariant Rings 5The groups under (7) were produed as follows. First we used the SmallGroups library in Magmato get some groups of small order. Then for eah group and eah prime p dividing the group order,we produed many \random" representations over Fpi (1 � i � 3) by forming tensor produts,symmetri powers, Jaobson radials and other standard operations of representations we alreadyhad, and then extrating indeomposable representations from these with the Meat Axe. Sinedeomposable representations are also of onsiderable interest in invariant theory, we formed diretsums of the representations obtained in this way of total degree at most 7.It should also be of interest what information we store for eah invariant ring. The followingis a partial list of attributes that we store for an invariant ring K[V ℄G, wherever they ould beomputed.(1) The ground �eld K,(2) the dimension of V ,(3) generators of G,(4) some properties of G, suh as the group order and whether G is a p-group (p = har(K)) ora solvable group,(5) some properties of the representation V , suh as irreduiblility, or whether G ats as a(pseudo-)reetion group,(6) primary invariants,(7) seondary invariants,(8) fundamental invariants, i.e., a minimal system of generators of K[V ℄G,(9) syzygies, i.e., algebrai relations between the fundamental invariants,(10) \module-syzygies", i.e., linear relations between the seondary invariants over the subalgebragenerated by the primary invariants,(11) the depth of K[V ℄G,(12) the Hilbert series,(13) the Cohen-Maaulay and Gorenstein properties, and whether K[V ℄G is a omplete interse-tion, a hypersurfae, or a polynomial ring.5 Some onjeturesWe onlude this note by adding a few onjetures whih have all been on�rmed by the database.In the following, G � GL(V ) is a �nite linear group in dimension n := dim(V ).Conjeture 1. If K[V ℄G is Cohen-Maaulay, then Noether's degree bound holds, i.e., K[V ℄G isgenerated by homogeneous invariants of degrees at most jGj.This onjeture generalizes the fat that Noether's degree bound holds in the non-modular ase,whih was reently proved in full generality by Fleishmann [7℄. We have 3330 examples of Cohen-Maaulay invariant rings in the database. Of these, 3105 are known to satisfy Noether's bound,and for the rest generating invariants are not known. On the other hand, 133 examples from thedatabase violate Noether's bound. Another generalization is ontained in the following onjeture.



6 Kemper, K�ording, Malle, Matzat, Vogel, WieseConjeture 2 (Derksen and Kemper [5, Conjeture 3.7.6℄). Let I � K[V ℄ be the \Hilbert ideal",i.e., the ideal in the polynomial ring K[V ℄ generated by all homogeneous invariants of positive degree.Then I is generated (as an ideal) by homogeneous elements of degree at most jGj.Clearly Conjeture 2 holds if Noether's degree bound is satis�ed. But we also veri�ed it for all133 examples where Noether's bound fails.Conjeture 3 (Derksen, see Kemper [11℄). Let f1; : : : ; fn 2 K[V ℄G be primary invariants of de-grees d1; : : : ; dn. Then the degrees of the (orresponding) seondary invariants are bounded fromabove by d1 + � � �+ dn � n.Conjeture 3 was proved in the Cohen-Maaulay ase by Broer [3℄. The seondary invariantsare only known for 771 of the 1116 non-Cohen-Maaulay invariant rings in the database. In all 771examples, Conjeture 3 holds.Conjeture 4 (Kemper [11, Conjeture 22℄). The degree of the Hilbert series H(K[V ℄G; t) (as arational funtion in C (t)) is at most �n.Conjeture 4 is true in the Cohen-Maaulay ase, sine in this ase it is equivalent to Con-jeture 3. We veri�ed the onjeture for all 1116 invariant rings in the database whih are notCohen-Maaulay.Conjeture 5. If K[V ℄G is Cohen-Maaulay and G � SL(V ), then K[V ℄G is Gorenstein.Conjeture 5 is true in the non-modular ase by a result of Watanabe [19, 20℄. 1916 examplesin our database satisfy the hypothesis of Conjeture 5, and all are Gorenstein. On the other hand,we have 893 examples whih are Cohen-Maaulay but not Gorenstein (where the groups are notontained in SL(V ), of ourse).Referenes[1℄ David J. Benson, Polynomial Invariants of Finite Groups, Lond. Math. So. Leture NoteSer. 190, Cambridge Univ. Press, Cambridge 1993.[2℄ Wieb Bosma, John J. Cannon, Catherine Playoust, The Magma Algebra System I: The UserLanguage, J. Symboli Comput. 24 (1997), 235{265.[3℄ Abraham Broer, Remarks on Invariant Theory of Finite Groups, preprint, Universit�e deMontr�eal, Montr�eal, 1997.[4℄ B. Char, K. Geddes, G. Gonnet, M. Monagan, S. Watt, Maple Referene Manual, WaterlooMaple Publishing, Waterloo, Ontario 1990.[5℄ Harm Derksen, Gregor Kemper, Computational Invariant Theory, Enylopaedia of Mathe-matial Sienes, Springer-Verlag, Berlin, Heidelberg, New York 2001, submitted, 241 pages.[6℄ Harm Derksen, Hanspeter Kraft, Construtive Invariant Theory, in: Alg�ebre non ommutative,groupes quantiques et invariants (Reims, 1995), S�emin. Congr. 36, pp. 221{244, So. Math.Frane, Paris 1997.[7℄ Peter Fleishmann, The Noether Bound in Invariant Theory of Finite Groups, Adv. in Math.156 (2000), 23{32.[8℄ Ian Hughes, Gregor Kemper, Symmetri Powers of Modular Representations for Groups witha Sylow Subgroup of Prime Order, J. of Algebra 241 (2001), 759{788.
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