
A Database of Invariant Rings�Gregor Kemper, Elmar K�ording, Gunter Malle,B. Heinri
h Matzat, Denis Vogel, and Gabor WieseMay 18, 2001Abstra
tWe announ
e the 
reation of a database of invariant rings. This database 
ontains a largenumber of invariant rings of �nite groups, mostly in the modular 
ase. It gives information ongenerators and stru
tural properties of the invariant rings. The main purpose is to provide atool for resear
hers in invariant theory.1 Introdu
tionInvariant theory of �nite groups is a subje
t whi
h has a large variety of appli
ations, but also dis-plays many open questions. This applies in parti
ular to the modular 
ase, where the 
hara
teristi
of the ground �eld divides the group order. Consequently, mu
h of the re
ent resear
h a
tivity wentinto this area (see Benson [1℄, Smith [16℄ and the referen
es there). For a general introdu
tion intothe invariant theory of �nite groups we refer the reader to the survey arti
le by Stanley [17℄, or thebook by Smith [15℄, whi
h gives a problem-oriented presentation.Resear
h in invariant theory (and, in fa
t, many other areas of mathemati
s as well) greatlybene�ts from the availability of examples. Examples provide a means to gain experien
e andunderstanding, to �nd or test 
onje
tures, sear
h for interesting (
ounter-)examples, and sometimesto prove results. In invariant theory, new algorithms and the emergen
e of faster 
omputers havemade it possible to study problems in a way that would be impossible by hand 
al
ulations andad ho
 methods. In fa
t, the 
omputational aspe
ts of invariant theory have re
ently enjoyed
onsiderable interest in their own right (as is do
umented by the book by Sturmfels [18℄ and manymore re
ent papers su
h as Derksen and Kraft [6℄ or Kemper [10℄). With this in mind, we havede
ided to assemble a 
olle
tion of examples, in the form of a database, and to provide it to the publi
as a resear
h tool. All 
omputations were done in the 
omputer algebra system Magma (Bosmaet al. [2℄), whi
h has an eÆ
ient pa
kage for invariant theory (see Kemper and Steel [12℄). We usedthe Sun 
omputers at the IWR in Heidelberg. Currently the database 
ontains 5922 examples,almost all modular, and takes about 100 Mbytes of storage spa
e. The database, together withsoftware for the retrieval of data and do
umentation, 
an be downloaded via anonymous ftp fromthe site ftp.iwr.uni-heidelberg.dein the dire
tory /pub/kemper/DataBase/The database runs with Unix operating systems. More spe
i�
ally, we have tested the databasewith Linux and Solaris operating systems.We ask users to quote this paper when they write arti
les on resear
h whi
h involved thedatabase.�This proje
t was supported by the Deuts
he Fors
hungsgemeins
haft under the proje
t Ma 1062/8-2 (\Invari-antentheorie endli
her Gruppen"). 1
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epts of the databaseRetrieval fun
tions. To use the database, one 
annot look at all the several thousand exampleswith the \naked idea". Instead, signi�
ant examples must be retrieved by systemati
 sear
hes. Forexample, a user might want to� see examples where Noether's degree bound [13℄ is violated (i.e., the maximal degree of agenerating invariant ex
eeds the group order jGj),� know whether in all examples the Hilbert ideal (i.e., the ideal in the polynomial ring K[V ℄generated by all invariants of positive degree) is generated by homogeneous elements of degreeat most jGj,� �nd the invariant ring of some parti
ular group, or of a group whi
h is 
onjugate to it.It should be 
lear from these examples that there is no way to de�ne a �xed 
atalogue of 
riteriafor whi
h users 
an sear
h the database. Therefore it seemed impossible to us to implement ourretrieval fun
tions within some standard database program. In fa
t, the only pra
ti
al way how su
h
riteria 
an be formulated in a language understandable to a 
omputer is within some 
omputeralgebra system. Moreover, a user should be able to manipulate the data retrieved from the databaseand not just look at it. Therefore we have de
ided to base our retrieval fun
tions on the 
omputeralgebra systems Magma (Bosma et al. [2℄) and Maple (Char et al. [4℄). There is the 
hoi
e to useeither one of these systems (whi
h of 
ourse must be available). We provide a

ess fun
tions thattake a boolean-valued fun
tion in Magma or Maple as an argument. Users 
an de�ne sear
h 
riteriawith su
h fun
tions. After a sear
h has been done, the examples whi
h meet the sear
h 
riterion
an be loaded into Magma or Maple, respe
tively, for 
loser examination. In the following se
tionwe present an example session whi
h shows how this works. What made it easier for us to abandonthe idea of using standard database software is the fa
t that we are dealing with a relatively smallnumber of items, but the data stored for ea
h item is quite large.In
omplete data. A further problem that we had to �nd a way to handle is the inherent diÆ
ultyof 
omputations in invariant theory. The algorithms require the 
omputation of Gr�obner bases andthe solution of large systems of linear equations (see Kemper [9℄, Kemper and Steel [12℄). Thereforethere are examples in the database where not all information 
ould be 
omputed. For example,it may happen that for some invariant ring the primary invariants 
ould be 
omputed, but these
ondary invariants were found to be out of rea
h. We also used an algorithm, found by Hughesand Kemper [8℄, whi
h for groups of order divisible by p := 
har(K) but not by p2 
al
ulates theHilbert series and the depth of the invariant ring with a 
omputational 
ost that is similar to theevaluation of Molien's formula. Thus for (almost) all groups in the database of order not divisibleby p2 we have the Hilbert series, depth, Cohen-Ma
aulay property, and the Gorenstein property ofthe invariant ring, although in many 
ases not even a set of primary invariants is known. We did notwant to ex
lude su
h examples from the database. As a 
onsequen
e, the retrieval fun
tions haveto be able to deal with in
omplete information. For example, a sear
h fun
tion supplied by a usermight ask something about se
ondary invariants. Su
h a sear
h fun
tion, when applied to a ringwhere the se
ondary invariants are not known, should not return \true" or \false", but \unknown".This feature was espe
ially hard to implement in Magma, where there is no traperror me
hanism.Computational diÆ
ulty. The 
omputational diÆ
ulty also led to some problems in the 
re-ation of the database. Usually when one performs diÆ
ult 
omputations on a 
omputer, one hasthe 
omputer run for a while and at some point when patien
e runs out, one 
hooses to interruptthe 
omputation and tries a di�erent method. Obviously this approa
h is not feasible for 
omputingseveral thousand of examples. Instead, we implemented a s
heme where di�erent steps (or groups ofsteps) in the 
omputation of ea
h invariant ring are performed by di�erent Magma pro
esses whi
h



A Database of Invariant Rings 3are run with a time and memory limit. If su
h a pro
ess terminates within the limit, it stores itsresults to a �le for subsequent use in later steps. Otherwise, the invariant ring is transferred to a\problem queue", where it 
an then be worked on by ad ho
 or semi-automati
 methods.EÆ
ient information transfer. When running the retrieval fun
tions, information from thedatabase is automati
ally read into Magma or Maple in order to apply the sear
h fun
tion to theinvariant rings. For reasons of eÆ
ien
y it is important to transfer only that part of the informa-tion about ea
h invariant ring into Magma or Maple whi
h is a
tually needed for the evaluationof the sear
h fun
tion. To de
ide what the relevant data is, one might subje
t the sear
h fun
-tion to a syntax analysis. Sin
e this seemed impra
ti
al to us, we 
hose to implement a te
hniquefor dynami
ally determining the required information. More pre
isely, information that is foundto be missing for the evaluation of the sear
h fun
tion on some ring is reloaded for this ring, andthen in
luded into the list of ne
essary information for subsequent evaluations of the sear
h fun
tion.We believe that the spe
i�
 diÆ
ulties we en
ountered in this proje
t generalize to many othermathemati
al databases, and we hope that the 
on
epts we developed will also be appli
able inother 
ontexts as well.3 An example sessionAfter the database has been downloaded, it requires a minimal amount of installation. For detailssee the do
umentation supplied with the database. Then the retrieval fun
tions in Magma or Maple
an be used. We present an example session in Magma, and remark that the usage in Maple isfor the most part analogous. We start by 
alling the exe
utable InvSear
h. This starts Magma,reads in the retrieval fun
tions and sets up the 
ommuni
ation with the database. In the sequel weassume some basi
 familiarity with Magma.(a) As a �rst example, suppose we are interested in the invariants of the group G = SO3(F5 ) inthe natural representation. The 
han
es of �nding the invariants of G in the database aremu
h higher if we sear
h for groups whi
h are 
onjugate to G in GL3(F5 ), rather than onlyfor G itself. A test for this is provided by the fun
tion IsGroupConjugateTo, whi
h is partof the retrieval fun
tions. So we type:> G := SO(3,5);> T,F,U := Sear
hInvariants(fun
<R | IsGroupConjugateTo(R,G)>);> T;[ 10077 ℄The sear
h through the database took 75 se
onds. The fun
tion Sear
hInvariants is 
alledwith a boolean-valued fun
tion (the \sear
h fun
tion") as argument. This fun
tion has aninvariant ring R as input and returns true if R is the invariant ring of a group 
onjugate toG. Sear
hInvariants returns three lists, T,F, and U, whi
h stand for the invariant rings forwhi
h the sear
h fun
tion yielded true, false, or 
ould not be evaluated, respe
tively. Thuswe have found exa
tly one invariant ring of a group 
onjugate to G. Every invariant ring isidenti�ed by a unique integer, its ExampleID. These ExampleID's are listed in T,F, and U. Sofar, no invariant ring has been loaded into Magma. We load the one we are interested in now,and look at some of its properties.> R := RequestInvariants(T[1℄);> DegreePrimaries(R);[ 2, 6, 20 ℄> DegreeSe
ondaries(R);
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e(R);true(b) Next we want to test the 
onje
ture (Conje
ture 1 below) that if K[V ℄G is Cohen-Ma
aulay,then Noether's degree bound holds.> CM,nCM,U := Sear
hInvariants(fun
<R | CohenMa
aulay(R)>);> #CM,#nCM,#U;3330 1116 1476This sear
h took 19 se
onds. So we have 3330 examples of Cohen-Ma
aulay invariant rings,1116 examples of non-Cohen-Ma
aulay rings, and 1476 examples where the Cohen-Ma
aulayproperty 
ould not be evaluated. Now we wish to single out those examples whi
h satisfyNoether's bound from the Cohen-Ma
aulay invariant rings. This 
an be done by giving asear
h range as a se
ond argument to Sear
hInvariants. The minimal number k su
h thatan invariant ring R 
an be generated by invariants of degree at most k is given by the fun
tionBeta(R).> NB,nNB,U := Sear
hInvariants(fun
<R | Beta(R) le GroupOrder(R)>,CM);> #NB,#nNB,#U;3105 0 225Thus the 
onje
ture 
ould be veri�ed in 3105 
ases, and there is no 
ounter-example.4 Sour
es of examples and attributes storedAll �nite groups with non-
y
li
 Sylow p-subgroup (p = 
har(K)) have an in�nite number of non-isomorphi
 inde
omposable representations over K. Thus there is no way in whi
h the repre-sentations 
overed in our database 
an rea
h any level of 
omprehensiveness, and some degree ofarbitrariness is therefore unavoidable in the 
hoi
e of what linear groups we in
luded in the database.This also means that for a user it will be a matter of lu
k if an invariant ring he or she is interestedin will be 
ontained in the database. In order to obtain a sele
tion of examples whi
h is not toobiased in one dire
tion or another, we de
ided to take our examples from the following sour
es:(1) all subgroups of GL4(F2 ),(2) all 2-subgroups of GL5(F2 ),(3) all 3-subgroups of GL4(F3 ),(4) all subgroups of GL4(F3 ) whi
h 
an be generated by at most two elements,(5) the ex
eptional irredu
ible 
omplex re
e
tion groups in 
hara
teristi
 0, a

ording to the
lassi�
ation by Shephard and Todd [14℄ (Here the generating invariants for the groups withnumbers 36 and 37 (E7 and E8) are not in
luded in the data base be
ause of storage problems,but they 
an be obtained from the authors upon request),(6) a number of mis
ellaneous examples that seemed of spe
ial interest to us, in
luding some smallrepresentations of quasi-simple groups,(7) an assortment of representations up to degree 7 of groups of small order.



A Database of Invariant Rings 5The groups under (7) were produ
ed as follows. First we used the SmallGroups library in Magmato get some groups of small order. Then for ea
h group and ea
h prime p dividing the group order,we produ
ed many \random" representations over Fpi (1 � i � 3) by forming tensor produ
ts,symmetri
 powers, Ja
obson radi
als and other standard operations of representations we alreadyhad, and then extra
ting inde
omposable representations from these with the Meat Axe. Sin
ede
omposable representations are also of 
onsiderable interest in invariant theory, we formed dire
tsums of the representations obtained in this way of total degree at most 7.It should also be of interest what information we store for ea
h invariant ring. The followingis a partial list of attributes that we store for an invariant ring K[V ℄G, wherever they 
ould be
omputed.(1) The ground �eld K,(2) the dimension of V ,(3) generators of G,(4) some properties of G, su
h as the group order and whether G is a p-group (p = 
har(K)) ora solvable group,(5) some properties of the representation V , su
h as irredu
iblility, or whether G a
ts as a(pseudo-)re
e
tion group,(6) primary invariants,(7) se
ondary invariants,(8) fundamental invariants, i.e., a minimal system of generators of K[V ℄G,(9) syzygies, i.e., algebrai
 relations between the fundamental invariants,(10) \module-syzygies", i.e., linear relations between the se
ondary invariants over the subalgebragenerated by the primary invariants,(11) the depth of K[V ℄G,(12) the Hilbert series,(13) the Cohen-Ma
aulay and Gorenstein properties, and whether K[V ℄G is a 
omplete interse
-tion, a hypersurfa
e, or a polynomial ring.5 Some 
onje
turesWe 
on
lude this note by adding a few 
onje
tures whi
h have all been 
on�rmed by the database.In the following, G � GL(V ) is a �nite linear group in dimension n := dim(V ).Conje
ture 1. If K[V ℄G is Cohen-Ma
aulay, then Noether's degree bound holds, i.e., K[V ℄G isgenerated by homogeneous invariants of degrees at most jGj.This 
onje
ture generalizes the fa
t that Noether's degree bound holds in the non-modular 
ase,whi
h was re
ently proved in full generality by Fleis
hmann [7℄. We have 3330 examples of Cohen-Ma
aulay invariant rings in the database. Of these, 3105 are known to satisfy Noether's bound,and for the rest generating invariants are not known. On the other hand, 133 examples from thedatabase violate Noether's bound. Another generalization is 
ontained in the following 
onje
ture.
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ture 2 (Derksen and Kemper [5, Conje
ture 3.7.6℄). Let I � K[V ℄ be the \Hilbert ideal",i.e., the ideal in the polynomial ring K[V ℄ generated by all homogeneous invariants of positive degree.Then I is generated (as an ideal) by homogeneous elements of degree at most jGj.Clearly Conje
ture 2 holds if Noether's degree bound is satis�ed. But we also veri�ed it for all133 examples where Noether's bound fails.Conje
ture 3 (Derksen, see Kemper [11℄). Let f1; : : : ; fn 2 K[V ℄G be primary invariants of de-grees d1; : : : ; dn. Then the degrees of the (
orresponding) se
ondary invariants are bounded fromabove by d1 + � � �+ dn � n.Conje
ture 3 was proved in the Cohen-Ma
aulay 
ase by Broer [3℄. The se
ondary invariantsare only known for 771 of the 1116 non-Cohen-Ma
aulay invariant rings in the database. In all 771examples, Conje
ture 3 holds.Conje
ture 4 (Kemper [11, Conje
ture 22℄). The degree of the Hilbert series H(K[V ℄G; t) (as arational fun
tion in C (t)) is at most �n.Conje
ture 4 is true in the Cohen-Ma
aulay 
ase, sin
e in this 
ase it is equivalent to Con-je
ture 3. We veri�ed the 
onje
ture for all 1116 invariant rings in the database whi
h are notCohen-Ma
aulay.Conje
ture 5. If K[V ℄G is Cohen-Ma
aulay and G � SL(V ), then K[V ℄G is Gorenstein.Conje
ture 5 is true in the non-modular 
ase by a result of Watanabe [19, 20℄. 1916 examplesin our database satisfy the hypothesis of Conje
ture 5, and all are Gorenstein. On the other hand,we have 893 examples whi
h are Cohen-Ma
aulay but not Gorenstein (where the groups are not
ontained in SL(V ), of 
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