X International Workshop on Differential Equations, Number Theory, Data Analysis Methods and Geometry
University of Havana, February 19-23, 2007

From the Birch and Swinnerton
 Dyer Conjecture to the

$G L_{2}$ Main Conjecture for elliptic curves

by Otmar Venjakob

Arithmetic of elliptic curves

E elliptic curve over \mathbb{Q} :
$E: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6}, \quad A_{i} \in \mathbb{Z}$.

$$
E(K)=?
$$

for number fields, local fields, finite fields K

Arithmetic of elliptic curves

E elliptic curve over \mathbb{Q} :
$E: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6}, \quad A_{i} \in \mathbb{Z}$.

$$
E(K)=?
$$

for number fields, local fields, finite fields K
l any prime,
\widetilde{E} reduction of $E \bmod l$,
$\# \widetilde{E}\left(\mathbb{F}_{l}\right)=: 1-a_{l}+l$

Arithmetic of elliptic curves

E elliptic curve over \mathbb{Q} :
$E: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6}, \quad A_{i} \in \mathbb{Z}$.

$$
E(K)=?
$$

for number fields, local fields, finite fields K
l any prime,
\widetilde{E} reduction of $E \bmod l$,
$\# \widetilde{E}\left(\mathbb{F}_{l}\right)=: 1-a_{l}+l$

Hasse-Weil L-function of E :
$L(E / \mathbb{Q}, s):=\prod_{l}\left(1-a_{l} l^{-s}+\epsilon(l) l^{1-2 s}\right)^{-1}, s \in \mathbb{C}, \Re(s)>\frac{3}{2}$,
where $\epsilon(l):=\left\{\begin{array}{lc}1 & E \text { has good reduction at } l \\ 0 & \text { otherwise }\end{array}\right.$

Mordell-Weil Theorem

$E(\mathbb{Q})$ is a finitely generated abelian group

Mordell-Weil Theorem

$E(\mathbb{Q})$ is a finitely generated abelian group

Birch \& Swinnerton-Dyer Conjecture

If the Taylor expansion at $s=1$ is

$$
L(E / \mathbb{Q}, s)=L^{*}(E / \mathbb{Q})(s-1)^{r}+\ldots,
$$

Mordell-Weil Theorem

$E(\mathbb{Q})$ is a finitely generated abelian group

Birch \& Swinnerton-Dyer Conjecture

If the Taylor expansion at $s=1$ is

$$
L(E / \mathbb{Q}, s)=L^{*}(E / \mathbb{Q})(s-1)^{r}+\ldots
$$

then

$$
\begin{aligned}
& \text { I. } \quad r=r \mathrm{k}_{\mathbb{Z}} E(\mathbb{Q}) \quad \text { (order of vanishing) } \\
& \text { II. } \quad \frac{L^{*}(E / \mathbb{Q})}{\Omega_{+} R_{E}}=\frac{\# W(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \prod_{l} c_{l} \in \mathbb{Q}
\end{aligned}
$$

(rationality, integrality)

$\amalg(E / \mathbb{Q})$	Tate-Shafarevich group
$R_{E}=\operatorname{det}\left(<P_{i}, P_{j}>\right)_{i, j}$	regulator of E
ω	Néron Differential
$\Omega_{+}=\int_{\gamma^{+}} \omega$	real period of E
$c_{l}=\left[E\left(\mathbb{Q}_{l}\right): E^{n s}\left(\mathbb{Q}_{l}\right)\right]$	Tamagawa-number at l

The Selmer group of E

Assumption: $p \geq 5$ prime such that E has good ordinary reduction at p, i.e.

$$
\# \widetilde{E}\left(\overline{\mathbb{F}_{p}}\right)[p]=p
$$

For any finite extension K / \mathbb{Q} we have the (p-primary) Selmer group $\operatorname{Sel}(E / K)$

$$
0 \longrightarrow E(K) \otimes_{\mathbb{Z}} \mathbb{Q}_{p} / \mathbb{Z}_{p} \longrightarrow \operatorname{Sel}(E / K) \longrightarrow \amalg(E / K)(p) \longrightarrow 0
$$

The Selmer group of E

Assumption: $p \geq 5$ prime such that E has good ordinary reduction at p, i.e.

$$
\# \widetilde{E}\left(\overline{\mathbb{F}_{p}}\right)[p]=p
$$

For any finite extension K / \mathbb{Q} we have the (p-primary) Selmer group $\operatorname{Sel}(E / K)$

$$
0 \longrightarrow E(K) \otimes_{\mathbb{Z}} \mathbb{Q}_{p} / \mathbb{Z}_{p} \longrightarrow \operatorname{Sel}(E / K) \longrightarrow \amalg(E / K)(p) \longrightarrow 0
$$

Thus, assuming $\# W(E / K)<\infty$, it holds for the Pontryagin dual of the Selmer group

$$
\operatorname{Sel}(E / K)^{\vee}:=\operatorname{Hom}\left(\operatorname{Sel}(E / K), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

that

$$
\mathrm{rk}_{\mathbb{Z}} E(K)=\mathrm{rk}_{\mathbb{Z}_{p}} \operatorname{Sel}(E / K)^{\vee}
$$

Towers of number fields

$K_{n}:=\mathbb{Q}\left(E\left[p^{n}\right]\right), \quad 1 \leq n \leq \infty$,
$G_{n}:=G\left(K_{n} / \mathbb{Q}\right) \quad G:=G_{\infty}$
$G \subseteq G L_{2}\left(\mathbb{Z}_{p}\right) \quad$ closed subgroup
i.e. a p-adic Lie group

Towers of number fields

$K_{n}:=\mathbb{Q}\left(E\left[p^{n}\right]\right), \quad 1 \leq n \leq \infty$,
$G_{n}:=G\left(K_{n} / \mathbb{Q}\right) \quad G:=G_{\infty}$
$G \subseteq G L_{2}\left(\mathbb{Z}_{p}\right) \quad$ closed subgroup
i.e. a p-adic Lie group

$X\left(E / K_{n}\right):=\operatorname{Sel}\left(E / K_{n}\right)^{\vee}$ is a compact $\mathbb{Z}_{p}\left[G_{n}\right]$-module
 ated $\Lambda(G)$-module, where

$$
\wedge(G)=\underset{n}{\lim _{n}} \mathbb{Z}_{p}\left[G_{n}\right]
$$

denotes the Iwasawa algebra of G,
a noehterian possibly non-commutative ring.

Twisted L-functions

$\operatorname{Irr}\left(G_{n}\right)$ irreducible representations of G_{n},

$$
\rho: G \rightarrow G L\left(V_{\rho}\right),
$$

realized over a number field $\subseteq \mathbb{C}$ or a local field $\subseteq \overline{\mathbb{Q}_{l}}$
$\left(\rho, V_{\rho}\right) \in \operatorname{Irr}\left(G_{n}\right), n<\infty$
$L(E, \rho, s) L$-function of $E \times \rho$

Twisted L-functions

$\operatorname{Irr}\left(G_{n}\right)$ irreducible representations of G_{n},

$$
\rho: G \rightarrow G L\left(V_{\rho}\right),
$$

realized over a number field $\subseteq \mathbb{C}$ or a local field $\subseteq \overline{\mathbb{Q}_{l}}$
$\left(\rho, V_{\rho}\right) \in \operatorname{Irr}\left(G_{n}\right), n<\infty$
$L(E, \rho, s) L$-function of $E \times \rho:$

$$
\begin{aligned}
& L(E, \rho, s):=\prod_{q} \frac{1}{\operatorname{det}\left(1-\mathrm{Frob}_{q}^{-1} T \mid\left(H_{l}^{1}(E) \otimes_{\mathbb{Q}} V_{\rho}\right)^{I_{q}}\right)_{\mid T=q^{-s}}} \\
& H_{l}^{1}(E):=\operatorname{Hom}\left(H_{1}(E(\mathbb{C}), \mathbb{Z}), \mathbb{Q}_{l}\right)
\end{aligned}
$$

From BSD to the Main Conjecture

algebraic		analytic
$X\left(E / K_{n}\right)$ as G_{n}-module	\sim	$L\left(E / K_{n}\right)=\prod_{\operatorname{Irr}\left(G_{n}\right)} L(E, \rho, s)^{n_{\rho}}$
p-adic families		
$X\left(E / K_{\infty}\right)$	\sim	$(L(E, \rho, 1))_{\rho \in \operatorname{Irr}\left(G_{n}\right), n<\infty}$
p-adic L-functions		
$F_{E}:=F_{X}$ Characteristic Element		\mathcal{L}_{E} analytic p-adic L-function

Main Conjecture

$$
F_{E} \equiv \mathcal{L}_{E}
$$

What is new?

Example (CM-case):

$$
E: y^{2}=x^{3}-x
$$

$\operatorname{End}(E) \cong \mathbb{Z}[i] \neq \mathbb{Z}$, i.e. E admits complex multiplication (CM), thus

$$
G \cong \mathbb{Z}_{p}^{2} \times \text { finite group }
$$

is abelian.
Main conjecture is a Theorem of Rubin in many cases,i.e. the theory is rather well known!

What is new?

Example (CM-case):

$$
E: y^{2}=x^{3}-x
$$

$\operatorname{End}(E) \cong \mathbb{Z}[i] \neq \mathbb{Z}$, i.e. E admits complex multiplication (CM), thus

$$
G \cong \mathbb{Z}_{p}^{2} \times \text { finite group }
$$

is abelian.
Main conjecture is a Theorem of Rubin in many cases,i.e. the theory is rather well known!

Example ($G L_{2}$-case):

$$
E: y^{2}+y=x^{3}-x^{2}
$$

$\operatorname{End}(E) \cong \mathbb{Z}$, i.e. E does not admit complex multiplication, thus

$$
G \subseteq_{o} G L_{2}\left(\mathbb{Z}_{p}\right) \text { open subgroup }
$$

is not abelian.
It was not even known how to formulate a main conjecture!

New: existence of characteristic elements

Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: $H \unlhd G$ with $\Gamma:=G / H \cong \mathbb{Z}_{p}$
(is satisfied in our application because K_{∞} contains the cyclotomic \mathbb{Z}_{p}-extension \mathbb{Q} cyc of \mathbb{Q})

We define a certain multiplicatively closed subset \mathcal{T} of $\wedge:=\wedge(G)$ associated with H.

Question Can one localize \wedge with respect to \mathcal{T} ?

In general, this is a very difficult question for noncommutative rings!

Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: $H \unlhd G$ with $\Gamma:=G / H \cong \mathbb{Z}_{p}$
(is satisfied in our application because K_{∞} contains the cyclotomic \mathbb{Z}_{p}-extension \mathbb{Q} cyc of \mathbb{Q})

We define a certain multiplicatively closed subset \mathcal{T} of $\wedge:=\wedge(G)$ associated with H.

Question Can one localize \wedge with respect to \mathcal{T} ?

In general, this is a very difficult question for noncommutative rings!

If yes, the localisation with respect to \mathcal{T} should be related - by construction - to the following subcategory of the category of Λ-torsion modules:

$$
\begin{array}{ll}
\mathfrak{M}_{H}(G) & \text { category of } \Lambda \text {-modules } M \text { such that } \\
& \text { modulo } \mathbb{Z}_{p} \text {-torsion } M \text { is finitely gen- } \\
& \text { erated over } \wedge(H) \subseteq \wedge(G) .
\end{array}
$$

$$
\wedge_{\mathcal{T}} \otimes_{\wedge} M=0
$$

Characteristic Elements

Theorem. The localization $\wedge_{\mathcal{T}}$ of \wedge with respect to \mathcal{T} exists and there is a surjective map

$$
\partial: K_{1}\left(\Lambda_{\mathcal{T}}\right) \rightarrow K_{0}\left(\mathfrak{M}_{H}(G)\right)
$$

arising from K-theory, whose kernel is the image of $K_{1}(\wedge)$.

Fact: $K_{1}\left(\wedge_{\mathcal{T}}\right) \cong\left(\wedge_{\mathcal{T}}\right)^{\times} /\left[\left(\wedge_{\mathcal{T}}\right)^{\times},\left(\Lambda_{\mathcal{T}}\right)^{\times}\right]$

Characteristic Elements

Theorem. The localization $\wedge_{\mathcal{T}}$ of \wedge with respect to \mathcal{T} exists and there is a surjective map

$$
\partial: K_{1}\left(\Lambda_{\mathcal{T}}\right) \rightarrow K_{0}\left(\mathfrak{M}_{H}(G)\right)
$$

arising from K-theory, whose kernel is the image of $K_{1}(\wedge)$.

Fact: $K_{1}\left(\Lambda_{\mathcal{T}}\right) \cong\left(\Lambda_{\mathcal{T}}\right)^{\times} /\left[\left(\Lambda_{\mathcal{T}}\right)^{\times},\left(\Lambda_{\mathcal{T}}\right)^{\times}\right]$

Definition. Any $F_{M} \in K_{1}\left(\Lambda_{\mathcal{T}}\right)$ with $\partial\left[F_{M}\right]=[M]$ is called characteristic element of $M \in \mathfrak{M}_{H}(G)$.

Property

Any $f \in K_{1}\left(\Lambda_{\mathcal{T}}\right)$ can be interpreted as a map on the isomorphism classes of (continuous) representations $\rho: G \rightarrow G l_{n}\left(\mathcal{O}_{K}\right),\left[K: \mathbb{Q}_{p}\right]<\infty$:

$$
\rho \mapsto f(\rho) \in K \cup\{\infty\} .
$$

Analytic p-adic L-function

Period - Conjecture: $\quad \frac{L\left(E, \rho^{*}, 1\right)}{\Omega_{\infty}(E, \rho)} \epsilon \overline{\mathbb{Q}}$

Analytic p-adic L-function

Period - Conjecture: $\quad \frac{L\left(E, \rho^{*}, 1\right)}{\Omega_{\infty}(E, \rho)} \epsilon \overline{\mathbb{Q}}$

Conjecture (Existence of analytic p-adic L-function). Let $p \geq 5$ and assume that E has good ordinary reduction at p. Then there exists

$$
\mathcal{L}_{E} \in K_{1}\left(\wedge(G)_{\mathcal{T}}\right),
$$

such that for all Artin representations ρ of G one has $\mathcal{L}_{E}(\rho) \neq \infty$ and

$$
\mathcal{L}_{E}(\rho) \sim \frac{L\left(E, \rho^{*}, 1\right)}{\Omega_{\infty}(E, \rho)}
$$

up to some (precise) modifications of the Euler factors at p and where E has bad reduction.

Analytic p-adic L-function

Period - Conjecture: $\quad \frac{L\left(E, \rho^{*}, 1\right)}{\Omega_{\infty}(E, \rho)} \epsilon \overline{\mathbb{Q}}$

Conjecture (Existence of analytic p-adic L-function). Let $p \geq 5$ and assume that E has good ordinary reduction at p. Then there exists

$$
\mathcal{L}_{E} \in K_{1}\left(\wedge(G)_{\mathcal{T}}\right),
$$

such that for all Artin representations ρ of G one has $\mathcal{L}_{E}(\rho) \neq \infty$ and

$$
\mathcal{L}_{E}(\rho) \sim \frac{L\left(E, \rho^{*}, 1\right)}{\Omega_{\infty}(E, \rho)}
$$

up to some (precise) modifications of the Euler factors at p and where E has bad reduction.

Remark. The precise formula for $\mathcal{L}_{E}(\rho)$ is a consequence of the ζ-isomorphism conjecture of Fukaya and Kato.

Conjecture (Main Conjecture). Assume that

- E has good ordinary reduction at p,
- $X\left(E / K_{\infty}\right)$ belongs to $\mathfrak{M}_{H}(G)$ and
- the p-adic L-function \mathcal{L}_{E} exists.

Then \mathcal{L}_{E} is a characteristic element of $X\left(E / K_{\infty}\right)$:

$$
\partial\left[\mathcal{L}_{E}\right]=\left[X\left(E / K_{\infty}\right)\right] .
$$

Conjecture (Main Conjecture). Assume that

- E has good ordinary reduction at p,
- $X\left(E / K_{\infty}\right)$ belongs to $\mathfrak{M}_{H}(G)$ and
- the p-adic L-function \mathcal{L}_{E} exists.

Then \mathcal{L}_{E} is a characteristic element of $X\left(E / K_{\infty}\right)$:

$$
\partial\left[\mathcal{L}_{E}\right]=\left[X\left(E / K_{\infty}\right)\right] .
$$

\Longleftrightarrow

$$
\mathcal{L}_{E} \equiv F_{E} \bmod \quad \operatorname{im}\left(K_{1}(\wedge)\right) .
$$

Evidence for Main Conjecture

I CM-case

Existence of \mathcal{L}_{E} follows from existence of 2-variable p-adic L-function (Manin-Vishik, Katz, Yager)

If $X \in \mathfrak{M}_{H}(G)$, then the main conjecture follows from 2-variable main conjecture (Rubin, Yager)

Evidence for Main Conjecture

I CM-case

Existence of \mathcal{L}_{E} follows from existence of 2-variable p-adic L-function (Manin-Vishik, Katz, Yager)

If $X \in \mathfrak{M}_{H}(G)$, then the main conjecture follows from 2-variable main conjecture (Rubin, Yager)

II $G L_{2}$-case

almost nothing is known!
Only weak numerical evidence by calculations of T. and V . Dokchitser who compare Euler characteristics of X with the p-adic valuation of the term showing up in the interpolation formula.

Leading coefficients

(joint work with: D. Burns)

What happens if $\quad \mathcal{L}_{E}(\rho)=L\left(E, \rho^{*}, 1\right)=0$?
$\left(\Leftrightarrow\left(E\left(K_{n}\right) \otimes_{\mathbb{Q}} \mathbb{C}\right)^{\rho^{*}} \neq 0\right.$, if BSD holds)

Is there a leading coefficient $\mathcal{L}_{E}^{*}(\rho)$ of the (hypothetical) p-adic L-function \mathcal{L} at ρ, analogous to the leading coefficient $L^{*}\left(E, \rho^{*}\right)$ of the complex L-function $L\left(E, \rho^{*}, s\right)$ at $s=1$?

Leading coefficients

(joint work with: D. Burns)

What happens if

$$
\mathcal{L}_{E}(\rho)=L\left(E, \rho^{*}, 1\right)=0 ?
$$

$\left(\Leftrightarrow\left(E\left(K_{n}\right) \otimes_{\mathbb{Q}} \mathbb{C}\right)^{\rho^{*}} \neq 0\right.$, if BSD holds $)$

Is there a leading coefficient $\mathcal{L}_{E}^{*}(\rho)$ of the (hypothetical) p-adic L-function \mathcal{L} at ρ, analogous to the leading coefficient $L^{*}\left(E, \rho^{*}\right)$ of the complex L-function $L\left(E, \rho^{*}, s\right)$ at $s=1$?

We define for every $F \in K_{1}\left(\wedge_{\mathcal{T}}\right)$ the leading coefficient

$$
F^{*}(\rho) \in \overline{\mathbb{Q}_{p}}
$$

and the algebraic multiplicity

$$
r_{\rho}(F) \in \mathbb{Z}
$$

such that, if $r:=r_{\rho}(F) \geq 0$, then

$$
F^{*}(\rho)=\frac{1}{r!}\left(\frac{d}{d s}\right)^{r} F\left(\rho \chi_{c y c}^{s}\right)_{\mid s=0}
$$

Refined interpolation property

Theorem. Assume that

- E has good ordinary reduction at a fixed prime $p \neq 2$.
- the archimedean and p-adic height pairing for $E\left(\rho^{*}\right)$ are non-degenerate and
- that the ζ - and ϵ-isomorphim conjectures of Fukaya and Kato hold.

Then the leading term $\mathcal{L}_{E}^{*}(\rho)$ is equal to the product $(-1)^{r_{\rho}\left(\mathcal{L}_{E}\right)} \frac{L^{*}\left(E\left(\rho^{*}\right)\right)}{\Omega_{\infty}\left(E\left(\rho^{*}\right)\right) \cdot R_{\infty}\left(E\left(\rho^{*}\right)\right)} \cdot \Omega_{p}\left(E\left(\rho^{*}\right)\right) \cdot R_{p}\left(E\left(\rho^{*}\right)\right)$
up to a (precise) modification of the Euler factors, where we use the following notation:
$\Omega_{\infty}\left(M\left(\rho^{*}\right)\right), R_{\infty}\left(E\left(\rho^{*}\right)\right) \quad$ archimedean period, regulator
$\Omega_{p}\left(M\left(\rho^{*}\right)\right), R_{p}\left(E\left(\rho^{*}\right)\right) \quad p$-adic period, regulator

Implications of various Conjectures

$G \rightarrow G_{n}$ finite quotient
ζ-isomorphism
conjecture
Fukaya/Kato

$G L_{2}$ Main Conjecture CFKSV
$\mathrm{ETNC}\left(\mathrm{E}, G_{n}\right) \forall n$?
Huber/Kings

ETNC $\left(E, G_{n}\right)$
Burns/Flach

$$
\begin{aligned}
& \Downarrow+\# \amalg\left(E / K_{n}\right)<\infty \\
& \mathrm{BSD}
\end{aligned}
$$

Main Conjecture \Rightarrow ETNC

Theorem. Assume that

- the Main Conjecture holds for E over K_{∞}.
- $X\left(E / K_{\infty}\right)$ is semisimple at all representations ρ of G_{n}.
- \mathcal{L}_{E} satisfies the (refined) interpolation property for leading terms.
- the order of vanishing and rationality part of the ETNC $\left(E, G_{n}\right)$ holds.

Then the integrality statement of the ETNC $\left(E, G_{n}\right)$, thus in particular, if $\# W\left(E / K_{n}\right)<\infty$, the BSD-formula for the leading coefficient $L^{*}\left(E, \rho^{*}\right)$, holds.

