X International Workshop on Differential Equations, Number Theory, Data Analysis Methods and Geometry University of Havana, February 19-23, 2007

From the Birch and Swinnerton Dyer Conjecture to the

*GL*₂ Main Conjecture for elliptic curves

by Otmar Venjakob

Arithmetic of elliptic curves

E elliptic curve over $\mathbb Q$:

 $E: y^{2} + A_{1}xy + A_{3}y = x^{3} + A_{2}x^{2} + A_{4}x + A_{6}, A_{i} \in \mathbb{Z}.$

E(K) = ?

for number fields, local fields, finite fields K

Arithmetic of elliptic curves

E elliptic curve over $\mathbb Q$:

 $E: y^{2} + A_{1}xy + A_{3}y = x^{3} + A_{2}x^{2} + A_{4}x + A_{6}, A_{i} \in \mathbb{Z}.$

E(K) = ?

for number fields, local fields, finite fields K

- l any prime, \widetilde{E} reduction α
- reduction of $E \mod l$,

 $#\widetilde{E}(\mathbb{F}_l) =: 1 - a_l + l$

Arithmetic of elliptic curves

E elliptic curve over \mathbb{Q} :

 $E: y^2 + A_1 x y + A_3 y = x^3 + A_2 x^2 + A_4 x + A_6, \ A_i \ \epsilon \ \mathbb{Z}.$

E(K) = ?

for number fields, local fields, finite fields K

 l_{\sim} any prime,

 \widetilde{E} reduction of $E \mod l$,

 $#\widetilde{E}(\mathbb{F}_l) =: 1 - a_l + l$

Hasse-Weil L-function of E:

$$L(E/\mathbb{Q},s) := \prod_{l} (1-a_{l}l^{-s} + \epsilon(l)l^{1-2s})^{-1}, \ s \in \mathbb{C}, \ \Re(s) > \frac{3}{2},$$

where $\epsilon(l) := \begin{cases} 1 & E \text{ has good reduction at } l \\ 0 & \text{otherwise} \end{cases}$

4

Mordell-Weil Theorem

 $E(\mathbb{Q})$ is a finitely generated abelian group

Mordell-Weil Theorem

 $E(\mathbb{Q})$ is a finitely generated abelian group

Birch & Swinnerton-Dyer Conjecture

If the Taylor expansion at s = 1 is

 $L(E/\mathbb{Q},s) = L^*(E/\mathbb{Q})(s-1)^r + \ldots,$

Mordell-Weil Theorem

 $E(\mathbb{Q})$ is a finitely generated abelian group

Birch & Swinnerton-Dyer Conjecture

If the Taylor expansion at s = 1 is

$$L(E/\mathbb{Q},s) = L^*(E/\mathbb{Q})(s-1)^r + \ldots,$$

then

I.
$$r = \mathsf{rk}_{\mathbb{Z}} E(\mathbb{Q})$$
 (order of vanishing)

II.
$$\frac{L^*(E/\mathbb{Q})}{\Omega_+ R_E} = \frac{\# \mathrm{III}(E/\mathbb{Q})}{(\# E(\mathbb{Q})_{tors})^2} \prod_l c_l \ \epsilon \ \mathbb{Q}$$

(rationality, integrality)

$$\begin{split} & \text{III}(E/\mathbb{Q}) & \text{Tate-Shafarevich group} \\ & R_E = \det(\langle P_i, P_j \rangle)_{i,j} & \text{regulator of } E \\ & \omega & \text{Néron Differential} \\ & \Omega_+ = \int_{\gamma^+} \omega & \text{real period of } E \\ & c_l = [E(\mathbb{Q}_l) : E^{ns}(\mathbb{Q}_l)] & \text{Tamagawa-number at } l \end{split}$$

The Selmer group of E

Assumption: $p \ge 5$ prime such that E has good ordinary reduction at p, i.e.

 $\#\widetilde{E}(\overline{\mathbb{F}_p})[p] = p.$

For any finite extension K/\mathbb{Q} we have the (*p*-primary) Selmer group Sel(E/K)

 $0 \longrightarrow E(K) \otimes_{\mathbb{Z}} \mathbb{Q}_p / \mathbb{Z}_p \longrightarrow Sel(E/K) \longrightarrow \operatorname{III}(E/K)(p) \longrightarrow 0$

The Selmer group of E

Assumption: $p \ge 5$ prime such that E has good ordinary reduction at p, i.e.

 $\#\widetilde{E}(\overline{\mathbb{F}_p})[p] = p.$

For any finite extension K/\mathbb{Q} we have the (*p*-primary) Selmer group Sel(E/K)

 $0 \longrightarrow E(K) \otimes_{\mathbb{Z}} \mathbb{Q}_p / \mathbb{Z}_p \longrightarrow Sel(E/K) \longrightarrow \operatorname{III}(E/K)(p) \longrightarrow 0$

Thus, assuming $\# III(E/K) < \infty$, it holds for the Pontryagin dual of the Selmer group

$$Sel(E/K)^{\vee} := \operatorname{Hom}(Sel(E/K), \mathbb{Q}_p/\mathbb{Z}_p),$$

that

$$\mathsf{rk}_{\mathbb{Z}}E(K) = \mathsf{rk}_{\mathbb{Z}_p}Sel(E/K)^{\vee}$$

Towers of number fields

 $K_n := \mathbb{Q}(E[p^n]), \quad 1 \le n \le \infty,$ $G_n := G(K_n/\mathbb{Q}) \quad G := G_\infty$ $G \subseteq GL_2(\mathbb{Z}_p)$ closed subgroup i.e. a *p*-adic Lie group

Towers of number fields

 $K_{n} := \mathbb{Q}(E[p^{n}]), \quad 1 \le n \le \infty,$ $G_{n} := G(K_{n}/\mathbb{Q}) \quad G := G_{\infty}$ $G \subseteq GL_{2}(\mathbb{Z}_{p}) \quad \text{closed subgroup}$ i.e. a *p*-adic Lie group K_{n} G_{n}

 $X(E/K_n) := Sel(E/K_n)^{\vee}$ is a compact $\mathbb{Z}_p[G_n]$ -module $X := X(E/K_\infty) := \varprojlim_n Sel(E/K_n)^{\vee}$ is a finitely generated $\Lambda(G)$ -module, where

$$\Lambda(G) = \underset{n}{\underset{i}{\lim}} \mathbb{Z}_p[G_n]$$

denotes the Iwasawa algebra of G,

a noehterian possibly non-commutative ring.

Twisted *L*-functions

 $Irr(G_n)$ irreducible representations of G_n ,

$$\rho: G \to GL(V_{\rho}),$$

realized over a number field $\subseteq \mathbb{C}$ or a local field $\subseteq \overline{\mathbb{Q}_l}$

 $(\rho, V_{\rho}) \epsilon \operatorname{Irr}(G_n), n < \infty$

 $L(E, \rho, s)$ *L*-function of $E \times \rho$

Twisted *L*-functions

 $Irr(G_n)$ irreducible representations of G_n ,

$$\rho: G \to GL(V_{\rho}),$$

realized over a number field $\subseteq \mathbb{C}$ or a local field $\subseteq \overline{\mathbb{Q}_l}$

 $(\rho, V_{\rho}) \epsilon \operatorname{Irr}(G_n), n < \infty$

$$L(E, \rho, s)$$
 L-function of $E \times \rho$:

$$L(E,\rho,s) := \prod_{q} \frac{1}{\det(1-\operatorname{Frob}_{q}^{-1}T|(H_{l}^{1}(E)\otimes_{\mathbb{Q}} V_{\rho})^{I_{q}})|_{T=q^{-s}}}$$

 $H^1_l(E) := \operatorname{Hom}(H_1(E(\mathbb{C}),\mathbb{Z}),\mathbb{Q}_l)$

From BSD to the Main Conjecture

algebraic		analytic
$X(E/K_n)$ as G_n -module	~	$L(E/K_n) = \prod_{\operatorname{Irr}(G_n)} L(E, \rho, s)^{n_{\rho}}$
<i>p</i> -adic families		
$X(E/K_{\infty})$	~	$(L(E, ho,1))_{ ho \ \epsilon \ \operatorname{Irr}(G_n),n<\infty}$
<i>p</i> -adic <i>L</i> -functions		
$F_E := F_X$		\mathcal{L}_E
Characteristic Element		analytic p -adic L -function

Main Conjecture

$$F_E \equiv \mathcal{L}_E$$

What is new?

Example (CM-case):

$$E: y^2 = x^3 - x$$

 $End(E) \cong \mathbb{Z}[i] \neq \mathbb{Z}$, i.e. *E* admits complex multiplication (CM), thus

$$G \cong \mathbb{Z}_p^2 \times \text{finite group}$$

is abelian.

Main conjecture is a Theorem of Rubin in many cases, i.e. the theory is rather **well known!**

What is new?

Example (CM-case):

$$E: y^2 = x^3 - x$$

 $End(E) \cong \mathbb{Z}[i] \neq \mathbb{Z}$, i.e. *E* admits complex multiplication (CM), thus

$$G \cong \mathbb{Z}_p^2 \times \text{finite group}$$

is abelian.

Main conjecture is a Theorem of Rubin in many cases, i.e. the theory is rather **well known!**

Example (GL₂-case):

$$E: y^2 + y = x^3 - x^2$$

 $End(E) \cong \mathbb{Z}$, i.e. *E* does **not** admit complex multiplication, thus

 $G \subseteq_o GL_2(\mathbb{Z}_p)$ open subgroup

is not abelian.

It was not even known how to formulate a main conjecture!

New: existence of characteristic elements

Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: $H \leq G$ with $\Gamma := G/H \cong \mathbb{Z}_p$

(is satisfied in our application because K_{∞} contains the cyclotomic \mathbb{Z}_p -extension \mathbb{Q}_{cyc} of \mathbb{Q})

We define a certain multiplicatively closed subset \mathcal{T} of $\Lambda := \Lambda(G)$ associated with H.

Question Can one localize Λ with respect to T?

In general, this is a very difficult question for **noncommutative** rings!

Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: $H \leq G$ with $\Gamma := G/H \cong \mathbb{Z}_p$

(is satisfied in our application because K_{∞} contains the cyclotomic \mathbb{Z}_p -extension \mathbb{Q}_{cyc} of \mathbb{Q})

We define a certain multiplicatively closed subset \mathcal{T} of $\Lambda := \Lambda(G)$ associated with H.

Question Can one localize Λ with respect to T?

In general, this is a very difficult question for **noncommutative** rings!

If yes, the localisation with respect to T should be related - by construction - to the following subcategory of the category of Λ -torsion modules:

 $\mathfrak{M}_H(G)$ category of Λ -modules M such that modulo \mathbb{Z}_p -torsion M is finitely generated over $\Lambda(H) \subseteq \Lambda(G)$.

Characteristic Elements

Theorem. The localization Λ_T of Λ with respect to T exists and there is a surjective map

 $\partial: K_1(\Lambda_{\mathcal{T}}) \twoheadrightarrow K_0(\mathfrak{M}_H(G))$

arising from K-theory, whose kernel is the image of $K_1(\Lambda)$.

Fact: $K_1(\Lambda_T) \cong (\Lambda_T)^{\times}/[(\Lambda_T)^{\times}, (\Lambda_T)^{\times}]$

Characteristic Elements

Theorem. The localization Λ_T of Λ with respect to T exists and there is a surjective map

 $\partial: K_1(\Lambda_{\mathcal{T}}) \twoheadrightarrow K_0(\mathfrak{M}_H(G))$

arising from K-theory, whose kernel is the image of $K_1(\Lambda)$.

Fact:
$$K_1(\Lambda_T) \cong (\Lambda_T)^{\times} / [(\Lambda_T)^{\times}, (\Lambda_T)^{\times}]$$

Definition. Any $F_M \epsilon K_1(\Lambda_T)$ with $\partial[F_M] = [M]$ is called characteristic element of $M \epsilon \mathfrak{M}_H(G)$.

Property

Any $f \in K_1(\Lambda_T)$ can be interpreted as a map on the isomorphism classes of (continuous) representations $\rho : G \to Gl_n(\mathcal{O}_K), [K : \mathbb{Q}_p] < \infty$:

 $\rho \mapsto f(\rho) \ \epsilon \ K \cup \{\infty\}.$

Analytic *p*-adic *L*-function

Period - Conjecture:

$$rac{L(E,
ho^*,1)}{\Omega_\infty(E,
ho)} \; \epsilon \; ar{\mathbb{Q}}$$

Analytic *p*-adic *L*-function

Period - Conjecture:

$$rac{L(E,
ho^*,1)}{\Omega_\infty(E,
ho)}\;\epsilon\;ar{\mathbb{Q}}$$

Conjecture (Existence of analytic *p*-adic *L*-function). Let $p \ge 5$ and assume that *E* has good ordinary reduction at *p*. Then there exists

$$\mathcal{L}_E \in K_1(\Lambda(G)_{\mathcal{T}}),$$

such that for all Artin representations ρ of G one has $\mathcal{L}_E(\rho) \neq \infty$ and

$$\mathcal{L}_E(
ho) \sim rac{L(E,
ho^*,1)}{\Omega_\infty(E,
ho)}$$

up to some (precise) modifications of the Euler factors at p and where E has bad reduction.

Analytic *p*-adic *L*-function

Period - Conjecture: $\frac{L(E, \mu)}{\Omega}$

$$rac{L(E,
ho^*,1)}{\Omega_\infty(E,
ho)} \; \epsilon \; ar{\mathbb{Q}}$$

Conjecture (Existence of analytic *p*-adic *L*-function). Let $p \ge 5$ and assume that *E* has good ordinary reduction at *p*. Then there exists

$$\mathcal{L}_E \in K_1(\Lambda(G)_{\mathcal{T}}),$$

such that for all Artin representations ρ of G one has $\mathcal{L}_E(\rho) \neq \infty$ and

$$\mathcal{L}_E(
ho) \sim rac{L(E,
ho^*,1)}{\Omega_\infty(E,
ho)}$$

up to some (precise) modifications of the Euler factors at p and where E has bad reduction.

Remark. The precise formula for $\mathcal{L}_E(\rho)$ is a consequence of the ζ -isomorphism conjecture of Fukaya and Kato.

Conjecture (Main Conjecture). Assume that

- E has good ordinary reduction at p,
- $X(E/K_{\infty})$ belongs to $\mathfrak{M}_{H}(G)$ and
- the *p*-adic *L*-function \mathcal{L}_E exists.

Then \mathcal{L}_E is a characteristic element of $X(E/K_{\infty})$:

$$\partial[\mathcal{L}_E] = [X(E/K_\infty)].$$

Conjecture (Main Conjecture). Assume that

- E has good ordinary reduction at p,
- $X(E/K_{\infty})$ belongs to $\mathfrak{M}_{H}(G)$ and
- the *p*-adic *L*-function \mathcal{L}_E exists.

Then \mathcal{L}_E is a characteristic element of $X(E/K_{\infty})$:

$$\partial[\mathcal{L}_E] = [X(E/K_\infty)].$$

 \iff

 $\mathcal{L}_E \equiv F_E \mod \operatorname{im}(K_1(\Lambda)).$

Evidence for Main Conjecture

I CM-case

Existence of \mathcal{L}_E follows from existence of 2-variable *p*-adic *L*-function (Manin-Vishik, Katz, Yager)

If $X \in \mathfrak{M}_H(G)$, then the main conjecture follows from 2-variable main conjecture (Rubin, Yager)

Evidence for Main Conjecture

I CM-case

Existence of \mathcal{L}_E follows from existence of 2-variable *p*-adic *L*-function (Manin-Vishik, Katz, Yager)

If $X \in \mathfrak{M}_H(G)$, then the main conjecture follows from 2-variable main conjecture (Rubin, Yager)

II GL₂-case

almost nothing is known!

Only weak numerical evidence by calculations of T. and V. Dokchitser who compare Euler characteristics of X with the p-adic valuation of the term showing up in the interpolation formula.

Leading coefficients

(joint work with: D. Burns)

What happens if $\mathcal{L}_E(\rho) = L(E, \rho^*, 1) = 0$? ($\Leftrightarrow (E(K_n) \otimes_{\mathbb{Q}} \mathbb{C})^{\rho^*} \neq 0$, if BSD holds)

Is there a leading coefficient $\mathcal{L}_{E}^{*}(\rho)$ of the (hypothetical) *p*-adic *L*-function \mathcal{L} at ρ , analogous to the leading coefficient $L^{*}(E, \rho^{*})$ of the complex *L*-function $L(E, \rho^{*}, s)$ at s = 1?

Leading coefficients

(joint work with: D. Burns)

What happens if $\mathcal{L}_E(\rho) = L(E, \rho^*, 1) = 0$? ($\Leftrightarrow (E(K_n) \otimes_{\mathbb{Q}} \mathbb{C})^{\rho^*} \neq 0$, if BSD holds)

Is there a leading coefficient $\mathcal{L}_{E}^{*}(\rho)$ of the (hypothetical) *p*-adic *L*-function \mathcal{L} at ρ , analogous to the leading coefficient $L^{*}(E, \rho^{*})$ of the complex *L*-function $L(E, \rho^{*}, s)$ at s = 1?

We define for every $F \in K_1(\Lambda_T)$ the leading coefficient

 $F^*(\rho) \ \epsilon \ \overline{\mathbb{Q}_p}$

and the algebraic multiplicity

 $r_{\rho}(F) \in \mathbb{Z},$

such that, if $r := r_{\rho}(F) \ge 0$, then

$$F^*(\rho) = \frac{1}{r!} (\frac{d}{ds})^r F(\rho \chi^s_{cyc})|_{s=0}.$$

29

Refined interpolation property

Theorem. Assume that

- E has good ordinary reduction at a fixed prime $p \neq 2$.
- the archimedean and p-adic height pairing for $E(\rho^*)$ are non-degenerate and
- that the ζ- and ε-isomorphim conjectures of Fukaya and Kato hold.

Then the leading term $\mathcal{L}_E^*(\rho)$ is equal to the product

$$(-1)^{r_{
ho}(\mathcal{L}_E)}rac{L^*(E(
ho^*))}{\Omega_\infty(E(
ho^*))\cdot R_\infty(E(
ho^*))}\cdot \Omega_p(E(
ho^*))\cdot R_p(E(
ho^*))$$

up to a (precise) modification of the Euler factors, where we use the following notation:

 $\Omega_{\infty}(M(\rho^*)), R_{\infty}(E(\rho^*))$ archimedean period, regulator $\Omega_p(M(\rho^*)), R_p(E(\rho^*))$ p-adic period, regulator

Implications of various Conjectures

Main Conjecture \Rightarrow ETNC

Theorem. Assume that

- the Main Conjecture holds for E over K_{∞} .
- $X(E/K_{\infty})$ is semisimple at all representations ρ of G_n .
- \mathcal{L}_E satisfies the (refined) interpolation property for leading terms.
- the order of vanishing and rationality part of the ETNC(E,G_n) holds.

Then the integrality statement of the $ETNC(E,G_n)$, thus in particular, if $\#III(E/K_n) < \infty$, the BSD-formula for the leading coefficient $L^*(E,\rho^*)$, holds.