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Arithmetic of elliptic curves

E elliptic curve over Q :

E : y2 +A1xy +A3y = x3 +A2x
2 +A4x+A6, Ai ε Z.

E(K) = ?

for number fields, local fields, finite fields K

l any prime,
Ẽ reduction of E mod l,

#Ẽ(Fl) =: 1− al + l

Hasse-Weil L-function of E :

L(E/Q, s) :=
∏
l

(1−all−s+ε(l)l1−2s)−1, s ε C, <(s) >
3

2
,

where ε(l) :=

{
1 E has good reduction at l
0 otherwise
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Mordell-Weil Theorem

E(Q) is a finitely generated abelian group

Birch & Swinnerton-Dyer Conjecture

If the Taylor expansion at s = 1 is

L(E/Q, s) = L∗(E/Q)(s− 1)r + . . . ,

then

I. r = rkZE(Q) (order of vanishing)

II.
L∗(E/Q)

Ω+RE
=

#X(E/Q)

(#E(Q)tors)
2

∏
l

cl ε Q

(rationality, integrality)

X(E/Q) Tate-Shafarevich group

RE = det(< Pi, Pj >)i,j regulator of E

ω Néron Differential

Ω+ =
∫
γ+ ω real period of E

cl = [E(Ql) : Ens(Ql)] Tamagawa-number at l
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The Selmer group of E

Assumption: p ≥ 5 prime such that E has good
ordinary reduction at p, i.e.

#Ẽ(Fp)[p] = p.

For any finite extension K/Q we have the (p-primary)
Selmer group Sel(E/K)

0 // E(K)⊗Z Qp/Zp // Sel(E/K) // X(E/K)(p) // 0

Thus, assuming #X(E/K) <∞, it holds for the Pon-
tryagin dual of the Selmer group

Sel(E/K)∨ := Hom(Sel(E/K),Qp/Zp),
that

rkZE(K) = rkZp
Sel(E/K)∨
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Towers of number fields

Kn := Q(E[pn]), 1 ≤ n ≤ ∞,

Gn := G(Kn/Q) G := G∞

G ⊆ GL2(Zp) closed subgroup

i.e. a p-adic Lie group

K∞

Kn

Gn

Q

G∞

X(E/Kn) := Sel(E/Kn)∨ is a compact Zp[Gn]-module

X := X(E/K∞) := lim←−
n

Sel(E/Kn)∨ is a finitely gener-

ated Λ(G)-module, where

Λ(G) = lim←−
n

Zp[Gn]

denotes the Iwasawa algebra of G,

a noehterian possibly non-commutative ring.
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Twisted L-functions

Irr(Gn) irreducible representations of Gn,

ρ : G→ GL(Vρ),

realized over a number field ⊆ C or a
local field ⊆ Ql

(ρ, Vρ) ε Irr(Gn), n <∞

L(E, ρ, s) L-function of E × ρ

L(E, ρ, s) :=
∏
q

1

det(1− Frob−1
q T |(H1

l (E)⊗Q Vρ)Iq)|T=q−s

H1
l (E) := Hom(H1(E(C),Z),Ql)
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From BSD to the Main Conjecture

algebraic analytic

X(E/Kn) ∼ L(E/Kn) =
∏

Irr(Gn)
L(E, ρ, s)nρ

as Gn-module

p-adic families

X(E/K∞) ∼ (L(E, ρ,1))ρ ε Irr(Gn),n<∞

p-adic L-functions

FE := FX LE
Characteristic

Element
analytic p-adic
L-function

Main Conjecture

FE ≡ LE
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What is new?

Example (CM-case):

E : y2 = x3 − x

End(E) ∼= Z[i] 6= Z, i.e. E admits complex multiplica-
tion (CM), thus

G ∼= Zp2 × finite group

is abelian.

Main conjecture is a Theorem of Rubin in many cases,i.e.
the theory is rather well known!

Example (GL2-case):

E : y2 + y = x3 − x2

End(E) ∼= Z, i.e. E does not admit complex multipli-
cation, thus

G ⊆o GL2(Zp) open subgroup

is not abelian.

It was not even known how to formulate a main con-
jecture!

New: existence of characteristic elements
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Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: H EG with Γ := G/H ∼= Zp

(is satisfied in our application because K∞ contains
the cyclotomic Zp-extension Qcyc of Q)

We define a certain multiplicatively closed subset T
of Λ := Λ(G) associated with H.

Question Can one localize Λ with respect to T ?

In general, this is a very difficult question for non-
commutative rings!

If yes, the localisation with respect to T should be re-
lated - by construction - to the following subcategory
of the category of Λ-torsion modules:

MH(G) category of Λ-modules M such that
modulo Zp-torsion M is finitely gen-
erated over Λ(H) ⊆ Λ(G).

⇐⇒

ΛT ⊗Λ M = 0
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Characteristic Elements

Theorem. The localization ΛT of Λ with respect to
T exists and there is a surjective map

∂ : K1(ΛT )� K0(MH(G))

arising from K-theory, whose kernel is the image of
K1(Λ).

Fact: K1(ΛT ) ∼= (ΛT )×/[(ΛT )×, (ΛT )×]

Definition. Any FM ε K1(ΛT ) with ∂[FM ] = [M ] is
called characteristic element of M ε MH(G).

Property

Any f ε K1(ΛT ) can be interpreted as a map on
the isomorphism classes of (continuous) represen-
tations ρ : G→ Gln(OK), [K : Qp] <∞ :

ρ 7→ f(ρ) ε K ∪ {∞}.
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Analytic p-adic L-function

Period - Conjecture:
L(E, ρ∗,1)

Ω∞(E, ρ)
ε Q̄

Conjecture (Existence of analytic p-adic L-function).
Let p ≥ 5 and assume that E has good ordinary re-
duction at p. Then there exists

LE ε K1(Λ(G)T ),

such that for all Artin representations ρ of G one has
LE(ρ) 6=∞ and

LE(ρ) ∼
L(E, ρ∗,1)

Ω∞(E, ρ)

up to some (precise) modifications of the Euler factors
at p and where E has bad reduction.

Remark. The precise formula for LE(ρ) is a conse-
quence of the ζ-isomorphism conjecture of Fukaya and
Kato.

21



Analytic p-adic L-function

Period - Conjecture:
L(E, ρ∗,1)

Ω∞(E, ρ)
ε Q̄

Conjecture (Existence of analytic p-adic L-function).
Let p ≥ 5 and assume that E has good ordinary re-
duction at p. Then there exists

LE ε K1(Λ(G)T ),

such that for all Artin representations ρ of G one has
LE(ρ) 6=∞ and

LE(ρ) ∼
L(E, ρ∗,1)

Ω∞(E, ρ)

up to some (precise) modifications of the Euler factors
at p and where E has bad reduction.

Remark. The precise formula for LE(ρ) is a conse-
quence of the ζ-isomorphism conjecture of Fukaya and
Kato.

22



Analytic p-adic L-function

Period - Conjecture:
L(E, ρ∗,1)

Ω∞(E, ρ)
ε Q̄

Conjecture (Existence of analytic p-adic L-function).
Let p ≥ 5 and assume that E has good ordinary re-
duction at p. Then there exists

LE ε K1(Λ(G)T ),

such that for all Artin representations ρ of G one has
LE(ρ) 6=∞ and

LE(ρ) ∼
L(E, ρ∗,1)

Ω∞(E, ρ)

up to some (precise) modifications of the Euler factors
at p and where E has bad reduction.

Remark. The precise formula for LE(ρ) is a conse-
quence of the ζ-isomorphism conjecture of Fukaya and
Kato.

23



Conjecture (Main Conjecture). Assume that

• E has good ordinary reduction at p,

• X(E/K∞) belongs to MH(G) and

• the p-adic L-function LE exists.

Then LE is a characteristic element of X(E/K∞) :

∂[LE] = [X(E/K∞)].

⇐⇒

LE ≡ FE mod im(K1(Λ)).
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Evidence for Main Conjecture

I CM-case

Existence of LE follows from existence of 2-variable
p-adic L-function (Manin-Vishik, Katz, Yager)

If X ε MH(G), then the main conjecture follows from
2-variable main conjecture (Rubin,Yager)

II GL2-case

almost nothing is known!

Only weak numerical evidence by calculations of T.
and V. Dokchitser who compare Euler characteristics
of X with the p-adic valuation of the term showing up
in the interpolation formula.
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Leading coefficients

(joint work with: D. Burns)

What happens if LE(ρ) = L(E, ρ∗,1) = 0 ?

( ⇔ (E(Kn)⊗Q C)ρ
∗ 6= 0, if BSD holds)

Is there a leading coefficient L∗E(ρ) of the (hypothet-
ical) p-adic L-function L at ρ, analogous to the lead-
ing coefficient L∗(E, ρ∗) of the complex L-function
L(E, ρ∗, s) at s = 1?

We define for every F ε K1(ΛT ) the leading coefficient

F ∗(ρ) ε Qp

and the algebraic multiplicity

rρ(F ) ε Z,
such that, if r := rρ(F ) ≥ 0, then

F ∗(ρ) =
1

r!
(
d

ds
)rF (ρχscyc)|s=0.
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Refined interpolation property

Theorem. Assume that

• E has good ordinary reduction at a fixed prime
p 6= 2.

• the archimedean and p-adic height pairing for E(ρ∗)
are non-degenerate and

• that the ζ- and ε-isomorphim conjectures of Fukaya
and Kato hold.

Then the leading term L∗E(ρ) is equal to the product

(−1)rρ(LE) L∗(E(ρ∗))

Ω∞(E(ρ∗)) ·R∞(E(ρ∗))
·Ωp(E(ρ∗)) ·Rp(E(ρ∗))

up to a (precise) modification of the Euler factors,
where we use the following notation:

Ω∞(M(ρ∗)), R∞(E(ρ∗)) archimedean period, regulator

Ωp(M(ρ∗)), Rp(E(ρ∗)) p-adic period, regulator

30



Implications of various Conjectures

G� Gn finite quotient

ζ-isomorphism
conjecture
Fukaya/Kato

+ ε-conjecture Fukaya/Kato

&.VVVVVVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV

��

GL2 Main Conjecture
CFKSV

?

w�
ETNC(E,Gn)

Burns/Flach

+ #X(E/Kn)<∞
��

ETNC(E,Gn) ∀ n ?

Huber/Kings

FN

BSD
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Main Conjecture ⇒ ETNC

Theorem. Assume that

• the Main Conjecture holds for E over K∞.

• X(E/K∞) is semisimple at all representations ρ of
Gn.

• LE satisfies the (refined) interpolation property
for leading terms.

• the order of vanishing and rationality part of the
ETNC(E,Gn) holds.

Then the integrality statement of the ETNC(E,Gn),
thus in particular, if #X(E/Kn) <∞, the BSD-formula
for the leading coefficient L∗(E, ρ∗), holds.

32


