Are ζ -functions able to solve Diophantine equations?

An introduction to (non-commutative) Iwasawa theory

Otmar Venjakob

Mathematical Institute University of Heidelberg

CMS Winter 2007 Meeting

 $\boldsymbol{\zeta}\mbox{-functions}$ and Diophantine equations

The function field case Classical Iwasawa theory Non-commutative Iwasawa Theory

Leibniz (1673)

L-functions Diophantine Equations The analytic class number formula

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

(already known to GREGORY and MADHAVA)

L-functions Diophantine Equations The analytic class number formula

Special values of *L*-functions

Otmar Venjakob Are ζ -functions able to solve Diophantine equations?

L-functions Diophantine Equations The analytic class number formula

$$N \geq 1,$$
 $(\mathbb{Z}/N\mathbb{Z})^{ imes}$ units of ring $\mathbb{Z}/N\mathbb{Z}$.

Dirichlet Character (modulo N) :

$$\chi: (\mathbb{Z}/\mathbb{NZ})^{\times} \to \mathbb{C}^{\times}$$

extends to $\ensuremath{\mathbb{N}}$

$$\chi(n) := \begin{cases} \chi(n \mod N), & (n, N) = 1; \\ 0, & \text{otherwise.} \end{cases}$$

L-functions Diophantine Equations The analytic class number formula

Dirichlet *L*-function w.r.t. χ :

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \quad s \in \mathbb{C}, \quad \Re(s) > 1.$$

satisfies:

- Euler product

$$L(s,\chi) = \prod_{p} \frac{1}{1-\chi(p)p^{-s}},$$

- meromorphic continuation to $\mathbb{C},$
- functional equation.

L-functions Diophantine Equations The analytic class number formula

Examples

$\chi \equiv \mathbf{1}$: Riemann ζ -function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1 - p^{-s}}$$

L-functions Diophantine Equations The analytic class number formula

Examples

$\chi \equiv \mathbf{1}$: Riemann ζ -function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1-p^{-s}},$$

$$\chi_1 : (\mathbb{Z}/4\mathbb{Z})^{\times} = \{\overline{1}, \overline{3}\} \to \mathbb{C}^{\times}, \quad \chi_1(\overline{1}) = 1, \quad \chi_1(\overline{3}) = -1$$
$$L(1, \chi_1) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

L-functions **Diophantine Equations** The analytic class number formula

Diophantine Equations

Otmar Venjakob Are ζ -functions able to solve Diophantine equations?

L-functions **Diophantine Equations** The analytic class number formula

Conjectures of Catalan and Fermat

p, *q* prime numbers

Catalan(1844), Theorem(MIHĂILESCU, 2002):

$$x^p - y^q = 1$$
,

has unique solution

$$3^2 - 2^3 = 1$$

in \mathbb{Z} with x, y > 0.

L-functions **Diophantine Equations** The analytic class number formula

Conjectures of Catalan and Fermat

p, *q* prime numbers

Catalan(1844), Theorem(MIHĂILESCU, 2002):

$$x^p - y^q = 1,$$

has unique solution

$$3^2 - 2^3 = 1$$

in \mathbb{Z} with x, y > 0.

Fermat(1665), Theorem(WILES et al., 1994):

$$x^{\rho}+y^{\rho}=z^{\rho}, \quad \rho>2,$$

has no solution in \mathbb{Z} with $xyz \neq 0$.

L-functions **Diophantine Equations** The analytic class number formula

Factorisation over larger ring of integers

 ζ_m primitive *m*th root of unity

 $\mathbb{Z}[\zeta_m]$ the ring of integers of $\mathbb{Q}(\zeta_m)$,

e.g. for m = 4 with $i^2 = -1$ we have in $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$:

$$x^3 - y^2 = 1 \Leftrightarrow x^3 = (y + i)(y - i)$$

and for $m = p^n$ we have in $\mathbb{Z}[\zeta_{p^n}]$:

$$x^{p^n}+y^{p^n}=(x+y)(x+\zeta_{p^n}y)(x+\zeta_{p^n}^2y)\cdot\ldots\cdot(x+\zeta_{p^n}^{p^n-1}y)=z^{p^n}.$$

L-functions **Diophantine Equations** The analytic class number formula

The strategy

Hope: Use *unique prime factorisation* to conclude a contradiction from the assumption that the Catalan or Fermat equation has a non-trivial solution.

L-functions **Diophantine Equations** The analytic class number formula

The strategy

Hope: Use *unique prime factorisation* to conclude a contradiction from the assumption that the Catalan or Fermat equation has a non-trivial solution.

Problem: In general, $\mathbb{Z}[\zeta_m]$ is *not* a unique factorisation domain (UFD), e.g. $\mathbb{Z}[\zeta_{23}]!$

L-functions **Diophantine Equations** The analytic class number formula

Ideals

Kummer: Replace numbers by 'ideal numbers':

For ideals(= $\mathbb{Z}[\zeta_m]$ -submodules) $0 \neq \mathfrak{a} \subseteq \mathbb{Z}[\zeta_m]$ we have unique factorisation into prime ideals $\mathfrak{P}_i \neq 0$:

$$\mathfrak{a} = \prod_{i=1}^n \mathfrak{P}_i^{n_i}$$

Principal ideals: (a) = $\mathbb{Z}[\zeta_m]a$

L-functions Diophantine Equations The analytic class number formula

Ideal class group

 $Cl(\mathbb{Q}(\zeta_m)) := \{ \text{ ideals of } \mathbb{Z}[\zeta_m] \} / \{ \text{ principal ideals of } \mathbb{Z}[\zeta_m] \}$ $\cong Pic(\mathbb{Z}[\zeta_m])$

Fundamental Theorem of algebraic number theory: $\#Cl(\mathbb{Q}(\zeta_m)) < \infty$

and

$$h_{\mathbb{Q}(\zeta_m)} := \# Cl(\mathbb{Q}(\zeta_m)) = 1 \Leftrightarrow \mathbb{Z}[\zeta_m]$$
 is a UFD

Nevertheless, $CI(\mathbb{Q}(\zeta_m))$ is difficult to determine, too many relations!

L-functions **Diophantine Equations** The analytic class number formula

The *L*-function solves the problem

How can we compute

 $h_{\mathbb{Q}(i)}$?

L-functions **Diophantine Equations** The analytic class number formula

The *L*-function solves the problem

How can we compute

 $h_{\mathbb{Q}(i)}$?

It is a mystery that

 $L(s, \chi_1)$

knows the answer!

L-functions Diophantine Equations The analytic class number formula

The cyclotomic character

Gauß:

$$G(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \xrightarrow{\kappa_N} (\mathbb{Z}/N\mathbb{Z})^{\times}$$

with $g(\zeta_N) = \zeta_N^{\kappa_N(g)}$ for all $g \in G(\mathbb{Q}(\zeta_N)/\mathbb{Q})$

N = 4 :

 $\Rightarrow \chi_1$ is character of Galois group $G(\mathbb{Q}(i)/\mathbb{Q})$

 \Rightarrow *L*(*s*, χ_1) (analytic) invariant of $\mathbb{Q}(i)$.

L-functions Diophantine Equations The analytic class number formula

Analytic class number formula for imaginary quadratic number fields:

$$h_{\mathbb{Q}(i)} = \frac{\#\mu(\mathbb{Q}(i))\sqrt{N}}{2\pi}L(1,\chi_1)$$

L-functions Diophantine Equations The analytic class number formula

Analytic class number formula for imaginary quadratic number fields:

$$h_{\mathbb{Q}(i)} = \frac{\#\mu(\mathbb{Q}(i))\sqrt{N}}{2\pi}L(1,\chi_1)$$

= $\frac{4 \cdot 2}{2\pi}L(1,\chi_1)$
= $\frac{4}{\pi}L(1,\chi_1) = 1$ (by Leibniz' formula)

L-functions Diophantine Equations The analytic class number formula

Analytic class number formula for imaginary quadratic number fields:

$$h_{\mathbb{Q}(i)} = \frac{\#\mu(\mathbb{Q}(i))\sqrt{N}}{2\pi}L(1,\chi_1)$$

= $\frac{4 \cdot 2}{2\pi}L(1,\chi_1)$
= $\frac{4}{\pi}L(1,\chi_1) = 1$ (by Leibniz' formula)

 $\Rightarrow \mathbb{Z}[i]$ is a UFD.

L-functions Diophantine Equations The analytic class number formula

A special case of the Catalan equation

Since ' $L(s, \chi_1)$ knows the arithmetic' of $\mathbb{Q}(i)$, it is able to solve our problem:

Claim: $x^3 - y^2 = 1$ has no solution in \mathbb{Z} .

In the decomposition $x^3 = (y + i)(y - i)$ the factors (y + i) and (y - i) are coprime (easy!)

$$\Rightarrow$$
 y + i = (a + bi)³ for some a, b $\epsilon \mathbb{Z}$

taking $\operatorname{Re}(-)$ and $\operatorname{Im}(-)$ gives: y = 0, contradiction!

L-functions Diophantine Equations The analytic class number formula

Regular primes

Similarly $\zeta(s)$ 'knows' for which p

 $Cl(\mathbb{Q}(\zeta_p))(p) = 1$

holds! Then the Fermat equation does not have any non-trivial solution. But $37|h_{Cl(\mathbb{Q}(\zeta_{37}))}!$

lwasawa:

$$Cl(\mathbb{Q}(\zeta_{p^n}))(p) = ?$$
 for $n \ge 1$.

The function field case

Otmar Venjakob Are ζ -functions able to solve Diophantine equations?

Number fields versus function fields

$$\mathbb{Q} \longleftrightarrow \mathbb{F}_l(X) = K(\mathbb{P}^1_{\mathbb{F}_l})$$

 K/\mathbb{Q} number field $\longleftrightarrow K(C)/\mathbb{F}_{l}(X)$ function field

 $C \subseteq \mathbb{P}^n_{\mathbb{F}_l}$ smooth, projective curve, i.e.

 $K(C)/\mathbb{F}_{l}(X)$ finite extension

Counting points on C

- $N_r := \#C(\mathbb{F}_{l'})$ cardinality of $\mathbb{F}_{l'}$ -rational points
- $\phi: \mathcal{C} \to \mathcal{C}$ Frobenius-automorphism $x_i \mapsto x_i^l$

Lefschetz-Trace-Formula

$$N_r = \#\{\text{Fix points of } C(\overline{\mathbb{F}_I}) \text{ under } \phi^r\} \\ = \sum_{n=0}^{2} (-1)^n \text{Tr}(\phi^r | \mathbb{H}^n(C))$$

ζ -function of *C*, WEIL (1948)

$$\begin{split} \zeta_{C}(s) &:= \prod_{x \in |C|} \frac{1}{1 - (\#k(x))^{-s}}, \quad s \in \mathbb{C}, \ \Re(s) > 1, \\ &= \exp\Big(\sum_{r=1}^{\infty} N_{r} \frac{t^{r}}{r}\Big), \qquad t = l^{-s} \\ &= \prod_{n=0}^{2} \det(1 - \phi t | \mathbb{H}^{n}(C))^{(-1)^{n+1}} \\ &= \frac{\det(1 - \phi t | \text{``Pic}^{0}(\overline{C})\text{''})}{(1 - t)(1 - lt)} \quad \epsilon \ \mathbb{Q}(t) \end{split}$$

Riemann hypothesis for C

 ζ_{C} is a rational function in *t* and has

poles at: s = 0, s = 1

zeroes at certain $s = \alpha$ satisfying $\Re(\alpha) = \frac{1}{2}$.

Can the Riemann ζ -function also be expressed as rational function?

p-adic ζ -functions Main Conjecture

Classical Iwasawa theory

Otmar Venjakob Are ζ -functions able to solve Diophantine equations?

p-adic ζ -functions Main Conjecture

Tower of number fields

Studying the class number formula in a whole tower of number fields simultaneously:

$$\mathbb{Q} \subseteq F_1 \subseteq \ldots \subseteq F_n \subseteq F_{n+1} \subseteq \ldots \subseteq F_{\infty} := \bigcup_{n \ge 0} F_n.$$

p-adic *ζ*-functions Main Conjecture

$$\mathbb{Z}_{
ho}^{ imes}\cong\mathbb{Z}/(
ho-1)\mathbb{Z} imes\mathbb{Z}_{
ho},$$
 i.e. $G=\Delta imes\Gamma$ with

$$\Delta = G(F_1/\mathbb{Q}) \cong \mathbb{Z}/(p-1)\mathbb{Z}$$
 and
 $\Gamma = G(F_{\infty}/F_1) = \overline{\langle \gamma \rangle} \cong \mathbb{Z}_p.$

Iwasawa-Algebra

$$\Lambda(G) := ightarrow \lim_{G' ext{left} G \text{ open}} \mathbb{Z}_p[G/G'] \cong \mathbb{Z}_p[\Delta][[T]]$$

with $T := \gamma - 1$.

p-adic *ζ*-functions Main Conjecture

p-adic functions

Maximal ring of quotients of
$$\Lambda(G)$$
: $Q(G) \cong \prod_{i=1}^{p-1} Q(\mathbb{Z}_p[[T]]).$

$$Z = (Z_1(T), \dots, Z_{p-1}(T)) \ \epsilon \ Q(G)$$
 are functions on \mathbb{Z}_p : for $n \ \epsilon \ \mathbb{N}$

$$Z(n) := Z_{i(n)}(\kappa(\gamma)^n - 1) \in \mathbb{Q}_p \cup \{\infty\}, \quad i(n) \equiv n \mod (p - 1)$$

p-adic *ζ*-functions Main Conjecture

Analytic p-adic ζ -function

KUBOTA, LEOPOLDT and IWASAWA:

 $\zeta_{p} \in Q(G)$ such that for k < 0

$$\zeta_{p}(k) = (1 - p^{-k})\zeta(k),$$

i.e. ζ_p interpolates - up to the Euler-factor at p - the Riemann ζ -function p-adically.

p-adic ζ -functions Main Conjecture

Ideal class group over F_{∞}

IWASAWA: $\#CI(F_n)(p) = p^{nrk_{\mathbb{Z}_p}(X) + const}$ where

$$X := X(F_{\infty}) = \underset{n}{\underset{n}{\underset{ \underset{n}{ \atop }}}} Cl(F_n)(p)$$
 with *G*-action,

$$\mathbb{Z}_p(1) := \underset{n}{\underset{n}{\lim}} \mu_{p^n}$$
 with *G*-action,

$$X^-\otimes_{\mathbb{Z}_p} \mathbb{Q}_p, \quad \mathbb{Q}_p(1):=\mathbb{Z}_p(1)\otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$

finite-dimensional \mathbb{Q}_{p} -vector spaces with operation by γ .

p-adic ζ -functions Main Conjecture

Iwasawa Main Conjecture

MAZUR and WILES (1986):

$$\begin{split} \zeta_p &\equiv \frac{\det(1 - \gamma T | X^- \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)}{\det(1 - \gamma T | \mathbb{Q}_p(1))} \mod \Lambda(G)^{\times} \\ &\equiv \prod_i \det(1 - \gamma T | \mathbb{H}^i)^{(-1)^{i+1}} \mod \Lambda(G)^{\times} \\ analytic & algebraic \ p\text{-adic } \zeta\text{-function} \end{split}$$

'Trace formula'

p-adic ζ -functions Main Conjecture

The analogy

function field	number field
$\overline{\mathbb{F}_{I}} = \mathbb{F}_{I}(\mu)$	$\mathcal{F}_{\infty} = \mathbb{Q}(\mu(\mathcal{p}))$
ϕ	γ
С	\mathbb{G}_m
ζc	$\zeta_{\mathcal{P}}$
$Pic^{0}(\overline{C})$	$X'=$ ' $Pic(F_{\infty})$

Non-commutative Iwasawa Theory

Otmar Venjakob Are ζ -functions able to solve Diophantine equations?

From \mathbb{G}_m to arbitrary representations

up to now:

Generalisations

$$\rho: G_{\mathbb{Q}} \to \mathrm{GL}(V)$$

(continuous) representation with $V \cong \mathbb{Q}_p^n$ and Galois-stable lattice $T \cong \mathbb{Z}_p^n$.

p-adic Lie extensions

- $F_{\infty} \subseteq K_{\infty}$ such that
- $\mathcal{G} := \mathcal{G}(\mathcal{K}_{\infty}/\mathbb{Q}) \subseteq \mathrm{GL}_n(\mathbb{Z}_p)$
- is a *p*-adic Lie group
- with subgroup H such that

$$\Gamma := \mathcal{G}/H \cong \mathbb{Z}_p$$

Philosophy

Attach to (ρ, V)

analytic p-adic L-function L(V, K_∞) with interpolation property

$$\mathcal{L}(V, K_{\infty}) \sim L(1, V \otimes \chi)$$

for $\chi : \mathcal{G} \to GL_n(\mathbb{Z}_p)$ with finite image.

• algebraic *p*-adic *L*-function $F(V, K_{\infty})$.

Problem: $\Lambda(\mathcal{G})$ in general not commutative! Non-commutative determinants?

Non-commutative Iwasawa Main Conjecture

COATES, FUKAYA, KATO, SUJATHA, V.:

There exists a canonical localisation $\Lambda(\mathcal{G})_S$ of $\Lambda(\mathcal{G})$, such that $F(V, K_{\infty})$ exists in

 $K_1(\Lambda(\mathcal{G})_S).$

Also $\mathcal{L}(V, K_{\infty})$ should live in this *K*-group.

Main Conjecture:

 $\mathcal{L}(V, K_{\infty}) \equiv F(V, K_{\infty}) \mod K_1(\Lambda(\mathcal{G})).$

Non-commutative characteristic polynomials

M $\Lambda(\mathcal{G})$ -module, which is finitely generated $\Lambda(H)$ -module BURNS, SCHNEIDER, V.:

$$\Lambda(\mathcal{G})_{\mathcal{S}} \otimes_{\Lambda(H)} M \xrightarrow{``1-\gamma''} \Lambda(\mathcal{G})_{\mathcal{S}} \otimes_{\Lambda(H)} M$$

induces "det $(1 - \gamma T | M)$ " $\epsilon K_1(\Lambda(\mathcal{G})_S)$.

Main Conjecture over K_{∞} :

"Trace formula" in $K_1(\Lambda(\mathcal{G})_S) \mod K_1(\Lambda(\mathcal{G}))$:

 $\mathcal{L}(K_{\infty},\mathbb{Z}_{p}(1)) \equiv \det(1-\gamma T | \mathbb{H}^{\bullet}(K_{\infty},\mathbb{Z}_{p}(1)))$

New Congruences

If $\mathcal{G} \cong \mathbb{Z}_p \rtimes \mathbb{Z}_p^{\times}$ and coefficients: $\mathbb{Z}_p(1)$ KATO: $K_1(\Lambda(\mathcal{G})) \longrightarrow \prod_{\chi_i} \mathcal{O}_i[[T]]^{\times}$ \downarrow $K_1(\Lambda(\mathcal{G})_S) \longrightarrow \prod_{\chi_i} \operatorname{Quot}(\mathcal{O}_i[[T]])^{\times}$

$$\mathcal{L}(K_{\infty}/\mathbb{Q}) \longmapsto (L_{\rho}(\chi_i, F_{\infty}))_i$$

Existence of $\mathcal{L}(\mathcal{K}_{\infty}/\mathbb{Q}) \iff$ congruences between $L_{p}(\chi_{i}, \mathcal{F}_{\infty})$ Main Conjecture $/\mathcal{K}_{\infty} \iff$ Main Conjecture $/\mathcal{F}_{\infty}$ for all χ_{i}

Similar results by RITTER, WEISS for finite H.

A theorem for totally real fields

F totally real, $F_{cyc} \subseteq K_{\infty}$ totally real,

 $\mathcal{G} \cong \mathbb{Z}_p \rtimes \mathbb{Z}_p$

MAHESH KAKDE, a student of Coates, recently announced:

Theorem (Kakde)

Assume Leopoldt's conjecture for F. Then the non-commutative Main Conjecture for the Tate motive (i.e. for $= \mathbb{G}_m$) holds over K_{∞}/F .