On SK_1 of Iwasawa algebras joint work with Peter Schneider

Otmar Venjakob

Mathematisches Institut Universität Heidelberg

Cartagena, 14.02.2012

The setup

R commutative ring,

 ${\cal L}$ a ${\it R}$ -Lie algebra, finitely generated free as ${\it R}$ -module

$$[\ ,\]:\mathcal{L}\wedge\mathcal{L}\to\mathcal{L}$$

$$\bigwedge \mathcal{L} := \langle x \wedge y \mid [x, y]_L = 0 \rangle_R \subseteq \ker[\ ,\]$$

Question: When does $\bigwedge \mathcal{L} = \ker[\ ,\]$ hold?

A counterexample

Assume that $2 \epsilon R^{\times}$.

 $V:=R^4$ with standard basis e_1,\ldots,e_4 and

 $W:=\bigwedge^2 V/R(e_1\wedge e_2+e_3\wedge e_4)$ (rank 5)

$$\partial: \bigwedge^2 V \stackrel{\mathrm{pr}}{\longrightarrow} W$$
.

Note that ker ∂ does not contain any nonzero vector of the form $a \wedge b$.

 $\mathcal{L}' := V \oplus W$ with bracket

$$[\;,\;]:\bigwedge^2\mathcal{L}'\xrightarrow{\mathrm{pr}}\bigwedge^2V\xrightarrow{\partial}W\xrightarrow{\subseteq}\mathcal{L}'$$

makes \mathcal{L}' into a 2-step nilpotent Lie algebra over R with center $Z(\mathcal{L}') = [\mathcal{L}', \mathcal{L}'] = W$ and $e_1 \wedge e_2 + e_3 \wedge e_4 \in \ker[\cdot, \cdot] \setminus \bigwedge \mathcal{L}'$.

Chevalley orders

F field of characteristic zero

 \mathfrak{g} a F-split reductive Lie algebra over F with center \mathfrak{z} , Cartan subalgebra \mathfrak{h} and root system Φ , $[X_{\alpha}, X_{-\alpha}] = -H_{\alpha}$

 $\begin{array}{l} Q^{\vee} := \sum_{\alpha \ \epsilon \ \Phi} \mathbb{Z} H_{\alpha} \subseteq \mathfrak{h} \ \text{coroot lattice} \\ P^{\vee} := \{ h \ \epsilon \ \sum_{\alpha \ \epsilon \ \Phi} \mathbb{Q} H_{\alpha} : \beta(h) \ \epsilon \ \mathbb{Z} \ \text{for any} \ \beta \ \epsilon \ \Phi \} \subseteq \mathfrak{h} \ \text{coweight} \\ \text{lattice of the root system} \ \Phi \end{array}$

 $\mathfrak{h}_{\mathbb{Z}} \subseteq \mathfrak{h} \mathbb{Z}$ -lattice such that $Q^{\vee} \subseteq \mathfrak{h}_{\mathbb{Z}} \subseteq P^{\vee} \oplus \mathfrak{z}$,

$$\mathfrak{g}_{\mathbb{Z}} := \mathfrak{h}_{\mathbb{Z}} + \sum_{lpha \in \Phi} \mathbb{Z} X_{lpha} \subseteq \mathfrak{g} .$$

 $\mathfrak{g}_{\mathbb{Z}}$ is a $\mathbb{Z}\text{-Lie}$ subalgebra (Chevalley order) of \mathfrak{g} .

 $\mathfrak{g}_R := R \otimes_{\mathbb{Z}} \mathfrak{g}_{\mathbb{Z}}$ is a R-Lie algebra.

The problem A counterexample Chevalley orders Main result on Lie algebras

Theorem

If 2 and 3 are invertible in R then $ker[,] = \bigwedge \mathfrak{g}_R$.

Kostant had proved the case $R=\mathbb{C}$ by different methods. This is an integral version of his result.

Uniform pro-p-groups

G (topologically) finitely generated pro-p group with

where $G_1 := G$ and $G_i := [G, G_i]G^p$ is the lower *p*-central series, is called *uniform* pro-*p* group.

Facts:

- $G \xrightarrow{g^{i-1}} G_i$ is homeomorphic (but not homomorphic in general).
- ② (Lazard) A pro-finite group G is a p-adic Lie group $\iff G$ has an open characteristic subgroup which is uniform.

The associated Lie algebra

The operations

$$x + y := \lim_{n \to \infty} (x^{p^n} y^{p^n})^{\frac{1}{p^n}}$$
$$(x, y) := \lim_{n \to \infty} [x^{p^n}, y^{p^n}]^{\frac{1}{p^{2n}}}$$

make G into a \mathbb{Z}_p Lie algebra, denoted $\mathcal{L}:=\mathcal{L}(G)$,

and we have an equivalence of categories

$$\{G \text{ uniform}\} \longleftrightarrow \{\mathcal{L} \text{ with } (\mathcal{L}, \mathcal{L}) \subseteq p\mathcal{L}, \text{i.e., powerful}\}$$

lwasawa algebras

$$\Lambda(G) := \underbrace{\varprojlim}_{\substack{U \lhd G \text{ open}}} \mathbb{Z}_p[G/U]$$

$$\Lambda_{\infty}(G) := \underbrace{\varprojlim}_{\substack{U \lhd G \text{ open}}} \mathbb{Q}_p[G/U]$$

lwasawa algebra

$$SK_1(\mathbb{Z}_p[G/U]) := \ker \left(K_1(\mathbb{Z}_p[G/U]) \longrightarrow K_1(\mathbb{Q}_p[G/U])\right)$$

is known to be finite!

$$SK_1(\Lambda(G)) := \ker \left(K_1(\Lambda(G)) \longrightarrow K_1(\Lambda_{\infty}(G)) \right) \cong \varprojlim SK_1(\mathbb{Z}_p[G/U])$$

by a result of Fukaya and Kato.

A homological description

Oliver: for H finite we have

$$\oplus_{A\subseteq H}H_2(A,\mathbb{Z})\longrightarrow H_2(H,\mathbb{Z})\longrightarrow SK_1(\mathbb{Z}_p[H])\longrightarrow 0$$

where A runs trough all abelian subgroups of H.

Dualizing with $-^{\vee} := \operatorname{Hom}_{\operatorname{cts}}(-, \mathbb{Q}_p/\mathbb{Z}_p)$ and taking limits gives:

$$\mathit{SK}_1(\Lambda(\mathit{G}))^\vee = \ker \left(\mathit{H}^2(\mathit{G}, \mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow \varinjlim_{N} \prod_{\mathit{A} \subset \mathit{G}/N} \mathit{H}^2(\mathit{A}, \mathbb{Q}_p/\mathbb{Z}_p) \right) \,.$$

A cohomological criterion

If G has no torsion, then $SK_1 = 0 \iff$

$$0 \longrightarrow H^1(G, \mathbb{Q}_p/\mathbb{Z}_p)/p \xrightarrow{\delta} H^2(G, \mathbb{F}_p) \xrightarrow{\mathrm{res}} \prod_{A \subseteq G} H^2(A, \mathbb{F}_p)$$

is exact. As a consequence of Whiteheads Lemma and a result of Lazard we obtain

Corollary

If G is a compact p-adic Lie group such that $L(G) := \mathbb{Q}_p \otimes_{\mathbb{Z}_p} \mathcal{L}(G)$ is semi-simple, then $SK_1(\Lambda(G))$ is finite.

The uniform case

Lazard:
$$H^*(G, \mathbb{F}_p) = \bigwedge H^1(G, \mathbb{F}_p)$$

$$V := G/G^p$$
.

Then $SK_1 = 0 \iff$

$$0 \longrightarrow \bigwedge V \stackrel{\subseteq}{\longrightarrow} \bigwedge^2 V \stackrel{\delta^{\vee}}{\longrightarrow} G^{ab}[p] \longrightarrow 0 \ ,$$

is exact

The uniform case

Lazard:
$$H^*(G, \mathbb{F}_p) = \bigwedge H^1(G, \mathbb{F}_p)$$

$$V := G/G^p$$
.

Then $SK_1 = 0 \iff$

$$0 \longrightarrow \bigwedge V \stackrel{\subseteq}{\longrightarrow} \bigwedge^2 V \stackrel{\delta^{\vee}}{\longrightarrow} G^{ab}[p] \longrightarrow 0 \ ,$$

is exact \iff

$$\bigwedge V = \ker \partial$$

where
$$\partial$$
 : $V \wedge V \longrightarrow (G^p/[G^p, G])[p]$
 $gG^p \wedge hG^p \longmapsto [g, h] \mod [G^p, G]$

A Lie criterion

$$SK_1 = 0 \iff \bigwedge \mathcal{L} = \text{ker}[\ ,\]$$

Vanishing of SK_1

 $R = \mathbb{Z}_p$ for $p \neq 2, 3$

 \mathfrak{g} a \mathbb{Q}_p -split reductive Lie algebra

 $\mathfrak{g}_\mathbb{Z}\subseteq\mathfrak{g}$ a Chevalley order.

Then, for any $n \ge 1$, $p^n \mathfrak{g}_{\mathbb{Z}_p}$ corresponds to unique uniform p-adic Lie group $G(p^n)$ with \mathbb{Z}_p -Lie algebra

$$\mathcal{L}(G(p^n)) = p^n \mathfrak{g}_{\mathbb{Z}_p}$$
.

$\mathsf{Theorem}$

In the above setting we have

$$SK_1(\Lambda(G(p^n))) = 0$$
.

Examples

 ${\mathcal G}$ a split reductive group scheme over ${\mathbb Z}$

$$G(p^n) := \ker \left(\mathcal{G}(\mathbb{Z}_p) o \mathcal{G}(\mathbb{Z}/p^n) \right)$$

satisfies conditions of the theorem, e.g. for $m \ge 1$

$$\ker \left(\mathit{SL}_d(\mathbb{Z}_p) o \mathit{SL}_d(\mathbb{Z}_p/p^m) \right).$$

Iwasawa Main Conjecture

Uniqueness-statements in Main Conjectures of Iwasawa theory:

$$SK_{1}(\Lambda(G)) \qquad \qquad \mathcal{L}, \mathcal{L}' \longmapsto [X_{E}]$$

$$\downarrow \qquad \qquad K_{1}(\Lambda(G)) \longrightarrow K_{1}(\Lambda(G)_{S}) \stackrel{\partial}{\longrightarrow} K_{0}(S-\text{tor})$$

$$\downarrow \qquad \qquad DET \downarrow \qquad DET \downarrow$$

$$Maps(Irr(G), \overline{\mathbb{Z}_{p}}^{\times}) \longrightarrow Maps(Irr(G), \overline{\mathbb{Q}_{p}} \cup \{\infty\})$$

That is, if $SK_1(\Lambda(G)) = 1$ and if \mathcal{L} is induced form $\Lambda(G) \cap \Lambda(G)_S^{\times}$ (no poles), then \mathcal{L} is unique with

- $extbf{2}$ $DET(\mathcal{L})$ satisfies some interpolation property.