Theorem. The sets S and S^* are (left and right) Ore sets, i.e. the localisations Λ_S and Λ_{S^*} of Λ exist and the following holds:

- (i) The category of all finitely generated S^* -torsion $\Lambda(\mathcal{G})$ -modules coincides with $\mathfrak{M}_{\mathcal{H}}(\mathcal{G})$.
- (ii) There is an long exact localisation sequence of *K*-groups

$$\begin{array}{c} \wedge(\mathcal{G})_{S^*} \\ \downarrow \\ K_1(\wedge(\mathcal{G})) \longrightarrow K_1(\wedge(\mathcal{G})_{S^*}) \xrightarrow{\partial} K_0(\mathfrak{M}_{\mathcal{H}}(\mathcal{G}) \longrightarrow 0 \end{array}$$

and analogously for $\Lambda(\mathcal{G})_S$ and the category of finitely generated S-torsion modules.

(iii) There is a canonical way of evaluation an element $f \in K_1(\Lambda(\mathcal{G})_{S^*})$ at any continuous representation $\rho : \mathcal{G} \to GL_n(\mathcal{O})$ with $n \ge 1$ and \mathcal{O} the ring of integers of a finite extension (depending of ρ) of \mathbb{Q}_p :

$$f(\rho) \in \mathbb{C}_p \cup \{\infty\},\$$

i.e. f can be considered as a map on the set of such representations.

Conjecture 1 (Torsion-conjecture). The dual of the Selmer group is S^* -torsion:

 $X(E/F_{\infty}) \in \mathfrak{M}_{\mathcal{H}}(\mathcal{G}).$

$$K(F_{\infty})$$
max. abelian ext. of \mathbb{Q} inside F_{∞} in which p does not ramify $L = K(F_{\infty})_{\mathfrak{P}}$ for some $\mathfrak{P}|p, \quad [L:\mathbb{Q}_p] < \infty !$ $D = \mathcal{O}_L$

Conjecture 2 (*p*-adic *L*-function)

There is a (unique) $\mathcal{L}_E \in K_1(\Lambda(G)_{S^*})$ such that

$$\mathcal{L}_E(\stackrel{ee}{ee}) = rac{L_R(E,ee,1)}{\Omega_+^{d^+(ee)}\Omega_-^{d^-(ee)}} e_p(\stackrel{ee}{ee}) rac{P_p(\stackrel{ee}{ee},u^{-1})}{P_p(ee,w^{-1})} u^{-\mathfrak{f}_p(\stackrel{ee}{ee})}$$

for all Artin representations ϱ of G, where

$$\begin{split} \Omega_{\pm} &= \int_{\gamma^{\pm}} \omega, \ \omega \text{ Neron differential} \\ R &= \{q \text{ prime}, |j(E)|_q > 1\} \cup \{p\} \\ 1 - a_p T + p T^2 &= (1 - uT)(1 - wT), \ u \in \mathbb{Z}_p^{\times} \\ p^{\mathfrak{f}_p(\varrho)} \ p \text{-part of conductor of } \varrho \\ P_p(\varrho, T) &= \det(1 - Frob_p^{-1} \ T | V_{\varrho}^{I_p}) \text{ Euler-factor of } \rho \\ d^{\pm}(\varrho) &= \dim_{\mathbb{C}} V_{\varrho}^{\pm} \\ e_p(\varrho) \ \text{local } \epsilon \text{-factor of } \varrho \text{ at } p \\ (\bar{\mathbb{Q}} \hookrightarrow \mathbb{C}, \bar{\mathbb{Q}} \hookrightarrow \mathbb{C}_p \text{ are fixed}) \end{split}$$

Conjecture 2.

Conjecture 3 (Main Conjecture). The *p*-adic *L*-function \mathcal{L}_E is a characteristic element of $X(E/F_{\infty})$:

 $\partial \mathcal{L}_E = [X(E/F_\infty)]_D.$

Theorem (Manin-Višik, Katz, Yager, de Shalit, ...) There is a unique $\mathcal{L}_{\bar{\psi}} := \mu \ \epsilon \ D[\![G]\!]$ such that

$$\mathcal{L}_{\bar{\psi}}(\bar{\chi}) = \int_{G} \bar{\chi} d\mu = \frac{\Omega_p}{\Omega} e_{\mathfrak{p}}(\bar{\chi}) P_{\mathfrak{p}}(\bar{\chi}, u^{-1}) P_{\bar{\mathfrak{p}}}(\chi, u^{-1}) L(\bar{\psi}\chi, 1)$$

for all Artin-character χ of G, where

$\Omega \ \epsilon \ \mathbb{C}^{ imes}$	complex period s.t. $\Lambda_E = \Omega \mathcal{O}_K$
$\Omega_p \epsilon D^{ imes}$	p-adic period
$u=\psi(\bar{\mathfrak{p}})=\bar{\pi}$	
$\mathfrak{p}^{\mathfrak{f}_{\mathfrak{p}}^{(\chi)}}$	\mathfrak{p} -part of conductor of χ
$e_{\mathfrak{p}}(\chi)$	epsilon-factor of χ at \mathfrak{p}
$D = \widehat{\mathbb{Z}_p^{nr}}$	

Remark

- (i) $\frac{\Omega_p}{\Omega}$ is independent of choices
- (ii) We do not know whether $\frac{\mathcal{L}_{\bar{\psi}}(\bar{\chi})}{\Omega_p} \epsilon K_{\mathfrak{p}}(\chi)$ for all χ .

Theorem (Bouganis, V.). Assume Conjecture 1. Then $\mathcal{L}_E \in K_1(\mathbb{Z}_p[\![\mathcal{G}]\!]_S)$ and Conjecture 2 and 3 hold.

Remark. Similar results hold for Grössencharacters ψ of type (k, 0).

Lemma. (Deligne's period conjecture, Blasius,) $\mathcal{L}_E(\rho) \in \mathbb{Q}_p(\rho)$

for all $\rho \in \operatorname{Irr} \mathcal{G}$.

$$\begin{array}{ll} L/\mathbb{Q}_p & \text{finite, unramified} \\ \mathcal{O} := \mathcal{O}_L \\ L^{nr} & \text{max. unramified ext. of } L \\ D := \widehat{\mathcal{O}_{L^{nr}}} \end{array}$$

$$\iota: K_1(\Lambda_{\mathcal{O}}(\mathcal{G})_{S^*}) \to K_1(\Lambda_D(\mathcal{G})_{S^*})$$

Theorem. Assume that

- (i) $L(\rho)/L$ is totally ramified (or trivial) for all $\rho \in \operatorname{Irr}\mathcal{G}$,
- (ii) $\mathcal{L} \in K_1(\Lambda_D(\mathcal{G})_{S^*})$ is induced from an element in $\Lambda_D(\mathcal{G}) \cap (\Lambda_D(\mathcal{G})_{S^*})^{\times}$
- (iii) $\mathcal{L}(\rho) \in L(\rho)$ for all $\rho \in \operatorname{Irr}\mathcal{G}$,
- (iv) there is an $F \in K_1(\Lambda_{\mathcal{O}}(\mathcal{G})_{S^*})$ such that

 $\partial(\mathcal{L}\cdot\iota(F)^{-1})=0$

(e.g. if \mathcal{L} is the characteristic element of the base change from a module in $\mathfrak{M}_{\mathcal{O},\mathcal{H}}(\mathcal{G})$).

Then there exists $\mathcal{L}' \in K_1(\Lambda_{\mathcal{O}}(\mathcal{G})_{S^*})$ with

$$\mathcal{L}'(\rho) = \mathcal{L}(\rho)$$
 for all $\rho \in \operatorname{Irr}\mathcal{G}$

and

 $\partial(\mathcal{L}') = \partial(F),$

in particular

$$\iota \partial(\mathcal{L}') = \partial(\mathcal{L}).$$

The proof needs a generalisation of a result of M. Taylor:

Theorem. (*Izychev*, *Snaith*, *V*.)

- (i) $\operatorname{Det}(K_1(\Lambda_D(\mathcal{G})))^{\operatorname{Frob}_p=1} = \operatorname{Det}(K_1(\Lambda_O(\mathcal{G}))),$
- (ii) $K_1(\Lambda_D(\mathcal{G}))^{\operatorname{Frob}_p=1} = K_1(\Lambda_O(\mathcal{G})).$

work in progress!