# The $G L_{2}$ main conjecture for elliptic curves 

 without complex multiplicationby Otmar Venjakob

## Arithmetic of elliptic curves

$E$ elliptic curve over $\mathbb{Q}$ :
$E: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6}, \quad A_{i} \in \mathbb{Z}$.

$$
E(K)=?
$$

for number fields, local fields, finite fields $K$
$l$ any prime,
$\widetilde{E}$ reduction of $E \bmod l$,
$\# \widetilde{E}\left(\mathbb{F}_{l}\right)=: 1-a_{l}+l$

Hasse-Weil $L$-function of $E$ :
$L(E / \mathbb{Q}, s):=\prod_{l}\left(1-a_{l} l^{-s}+\epsilon(l) l^{1-2 s}\right)^{-1}, s \in \mathbb{C}, \Re(s)>\frac{3}{2}$,
where $\epsilon(l):=\left\{\begin{array}{lc}1 & E \text { has good reduction at } l \\ 0 & \text { otherwise }\end{array}\right.$

## Mordell-Weil Theorem

$E(\mathbb{Q})$ is a finitely generated abelian group

## Birch \& Swinnerton-Dyer Conjecture

I. $\quad r:=\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})$
II. $\quad \lim _{s \rightarrow 1}(s-1)^{r} L(E / \mathbb{Q}, s)=\Omega_{+} R_{E} \frac{\# Ш(E / \mathbb{Q})}{\left(\# E(\mathbb{Q})_{\text {tors }}\right)^{2}} \prod_{l} c_{l}$
$Ш(E / \mathbb{Q})$
$\left.R_{E}=\operatorname{det}\left(<P_{i}, P_{j}\right\rangle\right)_{i, j} \quad$ regulator of $E$
$\omega$
$\Omega_{+}=\int_{\gamma^{+}} \omega \quad$ real period of $E$
$c_{l}=\left[E\left(\mathbb{Q}_{l}\right): E^{n s}\left(\mathbb{Q}_{l}\right)\right] \quad$ Tamagawa-number at $l$
Tate-Shafarevich group

Néron Differential

## The Selmer group of $E$

Assumption: $p \geq 5$ prime such that $E$ has good ordinary reduction at $p$, i.e. $\# \widetilde{E}\left(\overline{\mathbb{F}_{p}}\right)[p]=p$.

For any finite extension $K / \mathbb{Q}$ we have the ( $p$-primary) Selmer group $\operatorname{Sel}(E / K)$

$$
0 \longrightarrow E(K) \otimes_{\mathbb{Z}} \mathbb{Q}_{p} / \mathbb{Z}_{p} \longrightarrow \operatorname{Sel}(E / K) \longrightarrow Ш(E / K)(p) \longrightarrow 0
$$

Thus, assuming \#Ш $(E / K)<\infty$, it holds for the Pontryagin dual of the Selmer group

$$
\operatorname{Sel}(E / K)^{\vee}:=\operatorname{Hom}\left(\operatorname{Sel}(E / K), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right),
$$

that

$$
\mathrm{rk}_{\mathbb{Z}} E(K)=\mathrm{rk}_{\mathbb{Z}_{p}} \operatorname{Sel}(E / K)^{\vee}
$$

## Towers of number fields

$$
K_{n}:=\mathbb{Q}\left(E\left[p^{n}\right]\right), \quad 1 \leq n \leq \infty
$$

$$
G_{n}:=G\left(K_{n} / \mathbb{Q}\right) \quad G:=G_{\infty}
$$

$G \subseteq G L_{2}\left(\mathbb{Z}_{p}\right) \quad$ closed subgroup
i.e. a $p$-adic Lie group

$X\left(E / K_{n}\right):=\operatorname{Sel}\left(E / K_{n}\right)^{\vee}$ is a compact $\mathbb{Z}_{p}\left[G_{n}\right]$-module
 ated $\Lambda(G)$-module, where

$$
\wedge(G)=\underset{n}{\lim _{n}} \mathbb{Z}_{p}\left[G_{n}\right]
$$

denotes the Iwasawa algebra of $G$,
a noehterian possibly non-commutative ring.

## Twisted $L$-functions

$\operatorname{Irr}\left(G_{n}\right)$ irreducible representations of $G_{n}$, realized over a number field $\subseteq \mathbb{C}$ or a local field $\subseteq \overline{\mathbb{Q}_{l}}$
$R:=\{p\} \cup\{l \mid E$ has bad reduction at $l\}$
$\left(\rho, V_{\rho}\right) \in \operatorname{Irr}\left(G_{n}\right), n<\infty$
$L_{R}(E, \rho, s) L$-function of $E \times \rho$ without Euler-factors of $R$,

## From BSD to the Main Conjecture

| algebraic |  | analytic |
| :---: | :---: | :---: |
| $X\left(E / K_{n}\right)$ <br> as $G_{n}$-module | $\sim$ | $L_{R}\left(E / K_{n}\right)=\prod_{\operatorname{Irr}\left(G_{n}\right)} L_{R}(E, \rho, s)^{n_{\rho}}$ |
| $p$-adic families |  |  |
| $X\left(E / K_{\infty}\right)$ | $\sim$ | $\left(L_{R}(E, \rho, 1)\right)_{\rho \in \operatorname{Irr}\left(G_{n}\right), n<\infty}$ |
| $p$-adic $L$-functions |  |  |
| $F_{E}:=F_{X}$ <br> Characteristic Element |  | $\begin{gathered} \mathcal{L}_{E} \\ \text { analytic } p \text {-adic } \\ L \text {-function } \end{gathered}$ |

## Main Conjecture

$$
F_{E} \equiv \mathcal{L}_{E}
$$

## What is new?

Example (CM-case):

$$
E: y^{2}=x^{3}-x
$$

$\operatorname{End}(E) \cong \mathbb{Z}[i] \neq \mathbb{Z}$, i.e. $E$ admits complex multiplication (CM), thus

$$
G \cong \mathbb{Z}_{p}^{2} \times \text { finite group }
$$

is abelian.
Main conjecture is a Theorem of Rubin in many cases,i.e. the theory is rather well known!

Example ( $G L_{2}$-case):

$$
E: y^{2}+y=x^{3}-x^{2}
$$

$\operatorname{End}(E) \cong \mathbb{Z}$, i.e. $E$ does not admit complex multiplication, thus

$$
G \subseteq_{o} G L_{2}\left(\mathbb{Z}_{p}\right) \text { open subgroup }
$$

is not abelian.
It was not even known how to formulate a main conjecture!

New: existence of characteristic elements

## Structure Theory

$G \subseteq G L_{n}\left(\mathbb{Z}_{p}\right)$ compact $p$-adic Lie group without element of order $p$

Classical: $G \cong \mathbb{Z}_{p}{ }^{n}, \wedge=\wedge(G) \cong \mathbb{Z}_{p}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$
$M$ torsion $\wedge$-module, then up to pseudo-null modules $M \sim \prod_{i} \wedge / \wedge f_{i}^{n_{i}}, \quad f_{i}$ irreducible, $\quad F_{M}:=\prod f_{i}^{n_{i}}$

Now: $G$ non-abelian, but still notion of pseudo-null

Theorem (Coates, Schneider, Sujatha). For every torsion $\wedge$-module $M$ one has up to pseudo-null modules

$$
M \sim \prod_{i} \wedge / L_{i}, \quad L_{i}(\text { reflexive }) \text { left ideal }
$$

Problems:
(i) $L_{i}$ not principal in general, i.e. no characteristic element
(ii) Euler characteristics do not behave well under pseudo-isomorphisms

## Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: $H \unlhd G$ with $\Gamma:=G / H \cong \mathbb{Z}_{p}$
(is satisfied in our application because $K_{\infty}$ contains the cyclotomic $\mathbb{Z}_{p}$-extension $\mathbb{Q}$ cyc of $\mathbb{Q}$ )
$\wedge:=\wedge(G)$
We define a certain multiplicatively closed subset $\mathcal{T}$ of $\wedge$.

Question Can one localize $\wedge$ with respect to $\mathcal{T}$ ?

In general, this is very difficult for non-commutative rings!

If yes, the localisation with respect to $\mathcal{T}$ should be related - by construction - to the following subcategory of the category of $\Lambda$-torsion modules:

$$
\begin{array}{ll}
\mathfrak{M}_{H}(G) & \text { category of } \Lambda \text {-modules } M \text { such that } \\
& \text { modulo } \mathbb{Z}_{p} \text {-torsion } M \text { is finitely gen- } \\
& \text { erated over } \Lambda(H) \subseteq \wedge(G) .
\end{array}
$$

## Characteristic Elements

Theorem. The localization $\wedge_{\mathcal{T}}$ of $\wedge$ with respect to $\mathcal{T}$ exists and there is a surjective map

$$
\partial:\left(\wedge_{\mathcal{T}}\right)^{\times} \rightarrow K_{0}\left(\mathfrak{M}_{H}(G)\right)
$$

arising from $K$-theory.

Definition. Any $F_{M} \in\left(\Lambda_{\mathcal{T}}\right)^{\times}$with $\partial\left[F_{M}\right]=[M]$ is called characteristic element of $M \in \mathfrak{M}_{H}(G)$.

## Properties

(i) Any $f \epsilon\left(\Lambda_{\mathcal{T}}\right)^{\times}$can be interpreted as a map on the isomorphism classes of (continuous) representations $\rho: G \rightarrow G l_{n}\left(\mathcal{O}_{K}\right),\left[K: \mathbb{Q}_{p}\right]<\infty$ :

$$
\rho \mapsto f(\rho) \in K \cup\{\infty\} .
$$

(ii) The evaluation of $F_{M}$ at $\rho$ gives the generalized $G$-Euler characteristic $\chi(G, M(\rho))$

$$
\left|F_{M}(\rho)\right|_{p}^{-\left[K: \mathbb{Q}_{p}\right]}=\chi(G, M(\rho))
$$

if the Euler-characteristic is finite.

## Numerical Example

$$
\begin{aligned}
& E=X_{1}(11): y^{2}+y=x^{3}-x^{2}, \\
& A: \\
& y^{2}+y=x^{3}-x^{2}-7820 x-263580 \\
& p=5
\end{aligned}
$$

One can show: $X \in \mathfrak{M}_{H}(G)$, i.e. $F_{X}$ exists.
$G=G(\mathbb{Q}(E(5)) / \mathbb{Q})$ has 2 irreducible Artin Representations of degree 4:

$$
\rho_{i}=\operatorname{Ind} \chi_{i}: G \rightarrow G L_{4}\left(\mathbb{Z}_{5}\right),
$$

induced by $\chi_{i}, i=1,2$.


Calculations show:

$$
\chi\left(G, X\left(\rho_{i}\right)\right)=\left\{\begin{array}{ll}
5^{3} & i=1 \\
5 & i=2
\end{array},\right.
$$

i.e.

$$
F_{X}\left(\rho_{1}\right) \sim 5^{3}, \quad F_{X}\left(\rho_{2}\right) \sim 5
$$

up to $\mathbb{Z}_{5}^{\times}$.

## Analytic $p$-adic $L$-function

$$
\text { Period - Conjecture: } \quad \frac{L_{R}(E, \rho, 1)}{\Omega(E, \rho)} \epsilon \overline{\mathbb{Q}}
$$

Conjecture (Existence of analytic $p$-adic $L$-function). Let $p \geq 5$ and assume that $E$ has good ordinary reduction at $p$. Then there exists

$$
\mathcal{L}_{E} \in\left(\wedge(G)_{\mathcal{T}}\right)^{\times},
$$

such that for all Artin representations $\rho$ of $G$ one has $\mathcal{L}_{E}(\rho) \neq \infty$ and

$$
\mathcal{L}_{E}(\rho) \sim \frac{L_{R}(E, \rho, 1)}{\Omega(E, \rho)}
$$

up to some modifications of the Euler factor at $p$.

Conjecture (Main Conjecture). Assume that $p \geq 5$, $E$ has good ordinary reduction at $p$, and $X\left(E / K_{\infty}\right)$ belongs to $\mathfrak{M}_{H}(G)$. Granted the existence of the $p$-adic $L$ function, $\mathcal{L}_{E}$ is a characteristic element of $X\left(E / K_{\infty}\right)$ :

$$
\partial\left[\mathcal{L}_{E}\right]=\left[X\left(E / K_{\infty}\right)\right] .
$$

## Implications of the Main Conjecture

Assuming the existence of $\mathcal{L}_{E}$ and the main conjecture, one can show:
1)) $G L_{2}$ main conjecture $\Rightarrow 1$-variable main conjecture (over $\mathbb{Q}_{\text {cyc }}$ )
2)

$$
\chi(G, X(\rho)) \text { finite } \Leftrightarrow L_{R}(E, \rho, 1) \neq 0
$$

In this case one has:

$$
\chi(G, X(\rho))=\left|\mathcal{L}_{E}(\rho)\right|_{p}^{-m_{\rho}}
$$

3) If $L(E, 1) \neq 0$, then by Kolyvagin:
$E(\mathbb{Q}), \quad \amalg(E / \mathbb{Q})$ are finite and the $p$-part of the BSD-conjecture holds.

## Evidence for Main Conjecture

## I CM-case

Existence of $\mathcal{L}_{E}$ follows from existence of 2-variable $p$-adic $L$-function (Manin-Vishik, Katz, Yager)

If $X \in \mathfrak{M}_{H}(G)$, then the main conjecture follows from 2-variable main conjecture (Rubin,Yager)

## II $G L_{2}$-case

almost nothing is known!
Only weak numerical evidence by calculations of $T$. and V. Dokchitser:
$E=X_{1}(11)$,
$p=5$,
$\rho_{i}, i=1,2$, the two unique irreducible Artin representations of degree 4

$$
\chi\left(G, X\left(\rho_{i}\right)\right)=\left|\mathcal{L}_{E}\left(\rho_{i}\right)\right|_{p}^{-1}, \quad i=1,2
$$

