The *GL*₂ main conjecture for elliptic curves without complex multiplication

by Otmar Venjakob

Arithmetic of elliptic curves

$$E$$
 elliptic curve over $\mathbb Q$:

$$E: y^{2} + A_{1}xy + A_{3}y = x^{3} + A_{2}x^{2} + A_{4}x + A_{6}, A_{i} \in \mathbb{Z}.$$

$$E(K) = ?$$

for number fields, local fields, finite fields K

$$\begin{array}{ll}l & \text{any prime,}\\ \widetilde{E} & \text{reduction of }E \mod l,\\ \sim \end{array}$$

$$#E(\mathbb{F}_l) =: 1 - a_l + l$$

Hasse-Weil L-function of E:

$$L(E/\mathbb{Q},s) := \prod_{l} (1-a_{l}l^{-s} + \epsilon(l)l^{1-2s})^{-1}, \ s \in \mathbb{C}, \ \Re(s) > \frac{3}{2},$$

where $\epsilon(l) := \begin{cases} 1 & E \text{ has good reduction at } l \\ 0 & \text{otherwise} \end{cases}$

Mordell-Weil Theorem

 $E(\mathbb{Q})$ is a finitely generated abelian group

Birch & Swinnerton-Dyer Conjecture

I.
$$r := \operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})$$

II.
$$\lim_{s \to 1} (s-1)^r L(E/\mathbb{Q}, s) = \Omega_+ R_E \frac{\# \mathrm{III}(E/\mathbb{Q})}{(\# E(\mathbb{Q})_{tors})^2} \prod_l c_l$$

III(
$$E/\mathbb{Q}$$
)Tate-Shafarevich group $R_E = \det(\langle P_i, P_j \rangle)_{i,j}$ regulator of E ω Néron Differential $\Omega_+ = \int_{\gamma^+} \omega$ real period of E $c_l = [E(\mathbb{Q}_l) : E^{ns}(\mathbb{Q}_l)]$ Tamagawa-number at l

The Selmer group of E

Assumption: $p \geq 5$ prime such that E has good ordinary reduction at p, i.e. $\#\widetilde{E}(\overline{\mathbb{F}_p})[p] = p.$

For any finite extension K/\mathbb{Q} we have the (*p*-primary) Selmer group Sel(E/K)

$$0 \longrightarrow E(K) \otimes_{\mathbb{Z}} \mathbb{Q}_p / \mathbb{Z}_p \longrightarrow Sel(E/K) \longrightarrow \operatorname{III}(E/K)(p) \longrightarrow 0$$

Thus, assuming $\# III(E/K) < \infty$, it holds for the Pontryagin dual of the Selmer group

$$Sel(E/K)^{\vee} := \operatorname{Hom}(Sel(E/K), \mathbb{Q}_p/\mathbb{Z}_p),$$

that

$$\mathsf{rk}_{\mathbb{Z}}E(K) = \mathsf{rk}_{\mathbb{Z}_p}Sel(E/K)^{\vee}$$

Towers of number fields

 $K_{n} := \mathbb{Q}(E[p^{n}]), \quad 1 \le n \le \infty,$ $G_{n} := G(K_{n}/\mathbb{Q}) \quad G := G_{\infty}$ $G \subseteq GL_{2}(\mathbb{Z}_{p}) \quad \text{closed subgroup}$ i.e. a *p*-adic Lie group K_{n} G_{n}

 $X(E/K_n) := Sel(E/K_n)^{\vee}$ is a compact $\mathbb{Z}_p[G_n]$ -module $X := X(E/K_\infty) := \varprojlim_n Sel(E/K_n)^{\vee}$ is a finitely generated $\Lambda(G)$ -module, where

$$\Lambda(G) = \underset{n}{\underset{i}{\lim}} \mathbb{Z}_p[G_n]$$

denotes the **Iwasawa algebra** of G,

a noehterian possibly non-commutative ring.

Twisted *L*-functions

- Irr(G_n) irreducible representations of G_n , realized over a number field $\subseteq \mathbb{C}$ or a local field $\subseteq \overline{\mathbb{Q}_l}$
- $R := \{p\} \cup \{l \mid E \text{ has bad reduction at } l\}$
- $(\rho, V_{\rho}) \epsilon \operatorname{Irr}(G_n), n < \infty$
- $L_R(E, \rho, s)$ L-function of $E \times \rho$ without Euler-factors of R,

From BSD to the Main Conjecture

algebraic		analytic
$X(E/K_n)$ as G_n -module	2	$L_R(E/K_n) = \prod_{\operatorname{Irr}(G_n)} L_R(E, \rho, s)^{n_{ ho}}$
<i>p</i> -adic families		
$X(E/K_{\infty})$	~	$(L_R(E, ho,1))_{ ho~\epsilon~{ m Irr}(G_n),n<\infty}$
<i>p</i> -adic <i>L</i> -functions		
$F_E := F_X$ Characteristic Element		\mathcal{L}_E analytic p -adic L -function

Main Conjecture

$$F_E \equiv \mathcal{L}_E$$

What is new?

Example (CM-case):

$$E: y^2 = x^3 - x$$

 $End(E) \cong \mathbb{Z}[i] \neq \mathbb{Z}$, i.e. *E* admits complex multiplication (CM), thus

$$G \cong \mathbb{Z}_p^2 \times \text{finite group}$$

is abelian.

Main conjecture is a Theorem of Rubin in many cases, i.e. the theory is rather **well known!**

Example (GL₂-case):

$$E: y^2 + y = x^3 - x^2$$

 $End(E) \cong \mathbb{Z}$, i.e. *E* does **not** admit complex multiplication, thus

 $G \subseteq_o GL_2(\mathbb{Z}_p)$ open subgroup

is not abelian.

It was not even known how to formulate a main conjecture!

New: existence of characteristic elements

Structure Theory

 $G \subseteq GL_n(\mathbb{Z}_p)$ compact *p*-adic Lie group without element of order *p*

Classical: $G \cong \mathbb{Z}_p^n$, $\Lambda = \Lambda(G) \cong \mathbb{Z}_p[[X_1, \dots, X_n]]$

M torsion $\Lambda\text{-module},$ then up to pseudo-null modules

 $M \sim \prod_i \Lambda / \Lambda f_i^{n_i}, f_i$ irreducible, $F_M := \prod f_i^{n_i}$

Now: G non-abelian, but still notion of pseudo-null

Theorem (Coates, Schneider, Sujatha). For every torsion Λ -module M one has up to pseudo-null modules

$$M \sim \prod_i \Lambda/L_i, \ L_i$$
 (reflexive) left ideal

Problems:

- (i) L_i not principal in general, i.e. no characteristic element
- (ii) Euler characteristics do not behave well under pseudo-isomorphisms

Localization of Iwasawa algebras

(joint work with: Coates, Fukaya, Kato and Sujatha)

Assumption: $H \leq G$ with $\Gamma := G/H \cong \mathbb{Z}_p$

(is satisfied in our application because K_{∞} contains the cyclotomic \mathbb{Z}_p -extension \mathbb{Q}_{cyc} of \mathbb{Q})

 $\Lambda := \Lambda(G)$

We define a certain multiplicatively closed subset ${\mathcal T}$ of $\Lambda.$

Question Can one localize Λ with respect to T?

In general, this is very difficult for **non-commutative** rings!

If yes, the localisation with respect to \mathcal{T} should be related - by construction - to the following subcategory of the category of Λ -torsion modules:

 $\mathfrak{M}_H(G)$ category of Λ -modules M such that modulo \mathbb{Z}_p -torsion M is finitely generated over $\Lambda(H) \subseteq \Lambda(G)$.

Characteristic Elements

Theorem. The localization Λ_T of Λ with respect to T exists and there is a surjective map

 $\partial : (\Lambda_{\mathcal{T}})^{\times} \twoheadrightarrow K_0(\mathfrak{M}_H(G))$

arising from K-theory.

Definition. Any $F_M \epsilon (\Lambda_T)^{\times}$ with $\partial [F_M] = [M]$ is called *characteristic element* of $M \epsilon \mathfrak{M}_H(G)$.

Properties

(i) Any $f \in (\Lambda_T)^{\times}$ can be interpreted as a map on the isomorphism classes of (continuous) representations $\rho : G \to Gl_n(\mathcal{O}_K), [K : \mathbb{Q}_p] < \infty$:

 $\rho \mapsto f(\rho) \ \epsilon \ K \cup \{\infty\}.$

(ii) The evaluation of F_M at ρ gives the generalized *G*-Euler characteristic $\chi(G, M(\rho))$

$$|F_M(\rho)|_p^{-[K:\mathbb{Q}_p]} = \chi(G, M(\rho))$$

if the Euler-characteristic is finite.

Numerical Example

$$E = X_1(11) \quad : \quad y^2 + y = x^3 - x^2,$$

$$A \quad : \quad y^2 + y = x^3 - x^2 - 7820x - 263580$$

p = 5

One can show: $X \in \mathfrak{M}_H(G)$, i.e. F_X exists.

 $G = G(\mathbb{Q}(E(5))/\mathbb{Q})$ has 2 irreducible Artin Representations of degree 4 :

$$\rho_i = \operatorname{Ind} \chi_i : G \to GL_4(\mathbb{Z}_5),$$

induced by χ_i , i = 1, 2.

Calculations show:

$$\chi(G, X(\rho_i)) = \begin{cases} 5^3 & i = 1 \\ 5 & i = 2 \end{cases},$$

i.e.

$$F_X(\rho_1) \sim 5^3, \ F_X(\rho_2) \sim 5^3$$

up to \mathbb{Z}_5^{\times} .

Analytic *p*-adic *L*-function

Period - Conjecture:

$$\frac{L_R(E,\rho,1)}{\Omega(E,\rho)} \ \epsilon \ \bar{\mathbb{Q}}$$

Conjecture (Existence of analytic p-adic L-function). Let $p \ge 5$ and assume that E has good ordinary reduction at p. Then there exists

$$\mathcal{L}_E \ \epsilon \ (\Lambda(G)_{\mathcal{T}})^{\times},$$

such that for all Artin representations ρ of G one has $\mathcal{L}_E(\rho) \neq \infty$ and

$$\mathcal{L}_E(
ho) \sim rac{L_R(E,
ho,1)}{\Omega(E,
ho)}$$

up to some modifications of the Euler factor at p.

Conjecture (Main Conjecture). Assume that $p \ge 5$, E has good ordinary reduction at p, and $X(E/K_{\infty})$ belongs to $\mathfrak{M}_H(G)$. Granted the existence of the p-adic L-function, \mathcal{L}_E is a characteristic element of $X(E/K_{\infty})$:

 $\partial[\mathcal{L}_E] = [X(E/K_\infty)].$

Implications of the Main Conjecture

Assuming the existence of \mathcal{L}_E and the main conjecture, one can show:

1)) GL_2 main conjecture \Rightarrow 1-variable main conjecture (over \mathbb{Q}_{cyc})

2)

 $\chi(G, X(\rho))$ finite $\Leftrightarrow L_R(E, \rho, 1) \neq 0$

In this case one has:

 $\chi(G, X(\rho)) = |\mathcal{L}_E(\rho)|_p^{-m_\rho}$

3) If $L(E, 1) \neq 0$, then by Kolyvagin:

 $E(\mathbb{Q}), \quad \operatorname{III}(E/\mathbb{Q}) \text{ are finite}$

and the *p*-part of the BSD-conjecture holds.

Evidence for Main Conjecture

I CM-case

Existence of \mathcal{L}_E follows from existence of 2-variable *p*-adic *L*-function (Manin-Vishik, Katz, Yager)

If $X \in \mathfrak{M}_H(G)$, then the main conjecture follows from 2-variable main conjecture (Rubin, Yager)

II GL₂-case

almost nothing is known!

Only weak numerical evidence by calculations of T. and V. Dokchitser:

$$\begin{split} E &= X_1(11), \\ p &= 5, \\ \rho_i, \ i &= 1, 2, \ \text{the two unique irreducible Artin} \\ & \text{representations of degree 4} \end{split}$$

$$\chi(G, X(\rho_i)) = |\mathcal{L}_E(\rho_i)|_p^{-1}, \quad i = 1, 2$$