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Abstract. In this paper, we prove the “local ε-isomorphism” conjecture of Fukaya and Kato [FK06] for

(crystalline) families of GQp -representations. This can be regarded as a local analogue of the Iwasawa

main conjecture for families, extending earlier work of Kato for rank one modules (see [Ven13]), of Benois
and Berger for crystalline GQp -representations with respect to the cyclotomic extension (see [BB08]) as

well as of Loeffler, Venjakob and Zerbes (see [LVZ15]) for crystalline GQp -representations with respect

to abelian p-adic Lie extensions of Qp. Nakamura [Nak13, Nak14] has shown Kato’s ε-conjecture for
rank one (ϕ,Γ)-modules over the Robba ring, which means in particular only after inverting p; moreover

he attaches an ε-isomorphism to trianguline (ϕ,Γ)-modules over the Robba ring depending on a fixed

triangulation. As a consequence of our result one obtains the independence of the chosen triangulation
for crystalline families a posteriori.

The main ingredient of (the integrality part of) our proof consists of the construction of families of

Wach modules generalizing work of Wach and Berger [Ber04] and following Kisin’s approach via a
corresponding moduli space [Kis09].

Contents

1. Introduction 2
Acknowledgements 3
Notation and Conventions 3
2. Rings of p-adic Hodge theory 4
3. Families of Wach modules 6
4. Generic fibre 16
4.1. Families of Wach modules and (ϕ,Γ)-modules 16
4.2. Comparisons between N(M) and Dcris(M

rig) 17
5. Galois cohomology 21
6. Regulator maps for families 24
6.1. Γ-regulator 24
6.2. G-regulator 25
7. Construction of the isomorphism 26
7.1. Construction of Θ over KR̃(G) 28
7.2. Definition of Θ over ΛR(G)[1/p] 29
7.3. Definition of the epsilon-isomorphism 31
7.4. Properties of the epsilon-isomorphism 32
7.5. Epsilon-isomorphisms for more general modules 34
8. Application to deformation rings 37
9. Relation to Nakamura’s work 38
Appendix A. Generic fibers 38
A.1. Quasi-Stein spaces 38
A.2. Partial generic fibers 40
Appendix B. Determinant functors 41
References 43

2010 Mathematics Subject Classification. Primary: 11R23. Secondary: 11S40.
The first author was partially supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship, and the

second author was supported by the DFG-Forschergruppe ”Symmetrie, Geometrie und Arithmetik” .

1



2 REBECCA BELLOVIN AND OTMAR VENJAKOB

1. Introduction

The significance of (local) ε-factors à la Deligne and Tate, or more generally of the (conjectural) ε-
isomorphism suggested by Fukaya and Kato in [FK06, §3], is at least twofold: First, they are important
ingredients to obtain a precise functional equation for L-functions or more generally for (conjectural)
ζ-isomorphism (loc. cit., §2) of motives in the context of Tamagawa number conjectures; second, they
are essential in interpolation formulae of (actual) p-adic L-functions and for the relation between ζ-
isomorphisms and (conjectural) p-adic L-functions as discussed in (loc. cit., §4). Of course the two
occurrences are closely related; for a survey on these ideas see also [Ven07].

The ε-isomorphism conjecture asserts roughly speaking the existence of a canonical trivialization
of the determinant of a cohomology complex associated to any representation M of the Galois group
GQp

= Gal(Qp/Qp) with coefficients in a p-adically complete local ring R. This trivialization is required
to be compatible with a specific “standard” trivialization of the corresponding complex for de Rham
representations with coefficients in finite extensions of Qp obtained by specializing M at ideals, or more
generally at representations, of R. This standard trivialization contains information about the ε-factor of
the corresponding Weil–Deligne representation, hence the terminology “ε-isomorphism”, and the Bloch-
Kato-exponential map.

The aim of this article is to prove, for any crystalline family M of Galois representations of GQp
=

Gal(Qp/Qp) over a complete local noetherian Zp-algebra R with finite residue field, the existence of the
ε-isomorphism (see Theorem 7.13)

εΛR(G),ξ(M) : DetΛR̃(G)(0)
∼−→
[
DetΛR̃(G)

(
ΛR̃(G)⊗ΛR(G) RΓIw(K∞,M)

)] [
DetΛR̃(G)

(
ΛR̃(G)⊗RM

)]
such that the specializations εΛR(G),ξ(M)⊗ROL with respect to any Zp-algebra homomorphism R→ OL
into the ring of integersOL of a finite extension L of Qp agree with the ε-isomorphisms εΛOL (G),ξ(M⊗ROL)

established in [LVZ15]. In particular εΛR(G),ξ(M) satisfies the above mentioned compatibility with the
standard trivializations for corresponding specializations (see Proposition 7.21). For further properties
we refer the reader to section 7.4.

Here ξ = (ξn)n≥1 denotes a compatible system of p-power roots of unity generating Zp(1) as a Zp-
module, ΛR(G) is the Iwasawa algebra of G = G(K∞/Qp) for K∞ = K(µ(p)) with K any (possibly
infinite) unramified extension K of Qp and RΓIw(K∞,M) denotes the complex calculating local Iwa-
sawa cohomology of M over K∞. Furthermore, for an associative ring A with one, DetA denotes the
determinant functor à la Knudsen-Mumford (if A is commutative) or à la Deligne/Fukaya-Kato (even for
non-commutative A) (see Appendix B); from a technical point of view we want to stress that we use the
realisation via line bundles whenever it is possible in order to take advantage of (stronger) arguments
and higher flexibility from commutative algebra. The Iwasawa algebra ΛR̃(G) is defined in (11). We

are mainly interested in the case, where G ∼= Z2
p ×∆ for a finite group ∆. This specific instance of the

local ε-isomorphism conjecture can be thought of as a “local Iwasawa main conjecture” for M over the
extension Qab

p /Qp; compare the discussion at the end of §2 in [Ven13].
The key ingredient in the construction of the local ε-isomorphism and the technical heart of this paper

is the construction of Wach modules N(M) for formal families of Galois representations M . The theory
of (ϕ,Γ)-modules and several other aspects of p-adic Hodge theory had been generalized to formal and
rigid-analytic families by work of Dee [Dee01], Berger and Colmez [BC08], Kedlaya and Liu [KL10], and
Bellovin [Bel15]. In § 3, we give a theory of Wach modules for formal families of crystalline representations
of GF , following Kisin’s strategy for the construction of potentially semi-stable deformation rings [Kis08].

We then compare Iwasawa cohomology to our Wach modules, extending the classical case. With this
in hand, we can define ε-isomorphisms for families of crystalline representations of GQp with coefficients
in rings R which are complete, local, noetherian Zp-algebras which are Cohen–Macaulay, normal, and flat
over Zp, with reduced generic fiber, and we show that the ε-isomorphisms we construct are compatible
with base change and with the ε-isomorphisms constructed in [LVZ15].

With this machinery at hand we can sharpen some work of Nakamura [Nak13], who had given a
different construction of ε-isomorphism even for not necessarily étale, but trianguline (ϕ,Γ)-modules (in
families) over the Robba ring, but in which the final integrality statement is missing and which a priori
depends on the choice of a triangulation. For crystalline families our results implies the independence of
such a choice (Corollary 9.1). See section 9 for a comparison with his result.
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The advantage of providing ε-isomorphisms for families is as follows: First of all, Iwasawa main con-
jectures [SU14] or (Equivariant) Tamagawa Number Conjectures are nowadays often considered over
(e.g. Hida-) families. Second, we hope that our work can be used to obtain results towards the con-
struction of ε-isomorphisms attached to torsion representations: In previous work [LVZ15] by the second
author together with David Loeffler and Sarah Zerbes we constructed an “ε-isomorphism” for crystalline
p-adic Galois representations. Unfortunately, we were not able to address the following general question:
let T, T ′ be two torsion-free Zp-representations of GQp such that T ∼= T ′ modulo pk for some k. Does it

follow that the ε-isomorphisms for T and T ′ agree modulo pk? In this paper, we give a partial answer and
show that if T and T ′ both are crystalline with Hodge-Tate weights in [a, b], then the desired congruence

holds, if the framed deformation ring R
�,[a,b]
cris is normal and Cohen-Macaulay. We do this by showing

that the ε-isomorphisms for T and T ′ are both specializations of a “universal” isomorphism over R
�,[a,b]
cris ;

see section 8.
We expect that it is possible to extend our constructions to the setting of affinoid families of Galois

representations, using techniques similar to those of [Wan15]. However, we have not done so here.
We quickly outline the content of the various sections: After recalling the basic rings of p-adic Hodge

theory in section 2, we construct Wach modules N(M) for formal families of Galois representations
M in section 3; the main result is summarized in Theorem 3.31. In section 4 we relate (the base

change N(M)rig of) the Wach module N(M) to the (ϕ,Γ)-module D†rig(M rig) attached to the associated

family M rig of Galois representations over the rigid analytic generic fiber Rrig of R. In particular, we
discuss the relation with Dcris(M

rig), generalizing parts of [Ber04] to families. This permits us to define
Dcris(M) without inverting p. In section 5 we explain how to express Iwasawa cohomomolgy of M
in terms of N(M), generalizing to families a variant of Fontaine’s isomorphism due to Loeffler and
Zerbes in [LZ14]; see Propositions 5.1 and 5.6. Again following [LZ14], we construct the regulator map
attached to M in section 6 and we study its specializations in Theorem 6.1. Finally, in section 7 we
put everything together in order to construct an isomorphism Θ — roughly speaking the determinant
of the regulator map — first over the total ring of fractions and then over the Iwasawa algebra with p
inverted. The isomorphism Θ relates the Iwasawa cohomology of M to Dcris(M

rig). Using Theorem 7.10
which relates the determinants of Dcris(M)[1/p] and M [1/p], we are able to define the ε-isomorphism
(see Definition 7.12) over the Iwasawa algebra with p inverted. By a specialization argument we show its
integrality in Theorem 7.13. Finally, we briefly discuss the application to deformation rings in section 8
before relating our ε-isomorphism to that of Nakamura in section 9.
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grateful to David Loeffler and Sarah Zerbes for many suggestions. We would also like to thank Toby
Gee, Brandon Levin, James Newton, and Carl Wang Erickson for helpful discussions.

Notation and Conventions

Let p be an odd prime. For H a p-adic analytic group, and L a complete discretely valued extension
of Qp with ring of integers O and uniformiser $, we write ΛO(H) and ΛL(H) = L ⊗O ΛO(H) for the
Iwasawa algebras of H with O and L coefficients, and HL(H) for the algebra of L-valued locally analytic
distributions on H, which is the completion of ΛL(H) in a certain Fréchet topology. We shall only use
these constructions in cases where H is abelian and p-torsion-free, in which case all of these algebras
are reduced commutative semi-local rings, and can be interpreted as algebras of functions on the p-adic
analytic space parameterising characters of H.

We shall also need the notation KL(H), signifying the total ring of quotients of HL(H), which is a
finite direct product of fields.

Let Qp,∞ = Qp(µp∞) and Γ = Gal(Qp,∞/Qp), and let χcyc : GQp
� Γ → Z×p be the p-cyclotomic

character. We write γ−1 for the unique element of Γ such that χ(γ−1) = −1.
If M denotes any GQp -module over Zp and i is any integer, we write M(i) for the ith Tate twist of

M.
By R we shall denote a complete local noetherian Zp-algebra with maximal ideal mR. We write HQp

for the kernel of χcyc. If A is any associative ring, M a (left) A-module and Y a (right) A-module, the we
denote the base change Y ⊗AM often just by MY . If ϕ denotes an injective ring homomorphism of A,
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which is now assumed to be commutative, we shall as usual set ϕ∗M := A⊗A,ϕM where the left copy
of A is viewed as A-module via ϕ. Assume, moreover, that M itself bears a ϕ-linear action ϕM . Then
we obtain a canonical map ϕ∗M →M sending a⊗m to aϕM (m). In case the latter map is injective we
shall sometimes identify ϕ∗M with its image in M without further indication.

We write Q̂nr
p for the completion of the maximal unramified extension Qnr

p of Qp while the ring of

integers are denoted by Ẑnr
p and Znr

p , respectively. F shall usually denote a finite unramified extension
of Qp.

2. Rings of p-adic Hodge theory
section:rings

The rings (and their properties) we will use are primarily defined in [Ber02].
Let F be a finite unramified extension of Qp with ring of integers OF and residue field kF . Let

Ẽ := lim←−x→xp Cp, and let Ẽ+ be the subset of x ∈ Ẽ such that x(0) ∈ OCp . Then Ẽ is an algebraically

closed field of characteristic p. There is a valuation ordE defined by vE((x(i))) = vp(x
(0)), and a Frobenius

(given by raising to the pth power). The valuation ring of Ẽ with respect to this valuation is Ẽ+, and Ẽ
is complete with respect to vE.

Let ε := (ε(0), ε(1), ε(2) . . .) ∈ Ẽ+ be a choice of compatible pth power roots of unity with ε(0) = 1 and

ε(1) 6= 1. There is a natural map kF ((π)) → Ẽ given by sending π to ε− 1; we denote its image by EF ,

we denote by E the separable closure of EF inside Ẽ, and we denote by E+ the valuation ring of E.

Let Ã+ := W (Ẽ+) and Ã := W (Ẽ). There are two possible topologies on Ã+ and Ã, the p-adic
topology or the weak topology; they are complete for both.

The p-adic topology is defined by putting the discrete topology on W (Ẽ)/pnW (Ẽ) for all n, and taking

the projective limit topology on Ã; Ã+ is given the subspace topology. The weak topology is defined by

putting the valuation topology on Ẽ and giving Ã the product topology; Ã+ is again given the subspace
topology.

Alternatively, the weak topology on Ã is given by taking the sets

Uk,n := pkÃ + [p̃]nÃ+ for k, n ≥ 0

to be a basis of neighborhoods around 0, where p̃ ∈ Ẽ+ is any fixed element with p̃(0) = p (i.e., p̃ is a

system of compatible p-power roots of p). The weak topology on Ã+ is similarly generated by the sets

Uk,n ∩ Ã+ = pkÃ+ + [p̃]nÃ+. The weak topology can also be defined by a family of semi-norms, but we
will not use this.

Both rings carry continuous actions of Frobenius (for either topology). However, the Galois action
is continuous for the weak topology, but it is not continuous for the p-adic topology because the Galois

actions on Ẽ+ and Ẽ are not discrete.
There are versions of all of these rings with no tilde; they are imperfect versions of the rings with

tildes.
Let π ∈ Ã denote [ε] − 1, where [ε] denotes the Teichmüller lift of ε. Then there is a well-defined

injective map OF [[X]][X−1] → Ã given by sending X to π; we let AF denote the p-adic completion of
the image. This is a Cohen ring for EF .

Let BF := AF [1/p]. Then BF is a field, and we let B be the completion of the maximal unramified

extension of BF inside B̃. Further, we put A := B ∩ Ã and A+ := A ∩ Ã+. Alternatively, A is the

completion of the integral closure of the image of Zp[[X]][X−1] in Ã.
Because extensions of EF correspond to unramified extensions of BF , we get a natural Galois action

on A and A+. For any extension K/Qp, we may therefore define AK := AHK and BK := AK [1/p].
When K is unramified over Qp, this agrees with our original definition of these rings.

In fact, we can describe AK more explicitly: If F ′ ⊂ K is the maximal unramified subfield of K, then
every element of AK can be written uniquely in the form

∑
k∈Z akπ

k
K , where {ak}k∈Z ∈ OF ′ is a sequence

tending to 0 as k tends to −∞ and πK is a (non-canonical) lift of a uniformizer of EK [Col08, Proposition
7.1]. The subring {

∑
k≥0 akπ

k
K} is contained in A+

K ; on the other hand, if f =
∑
k∈Z akπ

k
K ∈ A+

K , then

f ∈ Ã+ and therefore ak ≡ 0 (mod p) for k < 0 (since π−1
K ∈ EK r E+

K).

We also get an action of Frobenius induced from that on Ã; however, because E is imperfect, the
action of Frobenius is no longer surjective.
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If R is a complete local noetherian Zp-algebra with maximal ideal mR and finite residue field, we

define R ⊗̂A, R ⊗̂A+, R ⊗̂AF , and R ⊗̂A+
F to be the tensor products over Zp, completed with respect

to mR. If R is discrete, these completed tensor products become ordinary tensor products over Zp.
This permits us to define D(M) and D+(M) for R-linear representations of GQp

as follows:

D(M) =
(
(R ⊗̂A)⊗RM

)HQp and D+(M) =
(
(R ⊗̂A+)⊗RM

)HQp .

Note that there are canonical isomorphisms

f:Dinverselimitsf:Dinverselimits (1) D(M) ∼= lim←−
n

D(M/mnRM) and D+(M) ∼= lim←−
n

D+(M/mnRM).

A consideration of Witt coordinates shows that the cokernel C of the injection Ã+ ↪→ Ã has no p-
torsion, and is therefore Zp-flat. It follows that the cokernel of A+ ↪→ A is also Zp-flat. As a consequence,

the natural maps R ⊗̂ Ã+ → R ⊗̂ Ã and R ⊗̂A+ → R ⊗̂A are injective.
We record the following useful lemma:

lemma:a-a+-mult Lemma 2.1. Let R be a discrete Zp-algebra, and let I ⊂ R be an ideal. Then I(R⊗ZpA)∩(R⊗ZpA+) =
I(R⊗Zp A+).

Proof. Suppose that f := r1f1 + . . .+ rkfk ∈ R⊗Zp A+, where ri ∈ I and fi ∈ A, and let f i denote the

image of fi in the cokernel R ⊗Zp C of the map R ⊗Zp A+ → R ⊗Zp A. By assumption,
∑
i rif i = 0,

so there exist f
′
j ∈ R ⊗Zp C and r′ij ∈ R such that f i =

∑
j r
′
ijf
′
j for all i and

∑
i rir

′
ij = 0 by [Mat89,

Theorem 7.6] (since R ⊗Zp C is R-flat). We may choose f̃ ′j ∈ A lifting f
′
j ; setting f ′i :=

∑
j r
′
ij f̃
′
j , we

have fi − f ′i ∈ A+ for all i and
∑
i ri(fi − f ′i) =

∑
i rifi = f so we are done. �

Remark 2.2. This does not imply that if f ∈ A satisfies rf ∈ A+ then f ∈ A+, merely that there is
some f ′ ∈ A+ such that rf = rf ′.

Furthermore, A/p is the separable closure of AF /p = k((π)), where k is the residue field of F , and
A+/p is its ring of integers [Fon90, §1.8(a)].

lemma:a-a-k Lemma 2.3. Let R be a discrete Z/pn-algebra.

(1) For any finite extension K/F , the natural map R⊗Zp A+
K → (R⊗Zp A+)HK is an isomorphism.

(2) If I ⊂ R is an ideal, then (IR⊗Zp A+)HK = IR⊗Zp A+
K .

(3) Suppose in addition that R is a finite-type Z/pn-algebra. Then every element of R ⊗Zp A+ is

contained in R⊗Zp A+
K for some finite extension K/F .

Proof. (1) We proceed by induction on n. If n = 1, the result follows by choosing a basis for R over
Fp and using the fact that A+/p is the ring of integers of a separable closure of AF /p. So we
may assume the result for n− 1 and consider the commutative diagram

0 // pn−1R⊗Zp A+
K

//

��

R⊗Zp A+
K

//

��

(R⊗Zp A+
K)/pn−1 //

��

0

0 // (pn−1R⊗Zp A+)HK // (R⊗Zp A+)HK // ((R⊗Zp A+)/pn−1)HK

Let f ∈ (R⊗Zp A+)HK and let f be its image in ((R⊗Zp A+)/pn−1)HK . The right-most arrow

is an isomorphism, by the inductive hypothesis, so f lifts to f̃ ∈ R ⊗Zp A+
K . Then f − f̃ is in

the image of (pn−1R ⊗Zp A+)HK . But pn−1R is a finite R/p-module, so it an Fp-vector space.

Choosing a basis for pn−1R and considering the structure of A+/p again implies that f − f̃ lifts
to pn−1R⊗Zp A+

K , and therefore to R⊗Zp A+
K .

Injectivity follows by another diagram chase.
(2) There is a natural commutative diagram

0 // IR⊗Zp A+
K

//
� _

��

R⊗Zp A+
K

//

��

(R/I)⊗Zp A+
K

// 0

0 // (IR⊗Zp A+)HK // (R⊗Zp A+)HK // ((R/I)⊗Zp A+)HK
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Then the first part of this lemma and the snake lemma imply the desired result.
(3) We proceed by induction on n. If n = 1, then R ⊗Zp A+ = lim−→K

R ⊗Fp (A+/p)HK . Since R

is assumed finite-type over Fp, the result follows. We now assume the result holds for n − 1.

Consider f ∈ R ⊗Zp A+, and let f denote its image in (R/pn−1) ⊗Zp A+. By the inductive

hypothesis, f ∈ (R/pn−1)⊗Zp A+
K for some finite extension K/F , and f lifts to f̃ ∈ R⊗Zp A+

K .

Then f−f̃ lies in the finite (R/p)⊗ZpA
+-module pn−1R⊗ZpA

+, so we see that f−f̃ ∈ R⊗ZpA
+
K′

for some finite extension K ′/F and we are done.
�

3. Families of Wach modules
families

Let R be a complete local noetherian Zp-algebra with finite residue field. We give R its natural
profinite topology.

Definition 3.1. Let K/Qp be a finite extension. A family of GK-representations over R is a finite
free R-module M endowed with a continuous R-linear action of GK . If X is a rigid analytic space over
Qp, a family of GK-representations over X is a finite projective OX -module endowed with a continuous
OX -linear action of GK .

Note that to a family M of GK-representations over R we can naturally assign a family M rig of
GK-representations over X = Spf(R)rig; see Appendix A.1 for details.

For any rigid analytic space X over Qp, we further define the sheaves of rings B+
X,max and BX,max

by setting B+
X,max(U) := OX(U)⊗̂Qp

B+
max and BX,max(U) := ∪i∈Nt−iB+

X,max(U). If M is a family of

GQp
-representations over X, we define a sheaf of abelian groups Dcris(M) by setting Dcris(M)(U) :=(

M(U)⊗̂OX(U)BX,max(U)
)GK

; we let Dcris(M) denote Dcris(M)(X). We say that M is crystalline if
Dcris(M) is a vector bundle over OX of the same rank as M and the natural map BX,max⊗OX Dcris(M)→
BX,max ⊗OX M is an isomorphism.

We now fix an interval [a, b] of integers.

prop:crisfam Proposition 3.2. Suppose that R[1/p] is reduced, and let M be a family of GK-representations over R.
Then the following are equivalent:

(1) For every homomorphism R→ E′, where E′/E is a finite extension, the representation E′⊗RM
is crystalline with Hodge–Tate weights in [a, b].

(2) For every homomorphism R → S, where S is a finite flat Zp-algebra, the representation S ⊗R
M [1/p] is crystalline with Hodge–Tate weights in [a, b].

(The same holds if “crystalline” is replaced by “semistable”, although we shall not need this.)

Proof. The implication (2) ⇒ (1) is clear. To show that (1) ⇒ (2) we will use the results of [Bel15].
Suppose we are given a homomorphism R → S as in (2). Let R′ be an affinoid algebra such that there
is a natural flat homomorphism R → R′ with dense image. By Theorem 1.1.3 of op.cit we know that
there is a unique closed rigid-analytic subvariety of X ′ = Sp(R′) such that a homomorphism from R′ to
an artinian E-algebra factors through this quotient if and only if the corresponding specialization of M
is crystalline with Hodge–Tate weights in [a, b]. By assumption, this subvariety contains every point of
X ′. But X ′ is reduced, so this subvariety is the whole of X ′. Since the generic fiber Spf(R)rig can be
exhausted by affinoid subspaces as above, we see that (1)⇒ (2) as required. �

We say M is crystalline with Hodge–Tate weights in [a, b] if R is flat over Zp and the above equivalent
conditions hold. This is equivalent to the family of representations M rig over the quasi-Stein space
Spf(R)rig being crystalline with Hodge–Tate weights in [a, b]. If R is Zp-finite and flat and K = F is
unramified over Qp, there is an associated Wach module N(M). We wish to extend this to the general
case.

The problem is that we would like to have a good notion of Wach modules for families of crystalline
representations with coefficients in power series rings. But because the (integral) Wach module functor
can fail to be exact, naive constructions do not seem to have good properties. For example, if R is a
finite flat Zp-algebra and M is an R-linear lattice in a crystalline representation of GQp , there is an

associated Wach module N(M); it is a finite R⊗Zp A+
Qp

-module, but it is in general not projective over
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R ⊗Zp A+
Qp

. This makes it difficult to verify that N(M) has good base change properties, or to show

that N(M) has good finiteness properties when R is a power series ring.
We give a definition of Wach modules. As we are primarily interested in positive representations

(that is, Galois representations with non-positive Hodge–Tate weights, where the cyclotomic character
has weight 1), we restrict to that case.

def:Wach Definition 3.3. A Wach module with weights in [−h, 0] and coefficients in a complete local noetherian
Zp-algebra R with finite residue field is a finite R ⊗̂Zp A+

F -module N equipped with an R-linear action of
Γ such that Γ acts trivially on N/πN , and equipped with an R-linear Frobenius ϕ : N → N commuting
with Γ such that the cokernel N/ϕ∗(N) is killed by qh, where q = ϕ(π)/π.

Remark 3.4. If R = Zp, this is weaker than the definition given in [Ber04], which requires N to
additionally be a free A+

F -module.

We are interested in Wach modules because of their connection to crystalline representations. More
precisely, if M is a Zp-lattice in a crystalline representation of GF , there is an associated Wach module
N(M), which is an A+

F -lattice in the (ϕ,Γ)-module D(M) (which has AF -coefficients).
While D(M) behaves well with respect to coefficients, by the work of [Dee01], D+(M) does not, nor

does N(M). To get around this problem, we follow Kisin and construct a moduli space of A+
F -lattices

in AF -modules.
Recall that for a Zp-finite GK-representation M , the (ϕ,Γ)-module D(M) is defined by D(M) =

(A⊗Zp M)HK . By the work of Dee, if M is a finite free rank-d R-module for a finite local Zp-algebra R
and the Galois action is R-linear, then D(M) is finite projective of rank d over R⊗Zp AK . Moreover, if
R→ R′ is a homomorphism of such rings, then D(R′ ⊗RM) = R′ ⊗R D(M).

lemma:coeffs-a-a+-i Lemma 3.5. Let A be an artin local Zp-algebra, and let M be a finite A-module equipped with a con-
tinuous A-linear action of GK . Then

(1) If M ′ is a finite A-module (with trivial GK-action), then D(M ⊗AM ′) ∼= D(M)⊗AM ′.
(2) If B is an A-algebra, then (A⊗Zp MB)HK ∼= D(M)⊗A B.

Proof. (1) If M ′ is free over A, this is clear. Otherwise, we may choose a finite presentation of M ′

and use the exactness of the functor D(−).
(2) We may write B = lim−→i

Bi, where the Bi are A-finite submodules of B and the transition maps

are injections. Then the functor of HK-invariants commutes with the direct limit, and so does
the tensor product with D(M), so this follows from the first part.

�

Thus, under these hypotheses we may refer to D(MB) without any ambiguity.
We give a generalization of [Ber04, Lemme III.3.2]:

Lemma 3.6. Let A be an artin local Zp-algebra with finite residue field, let B be an A-algebra, and let
M be an A-linear representation of GF of rank d. If N ⊂ D(MB) is a free B ⊗Zp A+

F -module of rank d,
stable by the actions of ϕ and Γ, such that (B⊗Zp AF )⊗B⊗ZpA

+
F
N = D(MB), then for any ideal I ⊂ B,(

(B ⊗Zp A+)⊗B⊗ZpA
+
F
N
)
∩ I
(
(B ⊗Zp A+)⊗B MB

)
= I

(
(B ⊗Zp A+)⊗B⊗ZpA

+
F
N
)

Proof. The proof is essentially identical to the proof of [Ber04, Lemme III.3.2]. A basis {ni} of N is
also a basis of D(MB), and therefore of (B ⊗Zp A)⊗B⊗ZpAF

D(MB) = (B ⊗Zp A)⊗B MB . If we write

x ∈ (A+ ⊗Z+
F
N) ∩ I(A+ ⊗Zp MB) with respect to this basis as

∑
i xini we see that xi ∈ IA. But

xi ∈ A+, as well, so xi ∈ IA+, by Lemma 2.1. �

Definition 3.7. Let A be an artin local Zp-algebra with finite residue field, and let M be a finite free
A-module of rank d equipped with a continuous A-linear action of GF . An A ⊗Zp A+

F -lattice in D(M)

of height ≤ h is a finite projective A ⊗Zp A+
F -submodule N of rank d which generates D(M) as an

A⊗Zp AF -module, such that N is ϕ- and Γ-stable, the cokernel of ϕ∗N→ N is killed by qh, and Γ acts
trivially on N/πN.

We define a functor on A-algebras by letting L≤hM (B) denote the set of B⊗ZpA
+
F -lattices in D(M⊗AB)

of height ≤ h.
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Proposition 3.8. The functor L≤hM (B) is representable by a projective A-scheme L ≤hM . If A→ A′ is a

map of local artin rings with finite residue field, then there is a canonical isomorphism L ≤hM ×A A′ →
L ≤hMA′

. Moreover, L ≤hM is equipped with a canonical very ample line bundle.

Proof. The proof is essentially identical to the proof of [Kis08, Proposition 1.3] and [Kis09, Proposition
2.1.7]. We begin by noting that since p is torsion in A, A⊗ZpAF = (A⊗ZpOF )[[π]][π−1]. Choosing a basis

for D(M) yields a distinguished projective rank-d A ⊗Zp A+
F -module N0 ⊂ D(M) which spans D(M),

and every A⊗Zp A+
F -lattice N satisfies π−iN0 ⊂ N ⊂ πiN0 for some i. Thus, all B ⊗Zp A+

F -lattices are
points of the affine Grassmannian for GLd over A, which is an ind-projective scheme.

Furthermore, ϕ- and Γ-stability define closed conditions on the affine Grassmannian, as do the re-
quirements that N/ϕ∗N be killed by qh and that Γ act trivially on N/πN. Finally, the ϕ-stability of
A ⊗Zp A+

F -lattices implies that if r is the least integer such that πrN0 ⊂ (1 ⊗ ϕ)ϕ∗(N0) ⊂ π−rN0, s

is the least integer such that ps = 0 in A, and i = max{ (p−1)sh+r
p−1 , r

p−1}, then π−iN0 ⊂ N ⊂ πiN0 for

every A⊗Zp A+
F -lattice N.

Indeed, let B be an A-algebra, let N be a B ⊗Zp A+
F -lattice, and let i be the smallest integer such

that B ⊗̂A N0 ⊂ π−iN. Then the smallest integer j such that (1⊗ ϕ)ϕ∗(B ⊗̂A N0) ⊂ π−j(1⊗ ϕ)ϕ∗N is
ip. Moreover,

(1⊗ ϕ)ϕ∗(B ⊗̂
A

N0) ⊂ π−r(B ⊗̂
A

N0) ⊂ π−i−rN = q−hπ−i−r(qhN) ⊂ π−i−r−h(p−1)s(1⊗ ϕ)ϕ∗N

since π(p−1)s ∈ qh(A⊗Zp A+
F . Thus, ip ≤ i+ r + h(p− 1)s, and so i ≤ r+h(p−1)s

p−1 .

Similarly, if i is the smallest integer such that N ⊂ π−i(B ⊗̂A N0), then

(1⊗ ϕ)ϕ∗(N) ⊂ N ⊂ π−i(B ⊗̂
A

N0) ⊂ π−i−r(1⊗ ϕ)ϕ∗(B ⊗̂
A

N0)

so ip ≤ i+ r and i ≤ r
p−1 .

Therefore, L≤hM is representable by a closed subscheme of a Grassmannian, which is projective with a
canonical very ample line bundle. �

Let N ≤h(M) denote the universal O
L≤hM
⊗Zp A+

F -lattice on L ≤hM . It is a sheaf of coherent O
L≤hM
⊗Zp

A+
F -modules, and on any open affine SpecA′ ⊂ L ≤hM , it is an A′ ⊗Zp A+

F -lattice; in particular, it is

equipped with actions of ϕ and Γ. We write the structure morphism ΘA : L ≤hM → SpecA, and we write

Ã := ΘA∗OL≤hM
.

lemma:wach-rep-artin Lemma 3.9. There is a canonical isomorphism MÃ
∼=
(
A⊗A+

F
ΘA∗N ≤h(M)

)ϕ=1

.

Proof. By construction,
Θ∗AAF ⊗Θ∗AA+

F
N ≤h(M) ∼= D(O

L≤hM
⊗AM)

so
Θ∗AA⊗Θ∗AA+

F
N ≤h(M)

∼−→ Θ∗AA⊗O
L
≤h
M

Θ∗AM

Pushing forward yields

A⊗A+
F

ΘA∗(N
≤h(M))

∼−→ ΘA∗

(
Θ∗AA⊗Θ∗AA+

F
N ≤h(M)

)
∼−→ A⊗Zp MÃ

by the projection formula, and taking the ϕ = 1 part on each side yields the desired result. �

lemma:wach-loc-free Lemma 3.10. There is a finite covering {Ui = SpecAi} of L ≤hM by open affine subsets such that

N ≤h(M)(Ui) is a free Ai ⊗Zp A+
F -module of rank d.

Proof. Choose any affine covering {U ′j = SpecA′j} of L ≤hM ; by construction, N ≤h(M)(U ′j) is a finite

projective A′j ⊗Zp A+
F -module. Every maximal idea of A′j ⊗Zp A+

F is of the form (m′, π), where m′ is a
maximal ideal of A′j ⊗Zp OF , and m′ ∩ A′j is a maximal ideal m such that m(A′j ⊗Zp OF ) =

∏
k mk is a

finite product of maximal ideals of A′j ⊗Zp OF . Therefore, the localization (A′j ⊗Zp A+
F )⊗A′j (A′j)m has

Jacobson radical generated by (m, π). Then Nakayama’s lemma implies that N ≤h(M)(U ′j) ⊗A′j (A′j)m
is free of rank d, so there is an open affine neighborhood Uj,m = SpecAj,m ⊂ U ′j of the point of L ≤hM

corresponding to m such that N ≤h(M)(Uj,m) is free of rank d over Aj,m ⊗Zp A+
F . �
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prop:wach-d+-inclusions-artin Proposition 3.11. There are natural inclusions of sheaves πh
(

(O
L≤hM

⊗Zp A+)⊗AM
)
⊂ A+ ⊗A+

F

N ≤h(M) ⊂ (O
L≤hM

⊗Zp A+)⊗AM , and therefore natural inclusions of sheaves πhD+(O
L≤hM

⊗AM) ⊂
N ≤h(M) ⊂ D+(O

L≤hM
⊗AM).

Proof. We first need to check that the presheaf U 7→ A+⊗A+
F

N ≤h(M)(U) is actually a sheaf. But this

follows from Lemma 2.3 and the description of A+
K in § 2 (which implies that A⊗A+

K is finite flat over

A⊗A+
F ).

By Lemma 3.10, N ≤h(M) is free locally on L ≤hM ; let {Ui} be an affine cover of L ≤hM such that
N ≤h(M)(Ui) is free for all i.

Let XUi ∈ Matd×d(OL≤hM
(Ui)⊗Zp A) be a matrix of a basis of N ≤h(M)(Ui) with respect to a basis

of O
L≤hM

(Ui) ⊗A M . Since p is torsion in A, O
L≤hM

(Ui) ⊗Zp A = O
L≤hM

(Ui) ⊗Zp A+[1/π]. Moreover,

there is some integer s > 0 such that ϕs(π) ∈ πp(O
L≤hM

(Ui) ⊗Zp A+), because ϕs(π) = (1 + π)p
s − 1

and ordp
(
ps

n

)
= s for 1 ≤ n ≤ p − 1; let PUi be the matrix of ϕs with respect to the chosen basis

of N ≤h(M)(Ui). Since the action of Frobenius is trivial on M , we see that XUiPUi = ϕs(XUi), so
ϕs(πhX−1

Ui
) = ((ϕs−1(q) · · ·ϕ(q)q)hP−1

Ui
)(πhX−1

Ui
).

If XUi has a coefficient in π−rO
L≤hM

(Ui) ⊗Zp A+ r π−r+1O
L≤hM

(Ui) ⊗Zp A+ for r ≥ 0 (and no

coefficients with poles of higher order), then ϕs(XUi) has a coefficient in π−rpO
L≤hM

(Ui) ⊗Zp A+ r
π−rp+1O

L≤hM
(Ui) ⊗Zp A+, whereas XUiPUi has coefficients in π−rO

L≤hM
(Ui) ⊗Zp A+. It follows that

r = 0 and N ≤h(M)(Ui) ⊂ A+ ⊗̂Zp(O
L≤hM

(Ui)⊗AM).

The other inclusion follows similarly. Since N ≤h(M)/ϕ∗N ≤h(M) is killed by qh by assumption,
((ϕs−1(q) · · ·ϕ(q)q)hP−1

Ui
) has coefficients in O

L≤hM
(Ui)⊗Zp A+

F . Now if πhX−1
Ui

has a coefficient with a

pole of order r (and no coefficients with poles of higher order), then ϕs(πhX−1
Ui

) has a coefficient with a

pole of order at least pr, whereas ((ϕs−1(q) · · ·ϕ(q)q)P−1
Ui

)(πhX−1
Ui

) has coefficients in π−rO
L≤hM

(Ui)⊗Zp

A+. It follows that r = 0 and therefore πh
(

(O
L≤hM

(Ui)⊗Zp A+)⊗AM
)
⊂ A+ ⊗̂A+

F
N ≤h(M)(Ui).

Now we takeHF -invariants to obtain the second pair of inclusions. To see that
(
A+ ⊗A+

F
N ≤h(M)

)HF
=

N ≤h(M), we observe that the presheaf U 7→
(
A+ ⊗A+

F
N ≤h(M)(U)

)HF
is a sheaf on L ≤hM and the set

of open affine subsets U ⊂ L ≤hM such that N ≤h(M)(U) is free is a basis for the Zariski topology. But

if N ≤h(M)(U) is free, it is clear that
(
A+ ⊗A+

F
N ≤h(M)(U)

)HF
= N ≤h(M)(U), so we are done. �

lemma:artin-wach-pi-h Lemma 3.12. Let A→ A′ be a local homomorphism of local artin rings with finite residue fields. Then

there is a homomorphism A′ ⊗A Γ(L ≤hM ,N ≤h(M)) → Γ(L ≤hMA′
,N ≤h(MA′)), and the image contains

the image of πhD+(MA′).

Proof. By the base change properties of ΘA and L ≤hM we have a commutative diagram

A′ ⊗A πh((A⊗Zp A+)⊗AM) // A′ ⊗A πh((Ã⊗Zp A+)⊗AM) //

��

A′ ⊗A
(
A+ ⊗A+

F
N ≤h(M)(L ≤hM )

)
��

πh((A′ ⊗Zp A+)⊗A′ MA′) // πh((Ã′ ⊗Zp A+)⊗A′ MA′)
� � // A+ ⊗A+

F
N ≤h(MA′)(L

≤h
MA′

)

We first observe that if A′ is a finite free A-module, then D+(MA′) = A′⊗AD+(M) and the result follows
by taking HF -invariants of the diagram. Thus, we may assume that A→ A′ induces an isomorphism on
residue fields. Indeed, if k′ denotes the residue field of A′, then W (k′) is a finite free Zp-module and A′

is a W (k′)-algebra by Hensel’s lemma. Then W (k′)⊗ZpA is a finite free A-module and there is a natural
homomorphism W (k′)⊗Zp A→ A′; the source is semi-local, but its local summands are summands of a
finite free module, hence projective, hence free, and they have residue field k′.

Moreover, for some N � 0 and some k ≥ 0, there is a surjection A[X1, . . . , Xk]/(X1, . . . , Xk)N � A′

sending the Xi to elements of mA′ . Since A[X1, . . . , Xk]/(X1, . . . , Xk)N is finite free over A, we may
assume A→ A′ is surjective.
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So suppose thatA→ A′ is surjective with kernel I. Given an element β ∈ A+⊗A+
F

Γ(L ≤hM ′A
,N ≤h(MA′))

in the image of πhD+(MA′), by the commutativity of the above diagram it lifts to an element β̃ ∈
A+ ⊗A+

F
Γ(L ≤hM ,N ≤h(M)). Since β̃ is defined up to an element of πhI(A+ ⊗A M), we need to show

that
β̃ ∈ N ≤h(M)(L ≤hM ) + I(A⊗Zp A+)⊗A⊗ZpA

+
F

N ≤h(M)(L ≤hM )

In order to show this, we first note that for any h ∈ HF ,

h(β̃)− β̃ ∈ I((A⊗Zp A+)⊗AM) ∩A+ ⊗A+
F

N ≤h(M)(L ≤hM )

since β is fixed by HF . If U = SpecAU ⊂ L ≤hM is an open affine subspace such that N ≤h(M)(U) is free

(compare Lemma 3.10), then h(β̃)−β̃|U ∈ I(A+⊗A+
F
N ≤h(M)(U)) by Lemma 3.5. Indeed, if n1, . . . , nd is

a basis for N ≤h(M)(U) and β̃ =
∑
i bi⊗ni for some bi ∈ AU ⊗Zp A+, then h(bi)− bi ∈ I(AU ⊗Zp A+).

Since (AU/I) ⊗Zp A+
F → ((AU/I) ⊗Zp A+)HF is an isomorphism, bi ∈ AU ⊗Zp A+

F + IAU ⊗Zp A+.
Therefore,

β̃|U ∈ N ≤h(M)(U)) + I(AU ⊗Zp A+)⊗AU⊗ZpA
+
F

N ≤h(M)(U)).

Now consider β̃|U∩U ′ . If β̃|U = nU + bU and β̃|U ′ = nU ′ + bU ′ , with nU , nU ′ ∈ N ≤h(M)(U ∩U ′)) and
bU , bU ′ ∈ I(AU∩U ′⊗ZpA+)⊗AU∩U′⊗ZpA

+
F

N ≤h(M)(U∩U ′)), then nU−nU ′ = bU ′−bU as elements of the

free (AU∩U ′ ⊗Zp A+)-module (AU∩U ′ ⊗Zp A+)⊗AU∩U′⊗ZpA
+
F

N ≤h(M)(U ∩U ′)). But nU − nU ′ is fixed

by HF , by construction, so bU ′−bU must have coefficients in (I(AU∩U ′⊗ZpA+))HF = I(AU∩U ′⊗ZpA+
F ).

Thus, U ∩ U ′ 7→ bU ′ − bU is a 1-cocycle valued in IN ≤h(M), and when viewed as a 1-cocycle valued
in I(A+) ⊗A+

F
N ≤h(M)), it is trivial (since it is the 1-coboundary of U 7→ bU ). But all of the bU

have coefficients in IA ⊗Zp A+
K for some finite extension K/F by Lemma 2.3, and A+

K is a finite free

A+
F -module by the description of A+

K in 2. Therefore, there exist b̃U ∈ IA ⊗Zp A+
F such that the 1-

coboundary U ∩ U ′ 7→ bU ′ − bU is equal to the 1-coboundary U ∩ U ′ 7→ b̃U ′ − b̃U (we may choose b̃U by

projecting the coefficients of bU down to IA⊗Zp A+
F ). Now we rewrite β̃|U = (nU + b̃U ) + (bU − b̃U ) and

we see that {nU + b̃U} glues to a global section of N ≤h(M), so we are done. �

Now we wish to consider the situation when A is a complete local noetherian Zp-algebra with finite

residue field and maximal ideal mA. We may extend the definition of the functor L≤hM (B) to A-algebras

B such that miAB = 0 for some i in a natural way. It follows from formal GAGA that L≤hM is also

representable in this setting by a projective A-scheme. Namely, we consider the formal scheme L̂ ≤hM :=

{L ≤hMA/mi
}, which is equipped with a morphism Θ̂A∗ : L̂ ≤hM → Spf(A); it is a formal scheme equipped

with a very ample line bundle, so it is the mA-adic completion of a projective A-scheme L ≤hM . As

in the artinian case, we write the projective structure morphism ΘA : L ≤hM → SpecA, and we write

Ã := ΘA∗OL≤hM
.

Then L̂ ≤hM carries a universal O
L̂≤hM
⊗̂A+

F -lattice N̂ ≤h(M). We may view N̂ ≤h(M) as a formal

coherent sheaf on L̂ ≤hM × Spf A+
F
∼= L̂ ≤hM ×Spf A Spf(A⊗̂A+

F ), and by formal GAGA, N̂ ≤h(M) is the

completion of a coherent sheaf (in fact, a vector bundle) on L ≤hM ×SpecA Spec(A⊗̂A+
F ).

If A → A′ is a local homomorphism of local rings and A′ is mA-adically complete, then an A′-

point of L ≤hM induces a {A′/miA}-point of L̂ ≤hM , and therefore a system of (A′/miA)⊗Zp A+
F -lattices in

{D(MA′/mi)}. But this is the same as an A′⊗̂A+
F -lattice in D(MA′), where A′ is given the mA-adic

topology. Thus, we may view L ≤hM as a moduli space of A⊗̂A+
F -lattices in D(M). In particular, Zp-

points of L ≤hM (if they exist) correspond to Wach modules of MZp in the sense defined in [Ber04], i.e.,
satisfying the properties given in Def. 3.3.

lemma:wach-rep Lemma 3.13. There is a canonical isomorphism MÃ
∼=
(
A⊗A+

F
ΘA∗N ≤h(M)

)ϕ=1

.

Proof. This follows from 3.9 by taking limits. �

lemma:rat-wach-loc-free Lemma 3.14. Let A be a finite flat Zp-algebra, let B := A[1/p], and let M be a finite free A-module
of rank d equipped with a continuous A-linear action of GF such that the underlying Zp-linear Galois
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representation is a lattice in a crystalline representation with Hodge–Tate weights in [−h, 0]. Then
ΘA∗N ≤h(M)[1/p] is free over B ⊗Qp B+

F of rank d.

Proof. We first forget the A-linear structures on M and ΘA∗N ≤h(M) and consider them as Zp- and

A+
F -modules, respectively. Then L ≤hM → Spec Zp has a unique point in the fiber over Spec Qp. Indeed,

any Qp-point extends to a Zp-point of L ≤hM , which induces an A+
F -submodule N of D(M) with actions of

ϕ and Γ, such that N/ϕ∗ is annihilated by qh and Γ acts trivially on N/π. Therefore, ΘZp∗N
≤h(M)Qp

is the unique rational Wach module N(M [1/p]) constructed in [Ber04].
Next, recall that Dcris(MB) ∼= N(M)[1/p]/πN(M)[1/p]. But by [Bel15, Proposition 4.1.3], Dcris(M)

is free over B ⊗Qp
F of rank d, so we are done by Nakayama’s lemma. �

lemma:wach-saturate Lemma 3.15. Let N be a finite torsion-free A+
F -module of generic rank d and define N sat := N [1/p] ∩

(N ⊗A+
F

AF ), where the intersection is taken inside the finite BF -vector space (N ⊗A+
F

AF )[1/p]. Then

N sat is a finite free A+
F -module of rank d.

Proof. We first reduce to the case where N is free of rank d over A+
F . Indeed, consider the kernel of

the natural map N → N [1/p]/π. This is a finite A+
F -module generated by elements n1, . . . , nd′ ∈ N

such that peini = πfin′i for all i, for some integers ei, fi and n′i ∈ N . Clearly the elements ni/π
fi =

n′i/p
ei ∈ (N ⊗A+

F
AF )[1/p] live in N sat, so we may replace N by N + A+

F ( n1

πf1
) + . . . + A+

F ( nd′
πfd′

). Now

the natural map N/π → N [1/p]/π is injective. But the image of N/π in N [1/p]/π is a lattice in a
d-dimensional F -vector space, so it is free of rank d over OF . Then by Nakayama’s lemma, there is
a surjection (A+

F )⊕d � N ; the kernel must be p-torsion, hence trivial, so this surjection must be an
isomorphism.

We may thus assume that N is free of rank d over A+
F . But it is clear that(

(A+
F )⊕d

)sat
=
(
(A+

F )sat
)⊕d

= (A+
F )⊕d

so we are done. �

The key result is the following, which is the same argument as in the proof of [Kis08, Proposition
1.6.4]:

Proposition 3.16. Let A be a complete local noetherian Zp-algebra together with a finite free A-module
M of rank d, and a continuous A-linear action of GF on M .

(1) The map ΘA : L ≤hM → SpecA becomes a closed immersion after inverting p.
(2) Let A≤h denote the quotient of A corresponding to the scheme-theoretic image of ΘA. Then for

any Qp-finite artin ring B, a map A→ B factors through A≤h if and only if MB is crystalline
with Hodge–Tate weights in [−h, 0].

Proof. The first part essentially follows from the uniqueness of Wach modules for crystalline represen-
tations of GF cf. [Ber04, Proposition III.4.2]. Indeed, if B is a Qp-finite local artin ring, a B-point
x : SpecB → SpecA[1/p] is induced by a homomorphism A → B◦, where B◦ ⊂ B is Zp-finite and

flat. Any B-point of L ≤hM over x extends to a B◦-point, by the valuative criterion for properness.

This corresponds to a system of (B/mnA) ⊗Zp A+
F -lattices in D(M ⊗A B/mnA), and therefore induces a

B◦ ⊗Zp A+
F -submodule of D(M ⊗A B◦). Inverting p and forgetting about the B-linear structure, we

obtain a B+
F -lattice in D(M⊗RB). But there is at most one such lattice, by [Ber04, Proposition III.4.2].

Thus, ΘA[1/p] : L ≤hM [1/p] → SpecA[1/p] is quasi-finite; since it is projective, it is therefore finite
(and is an injection on closed points). Setting B = E[ε]/ε2, it also induces injections on tangent spaces,
and is therefore a closed immersion.

For the second part, we first consider a Qp-finite local artin ring B with residue field E together with

a map SpecB → SpecA which factors through the image of L ≤hM . We obtain a Wach module with

coefficients in B ⊗Zp A+
F . Forgetting the B-linear structure, we get a Wach module, so again by [Ber04,

Proposition III.4.2], MB is crystalline with Hodge–Tate weights in [−h, 0].
It remains to show that if MB is crystalline with Hodge–Tate weights in [−h, 0], it is induced by a

point of L ≤hM . For this, we introduce some new notation: Let B◦ ⊂ B denote the subring of elements
mapping to OE ⊂ E, and we let IntB denote the set of OE-finite subrings of B◦ (this makes sense
because B is canonically an E-algebra). Each such C is a finite flat OE-algebra, since B contains no
p-torsion.
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Observe that the map A → B factors through some C ∈ IntB , and we may assume that the map
C → OE is a surjection. Then MC is a lattice in the crystalline representation MB , so there is some
Wach module N(MC) ⊂ D(MC). It is an A+

F -lattice in D(MC) (forgetting the C-linear structure), and

N(MC)[1/p] is projective of rank d over (C ⊗Zp A+
F )[1/p] by Lemma 3.14. Let N′OE be the image of

N(MC) under the map C → OE induced by the projection B → E, and let NOE be the saturation of
N′OE :

NOE := AF ⊗A+
F

N′OE ∩N′OE [1/p]

where the intersection is taken inside D(MOE )[1/p].
It turns out that NOE is a finite free OE ⊗Zp A+

F -module of rank d. Indeed, it is free over A+
F of

rank drkZp
OE by Lemma 3.15, so NOE/π is p-torsion-free, hence a lattice in the free E ⊗Qp

F -module
(NOE/π)[1/p], hence free over OE ⊗Zp O of rank d.

If we choose an OE ⊗Zp A+
F -basis of NOE , we can lift it to a (C ⊗Zp A+

F )[1/p]-basis of N(MC)[1/p].
After enlarging C to C ′ ∈ IntB , we may assume that the matrices of ϕ and Γ with respect to this basis
have coefficients in C ′ ⊗Zp A+

F . Let NC′ denote the C ′ ⊗Zp A+
F -module spanned by this basis; NC′ is

free over C ′ ⊗Zp A+
F , so in particular is flat over A+

F . Then NC′ is ϕ- and Γ-stable.
It is clear that Γ acts trivially on NC′/π, since this is true for N(MC) and therefore for N(MC)[1/p].

It remains to see that qh annhilates NC′/ϕ
∗NC′ . Certainly this is true after inverting p, since NC′ [1/p] =

N(MC)[1/p] is a Wach module. So we need to see that NC′/ϕ
∗NC′ has no p-torsion.

To see this, we observe that there is a surjection C ′ � OE , with kernel n, and there is a descending
filtration {ni} of n by subideals such that ni/ni+1

∼= OE . Since the action of ϕ on NC′ is C ′-linear,
niNC′/ni+1 is isomorphic to NOE as a ϕ-module. It follows that NC′/ϕ

∗NC′ is an extension of copies
of NOE/ϕ

∗NOE , and is therefore p-torsion free. �

The upshot of all of this is that if M is a rank-d family of A-linear representations of GF , L ≤hM

carries a family N ≤h(M) of O
L≤hM
⊗̂ZpA

+
F -modules whose mA-adic completion is the universal family of

O
L̂≤hM
⊗̂ZpA

+
F -lattices of height ≤ h. The image of Θ : L ≤hM [1/p]→ SpecA[1/p] is exactly the crystalline

points with Hodge–Tate weights in the interval [−h, 0].

Definition 3.17. Let M be a family of crystalline representations over A with Hodge–Tate weights
in [−h, 0]. We define the total Wach module to be N(M)total := ΘA∗N ≤h(M). If M is a family of
crystalline representations with Hodge–Tate weights in [a, b], we define N(M)total := π−bN(M(−b))total.

Let I ⊂ O
L≤hM

denotes the ideal sheaf generated by all p-power torsion sections, and let L ≤h,t.f.M

denote the corresponding closed subscheme. Let N ≤h,t.f.(M) denote the restriction of N ≤h(M) to

L ≤h,t.f.M , and write N(M)t.f. := ΘA∗N ≤h,t.f.(M) = N(M)total/N(M)p−tors.

We observe that by the theorem on formal functions, the mA-adic completion of N(M)total is Θ̂A∗N̂ ≤h(M).
Since ΘA is a projective map, ΘA∗OL≤hM

is A-finite, and N(M)total is a finite A⊗̂ZpA
+
F -module. Since

ΘA[1/p] : L ≤hM [1/p] → SpecA[1/p] is an isomorphism, N(M)total[1/p] is projective of rank d and its
formation commutes with base change on A[1/p]. However, N(M)total may not be projective itself.

We record a useful lemma about N(M)total[1/p]:

lemma:wach-loc-free-mixed Lemma 3.18. Let N be a finite A ⊗̂A+
F -module such that N[1/p] is projective. Then there is an affine

cover {Uk = SpecA[1/p, 1/fk]} of SpecA[1/p] such that N⊗A A[1/p, 1/fk] is free.

Proof. It suffices to show that if m ⊂ A[1/p] is a maximal ideal, then N[1/p]⊗A[1/p]A[1/p]m is free of rank

d. If K := A[1/p]/m, then K is a finite extension of Qp with ring of integers O and (A ⊗̂A+
F )[1/p]/m ∼=

(OK⊗ZpOF )[[π]][1/p], which is a product of finitely many principal ideal domains. Therefore, N[1/p]⊗A[1/p]

A[1/p]/m is free of rank d. But (A ⊗̂A+
F )[1/p] ⊗A[1/p] A[1/p]m has Jacobson radical generated by

m, so by Nakayama’s lemma, we can lift d generators of N[1/p] ⊗A[1/p] A[1/p]/m to generators of
N[1/p]⊗A[1/p]A[1/p]m. Since a surjection of projective modules of the same rank is an isomorphism, we
are done. �

lemma:wach-d+-inclusions Lemma 3.19. There are natural inclusions of sheaves

πh
(

(O
L̂≤hM
⊗̂A+)⊗AM

)
⊂ (O

L̂≤hM
⊗̂A+)⊗O

L̂
≤h
M

⊗̂A+
F

N̂ ≤h(M) ⊂ (O
L̂≤hM
⊗̂A+)⊗AM
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and therefore natural inclusions of sheaves

πhD+(O
L̂≤hM

⊗AM) ⊂ N̂ ≤h(M) ⊂ D+(O
L̂≤hM

⊗AM)

Proof. This follows from Proposition 3.11 by taking limits. �

Remark 3.20. Combined with Lemma 3.13, this implies that the representation MÃ is finite height,
i.e., D(MÃ) is generated by elements of D+(MÃ).

prop:wach-pi-h Proposition 3.21. Let A→ A′ be a local homomorphism of complete local noetherian Zp-algebras with

finite residue field. Then there is a natural base change map A′ ⊗̂A N(M)total → N(MA′)
total, and its

image contains the image of πhD+(MA′).

Proof. This follows from Lemma 3.12 by taking limits. �

We wish to compare this construction with Berger’s construction when A = Zp and M is a lattice
in a crystalline representation with Hodge–Tate weights in [−h, 0]. To show they agree, we would have
to prove that N(M) is free over A+

F . There are two problems: A priori, there could be connected

components of L ≤hM supported on the special fiber and killed by inverting p, which would lead to p-
power torsion in N(M)total. In addition, even after killing p-torsion we would only know that Berger’s
Wach module is the p-saturation of ours in D(M).

We now consider only the situation when A is flat over Zp, A is integrally closed in A[1/p], and M

is a crystalline family of GF -representations with coefficients in A. In particular, A → Ã is injective,

A[1/p]→ Ã[1/p] is an isomorphism, and A→ Ãt.f. is an isomorphism.

By construction, there is a natural inclusion N̂ ≤h(M) → D(O
L̂≤hM

⊗A M), and therefore a natural

inclusion N(M)t.f.[1/p] = N(M)total[1/p] → D(M)[1/p] (we use the fact that A → Ã is a finite mor-
phism). We define the saturation of N(M)total by setting N(M)sat := N(M)total[1/p]∩D(M), where the
intersection takes place inside D(M)[1/p]. Note that if A is Zp-finite and flat, this agrees with Berger’s
definition of the Wach module.

Lemma 3.22. Let A and M be as above. Then N(M)sat[1/p] = N(M)total[1/p].

Proof. Clearly, N(M)sat[1/p] ⊂ N(M)total[1/p]. For the other direction, choose n ∈ N(M)total ⊂
D(MÃ). Since A→ Ã is finite and A[1/p]→ Ã[1/p] is an isomorphism, there is some integer k ≥ 0 such

that pk(Ã ⊗̂A) ⊂ A ⊗̂A. This implies that pkD(MÃ) ⊂ D(M), so that pkn ∈ D(M) ∩N(M)total ⊂
N(M)sat. �

Lemma 3.23. The natural map (A ⊗̂AF )⊗A ⊗̂A+
F

N(M)sat → D(M) is surjective.

Proof. In the proofs of Lemma 3.9 and Lemma 3.13 we showed that the natural map (Ã ⊗̂AF )⊗Ã ⊗̂A+
F

N(M)total → D(MÃ) is surjective. It follows that the natural map (A ⊗̂AF )⊗A ⊗̂A+
F

N(M)t.f. → D(M)

is surjective, and since N(M)t.f. ⊂ N(M)sat, the result follows. �

Lemma 3.24. The action of Γ on N(M)sat/π is trivial, and the cokernel of ϕ∗N(M)sat → N(M)sat is
annihilated by qh.

Proof. The kernel of N(M)sat → N(M)total[1/p]/π is πN(M)sat (since π is invertible in A⊗̂AF ), so the
natural map N(M)sat/π → N(M)total[1/p]/π is injective. Since the Γ-action on the right is trivial, so is
the Γ-action on the left.

For the second assertion, we observe that ϕ is an isomorphism on D(M) (and on D(M)[1/p]), and
the cokernel of ϕ∗N(M)total[1/p]→ N(M)total[1/p] is annihilated by qh. �

lemma:wach-sat-d+-inclusions Lemma 3.25. Suppose that A is flat over Zp. Then there are natural inclusions πhD+(M) ⊂ N(M)sat ⊂
D+(M), and natural inclusions πh

(
(A ⊗̂A+)⊗AM

)
⊂ A+ ⊗̂A+

F
N(M)sat ⊂ (A ⊗̂A+)⊗AM .

Proof. The inclusion πhD+(M) ⊂ N(M)sat is clear, since A → Ã is an injection (since it is an isomor-
phism after inverting p and A is assumed flat over Zp), and D+(M) is p-torsion-free, and so

πhD+(M) ⊂ πhD+(M)[1/p] ∩D(M) ⊂ πhD+(Ã⊗AM)[1/p] ∩D(M) ⊂ N(M)sat.
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where we use πhD+(Ã ⊗A M) ⊆ N(M)total, which follows from Lemma 3.19 by taking global sec-
tions. More precisely, formal GAGA implies that the injective map of coherent O

L̂≤hM
⊗̂A+-modules

πh(O
L̂≤hM
⊗̂A+) ⊗A M → (O

L̂≤hM
⊗̂A+) ⊗O

L̂
≤h
M

⊗̂A+
F

N̂ ≤h over L̂ ≤hM ×Spf A Spf(A ⊗̂A+) arises from

an injective map of coherent sheaves over L ≤hM ×SpecA Spec(A ⊗̂A), since mA-adic completion is fully
faithful. Taking HF -invariants and pushing forward by ΘA yields the desired statement.

For the inclusion N(M)sat ⊂ D+(M), we first recall from Lemma 3.19 that

N̂ ≤h(M) ⊂ D+(O
L̂≤hM

⊗AM) ⊂ (O
L̂≤hM
⊗̂A+)⊗AM

so N(M)total[1/p] ⊂ (M ⊗A (Ã⊗̂A+))[1/p] = (M ⊗A (A⊗̂A+))[1/p], and N(M)total[1/p] is fixed by HF .
On the other hand,

D(M) = ((A⊗̂A)⊗AM)HF ⊂ (A⊗̂A)⊗AM
Therefore, N(M)sat ⊂

(
(A⊗̂A+)[1/p] ∩ (A⊗̂A)

)
⊗AM , so it suffices to show thatA⊗̂A+ = (A⊗̂A+)[1/p]∩

(A⊗̂A) inside (A⊗̂A)[1/p], or equivalently, that pk(A ⊗̂A+) = (A ⊗̂A+) ∩ pk(A ⊗̂A) inside A ⊗̂A for
every integer k ≥ 0. It is clear that pk(A ⊗̂A+) ⊂ (A ⊗̂A+) ∩ pk(A ⊗̂A).

For the other direction, we first recall from §2 that the cokernel C of A+ ↪→ A is Zp-flat. It follows

that (A/miA)⊗Zp C is A/miA-flat for all i. Now suppose that x ∈ A ⊗̂Zp C satisfies px = 0. Then [Mat89,

Theorem 7.6] implies that for all i, the image of x in (A/miA) ⊗Zp C is of the form
∑ki
j=1 ajyj , where

aj ∈ A/miA, yj ∈ (A/miA)⊗Zp C, and paj = 0 for all j.

We claim that for any n, there is some i � 0 such that the annihilator annA/miA(p) ⊂ mnA/m
i
A.

Assume this for the moment. Then the image of x in (A/miA) ⊗Zp C is of the form
∑ki
j=1 ajyj , where

aj ∈ mnAA/m
i
A and yj ∈ (A/miA) ⊗Zp C. But then the image of x in (A/mnA) ⊗Zp C is 0. Since this is

true for all n, x = 0.
To prove the claim, consider the sequence of ideals

· · · ⊂ annA/mi+1(p) ⊂ annA/mi(p) ⊂ · · · ⊂ A/mnA
over all i ≥ n, where we consider the image of annA/miA(p) in A/mnA. This is a decreasing sequence of

ideals and A/mnA is artinian, so it stabilizes to some ideal I when i ≥ i0 for some i0 � 0. If I = 0, we
are done. If not, we may consider the sequence of ideals

· · · ⊂ annA/mi+1(p) ⊂ annA/mi(p) ⊂ · · · ⊂ Ĩ ⊂ A/mn+1
A

where Ĩ ⊂ A/mn+1
A denotes the pre-image of I in A/mn+1

A . Repeating the previous argument, we obtain a

non-zero ideal I ′ ⊂ A/mn+1
A such that the image of annA/miA(p) in A/mn+1

A is I ′ for i ≥ i1, and I ′ ≡ I 6= 0

mod mnA. Repeating this argument for all n, we find that the annihilator annA(p) is non-zero. But this
contradicts the assumption that A is Zp-flat, so I = 0.

Now we turn to the second pair of inclusions. By Lemma 3.19

N(M)sat[1/p] ⊂ ((A ⊗̂A+)⊗A ⊗̂A+
F

N(M)sat)[1/p] ⊂ ((A ⊗̂A+)⊗AM)[1/p]

In addition,
N(M)sat ⊂ D(M) ⊂ (A ⊗̂A)⊗A ⊗̂AF

D(M) ∼= (A ⊗̂A)⊗AM
Since M is free over A and we have just shown that (A ⊗̂A+) = (A ⊗̂A+)[1/p] ∩ (A ⊗̂A), we see that
N(M)sat ⊂ (A ⊗̂A+)⊗AM , and there is a natural map

(A ⊗̂A+)⊗A ⊗̂A+
F

N(M)sat → (A ⊗̂A+)⊗AM

This map is injective after inverting p, and (A ⊗̂A+) ⊗A ⊗̂A+
F

N(M)sat has no p-torsion, so it is an

inclusion.
It remains to show that πh(A ⊗̂A+)⊗AM ⊂ (A ⊗̂A+)⊗A ⊗̂A+

F
N(M)sat. By Lemma 3.19 we know

that
πh(A ⊗̂A+)⊗AM ⊂ (A ⊗̂A+)⊗A ⊗̂A+

F
N(M)total

Since πh(A ⊗̂A+)⊗AM has no p-torsion, it is contained in (A ⊗̂A+)⊗A ⊗̂A+
F
N(M)t.f. ⊂ (A ⊗̂A+)⊗A ⊗̂A+

F

N(M)sat and we are done. �

cor:wach-wach-sat Corollary 3.26. N(M)sat is a finite A⊗̂A+
F -module, and pα(h)N(M)sat ⊂ N(M)total.
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Proof. By Lemma 3.19, D+(M ⊗A Ã) is finite over A⊗̂A+
F (since A⊗̂A+

F is noetherian). Since A → Ã

is injective, D+(M) ⊂ D+(M ⊗A Ã) and so N(M)sat is finite over A⊗̂A+
F .

The proof of the second assertion is very similar to the proof of [Ber04, Proposition IV.1.3]. We note
that we have a set of inclusions

N(M)total � � // D+(Ã⊗AM)

πhD+(M)

( �

55

� v

))
N(M)sat � � // D+(M)

?�

OO

with the action of Γ stabilizing N(M)total and N(M)sat and acting trivially on N(M)total/π and

N(M)sat/π. In particular, πhN(M)sat ⊂ N(M)total (inside D+(Ã ⊗A M)). We may then prove by
induction on i that

πh−i
i−1∏
j=0

(χ(γ)h−j − 1)N(M)sat ⊂ N(M)total

Taking i = h and observing that pα(h) generates the same ideal in Zp as
∏h−1
j=0 (χ(γ)h−j − 1), we see that

pα(h)N(M)sat ⊂ N(M)total, as desired. �

We can also study the behavior of N(M)sat under change of coefficients. As the formation of L ≤hM

is clearly functorial in the coefficients, for any homomorphism of complete local noetherian O-algebras
A → A′, we have a natural base change morphism A′ ⊗̂A N(M)sat → N(MA′)

sat. However, it need not
be an isomorphism.

lemma:wach-sat-pi-h Lemma 3.27. Let A→ A′ be a homomorphism of complete local noetherian flat Zp-algebras with finite
residue fields which are integrally closed in A[1/p] and A′[1/p], respectively. Then the image of the natural
map (A′⊗̂A+

F )⊗A⊗̂A+
F

Nsat(MA)→ Nsat(MA′) contains πhD+(MA′).

Proof. By Proposition 3.21, the image of (A′ ⊗̂A+
F )⊗A ⊗̂A+

F
N(M)total contains the image of πhD+(MA′),

and since πhD+(MA′) has no p-torsion, the image of (A′ ⊗̂A+
F )⊗A ⊗̂A+

F
N(M)t.f. contains the image of

πhD+(MA′). Since N(M)t.f. ⊂ N(M)sat, we are done. �

Corollary 3.28. Let A → A′ be a local homomorphism of rings satisfying the above hypotheses. Then
there is a natural base change morphism (A′⊗̂A+

F ) ⊗A⊗̂A+
F

N(M)sat → N(MA′)
sat, and its cokernel is

annihilated by pα(h).

Proof. This follows from Lemma 3.27 by the same argument as in the proof of Lemma 3.26. �

Suppose in addition that A = lim←−iA/J
i, for some ideal J ( A such that A/J i is a finite flat Zp-module.

There is a natural map N(M)sat → lim←−i N(MA/Ji)
sat.

Proposition 3.29. The natural map N(M)sat → lim←−i N(MA/Ji)
sat is an isomorphism.

Proof. Consider an element (ni) ∈ lim←−i N(MA/Ji)
sat. Then Corollary 3.26 implies that (pα(h)ni) ∈

lim←−i N(MA/Ji) = N(M), so (ni) comes from an element n ∈ N(M)[1/p]. But (ni) also comes from an

element of D(M), because D(M) = lim←−i D(MA/Ji), so n ∈ N(M)sat. �

Let N(M)p−tors denote the p-power torsion in N(M)total.

Lemma 3.30. If A = lim←−iA/J
i, for some ideal J ( A such that A/J i is Zp-flat, N(M)p−tors =

lim←−i N(MA/Ji)
p−tors.

Proof. Clearly if n ∈ N(M)total is p-power torsion, so is its image in N(MA/Ji)
total for all i.

On the other hand, the natural map N(M)total[1/p] ⊗A[1/p] (A/J i)[1/p] → N(MA/Ji)
total[1/p] is

an isomorphism for all i, so to prove the converse, we show that N(M)total ∩
⋂
i(J

i[1/p])N(M) is p-
power torsion. Since A/J is assumed Zp-flat, J [1/p] ⊂ A[1/p] is a proper ideal. Then by a theorem
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of Krull [Mat89, Theorem 8.9] there is some a ∈ A[1/p] which is 1 modulo J [1/p] and which annihi-
lates ∩i(J i[1/p])N(M)[1/p]. Again because A/J is assumed Zp-flat, J [1/p] ∩ A = J , so there is some
power of p such that a′ := pna is an element of A which is congruent to pn modulo J and annihilates
ker(N(M)total → N(MA/Ji)

total[1/p]) for all i. Then a′ is congruent to pn modulo the maximal ideal of

A, so multiplying a′ by a 1-unit of A, we see that pn annihilates ker(N(M)total → N(MA/Ji)
total[1/p])

for all i and we are done. �

From now on, we assume that R is Zp-flat and integrally closed in R[1/p]. We refer to N(M)sat as
the Wach module of M and we drop the superscript, writing N(M) instead. For the convenience of the
reader, we collect some useful properties of N(M):

thm:wach Theorem 3.31. Let M be a crystalline family of GF -representations over R (of rank d) with Hodge–Tate
weights in [−h, 0]. Then there exists a canonical finitely generated, ϕ- and Γ-stable R ⊗̂A+

F -submodule

N(M) ⊆ D(M)

satisfying the following properties:

(1) (R ⊗̂AF )⊗R ⊗̂A+
F

N(M) � D(M), i.e., N generates D(M) as a R ⊗̂AF -module,

(2) N(M)[1/p] is a finitely generated projective (R ⊗̂A+
F )[1/p]-module (of rank d),

(3) N(M) is p-saturated in D(M), i.e., N(M)[1/p] ∩D(M) = N,
(4) Γ acts trivially on N(M)/πN(M),
(5) qh annihilates the cokernel of ϕ∗N(M)→ N(M),
(6) πhD+(M) ⊆ N(M) ⊆ D+(M).

Moreover, for any local homomorphism R→ R′ of complete local noetherian flat Zp-algebras with finite

residue fields R→ R′, integrally closed in R[1/p] and R′[1/p], respectively, pα(h) annihilates the cokernel
of (R′ ⊗̂A+

F )⊗R ⊗̂A+
F

N(M)→ N(MA′).

4. Generic fibre
sec:fibre

4.1. Families of Wach modules and (ϕ,Γ)-modules. Given a family of positive crystalline repre-
sentions M of GF over R of rank d, we get a family M rig of Galois representations over the Fréchet-Stein
algebra Rrig given by taking the rigid analytic generic fiber of R. We therefore obtain a family of

(ϕ,Γ)-modules D†rig(M rig) over Rrig. More precisely, we exhaust the quasi-Stein space Spf(R)rig by a

rising sequence of affinoids {Ui = Sp(Ai)} and we note that for each i there is some s > 0 such that

over each Ui, D†rig(M rig|Ui) is generated by D†,sF (M rig|Ui). Letting C(0,s] denote the half-open annulus

{0 < vp(π) ≤ s} over F , we obtain a coherent sheaf on the quasi-Stein space Spf(R)rig × C(0,s]. Taking

global sections and extending scalars from Rrig⊗̂B†,srig,F to Rrig⊗̂B†rig,F yields D†rig(M rig).

Similarly, to the Wach module N(M) of M , we associate a finite module

N(M)rig := (B+
rig,F ⊗̂R

rig)⊗(R ⊗̂A+
F ) N(M)

over B+
rig,F ⊗̂Rrig. Indeed, since N(M) is a finite R ⊗̂A+

Qp
-module the functor (−)

rig
associates to it a

coherent sheaf on the rigid space X = Spf(R ⊗̂A+
F )rig with OX(X) = B+

rig,F ⊗̂Rrig; here we identify this

sheaf N(M)rig with its global sections, see Lemma A.6.

We claim first that if M is positive, then N(M)rig ⊂ D†rig(M rig). Recall that the Wach module N(M)

induces a finite B+
rig,F ⊗̂Rrig-module N(M)rig by extension of scalars (we implicitly use the Mittag–Leffler

condition for modules over Fréchet-Stein algebras to commute the tensor products and inverse limit).
Equivalently, it induces a vector bundle on Spf(A+

Qp
⊗̂R)rig.

Let ∪n Sp(Am) be a rising admissible covering of Spf(R)rig, so that Rrig = ∩mAm, and let A◦m
denote the ring of power-bounded elements of Am. Then for any m and any s, the extension of scalars

N(M)rig ⊗B+
rig,F ⊗̂Rrig (B†,srig,F ⊗̂Am) remains finite projective. Moreover, since N(M) ⊂ (A+⊗̂R)⊗RM ,

we have a natural map

N(M)rig ⊗B+
rig,F ⊗̂Rrig (B†,srig,F ⊗̂Am)→ (B̃†,s⊗̂Am)⊗Am (Am ⊗RM)

On the other hand, the family of Galois representations MAm := Am⊗RM over Am induces a family of

(ϕ,Γ)-modules D†,srig(MAm) over B†,srig,Qp
⊗̂Am for s� 0. This family of (ϕ,Γ)-modules is finite projective,
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and D†,srig(MAm) is naturally a sub-B†,srig,F ⊗̂Am-module of (B̃†,s⊗̂Am) ⊗Am (Am ⊗R M). Equivalently,

D†,srig(MAm) is a vector bundle on the product Xs of a half-open annulus with Sp(Am).

We may therefore consider the sub-B†,srig,F ⊗̂Am-module D†,srig(MAm)+
(
N(M)rig ⊗B+

rig,F ⊗̂Rrig (B†,srig,F ⊗̂Am)
)

of (B̃†,s⊗̂Am)⊗Am (Am⊗RM) generated by the images of N(M)rig and D†,srig(Am⊗RM). For ease of nota-

tion, we write it as D†,srig(MAm)+N(M)rig
Am

. Then D†,srig(MAm)+N(M)rig
Am

remains finite over B†,srig,Qp
⊗̂Am,

and we have an exact sequence of coherent sheaves on the quasi-Stein space Xs

D†,srig(MAm)→ D†,srig(MAm) + N(M)rig
Am
→ Q→ 0

for some quotient sheaf Q. But the formations of D†,srig(MAm) and N(M)rig commute with specialization

on Am, and in the classical case the Wach module is contained in the (ϕ,Γ)-module. Thus, Q vanishes

at every point of Xs, so is trivial, and D†,srig(MAm)→ D†,srig(MAm) + N(M)rig
Am

is surjective.

4.2. Comparisons between N(M) and Dcris(M
rig). The paper [Ber02] explains how to relate (ϕ,Γ)-

modules to the functors Dcris(−) and Dst(−), and [Ber04] refines this for positive crystalline represen-
tations of GF . Indeed, if V is a finite-dimensional Qp-linear representation of GK , we have

Dcris(V ) = D†rig(V )[1/t]Γ

by [Ber02, Théorème 3.6].
If T ⊂ V is a lattice in a finite-dimensional Qp-linear positive crystalline representation of GF , then

the Wach module N(V ) = N(T )[1/p] is contained in the (ϕ,Γ)-module D†rig(V ), and it generates it over

B†rig,F . Further:

Proposition 4.1 ([Ber04, Proposition II.2.1], [Ber04, Proposition III.2.1]). Let 0 ≤ r1 ≤ . . . ≤ rd be the
opposites of the Hodge–Tate weights of V . Then

(1) Dcris(V ) ⊂ B+
rig,F ⊗B+

F
N(V ), and

(2) the natural map B+
rig,F ⊗F Dcris(V ) → B+

rig,F ⊗B+ N(V ) is an injection and its cokernel is

isomorphic to ⊕di=1B
+
rig,F /(λi), where λi = (t/π)ri .

This implies that Dcris(V ) =
(
B+

rig,F ⊗B+
F

N(V )
)Γ

. But we have another relation:

Theorem 4.2 ([Ber04, Théorème]). If V is a positive crystalline representation of GF and we equip the
Wach module N(V ) with the filtration

Fili N(V ) := {x ∈ N(V ) | ϕ(x) ∈ qiN(V )}

then the natural map Dcris(V )→ N(V )/πN(V ) is an isomorphism of filtered ϕ-modules.

In particular, this implies that Dcris(T ) := N(T )/πN(T ) defines a OF -lattice in the F -vector space
Dcris(V ).

We wish to extend these results to formal families of positive crystalline representations. To precisely
define Dcris(M

rig) we must again exhaust Spf(R)rig by affinoid subdomains {Ui}, consider the finite
projective modules Dcris(M

rig|Ui) over each Ui, and take the limit to obtain a finite projective filtered

ϕ-module over Rrig. We also obtain an explicit description Dcris(M
rig) =

(
(Rrig⊗̂Bmax)⊗Rrig M rig

)GF
.

Then [Bel15, Theorem 4.2.9] shows that Dcris(M
rig) = D†rig(M rig)Γ.

Lemma 4.3. If M is positive crystalline, then the image of N(M)rig inside D†rig(M rig) generates it over

B†rig,F ⊗̂Rrig.

Proof. Let U = Sp(A) be an affinoid subdomain of Spf(R)rig. Then there is some s � 0 such that

D†rig(M rig|U ) is generated by D†,srig(M rig
U ). After extending scalars on N(M)rig from B+

rig,F ⊗̂Rrig to

B†,srig,F ⊗̂Rrig, we have a homomorphism of coherent sheaves of modules on the quasi-Stein space attached

to B†,srig,F ⊗̂A. Its cokernel is likewise a coherent sheaf. But by specializing at points of U and appealing
to the classical case, we conclude that the cokernel must vanish. �
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In fact, with this in place, projectivity of D†,srig(M rig
U ) lets us use specialization to conclude that the

kernel vanishes at every point, so we actually have an isomorphism N(M)rig⊗B+
rig,F ⊗̂Rrig (B†,srig,F ⊗̂Rrig)→

D†,srig(M rig).

Note that D†rig(M rig) is projective as a B†rig,Qp
⊗̂Rrig-module; we do not know whether it is Rrig-

locally free. However, it follows from the construction of families of (ϕ,Γ)-modules that there is some

finite extension L/F such that for any affinoid subdomain Sp(A) = U ⊂ Spf(R)rig, D†,srig(M rig|U,GL) is a

free B†,srig,L⊗̂A-module of rank n.

Proposition 4.4. If M is positive crystalline, Dcris(M
rig) ⊂ N(M)rig inside D†rig(M rig).

Proof. Since Dcris(M
rig) is a finite projective module over Rrig ⊗Qp F and N(M)[1/p] can be trivialized

locally on SpecR[1/p] by Lemma 3.18, we can find an affinoid covering {Um = Sp(Am)}m∈I of Spf(R)rig

such that Dcris(M
rig|Um) and N(M)rig|Um are free for each i. We may also assume that Dcris(M

rig) is

free and D†rig(M rig) is generated by D†,srig(M rig) for some s� 0.

Now we choose a basis {~e1, . . . , ~er} of N(M)rig|Um and a basis {~f1, . . . , ~fr} of Dcris(M
rig|Um). Let

G = (gij) ∈ Matr×r(B
†,s
rig,F ⊗̂Am) be a matrix carrying {~e1, . . . , ~er} to {~f1, . . . , ~fr}. We wish to show

that G actually has entries in B+
rig,F ⊗̂Am.

A priori, gij(π) is a power series with coefficients in Am converging for p−1/s ≤ |π| < 1. We write
gij(π) =

∑
n∈Z anπ

n and equip Am with the sup norm. But by the proof of [Ber04, II.2.1], if we specialize

G at any point x ∈ Sp(Am), then gij(π)(x) ∈ B+
rig,F . Since |an| ≤ |an(x)| for all x, it follows that gij

actually converges for |π| < 1. �

Now that we have an inclusion Dcris(M
rig) ⊂ N(M)rig, we wish to understand the cokernel of the

induced map (B+
rig,F ⊗̂Rrig) ⊗Rrig Dcris(M

rig) → N(M)rig. When R = Zp, Berger showed [Ber04, §III]
that the quotient is isomorphic to ⊕ni=1B

+
rig,F /λi, where λi = (t/π)ri . However, as such a decomposition

is non-canonical, there is no reason to expect it to vary well in families.
However, we can prove the following weaker results:

quot-nm-dcris Proposition 4.5. Let M be a family of positive crystalline representations of GF over R. Then:

(1) Let Q denote the cokernel of the map incM : (B+
rig,F ⊗̂Rrig)⊗Rrig Dcris(M

rig)→ N(M)rig. Then
Q is annihilated by λd. In particular, Q is t-torsion.

(2) The map incM is injective.
(3) The map incM induces an isomorphism of line bundles(π

t

)r1+···+rd
· det(incM ) : (B+

rig,F ⊗̂R
rig)⊗Rrig DetRrig Dcris(M

rig)
∼−→ DetRrig ⊗̂B+

rig,F
N(M)rig

Proof. For the first part, we consider the corresponding morphism of coherent sheaves on the rigid
analytic space corresponding to B+

rig,F [1/t]⊗̂Rrig. As the formations of N(M)rig and Dcris(M
rig) are

compatible with specialization on Rrig, Berger’s result implies that λdQ = 0.
We turn to the second part. Since (B+

rig,F ⊗̂Rrig)⊗Rrig Dcris(M
rig) and N(M)rig are finite projective

modules of the same rank, the map is an isomorphism after inverting t. Thus, the kernel is also t-torsion.
But (B+

rig,F ⊗̂Rrig)⊗Rrig Dcris(M
rig) is a projective module over B+

rig,F ⊗̂Rrig so has no t-torsion.
For the last part, it suffices to consider the case where M is rank 1. But then compatibility of

Dcris(M
rig) and N(M)rig with specialization on Rrig, combined with Berger’s result, yields the desired

result. �

cor:det-frob-wach Corollary 4.6. Let M be a family of positive crystalline representations of GF over R. Then

q−(r1+···+rd) · det (ϕ∗N(M)[1/p]→ N(M)[1/p])

is an isomorphism of line bundles over (R ⊗̂A+
F )[1/p].
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Proof. Consider the commutative diagram

(Rrig ⊗̂B+
rig,F )⊗Rrig Dcris(M

rig) // N(M)rig

ϕ∗
(

(Rrig ⊗̂B+
rig,F )⊗Rrig Dcris(M

rig)
)

OO

// ϕ∗N(M)rig

OO

It is clear that ϕ∗
(

(Rrig ⊗̂B+
rig,F )⊗Rrig Dcris(M

rig)
)
∼= (Rrig ⊗̂B+

rig,F )⊗Rrig Dcris(M
rig), because ϕ acts

bijectively on Dcris(M
rig). Since (ϕ(π)/t)r1+···+rd ·det

(
ϕ∗((B+

rig,F ⊗̂Rrig)⊗Rrig Dcris(M
rig))→ ϕ∗N(M)rig

)
is an isomorphism of line bundles over Rrig ⊗̂B+

rig,F , we see that q−(r1+···+rd) · det(ϕ∗N(M)[1/p] →
N(M)[1/p]) becomes an isomorphism after extending scalars to Rrig ⊗̂B+

rig,F . But since the stalks at

closed points of Spec(R ⊗̂A+
F )[1/p] are noetherian and their completions agree with the completed stalks

of (Spf(R ⊗̂A+
F ))rig by [dJ95, Lemma 7.1.9], this implies the desired result. �

cor:det-wach-rep Corollary 4.7. Let M be a family of positive crystalline representations of GF over R. Then the
inclusion (

(R ⊗̂A+)⊗R ⊗̂A+
F

N(M)
)
⊂
(
(R ⊗̂A+)⊗RM

)
induces an isomorphism of line bundles over (R ⊗̂A+)[1/p]

q−(r1+···+rd) · det
(

((R ⊗̂A+)⊗R ⊗̂A+
F

N(M))[1/p]→
(
(R ⊗̂A+)⊗RM

)
[1/p]

)
Proof. We use Lemma 3.18 to find an affine cover {Ui = SpecR[1/p, 1/fi]} of SpecR[1/p] such that
M [1/p]|Ui and N(M)[1/p]|Ui are free. Choose bases, and let Xi ∈ Matd((R ⊗̂A)[1/p, 1/fi]) be a matrix
whose columns are the basis elements of N(M)[1/p]|Ui with respect to the basis of M [1/p]|Ui . Let Pi
be the matrix of Frobenius with respect to the chosen basis of N(M)[1/p]|Ui . Then ϕ(Xi) = XiPi
because Frobenius acts trivially on M . This implies that ϕ(det(Xi))/ det(Xi) = det(Pi) = qr1+···+rd up
to a unit of (R⊗̂A+

F )[1/p, 1/fi], by Corollary 4.6. But πh
(
(R ⊗̂A)[1/p, 1/fi]

)
⊗R[1/p,1/fi] M [1/p]|Ui ⊂(

(R ⊗̂A)[1/p, 1/fi]
)
⊗(R ⊗̂A+

F )[1/p,1/fi]
N(M)[1/p]|Ui by Lemma 3.25, so (det(Xi)) is trivial after inverting

π. This implies that det(Xi) = πr1+···+rd up to a unit of (R⊗̂A+)[1/p, 1/fi]. �

We can also use Proposition 4.5 to relate N(M)rig and Dcris(M
rig) when M rig is a crystalline family

with non-negative Hodge–Tate weights.

nm-cris-pos-ht Corollary 4.8. Suppose that M is a crystalline family with non-negative Hodge–Tate weights. Then
ϕ∗N(M)rig ⊂ (B+

rig,Qp
⊗̂Rrig) ⊗Rrig Dcris(M

rig). Since this is a map of finite modules over a Fréchet–

Stein algebra, continuity is automatic.

Proof. Suppose that the Hodge–Tate weights of M rig lie in the interval [0, h]. Then by definition
N(M)rig = π−hN(M(−h))rig, and M rig(−h) is a positive crystalline family, so

ϕ∗N(M)rig = ϕ(π)−hϕ∗N(M(−h))rig ⊂ t−hϕ∗
(

(B+
rig,Qp

⊗̂Rrig)⊗Rrig Dcris(M
rig(−h))

)
by Proposition 4.5 (since λi = (t/π)ri and ri ≤ h). But ϕ∗Dcris(M

rig) = Dcris(M
rig) and t−hDcris(M

rig(−h)) =
Dcris(M

rig), so we are done. �

We now turn to the other comparison between Wach modules and Dcris, namely [Ber04, Théorème
III.4.4], which states that if V is a positive crystalline representation of GQp , then N(V )/πN(V ) ∼=
Dcris(V ).

thm:wach-pi-dcris Theorem 4.9. Let M be a family of positive crystalline GF -representations over R. Then the compo-
sition of the natural maps

Dcris(M
rig) ↪→ N(M)rig � N(M)rig/πN(M)rig

is an isomorphism.

Proof. The map of interest is a homomorphism of finite projective modules of the same rank over Rrig⊗Qp

F . But the formations of Dcris(M
rig) and N(M)rig commute with base change on Rrig and the map

becomes an isomorphism after specialization, so we are done. �
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Since N(M) provides a natural integral structure on N(M)rig, we obtain an integral version of Dcris.
Namely, we define Dcris(M) := N(M)/πN(M), which is a finitely R ⊗Zp OF -module. Note, however,
that we do not know whether Dcris(M) is projective over R (though Dcris(M)[1/p] is projective over
R[1/p]).

DcrisMandMrig Corollary 4.10. Let M be a family of positive crystalline GF -representations over R. Then

Dcris(M
rig) ∼= Rrig ⊗R Dcris(M).

Theorem 4.9 defines an isomorphism N(M)rig/πN(M)rig ∼−→
(
N(M)rig

)Γ
. Since N(M)rig has an

underlying R-module structure, it is natural to ask whether this isomorphism can be defined over a
smaller ring, such as R[1/p] ⊗̂B+

rig,F .

Supppose that L/Qp is a finite extension, and suppose that T is a positive crystalline representation of
GF of rank d over OL, with Hodge–Tate weights in [−h, 0]. Then N(T ) is free of rank d over OL⊗Zp A+

F ;
choose a basis {e1, . . . , ed} of N(T ) and let its image modulo π be a basis of Dcris(T ). Write A for the

isomorphism N(T )rig/πN(T )rig ∼−→
(
N(T )rig

)Γ
with respect to these bases.

Recall that t := log(1 + π) ∈ B+
rig,F .

Lemma 4.11. Let the notation be as above, and write A = 1 +
∑
m≥1A

(m)tm where A(m) is a matrix

over OL ⊗Zp OF with entries a
(m)
ij . Then vp(a

(m)
ij ) ≥ − (2p−1)

(p−1)2m, and in particular, the entries of A

(viewed as elements of L⊗Qp
B+

rig,F ) are bounded by 1 on the disk vp(π) > p− 1.

Proof. Write G = 1 +
∑
m≥1G

(m)tm for the matrix of a non-torsion element γ ∈ Γ, where G(m) has

entries g
(m)
ij in L⊗Qp

F . Now the exponential series π = exp(t)− 1 converges for any t with vp(t) >
1
p−1

and defines a bijection between the affinoid disks vp(t) ≥ ρ and vp(π) ≥ ρ for any rational ρ > 1
p−1 .

Since Γ acts by automorphisms on N(M ⊗R OL), G must be invertible over OL ⊗Zp A+
F , and therefore

its entries must be bounded by 1 on any such disk. Therefore vp(g
(m)
ij ) ≥ − 1

p−1m.

Now the image of A is Γ-invariant, so we must have Gγ(A) = A, or equivalently,

m−1∑
r=0

G(m−r)A(r)χ(γ)r = (1− χ(γ)m)A(m)

for all m. By induction on m, this implies that the matrix A(m) can be written as a sum of terms of the
form ∏

1≤a≤M G(λa)χ(γ)N∏
b∈B(1− χ(γ)b)

where M and N are integers, the λa are positive integers satisfying λ1 + · · ·+λM = m, and B is a subset
of {1, . . .m}. Using the previous inequality, any such term has valuation bounded below by

− 1

p− 1
m−

∑
1≤r≤m

vp (1− χ(γ)m) ≥ −
(

1

p− 1
+

p

(p− 1)2

)
m = − 2p− 1

(p− 1)2
m,

using the bound
∑

1≤r≤m vp (1− χ(γ)m) ≤ pm
(p−1)2 given in [Ber04, §IV.1]. �

Now we consider the ϕ-action on N(T ). Let P ∈ Matd×d(OL ⊗Zp A+
F ) be the matrix of ϕ on N(T )

with respect to {ei} and let Φ ∈ Matd×d(OL⊗Zp OF ) be the matrix of ϕ on N(T )/π; Φ is the “constant

term” of P . Then Φ is invertible over L⊗Qp F , and more precisely, phΦ−1 ∈ Matd×d(OL ⊗Zp OF ).

Let ρ > 0. Since ϕ(π) = (1 + π)p − 1 ∈ πp + pZp[[π]], there is some Nρ such that ϕNρ carries the

disk vp(π) ≥ ρ into a sub-disk of vp(π) > 2p−1
(p−1)s , and the induced map the other way on rings carries

functions converging for vp(π) > 2p−1
(p−1)s to functions converging for vp(π) ≥ ρ.

Lemma 4.12. Let the notation be as above. The entries of A have valuation bounded below by −Nρh
on the disk vp(π) ≥ ρ.

Proof. Since A is Frobenius-equivariant, we have the relation AΦ = Pϕ(A). Iterating Nρ times and
multiplying by pNρh, we obtain pNρhA = (Pϕ(P ) · · ·ϕNρ(P ))ϕNρ(A)(ϕNρ(phΦ−1) · · · phΦ−1). Thus,
pNρhA has entries which are bounded by 1 on the disk vp(π) ≥ ρ. �
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Now we return to M over R. Let U = SpecR[1/fU , 1/p] ⊂ SpecR[1/p] with fU ∈ R r pR be an
open affine subspace such that N(M)[1/p]|U is free. Choose a basis {e′1, . . . , e′d} for N(M)[1/p]|U and
write A′ for the matrix of the isomorphism above with respect to the image of {e′i} in Dcris(M

rig)|U and
{e′i}; we may assume {e′i} ⊂ N(M)[1/fU ]. Writing N{e′i} for the R ⊗̂A+

F -span of {e′i}, there is some

integer β such that p−βN{e′i}∩N(M)[1/fU ] = N(M)[1/fU ], since N(M)[1/fU ] is finitely generated over

(R ⊗̂A+
Qp

)[1/fU ] and {e′i} is a basis for N(M)[1/fU , 1/p].

Let x ∈ U be a closed point with residue field L and let {e1, . . . , ed} be a basis of N(M⊗ROL). Recall
that pα(h)N(M ⊗R OL) ⊂ N(M) ⊗R OL; it follows that pα(h)+βN(M ⊗R OL) ⊂ N{e′i} ⊗R OL. Thus,

if X is the matrix for the image of {e′i} in N{e′i} ⊗R OL with respect to {ei}, X and pα(h)+βX−1 have

coefficients in OL⊗Zp A+
F . It follows that A′⊗R[1/p] L is a matrix with entries in L⊗Qp

B+
rig,F that have

valuation bounded below by −(α(h) + β +Nρh) on the disk vp(π) ≥ ρ.

In other words, there is some integer k such that fkUA
′ has entries in Rrig ⊗̂B+

rig,F which are bounded

on closed disks vp(π) ≥ ρ. Thus, A′ has entries in (R[1/p] ⊗̂B+
rig,F )[1/fU ], by Proposition A.12.

cor:det-dcris-nm-bdd Corollary 4.13. There is an isomorphism of line bundles over R[1/p] ⊗̂B+
rig,F

DetR[1/p] ⊗̂B+
rig,F

(R[1/p] ⊗̂B+
rig,F )⊗R Dcris(M)

∼−→ DetR[1/p] ⊗̂B+
rig,F

(R[1/p] ⊗̂B+
rig,F )⊗R ⊗̂Zp A+

F
N(M)

which agrees with the isomorphism (π/t)r1+···+rd · det(incM ) of Proposition 4.5.

5. Galois cohomology
sec:cohomology

Let K∞/Qp be an abelian p-adic Lie extension with Galois group G := G(K∞/Qp) and associated
Iwasawa algebra Λ := Zp[[G]]. We write JG for its Jacobson radical. Let R be a complete local noetherian
Zp-algebra with finite residue field, flat over Zp, and let mR be its maximal ideal. Then we define the
ring

ΛR(G) := Λ ⊗̂
Zp
R

which has Jacobson radical J = JGΛR(G) + mRΛR(G). If M is a family of GQp
-representations over R,

we define the ΛR(G)-module

T(M) := Λ ⊗̂
Zp
M

where the ΛR(G)-module structure is induced by (λ⊗ r) · (λ′ ⊗m) := λλ′ ⊗ rm. In addition we endow
the latter with the following action of GQp : for σ in the latter group we set σ(λ ⊗m) := λσ−1 ⊗ σm.
Now we define the Iwasawa cohomology of a family M of GQp

-representations as

Hi
Iw(M) := Hi

Iw(K∞,M) := Hi(Qp,T(M)).

prop:iwasawacohomology Proposition 5.1. Suppose that K∞ = Qp(µp∞) and M is crystalline with Hodge–Tate weights in [0, h].
Then there is a canonical isomorphism

H1
Iw(M)

∼−→ (π−1N(M))ψ=1

functorial in the coefficients.
Suppose in addition that for every maximal ideal m ⊂ R[1/p] the specialization (R[1/p]/m)⊗RM has

no quotient isomorphic to the trivial representation. Then H1
Iw(M)

∼−→ N(M)ψ=1.

Here the map ψ : N(M)→ N(M) is defined to be the composition

N(M) ⊂ ϕ∗N(M)
ψ⊗1−−−→ N(M)

and we use the non-negativity of the Hodge–Tate weights of M to assume N(M) ⊂ ϕ∗N(M).

We first need a preparatory lemma, which extends the Fontaine isomorphism D(M)ψ=1 ∼−→ H1
Iw(M)

to formal families.

Lemma 5.2. There is a natural isomorphism D(M)ψ=1 ∼−→ H1
Iw(M).

Proof. Let ∆K ⊂ Γ be the p-torsion subgroup and recall that Herr showed [Her98] that the Galois
cohomology of a finite Zp-linear GK-representation T is functorially computed by the complex

D(T )∆K
(ϕ−1,γK−1)−−−−−−−−→ D(T )∆K ⊕D(T )∆K

(γK−1)⊕(1−ϕ)−−−−−−−−−−→ D(T )∆K
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In particular, this is compatible with corestriction. Here ∆K ⊂ ΓK is the p-torsion subgroup and
γK ∈ ΓK/∆K is a topological generator. It follows by taking limits that the Galois cohomology of M is
computed by the same complex

D(M)∆K
(ϕ−1,γK−1)−−−−−−−−→ D(M)∆K ⊕D(M)∆K

(γK−1)⊕(1−ϕ)−−−−−−−−−−→ D(M)∆)K

Furthermore, the commutative diagram

D(T )∆K

id

��

(ϕ−1,γK−1) // D(T )∆K ⊕D(T )∆K

−ψ⊕id

��

(γK−1)⊕(1−ϕ) // D(T )∆K

−ψ
��

D(T )∆K
(ψ−1,γK−1) // D(T )∆K ⊕D(T )∆K

(γK−1)⊕(1−ψ) // D(T )∆K

defines a quasi-isomorphism between the top and bottom rows. We obtain an exact sequence

0→ D(M)∆K ,ψ=1/(γK − 1)→ H1(GK ,M)→ (D(M)/(ψ − 1))
ΓK → 0

compatible with corestriction. If we take K = Qp(µpn) and consider the limit over all n, we obtain the
desired isomorphism

D(M)ψ=1 ∼−→ H1
Iw(M)

since for n� 0, ∆ is trivial. �

Proof of Proposition 5.1. It suffices to show that (π−1N(M))ψ=1 = D(M)ψ=1, and to see this, it suffices
to show that (π−1N(M)[1/p])ψ=1 = D(M)[1/p]ψ=1. But D(M)∆,ψ=1 = H1

Iw(M) is a finite ΛR(G)-
module by [FK06, Proposition 1.6.5(2)], so D(M)ψ=1 and (π−1N(M))ψ=1 ⊂ D(M)ψ=1 are, as well.

Let x ∈ D(M)[1/p]ψ=1. Then for every maximal ideal m ⊂ R[1/p], the image of x in D((R/m) ⊗R
M)[1/p] lands in D((R[1/p]/m) ⊗R M)[1/p]ψ=1 ⊂ π−1N((R[1/p]/m) ⊗R M)[1/p]. Since the formation
of N(M)[1/p] commutes with base change on R[1/p], it follows that x ∈ π−1N(M)[1/p].

The second claim follows similarly. �

Let d be the R-rank of M .

prop:HIwrk Proposition 5.3. The Iwasawa cohomology groups Hi
Iw(K∞,M) are finite ΛR(G)-modules. In fact,

Hi
Iw(K∞,M) = 0 for i /∈ {1, 2}, H1

Iw(K∞,M)[1/p] has generic rank d, and H2
Iw(K∞,M) is R-finite (and

annhilated by an ideal of ΛZp(G)).

Proof. The ΛR(G)-finiteness statement follows from [FK06, Proposition 1.6.5(2)]. The vanishing state-
ments follow from their classical analogs.

A consideration of Tate local duality implies that H2
Iw(K∞,M) ∼= (M∨(1)H)∨ ∼= M(−1)H , which is R-

finite. The perfectness of RΓIw(K∞,M) := RΓ(Qp,M) combined with the fact that Hi
Iw(K∞,M) = 0 for

i ≥ 3 implies that the formation of H2
Iw(K∞,M) commutes with base change on ΛR(G), and in particular,

with base change on R. Choose a set of generators m1, . . . ,mk for H2
Iw(K∞,M) as an R-module. For a

closed point x ∈ SpecR[1/p], let OLx denote the ring of integers in the residue field at x. Then there is
a finitely generated ideal Ix ⊂ ΛZp(G) which annihilates H2

Iw(K∞,M ⊗R OLx) = H2
Iw(K∞,M)⊗R OLx .

This implies that Ix annihilates H2
Iw(K∞,M) in a Zariski open neighborhood of x, and since Spec ΛR(G)

is quasi-compact, we can multiply finitely many ideals together to get a finitely generated ideal of ΛZp(G)

which annihilates H2
Iw(K∞,M).

The preceding paragraph implies that over an open dense subspace of Spec ΛR(G)[1/p] (obtained by
inverting elements coming from ΛZp(G)[1/p]), the formation of H1

Iw(K∞,M)[1/p] also commutes with

base change on R[1/p]. But then comparison with the classical case shows that H1
Iw(K∞,M)[1/p] has

generic rank d. �

For our later calculations we need the convergent cohomological spectral sequence for any (R′, R)-
bimodule Y :

f:spectralsequencef:spectralsequence (2) Ei,j2 := TorR−i(Y,H
j
Iw(M))⇒ Hi+j

Iw (Y ⊗RM),

which is induced from the isomorphism

Y ⊗L
R RΓIw(M) ∼= RΓIw(Y ⊗RM),

proved in [FK06]. We obtain the following exact sequence of terms in lower degree
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f:lowdegreef:lowdegree (3)

0 // TorR2 (Y,H2
Iw(M)) // Y ⊗R H1

Iw(M) // H1
Iw(Y ⊗RM) // TorR1 (Y,H2

Iw(M)) // 0

as well as the isomorphisms

Y ⊗R H2
Iw(M) ∼= H2

Iw(Y ⊗RM) and TorRi (Y,H1
Iw(M)) ∼= TorRi+2(Y,H2

Iw(M))

for i ≥ 1. By Proposition 5.3 we obtain pseudo-isomorphisms, i.e., isomorphisms up to pseudo-null
modules,

H1modulopseudonullH1modulopseudonull (4) Y ⊗R H1
Iw(M) ∼ H1

Iw(Y ⊗RM) and TorRi (Y,H1
Iw(M)) ∼ 0

for i ≥ 1.
In the Fontaine-Lafaille range we obtain the following result which is not needed elsewhere in this

article.

prop:phiN Proposition 5.4. If M is crystalline with HodgeTate weights in [a, b] satisfying h = b− a < p− 1, then
(ϕ∗N(M))ψ=0 is a free R⊗̂Λ(G)-module of rank r.

Proof. From [SRV13] we obtain the isomorphisms

(ϕ∗N(M/InM))ψ=0 =

p−1⊕
j=1

(1 + π)j ⊗N(M/InM)

which induces after taking projective limits an isomorphism of R⊗̂Λ(G)-modules

(ϕ∗N(M))ψ=0 =

p−1⊕
j=1

(1 + π)j ⊗N(M).

Now choose lifts n1, . . . , nr in N(M) of any A+
Qp

-basis n̄1, . . . , n̄r of N(M/IM). Since

(ϕ∗N(M))ψ=0/I(ϕ∗N(M))ψ=0 =
⊕

(1 + π)j ⊗N(M)/IN(M)

∼=
⊕

(1 + π)j ⊗N(M/IM)

is isomorphic to Λ(G)r with basis n̄1, . . . , n̄r by (loc. cit.) and the fact that by assumption the base
change map for N is an isomorphism, we see by the Nakayama lemma that the map

(R⊗̂Λ(G))r → (ϕ∗N(M))ψ=0

induced by the choice of n1, . . . , nr is surjective with kernel, say, C. By induction on d and using
torsionfreeness of ϕ∗N(M) we conclude that C/XdC = 0 whence C = 0 by the Nakayama lemma again.
The proposition follows and we even get an explicit basis. �

We now specialize to the following setting (which will be crucial for the construction of the regulator
maps): Let F∞ be the unramified Zp-extension of Qp. We set K∞ = F∞(µp∞), U = Gal(F∞/Qp) ∼=
Gal(K∞/Qp,∞) and G = Gal(K∞/Qp). We regard Γ as a subgroup of G, by identifying it with
Gal(K∞/F∞), so we have G = U × Γ.

Following [LZ14] we define

N∞(M) := N(M)⊗̂ZpS∞

Here S∞ := lim←−nOFn with the transition maps being the trace maps. This is called the Yager module,

and it is free of rank one over Λ(U) and naturally endowed with a Frobenius action. Moreover, S∞ is
naturally contained in ΛOF̂∞ (U), and the induced subspace topology coincides with the inverse limit

topology (see the discussion in §3 in loc. cit.). Indeed, setting

ΛZp(U)τp := {x ∈ Ẑnr
p ⊗Zp ΛZp(U)|(φ⊗ 1)x = (1⊗ τp)x},

where τp denotes the image of the unique lift τp in G(Qab
p /Qp(µ(p))) of the arithmetic Frobenius σ ∈

G(Qnr
p /Qp) one checks ([LZ14, Prop. 3.6]) that

f:Yagerf:Yager (5) S∞ ∼= ΛZp(U)τp .

Similarly, we consider

HQp
(U)τp := {x ∈ Ẑnr

p ⊗Zp HQp
(U)|(σ ⊗ 1)x = (1⊗ τp)x}
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and

HQp
(G)τp := {x ∈ Ẑnr

p ⊗Zp HQp
(G)|(σ ⊗ 1)x = (1⊗ τp)x},

where in the latter case τp denotes the image of τp in G := Γ× U with Γ ∼= Zp.

lem:twists Lemma 5.5. (1) ΛZp(U)τp and HQp
(U)τp are free rank one modules over ΛZp(U) and HQp

(U),
respectively.

(2) ΛZp(G)τp and HQp(G)τp are free rank one modules over ΛZp(G) and HQp(G), respectively.
Moreover, we have

HQp(U)τp⊗̂QpHQp(Γ) = HQp(G)τp .

Proof. (1) Let O be either Zp or Ẑnrp and set L := O[ 1
p ]. For the purpose of the proof we identify ΛO(U)

and HL(U) with O[[T ]] and the subring of L[[T ]] consisting of power series which converge on the open
unit disk, respectively. Then the defining condition of e.g. ΛZp(U)τp is equivalent to (σ − 1)λ = Tλ
whence we obtain the isomorphism

ΛZp(U)τp
∼= {(ai) ∈ lim←−

i≥0,σ−1

Ẑnrp |a0 ∈ Zp}

sending λ =
∑
aiT

i to (ai). Fix any such λ0 with a0 = 1, the existence of which stems from the exact
sequence

0→ Zp → Ẑnrp
σ−1−−−→ Ẑnrp → 0.

Then λ0 is a unit in Λ
Ẑnrp

(U) and for any λ in ΛZp(U)τp or HQp
(U)τp we have that

σ(λλ−1
0 ) = σ(λ)σ(λ0)−1 = τpλτp

−1λ−1
0 = λλ−1

0 ,

i.e., λλ−1
0 belongs to ΛZp(U) or HQp

(U), respectively. This implies that λ0 forms a basis in both cases.
(2) Since λ0 ∈ ΛZp(U)τp ⊆ ΛZp(G)τp the last argument applies in the same way. From this the last
statement is clear, too. �

Using the same argument as in the proof of [LZ14, Theorem 4.4, Proposition 4.5] we obtain the
following sharpening of Proposition 5.1:

prop:iwasawacohomologyunramified Proposition 5.6. If M is crystalline with Hodge-Tate weights in [0, h], then there is a canonical iso-
morphism

H1
Iw(K∞,M) ∼= N∞(M)ψ=1.

6. Regulator maps for families
sec:regulator

We have to extend the various regulator maps to families and thus generalize the main result from
[LZ14]. Let F be any finite unramified extension of Qp, and let F∞ be the unramified Zp-extension of
F . We set K∞ = F∞(µp∞), U = Gal(K∞/Qp,∞) and G = Gal(K∞/Qp). We regard Γ as a subgroup of
G, by identifying it with Gal(K∞/F∞), so we have G = U × Γ.

6.1. Γ-regulator. Let M now be a crystalline family with non-negative Hodge-Tate weights and not
containing the trivial representation as a quotient (of any Mn). Then we have the following map:

LΓ
Qp,M,ξ : H1

Iw(Qp(µp∞)/Qp,M) ∼= N(M)ψ=1 1−ϕ // (ϕ∗N(M))ψ=0 � � // (HQp
(Γ)⊗̂Rrig)⊗Rrig Dcris(M

rig)

and the last inclusion follows from Corollary 4.8 and the identification

BrigDistributionsBrigDistributions (6) (B+
rig,Qp

⊗̂Rrig)ψ=0 ⊗Rrig Dcris(M
rig) ∼= (HQp

(Γ)⊗̂Rrig)⊗Rrig Dcris(M
rig).

Note that the latter is a projective HQp(Γ)⊗̂Rrig-module because M is assumed crystalline.
For any finite extension E/Qp contained in F∞, we may apply the above construction to the induced

representation M ′ := Ind
Qp

E M . Using Shapiro’s Lemma and Frobenius reciprocity (see §4.3 in [LZ14] for
a similar construction), we then obtain the following map:

LΓ
E,M,ξ : H1

Iw(E(µp∞)/E,M) // (HE(Γ)⊗̂Rrig)⊗Rrig Dcris(M
rig).
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6.2. G-regulator. Assume first that F = Qp, i.e., U ∼= Zp. Extending the observations from (loc. cit.)
one easily shows that

(ϕ∗(N∞(M))ψ=0 ∼= (ϕ∗N(M))ψ=0⊗̂ZpS∞.

Using Proposition 5.6 we obtain the following map

LGM,ξ : H1
Iw(K∞,M) ∼= N∞(M)ψ=1 1−ϕ// (ϕ∗N∞(M))ψ=0 � � // (HL̃(G)⊗̂Qp

Rrig)⊗Rrig Dcris(M
rig)

generalizing definition 4.6 in (loc. cit.). More precisely, as in §4.2 of (loc. cit.) one has an embedding

eq:embeddingSinftyeq:embeddingSinfty (7) S∞ ↪→ HQp(U)τp ↪→ HL̃(U)

which is continuous with respect to the inverse limit topology on S∞ and the Fréchet topology on the
target. Hence the natural map on the algebraic tensor product

(ϕ∗N(M))ψ=0 ⊗Zp S∞ → (HQp
(Γ)⊗̂Rrig)⊗Rrig Dcris(M

rig)⊗Qp
HL̃(U)

induced from the embedding in Corollary 4.8 plus (6) and (7) extends to a continuous R⊗̂ZpΛ(U × Γ)-
equivariant map

(ϕ∗N(M))ψ=0⊗̂ZpS∞ → (HL̃(U)⊗̂Qp
HQp

(Γ)⊗̂Qp
Rrig)⊗RrigDcris(M

rig) ∼= (HL̃(G)⊗̂Qp
Rrig)⊗RrigDcris(M

rig)

The image of this map is contained in

(HQp
(U)τp⊗̂Qp

HQp
(Γ)⊗̂Qp

Rrig)⊗Rrig Dcris(M
rig) = (HQp

(G)τp⊗̂Qp
Rrig)⊗Rrig Dcris(M

rig)

Since HQp(G)τp⊗̂QpR
rig is a free rank one HQp(G)⊗̂QpR

rig-module by Lemma 5.5, the source and target

are finite HQp(G)⊗̂QpR
rig-modules of the same generic rank.

The extension to finite unramified extensions F/Qp (which we may and do assume to be linearly dis-
joint from the unramified Zp-extension of Qp) is carried out as usual by applying the above construction

to the induced representation M ′ := Ind
Qp

F M and using Shapiro’s lemma and Frobenius reciprocity; see
§4.3 in (loc. cit.) for the details.

The first part of the following theorem generalizes Thm. 4.7 in (loc. cit.) to families:

thm:specialization Theorem 6.1. Assume that M is crystalline with Hodge-Tate weights ≥ 0. Then the following hold:

(1) For any finite extension E/Qp contained in F∞, we have a commutative diagram

H1
Iw(K∞,M)

LGM,ξ- (HL̃(G)⊗̂Rrig)⊗Rrig Dcris(M
rig)

H1
Iw(E(µp∞),M)

? LG′M,ξ- (HL̃(G′)⊗̂Rrig)⊗Rrig Dcris(M
rig).

?

Here G′ = Gal(E(µp∞)/Qp), the right-hand vertical arrow is the map on distributions corre-

sponding to the projection G→ G′, and the map LG′M,ξ is defined by

LG
′

M,ξ =
∑

σ∈Gal(E/Qp)

[σ] · LΓ
E,M,ξ(σ

−1 ◦ x),

where LΓ
E,M,ξ is the cyclotomic regulator map for E(µp∞)/E. Moreover, the map LGM,ξ is injec-

tive.
diag:reg-comm (2) For any ideal P ⊂ R such that R/P is flat over Zp, there is a commutative diagram

H1
Iw(K∞,M)

LGM,ξ - (HL̃(G)⊗̂Rrig)⊗Rrig Dcris(M
rig)

H1
Iw(K∞,M/P )

? LGM/P,ξ- (HL̃(G)⊗̂Rrig/PRrig)⊗Rrig/PRrig Dcris((M/P )rig).

?
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(3) For any x ∈ H1
Iw(K∞,M), we have

σ(LGM,ξ(x)) = τp · LGM,ξ(x)

where σ denotes the arithmetic Frobenius.

By abuse of notation we also write LGM,ξ for the induced map with source (HL̃(G)⊗̂Rrig)⊗H1
Iw(K∞,M).

Proof. The proof of Thm. 4.7 in (loc. cit.) carries over almost literally to show the first part apart from
the injectivity statement, which is proved in the same way as Prop. 4.12 in (loc. cit.).

The commutativity of the diagram in 2 is just the fact that the construction of LGM,ξ is functorial in
the coefficients of M : More precisely, we have to check that the following diagrams are commutative.

HIwNHIwN (8) H1
Iw(K∞,M)⊗R R/P

��

∼ // N∞(M)ψ=1 ⊗R R/P

��
H1

Iw(K∞,M ⊗R R/P )
∼ // N∞(M ⊗R R/P )ψ=1

(where the right vertical map is induced from the natural base change map N(M)⊗RR/P → N(M/PM)
from section 3 and the R-linearity of ψ while the left vertical map comes from the obvious base change
spectral sequence using the flatness of M over R, see e.g. [Nek06, §8.4.8.3] or (2), (3)),

NtoNpsi=0NtoNpsi=0 (9) N∞(M)ψ=1 ⊗R R/P

��

1−ϕ// (ϕ∗N∞(M))ψ=0 ⊗R R/P

��
N∞(M ⊗R R/P )ψ=1 1−ϕ// (ϕ∗N∞(M ⊗R R/P ))ψ=0

and

Npsi=0DcrisNpsi=0Dcris (10) (ϕ∗N∞(M))ψ=0 ⊗R R/P

��

� � // (HL̃(G)⊗̂Rrig)⊗Rrig Dcris(M
rig)⊗R R/P

��
(ϕ∗N∞(M ⊗R R/P ))ψ=0 � � // (HL̃(G)⊗̂Rrig)⊗Rrig Dcris((M ⊗R R/P )

rig
)

The commutativity of diagram (8) follows from the functoriality of the Fontaine isomorphism. For
diagram (9), commutativity follows immediately from the R-linearity of ϕ. The commutativity of (10)
follows from the commutativity of the diagram

(ϕ∗N(M))ψ=0 ⊗R R/P

��

// (HQp(Γ)⊗̂Rrig)⊗Rrig Dcris(M
rig)⊗R R/P

∼=
��

(ϕ∗N(M ⊗R R/P ))ψ=0 � � // (HQp
(Γ)⊗̂Rrig)⊗Rrig Dcris((M ⊗R R/P )

rig
)

But this follows from the functoriality of the maps N(M)→ D†rig(M rig) and Dcris(M
rig)→ D†rig(M rig),

which is clear.
The third part is clear from the construction. �

7. Construction of the isomorphism
sect:constructionG

The aim of this section is as follows. Let M be a crystalline R-linear Galois representation with R
a complete local noetherian Zp-algebra with finite residue field, which is Cohen–Macaulay, normal, and

flat over Zp, such that Rrig is an integral domain. Let R̃ := Ẑnr
p ⊗̂Zp R and let

f:tildef:tilde (11) ΛR(G) := ΛZp(G) ⊗̂
Zp
R and ΛR̃(G) := ΛZp(G) ⊗̂

Zp
R̃.

We shall construct a canonical isomorphism of determinants over the ring ΛR,Qp(G) := ΛR̃(G)[1/p]:

ΘΛR̃,Qp (G),ξ(T ) : DetΛR̃,Qp (G)(0)
∼−→

ΛR̃,Qp
(G)⊗ΛR(G)

{
DetΛR(G)RΓIw(K∞,M) ·DetΛR(G) (ΛR(G)⊗R Dcris(M))

}
,



WACH MODULES, REGULATOR MAPS AND ε-ISOMORPHISMS IN FAMILIES 27

where Dcris(M) = N(M)/πN(M).
Our construction is to define the isomorphism over the total quotient ring KR̃(G) of the distibution

algebra HR̃(G) := HQp(G) ⊗̂ R̃rig, and then descend it to ΛR̃,Qp
(G).

In order to carry out our calculations, we will need to specialize at closed points of SpecR[1/p] and
utilize the results of [LVZ15]. However, as we are interested in finite modules over ΛR̃(G)[1/p], which
has many more closed points than ΛR(G)[1/p], we record the following useful lemmas:

lemma:qpbar-spec-inj Lemma 7.1. The natural map R̃[1/p]→
∏
x Q̂nr

p ⊗̂Qp Kx is injective, where the product runs over closed
points of SpecR[1/p] and Kx denotes the residue field at x.

Proof. According to Appendix A.1 we can exhaust the generic fiber Spf(R)rig of Spf R, whose points
corresponds to the closed points of SpecR[1/p], by affinoid subdomains SpAm, which are reduced since

by one of our running hypotheses R[1/p] is reduced. Since Ẑnr
p is unramified over Zp, the maximal ideal

of definition I of R generates the maximal ideal of definition of Ẑnr
p ⊗̂Zp R. For every m ≥ 0, there is a

natural map

Ẑnr
p ⊗Zp (R[Im/p])∧ → (Ẑnr

p ⊗̂
Zp
R)[Im/p]

which is an isomorphism after p-adically completing (since it is an isomorphism modulo every power of
p).

Thus, we obtain a map

R̃[
1

p
] ↪→ R̃rig ∼= lim←−

m

(R̃[Im/p])∧[1/p] ∼= lim←−
m

(Ẑnr
p ⊗̂

Zp
(R[Im/p])∧)[1/p] ∼= lim←−

m

Q̂nr
p ⊗̂

Qp

Am

So it is enough to consider the analogous map Q̂nr
p ⊗̂A→

∏
x Q̂nr

p ⊗̂Kx when A is a reduced Qp-affinoid
algebra and x runs over the points of Sp(A). Then the subring A◦ ⊂ A of power-bounded elements is
topologically finite type over Zp, and its reduction modulo p is a finite type Fp-algebra.

If A is a Tate algebra, this is clear, since points of Sp(Q̂nr
p ⊗̂Qp

Tn) lying over points of Sp(Tn) are

dense (with respect to the canonical topology), since Sp(Tn) is a polydisk and Qnr
p is dense in Q̂nr

p .
To treat the general case, we may assume that A is irreducible. Then Noether normalization implies
that there is a finite (torsion-free) monomorphism Tn → A, and since Qp is discretely valued, [BGR84,
Corollary 6.4.1/6] implies that the induced map T ◦n → A◦ on subrings of power-bounded elements is also
finite.

Let f ∈ Q̂nr
p ⊗̂Qp

A be a function such that for every homomorphism Tn → L′, L′/Qp a finite extension,

the image of f in L′ ⊗Tn (Q̂nr
p ⊗̂Qp

A) is trivial; since every point of Sp(A) lies over a point of Sp(Tn),
this holds for every f satisfying the hypotheses of this lemma. We wish to show that f = 0. After

multiplying by a power of p, we may assume that f ∈ Ẑnr
p ⊗̂Zp A

◦. Consider a point x : Q̂nr
p ⊗̂Qp

Tn → L,

where L is a finite extension of Q̂nr
p . Under this homomorphism, Ẑnr

p ⊗̂Zp T
◦
n is carried to the ring of

integers OL of L. For each integer n ≥ 0, we choose another homomorphism xn : Tn → Qp such that

x|
Ẑnr
p ⊗̂Zp T

◦
n
≡ Ẑnr

p ⊗Zp xn|T◦n mod pn. Thus, x(f) ≡ 0 mod pn for all n. Since Ẑnr
p ⊗̂Zp A

◦ is p-adically

separated and complete, x(f) = 0. Since Q̂nr
p ⊗̂Qp A is a finite Q̂nr

p ⊗̂Qp Tn-module and Q̂nr
p ⊗̂Qp Tn is

reduced, we are done. �

lemma:qpbar-spec-bdd Lemma 7.2. Let A be a reduced Qp-affinoid algebra, and suppose that for every x : A → L, L/Qp a

finite extension with ring of integers OL, the induced map Q̂nr
p ⊗̂Qp

A→ Q̂nr
p ⊗Qp

L carries f ∈ Q̂nr
p ⊗̂Qp

A

to Ẑnr
p ⊗Zp OL. Then |f(x)| ≤ 1 for all points x ∈ Sp(Q̂nr

p ⊗̂Qp
A).

Proof. If A = Tn, the result is clear because points of Sp(Q̂nr
p ⊗̂Qp

Tn) lying over points of Sp(Tn) are
dense with respect to the canonical topology. To treat the general case, we will again assume Sp(A)
is irreducible and use Noether normalization to find finite torsion-free monomorphisms Tn → A and

Ẑnr
p ⊗̂Zp T

◦
n → Ẑnr

p ⊗̂Zp A
◦.

Since the supremum norm on A and Q̂nr
p ⊗̂Qp

A is power-multiplicative, we may replace f by a power
of itself and assume that |f |sup ∈ |Qp|.

Suppose that f /∈ Ẑnr
p ⊗̂Zp A

◦. Then there is some k > 0 such that pkf ∈ Ẑnr
p ⊗̂Zp A

◦ and |pkf(x)| ≤
p−1 for every point x lying over a point of Sp(A). Choose the minimal such k. The first condition
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implies that |pkf |sup ≤ 1, and the minimality of k implies that |pkf |sup > p−1. Indeed, if {ei} is a basis

for Fp over Fp, then the Teichmüller lifts {[ei]} form a basis for Q̂nr
p over Qp, and we may write pkf

uniquely as pkf =
∑
i fi[ei] with fi ∈ A◦. If |pkf |sup ≤ p−1, then for every point x ∈ Sp(A) the reduction

pkf(x)
∑
i eifi(x) modulo p is 0. But since the ei are linearly independent, we see that fi(x) = 0 for all

i, and therefore fi ∈ pA◦ for all i, contradicting the minimality of k.

The maximum modulus principal implies that f actually attains its supremum at a point of Sp(Q̂nr
p ⊗̂Qp

A),

which lies over a point x ∈ Sp(Q̂nr
p ⊗̂Qp

Tn). As in the proof of the previous lemma, we may p-adically

approximate x by a series of points xn ∈ Sp(Tn). As before, x(pkf) ≡ (Ẑnr
p ⊗̂Zp xn)(pkf) mod pn. But

|x(pkf)|sup = 1 (because |pkf |sup = 1) whereas |(Ẑnr
p ⊗̂Zp xn)(pkf)|sup ≤ p−1 (by our assumption on f

at points over points of Sp(A)), which is a contradiction. Thus, k = 0 and we are done. �

We can think of these lemmas as saying that “classical points, i.e., those lying above points of Spf(R)rig,

are dense in Spf(R̃)rig”.

sect:construction1
7.1. Construction of Θ over KR̃(G). Over KR̃(G), the construction of the isomorphism Θ is very
simple:

Proposition 7.3. The regulator LGM,ξ induces an isomorphism

DetKR̃(G)(0)
∼−→ DetKR̃(G)

(
(KR̃(G))⊗ΛR(G) RΓIw(K∞,M)

)
·DetKR̃(G)

(
(KR̃(G))⊗Rrig Dcris(M

rig)
)
.

Proof. By Proposition 5.3 and property B.h) in Appendix B,

DetΛO,R(G) (RΓIw(K∞,M)) ∼= DetΛO,R(G)

(
H1

Iw(K∞,M)
)−1

up to ΛZp(G)-torsion. We therefore consider the map

LGM,ξ : HR̃(G)⊗ΛR(G) H1
Iw(K∞,M)→ HR̃(G)⊗Rrig Dcris(M

rig).

This map is defined by base extension from a map H1
Iw(K∞,M)→ (HQp(G)τp ⊗̂Rrig)⊗Rrig Dcris(M

rig);

choosing an HQp(G)-basis of HQp(G)τp , it suffices to show that the map of HQp(G) ⊗̂Rrig-modules

LGM,ξ : HR(G)⊗ΛR(G) H1
Iw(K∞,M)→ (HQp

(G)τp ⊗̂Rrig)⊗Rrig Dcris(M
rig)

is generically an isomorphism.
Since H1

Iw(K∞,M) is generically free of rank d and Dcris(M
rig) is projective of rank d, it suf-

fices to prove that this map is generically surjective. But after specializing at any closed point x of
Spf(R)rig, [LVZ15, Proposition 3.4.1] implies that the image of the regulator map contains a basis of
FracHQp(G)⊗Qp Dcris(Mx), so generic surjectivity follows. �

def:isooverK Definition 7.4. Let ΘKR̃(G),ξ(M) be the isomorphism

DetKR̃(G)(0)
∼−→ DetKR̃(G)

(
KR̃(G)⊗ΛR(G) RΓIw(K∞,M)

)
·DetKR̃(G)

(
KR̃(G)⊗Rrig Dcris(M

rig)
)

given by

ΘKR̃(G),ξ(M) = `(M)−1 Det
(
LGM,ξ

)
where `(M) ∈ HQp

(G) is defined below.

def:ellV Definition 7.5.

(1) Let γ ∈ Γ be any non-torsion element. Then we define

`j :=
log γ

logχ(γ)
− j

(2) For n ∈ Z, define the element µn ∈ FracHQp
(Γ) by

µn =


`0 · · · `n−1 if n ≥ 1

1 if n = 0

(`−1 · · · `n)
−1

if n ≤ −1.
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(3) For V a Hodge–Tate representation of GQp , with Hodge–Tate weights n1, . . . , nd, let

`(V ) =

d∏
i=1

µni .

The p-adic Hodge type of M is locally constant on Spf(R)rig. Since we assume that R[1/p] is integral,

the Hodge–Tate weights are constant. If the Hodge–Tate weights are n1, . . . , nd, we set `(M) :=
∏d
i=1 µni .

This is an element of HQp(G) ⊂ HR̃(G).

Since Dcris(M
rig) = Rrig ⊗R Dcris(M) by Corollary 4.10, we can rewrite the above isomorphism as

DetKR̃(G)(0)
∼−→ KR̃(G)⊗ΛR(G)

{
DetΛR(G) (RΓIw(K∞,M)) ·DetΛR(G) (ΛR(G)⊗R Dcris(M))

}
sect:alt-const

7.2. Definition of Θ over ΛR(G)[1/p]. We wish to show that the isomorphism ΘKR̃(G),ξ(M) can be

defined over ΛR̃,Qp
(G). More precisely, we we want to show the following:

prop:theta1/p Proposition 7.6. There is a trivialization of line bundles

ΘΛR,Qp (G),ξ : DetΛR(G)[1/p](0)
∼−→ DetΛR̃,Qp (G) (RΓIw(K∞,M)[1/p])·DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗R[1/p] Dcris(M)[1/p]
)

which agrees with ΘKR̃(G),ξ(M) after extending scalars. Moreover, for every specialization R[1/p] → L,
the base change ΘΛR,Qp (G),ξ ⊗R[1/p] L agrees with the trivialization

ΘΛL(G),ξ : DetΛL̃(G)(0)→ DetΛL̃(G)

(
L̃⊗L RΓIw(K∞,ML)

)
·DetΛL̃(G)

(
ΛL̃(G)⊗L Dcris(ML

)
defined in [LVZ15, Theorem 4.2.1].

We first recall that ΘKR̃(G),ξ(M) is defined via base extension from an isomorphism over the total

ring of fractions of HQp(G)τp ⊗̂Rrig. We therefore descend the latter isomorphism to an isomorphism

over ΛQp(G)τp ⊗̂R[1/p] (using the fact that ΛQp(G)τp is free of rank 1 over ΛQp(G)).
To construct a homomorphism of line bundles

DetΛR̃,Qp (G)RΓ(K∞,M)[1/p]−1 → DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗R[1/p] Dcris(M)[1/p]
)

it suffices to construct homomorphisms on an affine cover and check that they agree on overlaps.
Thus, our strategy is to work locally on Spec ΛR̃,Qp

(G) (to trivialize DetΛR̃,Qp (G) (RΓ(K∞,M)[1/p]) and

DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗R[1/p] Dcris(M)[1/p]
)

), choose integral generators on both sides, and calculate

that the determinant actually lands in ΛR̃,Qp
(G).

However, we will have to be a bit careful, for two reasons: First, our previous computations concerned
DetΛR̃,Qp (G) H1

Iw(K∞,M)[1/p], not DetΛR̃,Qp (G) (RΓIw(K∞,M)[1/p])
−1

and they are only canonically

isomorphic when H2
Iw(K∞,M)[1/p] = 0. Second, we can only compute with DetΛR̃,Qp (G) H1

Iw(K∞,M),

and it is only compatible with base change on R when H2
Iw(K∞,M) = 0. Thus, we will first work away

from the support of H2
Iw(K∞,M) and then use the Cohen–Macaulay-ness of R to extend over this locus.

First of all, detLGM,ξ is defined by a homomorphism between modules over HR̃(G). If we can show

that the valuation of `(V )−1 detLGM,ξ is bounded (with respect to suitable choices of local generators),

then normality of ΛR̃(G) will imply that it actually lives in ΛR̃,Qp
(G), as desired. We therefore study

specializations of `(V )−1 detLGM,ξ.

We first work over open affine subspaces U = SpecAU ⊂ ΛR̃(G) where H2
Iw(K∞,M) vanishes; on such

subspaces, DetAU RΓIw(K∞,M)⊗RAU ∼= DetAU
(
H1

Iw(K∞,M)
)−1⊗RAU by property B.h) in Appendix

B.
Over these subspaces, we will consider specializations of the determinant of LGM,ξ along mapsR[ 1

p ]→ L,

where L/Qp is a finite field extension. A priori, such base changes involve derived tensor products and
thus higher Tor groups. However, Theorem 6.1 (2) together with the spectral sequence (2) (for Y = L)
shows that when H2

Iw = 0, these Tor groups vanish.
In general, we will use (4) to check that no higher Tor-groups are involved in the descent calculation.

Indeed, for a Cohen-Macaulay ring pseudo-null modules possess a canonical trivialisation by the same
proof as for [Ven13, Lemma 2.2]. From this comment and by construction below, it will be clear that —
once ΘΛR,Qp (G),ξ exists — it satisfies the desired compatibility with specialisations.
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lemma:descent-affine-hiw2-0 Lemma 7.7. Let U = SpecAU ⊂ Spec ΛR(G) be an open affine subspace where H2
Iw(K∞,M) = 0 and

DetΛR(G)

(
H1

Iw(K∞,M)
)

and DetΛR(G) (ΛR(G)⊗R Dcris(M)) are trivial. Then `(V )−1 detLGM,ξ can be

defined over the pre-image of U in Spec ΛR̃(G).

Proof. WriteAU = ΛR(G)[1/fU ] for some fU ∈ ΛR(G). Choosing generators of DetΛR̃(G)

(
H1

Iw(K∞,M)
)
|U

and DetΛR̃(G)

(
ΛR̃(G)⊗R Dcris(M)

)
|U , we may view `(V )−1 detLGM,ξ as multiplication by an element

aU := a′U/f
k
U , where a′U ∈ HR̃(G). In fact, since LGM,ξ is the base extension of a morphism of HR(G)-

modules
HR(G)⊗ΛR(G) H1

Iw(K∞,M)→ (HQp
(G)τp ⊗̂Rrig)⊗Rrig Dcris(M

rig)

of the same rank, we may assume that a′U ∈ HR(G).
The formation of H1

Iw(K∞,M) commutes with specialization on U , since H2
Iw(K∞,M)|U = 0 and

RΓIw(K∞,M) does. Let L/Qp be a finite extension with ring of integers OL, and let x : R[1/p]→ L be
a closed point of SpecR[1/p] such that AU [1/p]⊗R[1/p] L is non-zero. Then the natural homomorphism

R → OL induces a map Dcris(M) → Dcris(M ⊗R OL) with cokernel annihilated by pα(h). Therefore,
there is a natural homomorphism DetR Dcris(M) → DetOL Dcris(M ⊗R OL) with cokernel annihilated
by pdα(h). Now [LVZ15, Corollary 4.3.8] implies that the specialization of `(V )−1 detLGM,ξ at x is given

by multiplication by an element of ΛÕL(G) with respect to generators of H1
Iw(K∞,M ⊗R OL) and

Dcris(M ⊗R OL).
This implies that for every such x, pdα(h)fU (x)kaU (x) ∈ ΛÕL(G). But if x is a closed point of

SpecR[1/p] where AU [1/p] ⊗R[1/p] L is zero, then fU (x) = 0 and pdα(h)fU (x)kaU (x) ∈ ΛÕL(G). Thus,

for every point x′ ∈ Spf(ΛR(G))rig,

|pdα(h)a′U (x′)| = |pdα(h)fU (x′)kaU (x′)| ≤ 1

Now by Lemma 7.2 (and exhausting Spf(R)rig by affinoid subdomains)

|pdα(h)a′U (x′)| = |pdα(h)fU (x′)kaU (x′)| ≤ 1

for all points x ∈ Spf(ΛR̃(G))rig. Since R is assumed normal, Proposition [dJ95, Proposition 7.3.6]
implies that a′U ∈ ΛR̃,Qp

(G).

It remains to check that `(V )−1 detLGM,ξ|U [1/p] is an isomorphism, i.e., that aU has no zeroes. But by

construction, `(V )−1 detLGM,ξ|U [1/p] is compatible with specialization on R[1/p], so comparison with the
classical case shows that it cannot vanish. �

If U,U ′ ⊂ Spec ΛR̃(G) are open affine subspaces as above, then `(V )−1 detLGM,ξ|U and `(V )−1 detLGM,ξ|U ′
agree on U ∩ U ′, because they agree after extending scalars to KR̃(G).

lemma:affine-descent Lemma 7.8. Let U = SpecAU ⊂ Spec ΛR(G) be an open affine subspace where DetΛR(G) (RΓIw(K∞,M))

and DetΛR(G) (ΛR(G)⊗R Dcris(M)) are trivial. Then `(V )−1 detLGM,ξ can be defined over the pre-image

Ũ = SpecAŨ of U in Spec ΛR̃(G).

Proof. Choose bases of DetΛR(G) (RΓIw(K∞,M))
−1

and DetΛR(G) (ΛR(G)⊗R Dcris(M)) as in the proof
of the previous lemma; an isomorphism

DetAŨ [1/p]

(
AŨ [1/p]⊗ΛR(G) RΓIw(K∞,M)

)−1 ∼−→ DetAŨ [1/p]

(
AŨ [1/p]⊗R Dcris(M)

)
corresponds to multiplication by a unit of AŨ [1/p]. The support of H2

Iw(K∞,M) is a closed subscheme
V ⊂ U of codimension at least 2; for each open affine subspace U ′ = SpecAU ′ ⊂ U rV we obtain a unit
aU ′ ∈ AU ′ [1/p] by Lemma 7.7 and these units agree on overlaps. Therefore, the aU ′ glue to a section a′U
on all of (U r V )[1/p]. But Spec ΛR̃(G) is Cohen–Macaulay, so a′U extends to a section aU over all of
U [1/p].

It remains to check that aU ∈ AU [1/p]×. Let L/Qp be a finite extension with ring of integers OL,
and let x : R[1/p] → L be a closed point of SpecR[1/p] such that AU [1/p] ⊗R[1/p] L is non-zero. Then
we know that the image of aU in AU [1/p] ⊗R[1/p] L extends to a unit of ΛL̃(G) by the classical case,

since the formation of DetΛR(G) (RΓIw(K∞,M))
−1

commutes with specialization on R and Dcris(M)[1/p]
commutes with specialization on R[1/p]. Thus the claim follows from Lemma 7.14. �

It is again clear that if U,U ′ ⊂ Spec ΛR̃(G) are open affine subspaces as above, then `(V )−1 detLGM,ξ|U
and `(V )−1 detLGM,ξ|U ′ agree on U ∩ U ′. This proves Proposition 7.6.
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Remark 7.9. Although the proofs of Lemma 7.7 and Lemma 7.8 construct isomorphisms over affine
subspaces of ΛR(G)[1/p], we only claim to have descended `(M)−1LGM,ξ to ΛR̃(G)[1/p]. This is because

the proofs implicitly involved making a non-canonical choice of a generator of ΛZp(G)τp over ΛZp(G).

7.3. Definition of the epsilon-isomorphism. Recall from [LVZ15, §2.3,§2.4] that if V is a d-dimensional
L-linear crystalline representation of GQp , then the ε-factor of Dpst(V ) is 1. Further, multiplication

by t−m(V )ε(Dpst(V ), ξ) defines an isomorphism L̃ ⊗L DetL(DdR(V )) → L̃ ⊗L DetL V , where m(V ) =
r1 + . . .+rd is the sum of the opposites of the Hodge–Tate weights. This multiplication takes place inside
the canonical isomorphism BdR ⊗Qp DetL DdR(V )

∼−→ BdR ⊗Qp DetL V .

If M is a crystalline family of Galois representations over R, then DdR(M rig) and Dcris(M
rig) are

well-defined and the Hodge–Tate weights are locally constant on Spf(R)rig.

thm:Dcris-M Theorem 7.10. Let M be a crystalline family of Galois representations over R. Then there is a unique
isomorphism

εR̃,Qp,ξ,dR(M) : DetR̃[1/p](R̃[1/p]⊗R Dcris(M))
∼−→ DetR̃[1/p](R̃[1/p]⊗RM)

whose image under specialization x : R→ OL is the isomorphism defined above.

Remark 7.11. We cannot hope to construct εR̃,ξ,dR(M) such that its integral specializations agree with

the isomorphisms εOL,ξ,dR(M) constructed in [LVZ15], because M commutes with base change on R but
Dcris(M) does not.

Proof. By [Bel15, thm. 1.1.14] and Lemma A.6 there is a canonical isomorphism

canM : (Rrig ⊗̂
Qp

Bmax)⊗RrigDcris(M
rig) ∼= (Rrig ⊗̂

Qp

Bmax)⊗Rrig Γ(Spf(R)rig,M rig) = (Rrig ⊗̂
Qp

Bmax)⊗RM.

Both sides have natural R-linear structures, given by Dcris(M) and M , respectively. We wish to show

that the determinant of canM with respect to these R-modules is an element of tm(M)R̃[1/p]×. For this,
we work locally on SpecR[1/p] to trivialize M [1/p] and Dcris(M)[1/p] and show that for any R[1/p]-

bases of M [1/p] and of Dcris(M)[1/p], the matrix of canM has determinant in tm(M)R̃[1/p]× (viewed as
a subgroup of B×max).

In order to show this we follow the argument of [Ber04, Proposition V.1.2]. After twisting, we may
assume that M is positive.

By Corollary 4.13 and Proposition A.14, locally on SpecR[1/p] the determinant of the (injective)
map (B+

rig,Qp
⊗̂Rrig)⊗Rrig Dcris(M

rig)→ N(M)rig (with respect to any choice of bases) is an element of

(t/π)m(M)(R[1/p] ⊗̂B+
rig,F )× = (t/π)m(M)(R ⊗̂A+

Qp
)[1/p]×.

Next, we have an inclusion (R⊗̂A+) ⊗R⊗̂A+
Qp

N(M) ⊂ (R⊗̂A+) ⊗R M . Then Corollary 4.7 tells us

that after inverting p, locally on SpecR[1/p] the determinant of the inclusion is the ideal (πm(M)) ⊂
(R⊗̂A+)[1/p].

Extending scalars to Rrig ⊗̂Bmax and composing the two maps, we see that the determinant of the
canonical isomorphism canM is an element of tm(M)(R ⊗̂A+)[1/p]×. We wish to show that it actually

lives in tm(M)R̃[1/p]×.
Since the formation of Dcris(M

rig) is compatible with taking exterior powers, we may replace M with
det(M) and consider only families of characters over R. Furthermore, by twisting, we may assume that
M is unramified (so has Hodge–Tate weight 0), so that the determinant of canM is ϕ-invariant up to
a unit of R, and we may assume det(canM )) ∈ R ⊗̂A+. We consider the equation ϕ(det(canM )) =
r · det(canM ) modulo successive powers of mR. For each n, there is some s such that ϕs(det(canM )) =

det(canM ) modulo mnR; viewing this as an equation inside (R/mnR) ⊗Zp Ã+ implies that det(canM ) ∈
(R/mnR) ⊗̂W (Fps). Passing to the limit yields the desired result. �

def:epsilon Definition 7.12. We define

εΛR,Qp (G),ξ(M) : DetΛR̃,Qp (G)(0)
∼−→
[
DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗ΛR(G) RΓIw(K∞,M)
)] [

DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗RM
)]

to be the isomorphism given by

(−γ−1)d(−1)m(M) ·ΘΛR̃,Qp (G),ξ(M) · εR̃,Qp,ξ,dR(M),
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where we regard εR̃,Qp,ξ,dR(M) as an isomorphism

DetΛR̃,Qp (G)(ΛR̃,Qp
(G)⊗R Dcris(M))

∼−→ DetΛR̃,Qp (G)(ΛR̃,Qp
(G)⊗RM)

via base-extension.

thm:conclusion Theorem 7.13. There is an isomorphism of line bundles

εΛR(G),ξ(M) : DetΛR̃(G)(0)
∼−→
[
DetΛR̃(G)

(
ΛR̃(G)⊗ΛR(G) RΓIw(K∞,M)

)] [
DetΛR̃(G)

(
ΛR̃(G)⊗RM

)]
such that εΛR(G),ξ(M) agrees with εΛR,Qp (G),ξ(M) after inverting p. The specializations εΛR(G),ξ(M)⊗R
OL agree with the isomorphisms εΛOL (G),ξ(M⊗ROL) of [LVZ15] by construction.

Proof. There is some integer m such that pmεΛR,Qp (G),ξ(M) is a homomorphism of line bundles over

ΛR̃(G). But the construction of εΛR,Qp (G),ξ(M) is compatible with base change R[1/p] → L, and

εΛR,Qp (G),ξ(M) ⊗R OL is an isomorphism of line bundles over ΛÕL(G) by [LVZ15, Corollary 4.3.8].

This implies that m = 0 and εΛR,Qp (G),ξ(M) is an isomorphism of line bundles over ΛR̃(G). �
properties

7.4. Properties of the epsilon-isomorphism. In the following we are going to apply a principle of
specialization based on:

lemma:specialization Lemma 7.14. The canonical map

K1(ΛR̃)→
∏
R→O

K1(ΛÕ),

where R → O runs through all Zp-algebra homomorphisms with O the valuation ring of any finite
extension of Qp (and such that the image has the same quotient field as O) is injective.

Cp. also Corollary 7.22 below for a similar statement.

Proof. Since SK1(ΛR̃) = SK1(ΛÕ) = 1 the statement is equivalent to the injectivity of

Λ×
R̃
→

∏
R→O

Λ×
Õ
,

or - because
⋂
R→O

(
1 + ker

(
ΛR̃ → ΛÕ

))
= 1 +

⋂
R→O ker

(
ΛR̃ → ΛÕ

)
- to the injectivity of

f:specializationaddf:specializationadd (12) ΛR̃ →
∏
R→O

ΛÕ.

Since ΛR̃ is a product of rings of the type of R dealt with in Lemma 7.1 and as Λ̃R = ΛR̃, we obtain an

injective map ΛR̃ ↪→
∏
x Q̂nr

p ⊗̂Qp
Kx, where the closed points x corresponds to Zp-algebra homomor-

phisms ΛR → Kx (such that the image has quotient field Kx). One easily sees that this map factorises
as ∏

R→O
ΛÕ

$$
ΛR̃

??

� � //
∏
x

Q̂nr
p ⊗̂

Qp

Kx,

because each Zp-algebra homomorphisms ΛR → Kx factorizes as ΛR → ΛOx → Kx with the first map
being induced on the coefficients by a Zp-algebra homomorphisms R → Ox where Ox is the valuation
ring of Kx. The injectivity of (12), whence the claim, follows. �

We note for later use some properties of the isomorphisms εΛR(G),ξ(M):

prop:regulatorSEScompatible Proposition 7.15 (Compatibility with short exact sequences). Let

0 - M ′ - M - M ′′ - 0

be a short exact sequence of R-linear crystalline representations of GQp . Then

εΛR(G),ξ(M) = εΛR(G),ξ(M
′) · εΛR(G),ξ(M

′′).
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Proof. We first observe that the determinants[
DetΛR,Qp (G) (RΓIw(K∞,M))

]
·
[
DetΛR,Qp (G) (RΓIw(K∞,M

′))
]−1

·
[
DetΛR,Qp (G) (RΓIw(K∞,M

′′))
]−1

and[
DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗RM
)]
·
[
DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗RM ′
)]−1

·
[
DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗RM ′′
)]−1

·

have canonical trivializations, so their product (with scalars extended to ΛR̃,Qp
(G)) does, as well.

On the other hand, the product εΛR(G),ξ(M) · εΛR(G),ξ(M
′)−1 · εΛR(G),ξ(M

′′)−1 provides another
trivialization of the product of these determinants. But since

εΛR(G),ξ(O ⊗RM) = εΛR(G),ξ(O ⊗RM ′)εΛR(G),ξ(O ⊗RM ′′)

for every map R→ O where O is finite flat over Zp, the proposition follows. �

prop:regulatorbaseextension Proposition 7.16 (Change of coefficient ring). Let R′ be an R-algebra which is again a complete local
noetherian Zp-algebra which is Cohen–Macaulay, normal, and Zp-flat with finite residue field. Then

εΛR′ (G),ξ(R
′ ⊗RM) = R′ ⊗R εΛR′ (G),ξ(M).

Proof. Clear. �

The next compatibility property takes a little more notation to state. For brevity let us write Λ for
ΛR(G). For η a continuous R-valued character of G, we have a twisting homomorphism Twη : Λ → Λ
which maps a group element g ∈ G to η(g)g. Hence we obtain a pullback functor (Twη)∗ from the
category of Λ-modules to itself:

(Twη)∗M := Λ⊗Λ,Twη M.

This can also be described in terms of tensoring with the Λ-bimodule Λ⊗Λ,Twη Λ, which is free of rank
one as a Λ-module. Hence the twisting functor extends to a functor from the category Det(Λ) to itself,
and is compatible with the functor Det.

Note that we have an isomorphism

(Twη)∗(Λ⊗RM) ∼= Λ⊗RM(η−1), a⊗ b⊗ v 7→ aTwη(b)⊗ (v ⊗mη−1)

as (Λ, GQp
)-modules, if Λ acts on Λ⊗O T via left multiplication on the left factor, while g ∈ GQp

sends

λ⊗v to λḡ−1⊗gv where ḡ denotes the image of g in G (and analogously for the action on Λ⊗RM(η−1)).
Here mη−1 a (fixed) basis of M(η−1).

We clearly have (Twη)∗ ◦ (Twη−1)∗ = id. Similar definitions apply to other coefficient rings than
ΛO(G), including ΛL(G), HL(G) or ΛR̃(G).

Finally note that for a Λ-module M we have a canonical isomorphism

Λ⊗Λ,Twη−1 M = M⊗R Rmη, λ⊗m 7→ Twη(λ)m⊗mη,

of Λ-modules, where the Λ-module structure on the right hand side is induced by the diagonal action of
G upon it.

prop:twistinvariance Proposition 7.17 (Invariance under crystalline twists). If M ′ = M(η) for a crystalline character η
with values in R, then

Twη−1

(
εΛR(G),ξ(M)

) ∼= εΛR(G),ξ(M(η))

Proof. This again follows by noting that Twη−1

(
εΛR(G),ξ(M)

)
and εΛR(G),ξ(M(η)) both provide trivial-

izations of[
DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗ΛR(G) RΓIw(K∞,M(η))
)] [

DetΛR̃,Qp (G)

(
ΛR̃,Qp

(G)⊗RM(η)
)]

Since they agree after extending scalars along R→ O when O is finite flat over Zp, they are the same. �

We use these results to extend the definition of εΛR(G),ξ(M) to lattices M a crystalline family of
Galois representations with arbitrary (bounded) Hodge-Tate weights, by tensoring the corresponding
maps for M(j) with R(−j), where j � 0 is such that M(j) has non-negative Hodge–Tate weights.
Clearly, εΛR(G),ξ(M) is again compatible with specializations in R.
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7.5. Epsilon-isomorphisms for more general modules. As before we let L denote a finite extension
of Qp. We recall the following definition from [FK06, §1.4].

Definition 7.18. A ring A is of

(type 1): if there exists a two sided ideal I of A such that A/In is finite of order a power of p for any
n ≥ 1, and such that A ∼= lim←−nA/I

n.

(type 2): if A is the matrix-algebra Mn(E) of some finite extension E over Qp and some dimension
n ≥ 1.

By Lemma 1.4.4 in (loc. cit.), A is of type 1 if and only if the defining condition above holds with I
equal to the Jacobson ideal J = J(A). Such rings are always semi-local and A/J is a finite product of
matrix algebras over finite fields. For a ring A of type (1) or (2) we define

Ã := Ẑnr
p ⊗̂

Zp
A

where Ẑnr
p denotes the completion of the ring of integers of the maximal unramified extension of Qp.

Now let M be a crystalline family of representation of GQp
with coefficients in R. We set T(M) :=

ΛR(G) ⊗R M , which we consider as Λ(G)-module by multiplication on the left tensor factor and as
GQp -module via g(λ ⊗ t) = λḡ−1 ⊗ gt. The following isomorphism (essentially a version of Shapiro’s
lemma) is well known:

Proposition 7.19. We have

RΓ(Qp,T(M)) ∼= RΓIw(K∞,M)

as Λ(G)-modules.

Proof. See e.g. [Nek06, 8.4.4.2 Proposition]. �

Let Λ = ΛR(G), which is a ring of type 1, with Λ̃ = ΛR̃(G). Then we have constructed an isomorphism

εΛ,ξ(M) : DetΛ̃(0)
∼=- Λ̃⊗Λ {DetΛRΓ(Qp,T(M)) ·DetΛ T(M)} .

We shall establish that this satisfies the properties predicted by [FK06, Conjecture 3.4.3] for the module
T(M). For that purpose it is convenient to write also εΛ,ξ(T(M)) for the above ε-isomorphism, and to
extend it to a slightly more general class of modules.

We consider quadruples (A, Y,M, ξ) where

• A is a p-torsion-free R-algebra which is also a ring of type (1) or (2) above,
• ξ is a compatible system of pn-th roots of unity (as before),
• M is a crystalline family of representation of GQp with coefficients in R,
• Y is a finitely-generated projective left A-module, equipped with a continuous A-linear action of
G.

Given such a quadruple, we define T = Y ⊗R M , which we equip with the obvious left A-module
structure and an action of GQp

via g · (y ⊗ t) = yḡ−1 ⊗ gt. Then (A,T, ξ) is a triple satisfying the
conditions of [FK06, §3.4.1]. Moreover, the action of G on Y extends to a Λ-module structure, and we
have

T = Y ⊗Λ T(M)

where T(M) is as above. So we may define

εA,ξ(T) := Y ⊗Λ εΛ,ξ(T(M)),

which is an isomorphism

DetÃ(0)
∼−→ Ã⊗A {DetARΓ(Qp,T) ·DetA T} ;

here we have used the fact that

Y ⊗L
Λ RΓ(Qp,T(M)) ∼= RΓ(Qp, Y ⊗Λ T(M))

by [FK06, 1.6.5].

Remark 7.20. Note that A need not be commutative, and Y need not be either projective or finitely-
generated as a Λ-module.
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prop:compat2 Proposition 7.21. Suppose A = OE for some finite extension E/Qp, and the finite-dimensional E-
vector space E ⊗A Y is de Rham as a representation of G. Then E ⊗OE T is also de Rham, and
E ⊗OE εA,ξ(T) coincides with the canonical isomorphism εE,ξ(E ⊗OE T) of [LVZ15, §2.4], the ’standard
trivialisation’.

Proof. We may assume that E is sufficiently large that all the Jordan–Hölder constituents of E⊗A Y are
one-dimensional. By the compatibility with short exact sequences, it suffices to assume E ⊗A Y is itself
one-dimensional, so E ⊗A Y = E(η) for a de Rham character η of G. Moreover the R-algebra structure
of A provides a homomorphism R→ OE , whence ΛR → ΛOE , such that

E ⊗OE εA,ξ(T) = E ⊗OE Y ⊗ΛR εΛR,ξ(T(M))
∼= E ⊗OE Y ⊗ΛOE

ΛOE ⊗ΛR εΛR,ξ(T(M))

∼= E ⊗OE Y ⊗ΛOE
εΛOE ,ξ

(ΛOE ⊗ΛR T(M))

∼= E ⊗OE Y ⊗ΛOE
εΛOE ,ξ

(T(OE ⊗RM))

∼= E ⊗OE εA,ξ(T)
∼= εE,ξ(E ⊗OE T).

Here the first identity is the definition of εA,ξ(T), the second comes from the fact that ΛR → OE
factors through ΛR → ΛOE , the third is the compatibility from Theorem 7.13 (and its extension to
arbitrary crystalline families after Proposition 7.17) of εΛR,ξ(T(M)) with respect to specialization in R,
the fourth follows from the functoriality of the definition of T(M), while the fifth uses the definition of
εA,ξ(T) and the fact that

T = Y ⊗ΛR T(M) ∼= Y ⊗ΛOE
T(OE ⊗RM).

Finally, the last identification is just [LVZ15, Prop. 4.6.4]. �

cor:injectivityOfSpecializations Corollary 7.22. Suppose that the pair (A,T) satisfies the following condition:

• if ΦT is the set of all R-algebra homomorphisms ρ : A→Mn(E) (where E/L is a finite extension
and n an integer, both depending on ρ) such that En ⊗A,ρ T is de Rham, then

K1(A)→
∏
ρ∈ΦT

E×

is injective.

Then εA,ξ(T) depends only on ξ and on the isomorphism class of T as an A[GQp ]-module.

Proof. Clear from the preceding proposition, since the isomorphism εA,ξ(T) must be consistent with the
de Rham ε-isomorphisms εE,ξ(E

n ⊗A,ρ T), which are uniquely determined by (A,T, ξ). �

Remark 7.23. We suspect that the uniqueness statement of the corollary is true for arbitrary type
1 R-algebras A, but this is much more difficult to prove in general. For instance, if M1,M2 are two
crystalline families of representations over R such that M1/p

n ∼= M2/p
n for some n ≥ 1, then on taking

A = R/pn this would imply that the ε-isomorphisms for M1 and M2 are congruent modulo pn. This
should certainly be true, and actually one motivation for this paper is to show it at least for R = OE
with E any finite extension of Qp, see section 8 below.

We shall now show that the association (A, Y,M, ξ) → εA,ξ(T) satisfies properties corresponding to
conditions (i)—(iv) and (vi) of [FK06, Conjecture 3.4.3].

Property (i) (additivity). The first condition of op.cit. states that for any three triples (A,Ti, ξ), i =
1, 2, 3, with common A and ξ, and an exact sequence

0 - T1
- T2

- T3
- 0,

we have
εA,ξ(T2) = εA,ξ(T1)εA,ξ(T3).

By assumption our Ti are of the form Yi ⊗Mi, for crystalline R-representations Mi and A-modules Yi
with G-action. We shall consider only the cases when the exact sequence arises from an exact sequence
of Yi’s with a common M , or an exact sequence of Mi’s with a common Y . The first case is obvious from
the construction of εA,ξ(−). The latter case follows from the additivity of the standard trivialisation (see
[LVZ15, Prop. 2.4.3]) or from the additivity statement (property (i) in §4.6 in (loc. cit.)).
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Property (ii) (base change). The second condition is a compatibility with base-change in A; this is
immediate from our construction.

Property (iii) (change of ξ). Let c ∈ Z×p , and let γc be any element of GQp acting trivially on Qnr
p and

such that χ(γc) = c. Then we must show that

εA,cξ(T) = [M,γc]εA,ξ(T),

where [M,γc] is the class in K1(A) of the A-linear automorphism of T given by γc. (This is well-defined,
as γc is uniquely determined up to conjugation in GQp

.) It suffices to check this when A = Λ and
T = T(M); but this is immediate from the corresponding property of the specializations (property (iii)
in §4.6 in (loc. cit.)).

Property (iv) (Galois equivariance). Let ϕ denote the arithmetic Frobenius automorphism of Ẑnrp . Then
we must show that

εA,ξ(T) ∈ Isom (DetA(0),DetARΓ(Qp,T) ·DetA T)×K1(A)
{
x ∈ K1(Ã) : ϕ(x) = [T, σp]

−1x
}

where σp is the arithmetic Frobenius element of Gal(Qab
p /Qp,∞). Again, it suffices to assume (A,T) =

(Λ,T(M)) and the result is now clear from the Galois-equivariance properties of the specializations
(property (iv) in §4.6 in (loc. cit.)).

Property (v) (compatibility with de Rham ε-isomorphisms). If A is the ring of integers of a finite extension
F/L, and F ⊗AT is de Rham, we must check that εA,ξ(T) is consistent with the standard trivialisation.
This is exactly Proposition 7.21 above.

Property (vi) (local duality). Let T be a free A-module with compatible GQp -action as above. Then

T∗ := HomA(T, A)

is a free A◦-module – for the action h 7→ h(−)r, r in the opposite ring A◦ of A – with compatible GQp -

action given by h 7→ h◦σ−1. Recall that in Iwasawa theory we have the canonical involution ι : Λ◦ → Λ,
induced by g 7→ g−1, which allows to consider (left) Λ◦-modules again as (left) Λ-modules, e.g. one has
T∗(M)ι ∼= T(M∗) as (Λ, GQp

)-module, where M ι := Λ⊗ι,Λ◦ M denotes the Λ-module with underlying

abelian group M, but on which g ∈ G acts as g−1 for any Λ◦-module M .
Given εA◦,−ξ(T

∗(1)) we may apply the dualising functor −∗ to obtain an isomorphism

εA◦,−ξ(T
∗(1))∗ : (DetA◦(RΓ(Qp,T

∗(1)))
Ã◦

)∗(DetA◦(T
∗(1))

Ã◦
)∗ → 1

Ã◦
,

while the local Tate duality isomorphism [FK06, §1.6.12]

ψ(T) : RΓ(Qp,T) ∼= RHomA◦(RΓ(Qp,T
∗(1)), A◦)[−2]

induces an isomorphism

DetA(ψ(T))Ã
−1

:
(
(DetA◦(RΓ(Qp,T

∗(1)))
Ã◦

)∗
)−1 ∼=

DetA(RHomA◦(RΓ(Qp,T
∗(1)), A◦))−1

Ã
→ DetA(RΓ(Qp,T))−1

Ã
.

Here, for a map f : A → B in Det(A), we write f : B → A for its inverse with respect to composition,
while f−1 =: idB−1 ·f · idA−1 : A−1 → B−1 for its inverse with respect to the multiplication in Det(A),
i.e., f · f−1 = idDetA(0).

Consider the product

εA,ξ(T) · εA◦,−ξ(T∗(1))∗ ·DetA(ψ(T))Ã
−1

: DetA(T(−1))Ã
∼= DetA(T∗(1)∗)Ã → DetA(T)Ã

and the isomorphism T(−1)
·ξ // T which sends t⊗ ξ⊗−1 to t.

duality Proposition 7.24 (Duality). Let T be as above such that T ∼= Y ⊗Λ T(M) for some (A,Λ)-bimodule
Y , which is projective as A-module. Then

εA,ξ(T) · εA◦,−ξ(T∗(1))∗ ·DetA(ψ(T))Ã
−1

= DetA

(
T(−1)

·ξ // T

)
Ã

.
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Proof. First note that the statement is stable under applying Y ′ ⊗A −, for some (A′, A)-bimodule Y ′

which is projective as a A′-module, by the functoriality of local Tate duality and the lemma below. Thus
we are reduced to the case (A,T) = (Λ,T(M)) where M is a crystalline family of representation of
GQp

with coefficients in R. Thus the claim follows again by specialisation and (property (vi) in §4.6 in
(loc. cit.)) using Lemma 7.14.

�

Lemma 7.25. Let Y be a (A′, A)-bimodule such that Y ⊗A T ∼= T′ as (A′, GQp
)-module and let Y ∗ =

HomA′(Y,A
′) the induced (A′◦, A◦)-bimodule. Then there is a natural

(1) equivalence of functors

Y ⊗A HomA◦(−, A◦) ∼= HomA′◦(Y
∗ ⊗A◦ −, A′◦)

on P (A◦);
(2) isomorphism Y ∗ ⊗A◦ T∗ ∼= (T′)∗ of (A′◦, GQp)-modules.

Proof. This is easily checked using the adjointness of Hom and ⊗. �

8. Application to deformation rings
sec:deformation

Consider the following situation: For i = 1, 2 let Ti be a crystalline GF -representation over O with
Hodge-Tate weights in [a, b] (with integers a, b), such that there exist some n0 ≥ 1 such that

T1/$
nT1
∼= T2/$

nT2 =: T(n)

for n0 ≥ n ≥ 1. Now let R
�,cris,[a,b]
T(1)

be universal framed deformation ring together with the universal GF -

representation T
�,cris,[a,b]
T(1)

parameterising crystalline lifts T of T(1) over O-algebras R with Hodge-Tate

weights in [a, b].

Proposition 8.1. If R
�,cris,[a,b]
T(1)

is a Zp-flat, normal, Cohen-Macaulay ring such that R
�,cris,[a,b]
T(1)

[ 1
p ] is

reduced, then, for all n0 ≥ n ≥ 0, we have

O/$nO ⊗O εO,ξ(T1) = O/$nO ⊗O εO,ξ(T2).

In particular, this allows us to define εp,O/$nO(T(n)).

Proof. Since Ti and T(n) are lifts of T(1), for i = 1, 2, they corresponds to O-algebra homomorphisms

πi : R
�,cris,[a,b]
T(1)

→ O and π(n) : R
�,cris,[a,b]
T(1)

→ O/$nO, respectively, giving rise to a commutative diagram

for each i

R
�,cris,[a,b]
T(1)

π(n)
%%

πi // O

pr

��
O/$nO.

Thus we obtain for i = 1, 2

O/$nO ⊗O εO,ξ(Ti) = O/$nO ⊗O
(
O ⊗

R
�,cris,[a,b]
T(1),πi

ε
R

�,cris,[a,b]
T(1)

,ξ
(T

�,cris,[a,b]
T(1)

)

)
= O/$nO ⊗

R
�,cris,[a,b]
T(1),π(n)

ε
R

�,cris,[a,b]
T(1)

,ξ
(T

�,cris,[a,b]
T(1)

),

whence the claim. �

Remark 8.2. (1) It follows from [CHT08, §2.4] that R
�,cris,[a,b]
T(1)

satisfies the conditions of the propo-

sition, if b− a < p− 1. Indeed, in that case it is isomorphic to a power series ring over O.
(2) A similar statement holds also for εΛO,ξ(T(Ti)), of course.
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9. Relation to Nakamura’s work
sec:nakamura

Let M be a crystalline family of representations of GQp
with coefficients in R and let T(M) :=

ΛR(Γ) ⊗R M , with GQp
action given by g(x ⊗ y) := g(x) ⊗ [g]−1y. Then the generic fiber M rig is a

family of Galois representations over Y := Spf(R)rig, and by [KL10, Thm. 3.11] there is a (ϕ,Γ)-module
Drig(M rig) over the relative Robba ring RY attached to M rig. We also define its universal cyclotomic

deformationM := Drig(M rig) ⊗̂Rrig ΛR(Γ)rig, where ϕ is taken to act trivially on ΛR(Γ)rig and Γ acts via
γ(d⊗x) = γ(d)⊗[γ]−1x. Since M rig is a crystalline family, it is trianguline after making a finite extension
of R, soM is trianguline as well; let F denote a triangulation ofM. In this situation, Nakamura [Nak13,
Cor. 3.12] has constructed an ε-isomorphism

(13) εNF,HR(Γ),ξ(M) : DetHR(Γ)(0)
∼−→ ∆ΛR(Γ)rig(M)

where ∆ΛR(Γ)rig(M) is a (graded) invertible Spf(ΛR(Γ))rig-module such that

f:Deltaf:Delta (14) HR̃(Γ)⊗HR(Γ) (∆ΛR(Γ)rig(M)) ∼= HR̃(Γ)⊗ΛR(Γ)

{
DetΛR(Γ)RΓ(Qp,T(M)) ·DetΛR(Γ) T(M)

}
by Cor. 3.2 in (loc. cit.).

cor:nakamura Corollary 9.1. Under the isomorphism (14) we have

HR̃(Γ)⊗ΛR̃(G) εΛR(G),ξ(M) = HR̃(Γ)⊗HR(Γ) ε
N
F,HR(Γ),ξ(M).

In particular, the isomorphism εNF,HR(Γ),ξ(M) does not depend on the choice of F .

Proof. Recall that Spf(ΛR̃(Γ))rig ∼−→ Spf(R̃)rig×Spf(Λ
Z̃p

(Γ))rig, so that a point of Spf(ΛR̃(Γ))rig is a pair

(x, η), where x ∈ Spf(R̃)rig and η corresponds to a character G→ Q̂nr
p

×
(which we also write η). If (x, η)

lies over a point (x′, η′) ∈ Spf(ΛR(Γ))rig and η′ is a de Rham character, we can compute the specializations

of both sides at (x, η). Indeed, both sides specialize to Q̂nr
p ⊗Qp

εκ(x′),ξ(M ⊗R κ(x′)◦)[1/p](η′−1), that is,

the base-change to κ̃(x′) of Fukaya–Kato’s ε-isomorphism for de Rham representations.
Points of Spf(ΛZp(Γ))rig corresponding to de Rham characters are Zariski dense in the rigid analytic

space. Combined with Lemma 7.1, we conclude that the two maps agree. �

Appendix A. Generic fibers
sec:app1

A.1. Quasi-Stein spaces.

Definition A.1. A rigid analytic space Y over K is said to be quasi-Stein if it admits an admissi-
ble covering by a rising union of affinoid subdomains Y0 ⊂ Y1 ⊂ · · · such that the transition maps
Γ(Ym+1,OYm+1

)→ Γ(Ym,OYm) are flat with dense image.

Example A.2. Fix s > 0, and let X be the coordinate on the closed unit disk. Then the half-
open annulus 0 < vp(X) ≤ 1/s is a quasi-Stein space, as it is the rising union of the closed annuli
1/s′ ≤ vp(X) ≤ 1/s as s′ →∞.

By Kiehl’s results on coherent sheaves on rigid analytic spaces, a coherent sheaf F on Y is simply a
compatible system of coherent sheaves {Fm} on {Ym}.

Quasi-Stein spaces behave much as affine schemes do in algebraic geometry. In particular, Kiehl
proved the following theorem on the cohomology of coherent sheaves on quasi-Stein spaces.

kiehl Theorem A.3 ([Kie67, Satz 2.4]). Let Y be a quasi-Stein space, and let F be a coherent sheaf on Y .
Then

(1) Hi(Y,F ) = 0 for i > 0,
(2) the image of F (Y ) in F (Ym) is dense for all m,
(3) for every point y ∈ Y , the image of F (Y ) in Fy generates Fy.

In particular, A∞ := Γ(Y,OY ) = lim←−m Γ(Ym,OYm) is a Fréchet-Stein algebra and F∞ := Γ(Y,F ) =

lim←−m Γ(Ym,Fm) is a coadmissible module over A∞, in the sense of [ST03]. By [ST03, §3], the natural

morphisms F∞ → Γ(Ym,Fm) have dense image, and Ri lim←−m Γ(Ym,Fm) = 0 for i > 0.

There is no a priori reason for F∞ to be a finite module overA∞. For example, letXm = Sp(
∏n
i=0 Qp(ζpi)),

where Sp(A) denotes the affinoid space associated to A, and let Fm be the sheaf on Ym associated to
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i=0 Qp(ζpi)

⊕i. Then F∞ is not A∞-finite, because the fiber of F∞ at Sp(Qp(ζpn)) is a Qp(ζpn)-vector
space of dimension n. Happily, this is the only thing that can go wrong.

fibral-ranks Lemma A.4 ([Bel15, Lemma 2.4.4]). Let F be a coherent sheaf over a finite-dimensional quasi-Stein
space Y over E. Then H0(Y,F ) is finitely generated as an H0(Y,OY )-module if and only if there is some
integer d such that dimκ(y) F (y) ≤ d for all y ∈ Y .

flat-fibral-ranks Corollary A.5 ([Bel15, Corollary 2.4.5]). Suppose that F is flat over OY , where Y is a finite-dimensional
quasi-Stein space. Then H0(Y,F ) is projective of rank d over H0(Y,OY ) if and only if dimκ(y) F (y) = d
for all y ∈ Y .

An important family of examples of quasi-Stein spaces are those arising as the generic fibers of affine
formal schemes of the form Spf(R) with R = O〈Y1, . . . , Yd1〉[[X1, . . . , Xd2 ]]/I. Recall that this is a
construction due to Berthelot (and exposited in [dJ95, §7]). Briefly, we construct the generic fiber
Spf(R)rig of Spf(R) by giving a cover, as follows: If J is an ideal of definition of R, then for each
m ≥ 0, we consider the $-adic completion Rm of R[Jm/$] inside R[1/p]. It turns out that Rm[1/p] is
K-affinoid and {Sp(Rm[1/p])} is a rising union, with Sp(Rm[1/p]) identified with an affinoid subdomain
of Sp(Rm+1[1/p]). The global sections of the structure sheaf on Spf(R)rig will be the ring Rrig :=
lim←−mRm[1/p]. In general, Rrig will be non-Noetherian (unless d2 = 0).

If R is a formal power series ring, this construction corresponds to exhausting the open unit polydisk
by closed balls of radius |$|1/m.

There is a canonical homomorphism R → Rrig, and it follows from [dJ95, Lemma 7.1.9] that this
map is flat. More precisely, maximal ideals of R[1/p] are in bijection with points of Spf(R)rig, and
the canonical homomorphism induces isomorphisms on complete local rings. Thus, R[1/p] → Rrig is
faithfully flat.

Given a finite R-module M , we can construct a coherent sheaf M rig on Spf(R)rig. Explicitly,

M rig
Sp(Rm[1/p]) := M ⊗R Rm[1/p] (in fact, since the homomorphisms R→ Rm[1/p] factor through R[1/p],

we can construct a coherent sheaf on Spf(R)rig from any finite R[1/p]-module). This is sufficient to
define M rig on any admissible open subset of Spf(R)rig. Moreover, the global sections of M rig behave
exactly as we would hope:

lemma:rig Lemma A.6. Γ(Spf(R)rig,M rig) = M ⊗R Rrig.

Proof. We have a natural homomorphism M ⊗R Rrig → lim←−m(M ⊗R Rm[1/p]), and we need to show it

is an isomorphism. This is clear if M is finite free. Next, we check that if R⊕n1 �M finitely presented,

(Rrig)
⊕n1 � Γ(Spf(R)rig,M rig).

So suppose we have an exact sequence

0→ K1 → R⊕n1 →M → 0

for some R-finite module K. Since R→ Rm[1/p] is flat, for each m we have an exact sequence

0→ K1 ⊗R Rm[1/p]→ (Rm[1/p])⊕n1 →M ⊗R Rm[1/p]→ 0

But then R1 lim←−m(K1 ⊗R Rm[1/p]) = 0, so (Rrig)
⊕n1 � Γ(Spf(R)rig,M rig).

Now we choose a presentation of K1, yielding an exact sequence

0→ K2 → R⊕n2 → K1 → 0

The same argument as above, applied to K1, shows that

0→ lim←−
m

K2 ⊗R Rm[1/p]→ (Rrig)
⊕n2 → lim←−

m

K1 ⊗R Rm[1/p]→ 0

remains exact.
In particular, we have an commutative diagram with exact rows

(Rrig)
⊕n2 //

��

(Rrig)
⊕n1 //

��

M ⊗R Rrig //

��

0

(Rrig)
⊕n2 // (Rrig)

⊕n1 // Γ(Spf(R)rig,M rig) // 0

The two left vertical arrows are isomorphisms, so it follows that M ⊗R Rrig ∼−→ Γ(Spf(R)rig,M rig). �
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Now we restrict to the case when R = O[[X1, . . . , Xd]], so that Rrig is the ring of analytic functions on
the open unit d-dimensional polydisk.

Definition A.7. For 0 < ρ < 1, the ρ-Gauss norm on Rrig is defined by ‖
∑
I∈Z⊕d≥0

aIX
I‖ρ = supI |aI |ρ|I|.

It turns out that ‖f‖ρ = supx∈B[0,ρ]|f(x)| where the supremum is taken over points x ∈ K⊕d with

|x| ≤ ρ, and the supremum is actually attained at some point. Moreover, the ρ-Gauss norms are
multiplicative, i.e., ‖f1f2‖ρ = ‖f1‖ρ = ‖f2‖ρ. This is a special property of polydisks; in general the sup
norm on an affinoid is only submultiplicative.

bdd-fncns Lemma A.8. Suppose f ∈ Rrig and there is a constant C such that |f(x)| ≤ C for all x ∈ (K)⊕d with
|x| < 1. Then f ∈ R[1/p].

Proof. If |f(x)| is bounded by C on the open polydisk, then ‖f‖ρ ≤ C for all ρ < 1. Then

‖plogp Cf‖ρ = sup
I
{C−1|aI |ρ|I| ≤ 1

It follows that |plogp CaI |ρ|I| ≤ 1 for all I and all ρ < 1, and therefore |plogp CaI | ≤ 1 for all I. Therefore,
plogp Cf ∈ R. �

Although Rrig is much bigger than R[1/p], we can exploit the multiplicativity of the ρ-Gauss norms
to prove that the units of the two rings are the same:

units Proposition A.9. (Rrig)
×

= (R[1/p])×

Proof. We need to show that if f ∈ (Rrig)
×

, then f is bounded. So suppose f is invertible on Spf(R)rig,
and consider a sequence of closed balls with rational radii exhausting Spf(R)rig, i.e., their radii form a
sequence {ρi}i≥1 of rational numbers which is strictly increasing and goes to 1. Let ci := ‖f‖ρi , so that
ci is the maximum of |f(x)| on the closed ball of radius ρi centered at the origin.

Since f is assumed invertible and ff−1 = 1, multiplicativity of the ρ-Gauss norm implies that
‖f−1‖ρi = 1/ci. But if i < j, then ρi < ρj so

1/ci = ‖f−1‖ρi ≤ ‖f−1‖ρj = 1/cj

This implies cj ≤ ci. In particular, cj ≤ c1 for all j and so f ∈ R[1/p] by Lemma A.8. �

In fact, we can prove more.

localize-units Proposition A.10. Suppose f, f ′ ∈ Rrig and 0 6= ff ′ = g ∈ R[1/p]. Then f, f ′ ∈ R[1/p].

Proof. We may assume that g ∈ R, so that |g(x)| ≤ 1 for every closed point x ∈ SpecR[1/p]; let C :=

supx∈B[0,1)|g(x)|, where the supremum is taken over points x ∈ K⊕d with |x| < 1. Let 0 < ρ < ρ′ < 1
be rational numbers.

Let c := ‖f‖ρ, so that c is the maximum of |f(x)| on the closed ball of radius ρ centered at the
origin, and let c′ := ‖f‖ρ′ . Then multiplicativity of the ρ-Gauss norm implies that ‖f ′‖ρ = ‖g‖ρ/c and
‖f ′‖ρ′ = ‖g‖ρ′/c′. But ρ < ρ′ so

‖g‖ρ/c = ‖f ′‖ρ ≤ ‖f ′‖ρ′ = ‖g‖ρ′/c′

This implies that
c′ ≤ (‖g‖ρ′/‖g‖ρ)c ≤ (C/‖g‖ρ)c

This holds for every ρ′ > ρ, so f ∈ R[1/p] by Lemma A.8. �
subsect:partial-gen-fib

A.2. Partial generic fibers. Given two complete local noetherian O-algebras R1 and R2, we wish to
define a ring of functions on the rigid analytic space Spf(R1⊗̂R2)rig = Spf(R1)rig×Spf(R2)rig consisting
of those functions which are “bounded along Spf(R2)rig”, but not necessarily “along Spf(R1)rig”. By
way of contrast, (R1⊗̂R2)[1/p] roughly consists of bounded functions, whereas the ring of all analytic
functions on Spf(R1⊗̂R2)rig imposes no boundedness conditions.

Definition A.11. If I1 ⊂ R1 is the biggest ideal of definition of R1, recall that we defined R1,m to be

the $-adic completion of R1[Im/$] inside R1[1/p]. If R1,m⊗̂R2 is the completed tensor product with
respect to the profinite topology on R2, we define

Rrig
1 ⊗̂R2[1/p] := lim←−

m

(
R1,m⊗̂R2[1/p]

)
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We will actually only need this construction when R1 = O[[X1, . . . , Xk]], so we work out a more
concrete description of O[[X]]rig⊗̂R.

prop:partial-gen-fiber-desc Proposition A.12. The ring O[[X]]rig⊗̂R[1/p] defined above is equal to the ring

{
∑

n∈Z⊕k≥0

rnX
n | rn ∈ R[1/p] and for all ρ ∈ Q⊕k>0 , $

nρrn ∈ R for n� 0}

as subrings of the ring of analytic functions on the generic fiber Spf(R[[X]])rig.

Proof. Both rings are subrings of the ring of functions on Spf(R[[X]])rig; every such function f has a
unique representative of the form f =

∑
n∈Z⊕k≥0

rnX
n, where rn ∈ Rrig and for every k-tuple of positive

rational numbers ρ, $nρrn → 0 in Rrig.
Suppose that f =

∑
n∈Z⊕k≥0

rnX
n, where rn ∈ R[1/p] and for every k-tuple of positive rational numbers

ρ, $nρrn ∈ R for sufficiently large n. Taking ρ = (1/2s, . . . , 1/2s) for s ∈ Z>0, our assumption implies

that f ∈ (O〈X, X
s

$ 〉⊗̂R)[1/p]. Since this holds for every such s, we see that f ∈ O[[X]]rig⊗̂R[1/p].

On the other hand, if f ∈
(
O〈X, X

s

$ 〉⊗̂R
)

[1/p], there is some k ∈ Z such that pkf ∈ O〈X, X
s

$ 〉⊗̂R.

This implies that $k+n/srn ∈ R for all n, which implies that for n ≥ ks, $2n/srn ∈ R. Thus, if

f ∈ O[[X]]rig⊗̂R[1/p], the coefficients satisfy the desired growth condition. �

Remark A.13. This alternate characterization of O[[X]]rig⊗̂R[1/p] makes it clear that if m ⊂ R[1/p] is
a maximal ideal, then O[[X]]rig⊗̂(R[1/p]/m) ∼= (O[[X]]rig⊗̂R[1/p])/m.

partial-localize-units Proposition A.14. Suppose that R is normal and R[1/p] is reduced. If f, f ′ ∈ R[1/p] ⊗̂O[[X]]rig satisfy
ff ′ = g ∈ R[1/p] and g is not identically zero on any irreducible component of SpecR[1/p], then
f, f ′ ∈ (R ⊗̂O[[X]])[1/p].

Proof. We may assume that g ∈ R, so that |g(x)| ≤ 1 for every closed point x ∈ SpecR[1/p]. For a
closed point x ∈ SpecR[1/p] and a rational number 0 < ρ < 1, let ‖f‖x,ρ denote the supremum of |f | on
the subset {x} × B[0, ρ] ⊂ MaxSpecR[1/p]× (Spf O[[X]])rig. Let ‖f‖ρ denote the supremum of |f | over
all of MaxSpecR[1/p]×B[0, ρ].

If x ∈ SpecR[1/p] is a closed point such that g(x) 6= 0, then the proof of Proposition A.9 shows that
for every pair of rational numbers 0 < ρ < ρ′ < 1,

‖f‖x,ρ′ ≤ ‖f‖x,ρ ≤ ‖f‖ρ

Thus, f is bounded on the complement of the zero locus of g; suppose |f(x)| ≤ C for all x ∈ SpecR[1/p, 1/g]×
(Spf O[[X]])rig.

Now let x ∈ SpecR[1/p] be a closed point with g(x) = 0, and let {xi}i be a sequence of closed points
of SpecR[1/p, 1/g] converging to x. Then for any x′ ∈ Spf O[[X]]rig, we have shown that |f(xi, x

′)| ≤ C.
But this implies that |f(x, x′)| ≤ C, so ‖f‖ρ ≤ C for all ρ < 1 and we are done. �

Appendix B. Determinant functors
determinants

In this appendix we recall some details of the formalism of determinant functors introduced by Fukaya
and Kato in [FK06], see also [Del87].

We fix an associative unital noetherian ring R. We write B(R) for the category of bounded com-
plexes of (left) R-modules, C(R) for the category of bounded complexes of finitely generated (left)
R-modules, P (R) for the category of finitely generated projective (left) R-modules, Cp(R) for the cate-
gory of bounded (cohomological) complexes of finitely generated projective (left) R-modules. By Dp(R)
we denote the category of perfect complexes as full triangulated subcategory of the derived category
Db(R) of B(R). We write (Cp(R), quasi) and (Dp(R), is) for the subcategory of quasi-isomorphisms of
Cp(R) and isomorphisms of Dp(R), respectively.

For each complex C = (C•, d•C) and each integer r we define the r-fold shift C[r] of C by setting

C[r]i = Ci+r and diC[r] = (−1)rdi+rC for each integer i.

We first recall that there exists a Picard category CR and a determinant functor DetR : (Cp(R), quasi)→
CR with the following properties (for objects C,C ′ and C ′′ of Cp(R))
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B.a) CR has an associative and commutative product structure (M,N) 7→ M · N (which we often
write more simply as MN) with canonical unit object 1R = DetR(0). If P is any object of
P (R), then in CR the object DetR(P ) has a canonical inverse DetR(P )−1. Every object of CR
is of the form DetR(P ) ·DetR(Q)−1 for suitable objects P and Q of P (R).

B.b) All morphisms in CR are isomorphisms and elements of the form DetR(P ) and DetR(Q) are
isomorphic in CR if and only if P and Q correspond to the same element of the Grothendieck
group K0(R). There is a natural identification AutCR(1R) ∼= K1(R) and if MorCR(M,N) is
non-empty, then it is a K1(R)-torsor where each element α of K1(R) ∼= AutCR(1R) acts on

φ ∈ MorCR(M,N) to give αφ : M = 1R ·M
α·φ−−→ 1R ·N = N .

B.c) DetR preserves the product structure: specifically, for each P and Q in P (R) one has DetR(P⊕
Q) = DetR(P ) ·DetR(Q).

B.d) If C ′ → C → C ′′ is a short exact sequence of complexes, then there is a canonical isomorphism
DetR(C) ∼= DetR(C ′) DetR(C ′′) in CR (which we usually take to be an identification).

B.e) If C is acyclic, then the quasi-isomorphism 0 → C induces a canonical isomorphism 1R →
DetR(C).

B.f) For any integer r one has DetR(C[r]) = DetR(C)(−1)r .
B.g) the functor DetR factorises over the image of Cp(R) in Dp(R) and extends (uniquely up to

unique isomorphisms) to (Dp(R), is). Moreover, if R is regular, also property B.d) extends to
all distinguished triangles.

B.h) B.h) For each C in Db(R) we write H(C) for the complex which has H(C)i = Hi(C) in each degree
i and in which all differentials are 0. If H(C) belongs to Dp(R) (in which case one says that
C is cohomologically perfect), then C belongs to Dp(R) and there are canonical isomorphisms

DetR(C) ∼= DetR(H(C)) ∼=
∏
i∈Z

DetR(Hi(C))(−1)i .

(For an explicit description of the first isomorphism see [KM76, §3].)
B.i) If R′ is another (associative unital noetherian) ring and Y an (R′, R)-bimodule that is both

finitely generated and projective as an R′-module, then the functor Y ⊗R − : P (R)→ P (R′)
extends to a commutative diagram

(Dp(R), is)

Y⊗L
R−
��

DetR // CR

Y⊗R−
��

(Dp(R′), is)
DetR′ // CR′

In particular, if R → R′ is a ring homomorphism and C is in Dp(R), then we often simply
write DetR(C)R′ in place of R′ ⊗R DetR(C).

Aj B.j) Let R◦ be the opposite ring of R. Then the functor HomR(−, R) induces an anti-equivalence
between CR and CR◦ with quasi-inverse induced by HomR◦(−, R◦); both functors will be de-
noted by −∗. This extends to give a diagram

(Dp(R), is)

RHomR(−,R)

��

DetR // CR

−∗

��
(Dp(R◦), is)

DetR◦ // CR◦

which commutes (up to unique isomorphism); similarly we have such a commutative diagram
for RHomR◦(−, R◦).

If R denotes any commutative ring, then by [FK06, §1.2.4 (3)] the Fukaya-Kato/Deligne determinant
functor is closely related to Knudsen’s and Mumford’s which takes values in the category of line bundles
plus ranks over Spec(R). In case SK1(R) = 1 both determinants can be naturally identified. Since in
this article we often use geometric (specialisation) arguments we thus take frequently this point of view
without indicating this in the notation.

Remark B.1. Recall from [Wei13, III.Lem. 1.4] that for a commutative semi-local ring R we have
SK1(R) = 1 and K1(R) ∼= R×. This applies in particular to ΛR(G) and ΛR̃(G) as defined in (11).
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We end this section by considering the example where R = K is a field and V a finite dimensional
vector space over K. Then, according to [FK06, 1.2.4], DetK(V ) can be identified with the highest exterior

product
∧top

V of V and for an automorphism φ : V → V the determinant DetK(φ) ∈ K× = K1(K) can
be identified with the usual determinant detK(φ). In particular, we identify DetK = K with canonical

basis 1. Then a map 1K
ψ−→ 1K corresponds uniquely to the value ψ(1) ∈ K×.

finitemodules Example B.2. Note that every finite Zp-module A possesses a free resolution C, i.e. DetZp(A) ∼=
DetZp(C)−1 = 1Zp . Then modulo Z×p the composite 1Qp

acyc−−−→ DetZp(C)Qp

∼−→ 1Qp corresponds to the

cardinality |A|−1 ∈ Q×p .
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