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Abstract. The goal of this paper is to prove that the Pontryagin dual of the Selmer
group over the trivializing extension of an elliptic curve without complex multiplica-
tion does not have any nonzero pseudo-null submodule. The main point is to extend
the definition of pseudo-null to modules over the completed group ring Zp[[G]] of an
arbitrary p-adic Lie group G without p-torsion. For this purpose we prove that Zp[[G]]
is an Auslander regular ring. For the proof we also extend some results of Jannsen’s
homotopy theory of modules and study intensively higher Iwasawa adjoints.

1 Introduction

Let K be a finite extension of Q, and let E be an elliptic curve over K with EndQ̄(E) =
Z. Let p be a rational prime ≥ 5, and let Ep∞ be the group of all p-th power division
points on E, and put K∞ = K(Ep∞). From the point of view of arithmetic geome-
try, there is great interest in studying the (p-primary) Selmer group of E over K∞,
which we denote by Selp(K∞, E) (see § 5 for the definition). We write Selp(K∞, E)∨

for the compact Pontryagin dual of Selp(K∞, E). R. Greenberg has remarked that
Selp(K∞, E)∨ ⊗Zp Qp has infinite dimension over Qp for all p ≥ 5 (see the appendix
of [CH]), and earlier M. Harris ([Ha2]) had given examples where E(K∞) ⊗Z Qp has
infinite dimension over Qp. Let G denote the Galois group of K∞ over K, and write
Λ(G) = Zp[[G]] for the completed group algebra, or Iwasawa algebra, of G. Then
Selp(K∞, E)∨ has a natural structure as a module over Λ(G), and it seems to be a
fundamental question to study its structure as a Λ(G)-module. M. Harris conjectured
in [Ha1] that Selp(K∞, E)∨ is torsion over Λ(G) when E has good ordinary reduction
at all primes of K above p. Recently, the first examples of elliptic curves E and primes
p where this conjecture can be proved were given in [CH]. We shall assume throughout
this paper that E has good reduction at all primes of K above p. The aim of the
present paper is to prove the following basic result.

Theorem (Theorem 5.1). Assume that E has good ordinary reduction at all primes
above p and that Selp(K∞, E)∨ is a Λ-torsion module. Then Selp(K∞, E)∨ has no
non-zero pseudo-null Λ-submodule.

We shall actually prove the theorem under a weaker condition which is a generalized
1During this research, Y. Ochi has been supported by the Deutsche Forschungsgemeinschaft(DFG)

”Forschergruppe Arithmetik” at the Mathematical Institute, Heidelberg.
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conjecture on the rank of Selp(K∞, E)∨. There is a similar theorem due to B. Perrin-
Riou on non-existence of pseudo-null submodule in the CM case ([Pe], Theorem 2.4).
Also there is a theorem of Greenberg ([Gr3]) and the work of Hachimori-Matsuno on
finite submodules of the Selmer group over the cyclotomic Zp-extension ([HM]). In this
case, it is known that non-zero finite submodules can occur in the dual of Selmer over
the cyclotomic Zp-extension.

Let Kcycl denote the field K(µp∞). Then by the Weil paring K∞ contains Kcycl. Putting
H = G(K∞/Kcycl) and Γ = G(Kcycl/K), Selp(K∞, E)∨ has a structure of Λ(H)-module
by restriction. An observation of Coates and Howson ([CH]) is that if Selp(Kcycl, E)∨ is
Λ(Γ)-torsion and its Iwasawa µ-invariant is zero, then Selp(K∞, E)∨ is finitely generated
over Λ(H). It is easily checked that the set of all the Λ(H)-torsion elements of it forms
a G-stable Λ(H)-module. Hence it is a Λ(G)-submodule of Selp(K∞, E)∨, which will
turn out to be pseudo-null. Therefore the theorem answers a question of John Coates
positively as follows:

Theorem (Theorem 6.1). Assume that G is pro-p and that Selp(Kcycl, E)∨ is a finitely
generated Zp-module. Then Selp(K∞, E)∨ is a finitely generated Λ(H)-module, whose
Λ(H)-torsion submodule is zero.

As a numerical example of this theorem, take E to be the modular elliptic curve X1(11),
with equation

y2 + y = x3 − x2 ,

take p = 5, and K = Q(µ5). Then G = G(K∞/K) is a pro-5 group. Moreover,
Kcycl = Q(µ5∞). Then Coates and Howson ([CH]) show that Sel5(K∞, E)∨ is a finitely
generated Λ(H)-module of rank 4, where H = G(K∞/Q(µ5∞)). The above theorem
shows that the Λ(H)-torsion submodule of Sel5(K∞, E)∨ is zero. It does not seem
possible to prove this latter statement other than by using the techniques of our paper.

The reader may have realized that the most important point in the above statement of
our main theorem is yet to be explained: What is the adequate definition of pseudo-
null in the noncommutative case ? For a commutative Noetherian ring R and a finitely
generated R-module M the definition is standard: The dimension of M is defined to be
the Krull dimension of the support of M in Spec(R) and M is said to be pseudo-null,
if its codimension is greater than 1. However, we have to work with a noncommuta-
tive ring since by a well-known theorem of J.-P. Serre, G is identified with an open
subgroup of GL2(Zp), which is not an abelian group and consequently Λ is not commu-
tative either. In this noncommutative case a vague definition of pseudo-null (“trivial
mod C” in his terminology) was given by Harris ([Ha1]). But besides some more or
less trivial cases it turned out very difficult to verify whether a module is pseudo-null,
because the definition relies heavily on a certain filtration of Λ, which in general differs
from the M-adic one and cannot be described easily. Moreover, with his definition,
one has to calculate the dimension of the associated graded module, which in general
is almost impossible. Hence we follow a different philosophy, which we will explain now.
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In [Ja1] U. Jannsen proposed to use the homotopy theory for Λ-modules in order
to study modules over the completed group algebra Λ = Zp[[G]] for compact p-adic
Lie groups G. In this theory the “higher” Iwasawa adjoints Er(M) := Extr

Λ(M, Λ)
play a crucial role and can be considered as a certain analogue of homotopy groups.
In an absolutely different context and for an arbitrary (left and right Noetherian)
associative ring Λ, J.-E. Björk ([Bj1]) analyzed a spectral sequence for such Ext-groups
associated with the bidualizing complex and gave a definition of the dimension of a
finitely generated Λ-module M in the case that Λ is an Auslander regular ring. Now it
is a result of the second author’s thesis that the completed group algebra for a compact
p-adic Lie group without p-torsion is indeed an Auslander regular ring. This allows
us to apply Björk’s results ([Bj1]) to Iwasawa theory and in particular to give a good
definition of pseudo-null modules. Since in the case of G = Zd

p, Björk’s dimension
turns out equal to the Krull dimension of the support of M with respect to Λ we are
convinced that our definition is the right generalization to the noncommutative case.

Using these new methods we are going to examine the following general situation: For
a number field K, let V be a p-adic representation of GK of finite Qp-dimension,where
GK denotes the Galois group of Q̄ over K, T a GK-stable lattice of V and A = V/T the
quotient. Assuming that V is a GK-module unramified outside finitely many places, we
denote by S a finite set of places which contains each prime above p, all archimedian
places and all places at which V ramifies. Let K∞ be a p-adic Lie extension inside the
maximal S-ramified extension KS of K and denote its Galois group by G = G(K∞/K).
In the following we study the Λ = Λ(G)-modules Hr(GS,∞, A), where GS,∞ denotes the
Galois group G(KS/K∞). Along the way to the proof of the theorem, we shall actually
prove a few more things. The first one, where we use the notation A∗ := Tp(A)∨(1)
with the Tate module Tp(A) = Hom(Qp/Zp, A), is:

Theorem (Theorem 4.11). Let K be either a finite extension of Qp or a finite extension
of Q, K∞/K a p-adic Lie extension such that K(A) ⊂ K∞, and A as above. Put
G = Gal(K∞/K) and Λ = Λ(G).

(i) Let K be a finite extension of Qp. Then the Λ-module H1(K∞, A)∨ is homotopically
determined by the Λ-module A∗(K∞) and a class ξ ∈ Ext2Λ(A∨, A∗)∨.

(ii) Let K be a finite extension of Q. Then the Λ-module H1(GS,∞, A)∨ is homotopically
determined by the Λ-module ZA

∼= lim←−K⊂F⊂K∞H2(GS(F ), TpA) and and a class ξ ∈
Ext2Λ(A∨, Z∨A)∨.

This theorem generalizes a main result of Jannsen’s article [Ja1], while the next one
extends results of Greenberg ([Gr1]) and Nguyen-Quang-Do ([Ng]):

Theorem (Theorem 4.6). If H2(GS,∞, A) = 0, then H1(GS,∞, A)∨ has no nontrivial
pseudo-null Λ(G′)-submodule for any open subgroup G′ of G without p-torsion.

Note that the cohomology group H2(GS,∞, A) vanishes if K∞ contains the trivializing
extension K(A) and the cyclotomic Zp-extension, for the weak Leopoldt conjecture is
known to hold for the cyclotomic extension Kcycl of any number field K (This result
can be deduced from Iwasawa’s rank calculation of some Γ-module but see [Sc1] Lemma
7 or [NSW] Theorem (10.3.25) for a proof).
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Now we specialize to the case A = Ep∞ where Ep∞ are the p-torsion points of an
elliptic curve defined over K without complex multiplication. Then the trivializing
extension K∞ = K(Ep∞) is a p-adic Lie extension over K and the above theorems
apply to this situation. The corresponding (global and local) results allow us to derive
consequences for one of the most important invariants in the study of Kn-rational
points of elliptic curves, the Selmer group Selp(Kn, E), respectively, taking the limit,
Selp(K∞, E). Utilizing Coates and Greenberg’s Kummer theory of abelian varieties
over local fields ([CG]) as well as results of Serre ([Se1]), we are able to prove our main
theorem.
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A part of the material, especially the section about filtrations, is taken from the second
author’s thesis.

Notations and Conventions

(1) Throughout this paper we always assume that p is an odd rational prime number.

(2) For a Zp-module N , N∨ = HomZp,cont(N,Qp /Zp), is the Pontryagin dual of N , and
for a p-divisible Zp-module, N∗ = lim−→ i Hom(Npi , µp∞) = T (N)∨(1), where Npi denotes
the kernel of the multiplication by pi and T (N) = Hom(Qp /Zp, N) = lim←−

i

Npi .

(3) By a Noetherian ring, we mean a left and right Noetherian ring (with a multiplicative
unit). By pdΛ(M) we denote projective dimension of M . But the global dimension of
Λ is denoted pd(Λ).

(4) Let G be a profinite group and H a closed subgroup of G. For a Λ(H)-module
M , we define IndG

H M := M⊗̂Λ(H)Λ(G) (compact or completed induction), where ⊗̂
denotes completed tensor product. Also CoindG

H M := HomΛ(H)(M, Λ(G)).

(5) Whenever we deal with an elliptic curve over a number field K and a fixed rational
prime number p, we always assume that E has good reduction at all places dividing p.

(6) If H is any profinite group, by H(p), resp. Hab, we denote the maximal pro-p
quotient, resp. the maximal abelian quotient H/[H, H], of H.

(7) Let K be a field. For a G(K̄/K)-module A, we write A(K) := H0(G(K̄/K), A).
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2 A Canonical Filtration of Λ-Modules and the Definition
of Pseudo-Null

Let G be a compact p-adic Lie group without p-torsion and Λ := Λ(G) := Zp[[G]]
its completed group ring, which is Noetherian (cf. [La] V 2.2.4) and of finite global
dimension d = cdp(G) + 1. In this section we discuss a canonical filtration on finitely
generated Λ-modules, a more general and detailed treatment of which can be found in
[Ve]. From now on, all Λ-modules are assumed to be finitely generated and we use the
following

Notation. For a Λ-module M ,

Ei(M) := Exti
Λ(M, Λ)

for any integer i and Ei(M) = 0 for i < 0 by convention. We also write M+ = E0(M) =
HomΛ(M, Λ).

We recall the following

Definition 2.1 1. If M 6= 0 is a Λ-module, then j(M) := min{i | Ei(M) 6= 0} is
called the grade of M.

2. A Noetherian ring Λ is called Auslander regular ring if it has finite global homolog-
ical dimension and the following Auslander-condition holds: For any Λ-module
M , any integer m and any submodule N of Em(M), the grade of N satisfies
j(N) ≥ m.

Remark. Let Λ be a commutative ring. Then, Λ is Auslander regular if and only if it is
regular (in the usual sense) and of finite Krull dimension. (The implications concerning
the global homological dimensions are well known. For the Auslander-condition see [Au,
Cor. 4.6,Prop. 4.21] )

Suppose for the moment that Λ is any Auslander regular ring. It was Björk [Bj1]
who studied in detail the bidualizing complex in order to evaluate the equality M =
RHom(RHom(M, Λ),Λ) in the derived category of complexes of Λ-modules: the asso-
ciated filtrations of this double complex give rise to two convergent spectral sequences,
the first of which degenerates. On the other hand, the second one becomes

Ep,q
2 = Ep(E−q(M)) ⇒ Hp+q(∆•(M)),

where ∆•(M) is a filtered complex, which is exact in all degrees except zero: H0(∆•) =
M , i.e. there is a canonical filtration

T0(M) ⊆ T1(M) ⊆ · · · ⊆ Td−1(M) ⊆ Td(M) = M

on every module M. The convergence of the spectral sequence implies

Ep,q
∞ =

{
Td−p(M)/Td−p−1(M) if p + q = 0

0 otherwise

(By convention, Ti(M) = 0 for i < 0).
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Definition 2.2 1. The number δ := min{i | Ti(M) = M} is called the dimension
δ(M) of a Λ-module M .

2. If M is a Λ-module we say that it has pure δ-dimension if Tδ−1(M) = 0, i.e. the
filtration degenerates to a single term M .

3. We call a Λ-module M pseudo-null, if M = Td−2(M), i.e. if δ(M) ≤ d− 2 holds
(recall d = pd(Λ)).

By Grothendieck’s local duality, this definition coincides with the Krull dimension of
SuppΛ(M) if Λ is a commutative local Noetherian regular ring, see for example [Brun,
Cor. 3.5.11].

First we want to state some basic facts of the δ-dimension. The functoriality of the
spectral sequence implies

Proposition 2.3 1. If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact sequence of Λ-
modules then Ti(M ′) ⊆ Ti(M) for all i and both δ(M ′) and δ(M ′′) are ≤ δ(M).

2. Ti(
⊕

k(Mk)) =
⊕

k Ti(Mk) and δ(
⊕

k Mk) = maxk δ(Mk).

In order to get further nice properties the Auslander-condition is essential:

Proposition 2.4 Assume that Λ is Auslander regular of global dimension d and let M
be a Λ-module. Then

1. (a) For all i, there is an exact sequence of Λ-modules

0 // Ti(M)/Ti−1(M) // Ed−iEd−i(M) // Qi
// 0,

where Qi is a subquotient of
⊕

j≥1 Ed−i+j+1Ed−i+j(M).

(b) Ti(M)/Ti−1(M) = 0 if and only if Ed−iEd−i(M) = 0.

2. δ(M) + j(M) = d.

3. (a) j(Ei(M)) ≥ i, i.e. EjEi(M) = 0 for all j < i.

(b) δ(Ei(M)) ≤ d− i.

(c) Ej(M)(M) has pure δ-dimension δ(M).

4. (a) δ(Ti(M)) ≤ i.

(b) Ti(M) is the maximal submodule of M with δ-dimension less or equal to i.

5. If δ(M) = 0 then M is finite.

6. Ek+j(M)+1Ek+j(M)Ej(M)(M) = 0 for all k ≥ 1.

Proof: Except for 1 (a), and 4, these properties are all proved in [Bj1] or they are
trivial( 3 (a) is just the Auslander condition and 3 (b) is a consequence of it by 2.):
Prop. 1.21 (for 1 (b)), 1.16 (for 2), Prop. 1.18 (for 3 (c)), Remark before 1.19 (for 6),
and 1.27 (for 5), while 1 (a) is proved in [Le, Cor. 4.3]
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So let us prove 4: By 2, (a) is equivalent to j(Ti(M)) ≥ d− i and this is true because
of the Auslander-condition plus induction (compare the proof of 2, [Bj1] p.65). Now
let M be a Λ-module with δ(M) = δ and assume that there is a submodule N of M
with δ(N) ≤ δ − 1 but N * Tδ−1(M). Then the submodule N + Tδ−1(M) of M has
dimension ≤ δ − 1 and therefore also the quotient (N + Tδ−1(M))/Tδ−1(M) by 2.3.
Hence,

0 6= (N + Tδ−1(M))/Tδ−1(M) = Tδ−1((N + Tδ−1(M))/Tδ−1(M))
⊆ Tδ−1(Ed−δEd−δ(M)) = 0

by 3 (c), which is a contradiction. So Tδ−1(M) contains all submodules of dimension
less or equal to δ − 1 and (b) follows by induction. ¤

Proposition 2.5 A Λ-module M with projective dimension pdΛ(M) = k has no non-
trivial submodule of dimension less or equal to d − k − 1, i.e. Td−k−1(M) = 0. In
particular, if pdΛ(M) ≤ 1, then M has no non-trivial pseudo-null submodule.

Proof: See prop. 2.4, 1 (b).

¤
The following theorem which has been proved in [Ve] allows us to apply Björk’s theory
in our context.

Theorem 2.6 Let G be a compact p-adic analytic group without p-torsion. Then the
completed group ring Λ(G) is an Auslander regular ring.

For the convenience of the reader we recall the main ingredients of the proof here. The
idea of it consists of endowing Λ with a suitable filtration Σ and studying the associated
graded ring gr(Λ) =

⊕
Σi/Σi−1. Then we wish to apply the following criterion due to

Björk:

Theorem 2.7 (Björk) Assume that gr(Λ) is an Auslander regular ring and that Σ
satisfies the closure condition. Then Λ is an Auslander regular ring.

By a filtration (in the sense of Björk) on a ring Λ we mean an increasing (!) sequence
of additive subgroups Σi−1 ⊆ Σi ⊆ Σi+1 satisfying

⋃
Σi = Λ and

⋂
Σi = 0 and the

inclusions ΣiΣk ⊆ Σi+k hold for all pairs of integers i and k. The main example
on a local ring is the M -adic filtration with Σ−i = Mi for all i ≥ 0 (by convention,
M0 = Λ), where M denotes the maximal ideal.

Then the closure condition just means that the additive subgroups Σi−m1u1 + · · · +
Σi−msus and u1Σi−m1 + · · ·+ usΣi−ms are closed with respect to the topology induced
by Σ for any finite subset u1, . . . , us in Λ and all integers i,m1, . . . , ms.

It is easily verified that the M-adic filtration on Λ(G) satisfies this condition (cf. [Ve]).
If we restrict ourselves to extra-powerful pro-p-groups (i.e. the relation [G,G] ⊆ Gp2

holds) we are able to prove
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Theorem 2.8 Let G be a uniform and extra-powerful pro-p-group of dimension
dim(G) = r. Then there is a gr(Zp)-algebra-isomorphism

gr(Λ(G)) ∼= Fp[X0, . . . , Xr].

In particular, gr(Λ(G)) is a commutative regular Noetherian ring.

For the proof of the theorem we need some more terminology. Let G be a uniform pro-p-
group with a minimal system of (topological) generators {x1, . . . , xr}, i.e. dim(G) = r.
Then the lower p-series is given by P1(G) = G, Pi+1(G) = (Pi(G))p, i ≥ 1, in this
case. This filtration defines a p-valuation ω : G −→ N>0 ∪ {∞} ⊆ R>0 ∪ {∞} of G in
the sense of Lazard via ω(g) := sup{i | g ∈ Pi(G)}, which induces a filtration on Zp[G],
too (cf. [La, Chap. III, 2.3.1.2]).

Lemma 2.9 The filtration on Zp[G], induced by ω, is the Md-adic one, where Md =
m + Id(G) with the augmentation ideal Id(G) of Zp[G].

Proof: Conferring the proof of Lemma III, (2.3.6) in [La] the induced filtration is given
by the following ideals in Zp[G], n ∈ N : An is generated as Zp-module by the elements
pl(g1− 1) · · · (gm− 1) where l, m ∈ N, gi ∈ G and l + ω(g1) + . . . + ω(gm) ≥ n, whereas
the Md-adic filtration is defined by the ideals Mn

d , which are generated (over Zp[G])
by the elements pl(g1 − 1) · · · (gm − 1), where l,m ∈ N, gi ∈ G and l + m = n. Since
ω(g) ≥ 1 for all g ∈ G the ideal Mn

d is obviously contained in An. The converse is a
consequence of the following

Claim: Let g ∈ G with ω(g) = t ≥ 1, then g − 1 ∈ Mt
d.

Since G is uniform the map G −→ Pt(G) which assigns gpt−1
to g is surjective (cf.

[DSMS, lemma 4.10]), i.e. there is an element h ∈ G with g = hpt−1
. Writing

g − 1 = (1 + (h− 1))pt−1 − 1 =
∑

k≥1

(
pt−1

k

)
(h− 1)k

one verifies that g − 1 ∈ Mt
d, because vp(

(
pt−1

k

)
) = t − 1 − vp(k) ≥ t − k, i.e.

(
pt−1

k

)
(h− 1)k ∈ Mt

d. ¤

Lemma 2.10 The Md-adic filtration on Zp[G] induces the M-adic filtration on Zp[[G]].

Proof: See [Ve]. ¤
Now we can prove theorem 2.8.

Proof: Since gr(G) =
⊕

Pi(G)/Pi+1(G) is a Lie algebra, which is free of rank r as
gr(Zp)-module, we get the following inclusion:

gr(G) ⊆ Ugr(G) ∼= gr(Zp[G])
∼= gr(Zp[[G]]),
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where the first equation holds cf. [La, Chap. III, 2.3.3] and Ugr(G) is the enveloping
algebra of the Lie algebra gr(G), whereas the second one is a consequence of lemma
2.10. But according to [Wil, Theorem 8.7.7] the graded ring gr(Zp[[G]]) is commutative
(G is assumed to be extra-powerful), i.e.

Ugr(G) ∼= gr(Zp)[X1, . . . , Xr] ∼= Fp[X0, . . . , Xr]

¤
As p-adic analytic group G posses an open characteristic subgroup N which is an
uniform, extra-powerful pro-p-group (cf. [DSMS, Cor. 9.36] and [Wil, Prop. 8.5.3]),
by the theorem of Björk and Theorem 2.8, Λ(N) is an Auslander regular ring, because
gr(Zp[[N ]]) has this property as a regular commutative Noetherian ring (cf. [Bj2, pp.
65-69]). But Ei

Λ(G)(M) ∼= Ei
Λ(N)(M) as Λ(N)-modules for any Λ(G)-module M , by

which the Auslander-condition is easily verified. This proves theorem 2.6.

3 Jannsen’s Homotopy Theory

In this section we briefly recall Jannsen’s homotopy theory for the convenience of the
reader. We will not give a full account of it but only what we shall need later on. We
refer to the original paper [Ja1] or Chapter V of [NSW] for complete exposition. Let Λ
be a Noetherian ring. Denote by Λ−mod the category of finitely generated Λ-modules
with usual Λ-linear homomorphisms as morphisms. From this category is made another
category called homotopy category or stable category of Λ−mod, denoted Ho(Λ). The
objects are the same as in Λ−mod but for objects M and N the set of morphisms is
given by

[M,N ] = HomHo(Λ)(M, N) := HomΛ−mod(M, N)/{f : f ' 0}.
Here a Λ-homomorphism f : M → N is defined to be homotopic to zero, written f ' 0,
if f factors through a projective Λ-module, that is there exists a projective Λ-module P
and homomorphisms g : M → P and h : P → N such that f = hg. If M is isomorphic
to N in the category Ho(Λ), we say M is homotopically equivalent to N and write
M ' N . There is the following fact:

M ' N if and only if M⊕P ∼= N⊕Q in Λ−mod for some finitely generated projective
Λ-modules P and Q.

Therefore, for instance, projective dimension makes sense in the category Ho(Λ). How-
ever, it is not an abelian category in general. To see this, suppose Λ is an integral
domain. Consider the obvious exact sequence 0 → Λ

×p→ Λ → Λ/p → 0. If the category
Ho(Λ) was abelian, we would have the following commutative diagram and the snake
lemma:

0 - Λ
×p- Λ - Λ/p - 0

0 - 0

'
6

×p- 0

'
6

- 0

φ
6

- 0
Note Λ ' 0 since Λ itself is of course projective. This would imply that φ was also
homotopical equivalence and hence Λ/p ' 0, which is absurd since Λ/p is neither 0 nor
projective.
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Jannsen defines three functors on the category Ho(Λ). The first one is called the
“loop space functor” Ω: For a finitely generated Λ-module M , we take a surjective
homomorphism from a projective module P . Write the map f : P → M . Then define
ΩM := Ker(f). This is easily checked to be determined uniquely in Ho(Λ) up to
isomorphism.

Next we recall the definition of the “transpose functor” D. For a finitely generated
Λ-module M , take any projective resolution P1 → P0 → M → 0 (exact). Then we
define DM as the cokernel of the induced map (P0)+ → (P1)+. This is well defined,
i.e., it determines the unique object in Ho(Λ) (up to isomorphism). Finally, he defines
the “suspension functor” Σ, but we can define it via the earlier functors by Σ := DΩD.

It is easily verified that D2 = 1. Also,if M has projective dimension less than 2, then
DM ' E1(M). These properties will be found useful as well as the following exact
sequence([Ja1]):

0 → E1(DM) → M
φM→ M++ → E2(DM) → 0. (1)

Recall that a finitely generated Λ-module M is called reflexive if the map φM in the
sequence (1) is an isomorphism.

Lemma 3.1 Assume Λ has no zero divisors. Let M be any finitely generated Λ-module.
Then the set of all torsion elements in M forms a Λ-submodule of M , and it is iso-
morphic to E1(DM).

Proof: From the conditions on Λ follows that it has a unique quotient field (see,
e.g., [Bj1] Ch 1, 8.2). This makes it possible to define Λ-rank. Then it is checked that
M and M++ have the same Λ-rank. Hence E1(DM) is exactly the set of all torsion
elements in M . ¤
This observation caused Auslander and Bridger to suggest that the module E1(DM)
should be considered as torsion submodule of M in general, even if Λ has zero divisors:

Definition 3.2 A Λ-module M is called Λ-torsion module if φM ≡ 0, i.e. if torΛM :=
E1(DM) = M. We say that M is Λ-torsion-free if E1(DM) = 0.

For Λ = Λ(G) where G is a p-adic Lie group this definition means the following: First
let us recall the fact that if G is any pro-p group and has no element of order p, then
Λ(G) has no divisors of zero(see [DSMS]). Then a finitely generated Λ-module M is a
Λ-torsion module if and only if M is a Λ(G′)-torsion module (in the strict sense) for
some open pro-p subgroup G′ ⊆ G such that Λ(G′) is without zero divisors. Indeed, we
have an isomorphism E1

Λ(G)(DΛ(G)M) ∼= E1
Λ(G′)(DΛ(G′)M) of Λ(G′)-modules by [Ja1]

Lemma 2.3 (and the analoguous statement for DM).

From now on we assume that Λ is an Auslander regular ring. The following proposition
generalizes Proposition (5.1.8) in [NSW].

Proposition 3.3 Assume Λ has no zero divisors. Let M be a finitely generated torsion-
free Λ-module. Then there exists an injective homomorphism of M into a reflexive
Λ-module with a pseudo-null cokernel.
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Proof: Since M is a finitely generated torsion-free Λ-module, by Lemma 3.1 we have
E1(DM) = 0 and hence the following exact sequence

0 → M → M++ → E2(DM) → 0.

But E2(DM) is pseudo-null by Proposition 2.4, 3 (b). To complete, we have to show
M++ is reflexive. Actually we will show that M+ is reflexive (this itself is a generaliza-
tion of Corollary (5.1.3) in [NSW]). Let N := E0(M) and and apply Proposition 2.4.6
to conclude that

⊕
k≥1 Ek+1Ek(N) =

⊕
k≥1 Ek+1EkE0(M) = 0, i.e. Qd(N) = 0. Since

we already know by 2.4.3(c) that N is of pure dimension d (if N 6= 0) the statement
follows considering 2.4.1(a). ¤

Proposition 3.4 Let M be a finitely generated Λ-module such that E0(M) = 0. Then
M is pseudo-null if and only if E1(M) = 0.

Proof: Since E0(M) = 0, E1(M) = 0 is equivalent to j(M) ≥ 2, and this is equivalent
to M being pseudo-null by Proposition 2.4, 2. ¤

Remark. Let G be a p-adic analytic group, G′ a uniform open subgroup of G and
Λ = Zp[[G′]]. Let M be a pseudo-null Λ-module. Then there exists a torsion-free
Λ-module L of projective dimension ≤ 1 such that M ' DL ' E1(L). By the above
proposition, E1(M) = 0. Hence E1E1(L) = 0, which means L is torsion-free. The
proposition also immediately implies an isomorphism E1(M) = E1(M/Tpn(M)), where
Tpn(M) denotes the maximal pseudo-null submodule of a finitely generated Λ-module
M .

We end this section with the following observation, which was independently noticed
and proved by R. Sujatha([Su]).

Proposition 3.5 Let Λ = Λ(G) be a completed group algebra of a p-adic analytic
group G of dimension r without elements of order p. Let M be a Λ(G)-module, which
is a finitely generated as a Zp-module. Then δ(M) ≤ 1. In particular, if r > 1, M is
pseudo-null.

Proof: It is enough to show j(M) ≥ r by Proposition 2.4 (note that the dimension
of Λ is d = r + 1). For this we need to see Ei(M) = 0 for all i ≤ r− 1. But this follows
from 2.6 of [Ja1] or (5.4.15) of [NSW]. ¤
A very interesting case of such an M that Sujatha considers is the Tate module of an
abelian variety A with Tate twist: M = Tp(A)(n), with G the image of Galois in the
automorphism group of Tp(A) (see [Su] for an important conclusion of this).

4 The Powerful Diagram

In this section we shall generalize some of Jannsen’s work in [Ja1].

11



4.1 Fox-Lyndon Resolution and Twists

Let G be a pro-C group topologically of finite type, where C is a class of finite groups
closed under taking subgroups, homomorphic images and group extensions, i.e. G is
the projective limit of an appropriate inverse system in C. Suppose that {x1, · · · , xd}
is a set of generators of G. Then there is a surjective homomorphism from a free pro-C
group F(d) of rank d to G and we get an exact sequence

0 → N → F(d) → G → 0

where N is defined as the kernel. This is called a free presentation of G and N ab(p) is
called the p-relation module of G.

In general, N ab(p) fits into the following exact sequence, which is called Fox-Lyndon
resolution associated with the above free representation of G :

0 → N ab(p) → Λ(G)d → Λ(G) → Zp → 0. (2)

Hence, if cdp(G) ≤ 2, then N ab(p) is a projective Λ(G)-module.

Furthermore, the augmentation ideal I(F), i.e. the kernel of Λ(F) → Zp, is a free
Λ(F)-modules of rank d:

I(F) ∼= Λ(F)d (3)

(for a proof of these facts, see [NSW] Chap V.6).

Now we are going to study certain “twists” of Λ(G)-modules. So let A be a p-divisible
p-primary abelian group of finite Zp-corank r with a continuous action of G.

Definition 4.1 For a finitely generated Λ(G)-module M , we define

M [A] := HomZp,cont(M, A)∨ = M ⊗Zp A∨,

where we recall that A∨ = HomZp,cont(A,Qp /Zp).

M [A] has the usual Λ-action, i.e. G acts diagonally on the tensor product. Note that
this twist defines an exact functor.

Lemma 4.2 2 The module Λ[A] is a free Λ-module of rank r.

Proof: Fix an isomorphism of abelian groups φ : A∨ ∼= Zp
r and, for pairs (U,m)

consisting of an m ∈ N and an open normal subgroup U E G such that U acts trivially
on A∨/pm, consider the well-known isomorphism of Λ-modules

Zp[G /U ]⊗Zp (A∨)/pm ∼= Zp[G /U ]⊗Zp Zp
r/pm,

2We thank Alexander Schmidt for drawing our attention to the fact that Λ[A] should not only be
projective but even free.
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which sends gU ⊗ (a + pmA∨) to gU ⊗ (φ(g−1a) + pmZp
r). It is easily seen that these

isomorphisms form an compatible system, i.e.

Λ⊗Zp A∨ = Λ⊗̂ZpA
∨

= lim←−
(U,m)

Zp[G /U ]⊗Zp (A∨)/pm

= lim←−
(U,m)

Zp[G /U ]⊗Zp Zp
r/pm

= lim←−
U,m

Zp/pm[G /U ]r

= Λr.

¤
From this lemma, it follows that if P is a projective Λ-module, then so is P [A].

4.2 The Diagram

Let K be a number field. Let V be a finite dimensional vector space over Qp, which
is endowed with a continuous action of GK = G(Q̄/K), and let T be a Zp-lattice in V
stable under the action of GK . By A we denote the quotient A = V/T unless otherwise
stated. Define dual of these as follows:

T ∗ = HomZp(T,Zp(1)), V ∗ = HomQp
(V,Qp(1)), A∗ = V ∗/T ∗ = lim−→Hom(Apj , µp∞).

A typical example we have in mind is

T = T i
n := H i

et(X × K̄,Zp(n))/torsion

where X is a proper smooth scheme over K. Then

V = H i
et(X × K̄,Qp(n)) := T ⊗Qp;

A = V/T = maximal p-divisible subgroup of H i
et(X × K̄,Qp /Zp(n)).

In particular, and this is our most concerning case, H1
et(X×K̄,Zp(1)) ∼= Tp(Pic0(X/K)),

where Pic0(X/K)) denotes the Picard variety of X and Tp denotes the (p-adic) Tate
module. Of course, H1

et(X × K̄,Zp(1)) ∼= Tp(X ′) if X is an abelian variety over K (X ′

is the dual abelian variety of X).

Let A be as above. The extension K(A)/K is defined by the kernel of ρ : GK →
Aut(V ) = GLd(Qp), where d = dimQp

(V ). Therefore K(A)/K is a Galois extension
with G(K(A)/K) ∼= GK/Ker(ρ). Since GLd(Zp) is a compact p-adic Lie group and any
closed subgroup of it is again a compact p-adic Lie group, G(K(A)/K) is also a compact
p-adic Lie group. Hence K(A)/K is a p-adic Lie extension. The finite Galois extensions
K(Apn), n = 1, 2, . . . , of K are defined similarly, where Apn = A[pn] denotes the kernel

of A
pn

−→ A. We put K0 = K(Ap) and Kn = K(Apn+1). Clearly K(A) = ∪nKn.

By S(K) we denote a set of places of K containing each prime above p and every
archimedian place and every place whose inertia group acts nontrivially on V . We
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always assume that S(K) is finite. In another words, only a finite number of places
of K ramify in K(A) (see below for the definition of K(A)). Sf (K) is the set of all
finite places in S(K) and Sp(K) is {v ∈ Sf (K) : v | p}. By KS we denote the maximal
S-ramified extension of K.

Definition 4.3 We say that an extension K∞/K is a p-adic Lie extension if it is
a Galois extension and the Galois group Gal(K∞/K) is a compact p-adic Lie group.
If it is a pro-p Lie group, we say K∞/K is a pro-p Lie extension. Throughout this
chapter, whenever we consider a p-adic Lie extension K∞ of a number field K, we
always assume that K∞ is contained in KS.

From now on we are in the following situation. We fix V and A once and for all. Let
K be a finite extension of Q (or of Q` including the case ` = p) and by K ′ we denote
an intermediate field of K0/K determined by a p-Sylow subgroup of G(K(A)/K). Let
Ω be the maximal S-ramified p-extension of K(A) (respectively K0). Let us denote
G(Ω/K) by G and G(Ω/K ′) by G′.

Lemma 4.4 (i) The extension Ω/K is Galois.

(ii) The profinite group G is topologically finitely generated.

(iii) K(A) ⊂ Ω.

(iv) cdp(G) ≤ 2.

Proof: (i) This follows from the maximality of Ω and K(A)/K being Galois.

(ii) Because we have an exact sequence 1 → G(Ω/K0) → G → G(K0/K) → 1 with
both G(Ω/K0) and G(K0/K) finitely generated by a theorem of Shafarevich.

(iii) Obvious.

(iv) Since cdp(GS(K)) ≤ 2 (recall we always assume that p is odd), H3(GS(K),Z /pZ) =
0. Since H3(GS(K),Z /pZ) = H3(G′,Z /pZ), cdp(G′) ≤ 2. For any p-primary G-
module B, the corestriction map Hn(G′, B) → Hn(G, B) is surjective for all n. Hence
cdp(G) ≤ 2.

¤

Let K∞ be a p-adic Lie extension of K contained in Ω with Galois group G =
G(K∞/K). Put H = G(Ω/K∞). We have the following commutative diagram:

1 - H - G - G - 1

‖
1 - R

6

- F(d)

6

- G - 1

N

6

= N

6

Here, as before N denotes the kernel of F(d) → G, and we define R to be the kernel of
the natural map F(d) → G obtained by composing the previous map with G → G.
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Letting A as before, we recall M [A] is defined to be M ⊗A∨ for any finitely generated
Λ(G)-module M . As A is now fixed, we shall write M# for M [A]. We have an exact
sequence

0 → I(G)# → Λ(G)# → A∨ → 0. (4)

By Lemma 4.2, Λ(G)# is a projective Λ(G)-module. Hence we have the following exact
sequence.

0 → H1(H, A∨) → (I(G)#)H → (Λ(G)#)H → (A∨)H → 0. (5)

We introduce the following notation:

• X = XA,K∞ = H1(H, A∨).

• Y = YA,K∞ = (I(G)#)H.

• I = IA,K∞ = Ker((Λ(G)#)H → (A∨)H).

Thus the exact sequence (5) gives the exact sequence

0 → X → Y → I → 0. (6)

The next lemma is very powerful in applications, and generalizes Lemma 4.3 of [Ja1].

Lemma 4.5 Under the above situation, there is the following commutative exact dia-
gram of Λ(G)-modules (recall r = Zp -rank of A∨).

0 0

IA,K∞

6

= IA,K∞

6

0 - H2(GS,∞, A)∨ - (N ab(p)#)H - Λ(G)dr

6

- YA,K∞

6

- 0

‖
0 - H2(GS,∞, A)∨ - (H1(N ab(p), A)H)∨

∼=
6

- H1(R, A)

6

- H1(GS,∞, A)∨

6

- 0

0

6

0

6

Furthermore, (N ab(p)#)H is a projective Λ(G)-module, and it is isomorphic to (N ab(p)H)#

if the action of H on A is trivial.

Proof: 1. THE VERTICAL SEQUENCES.- The right one has already been obtained
above after noting the isomorphisms (for all i):

Hi(H, A∨) ∼= H i(GS(K∞), A)∨.
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From the exact sequence 0 → I(F(d))# → Λ(F(d))# → A∨ → 0, we obtain the
following long exact sequence

0 = H1(R, Λ(F(d))#) → H1(R, A∨) → I(F(d))#R →

Λ(F(d))#R → (A∨)R → 0.

But by Fox - Lyndon, I(F(d))#R ∼= Λ(G)dr. So we have an exact sequence

0 → H1(R, A∨) → Λ(G)dr → Λ(G)r → (A∨)R → 0.

Now (A∨)R = (A∨)H as N acts trivially on A, so the sequence

0 → H1(R, A∨) → Λ(G)dr → I → 0. (7)

is exact.

2. THE HORIZONTAL SEQUENCES. -(2.1) The upper one:

The Fox - Lyndon resolution for 1 → N → F(d) → G → 1 yields an exact sequence

0 → N ab(p)
# → Λ(G)d# → I(G)# → 0. (8)

Take H - homology and we have the following exact sequence

0 → H1(H, I(G)#) → N ab(p)
#

H → (Λ(G)#
d
)H → I(G)#H → 0.

Since H1(H, I(G)#) ∼= H2(H, A∨) ∼= H2(H, A)∨, Λ(G)#d
H ∼= Λ(G)dr, hence the follow-

ing is an exact sequence:

0 → H2(H, A)∨ → N ab(p)
#

H → Λ(G)dr → Y → 0. (9)

(2.2) The lower horizontal sequence:

The Hochschild-Serre spectral sequence for 1 → N → R→ H → 1 gives

H2(R, A∨) → H2(H, A∨) → H1(N , A∨)H → H1(R, A∨) → H1(H, A∨) → 0.

AsR is a closed subgroup of F , cdp(R) ≤ cdp(F) = 1, H2(R, A∨) = 0 while H1(N , A∨) ∼=
Hom(N ab(p), A)∨ = N ab(p)#, because N acts on A trivially. Since cdp(G) ≤ 2 by
lemma 4.4, N ab(p) is a projective Λ(G)-module, i.e. (N ab(p)#)H,too.

3. The commutativity of the diagram is clear. ¤

Remarks. 1. If cdp(G) = 1 or if cdp(G) = 2 and (A∨)H has no p-torsion, then it
is seen from the above argument in the proof that H1(R, A∨) is a free Λ(G)-module:
H1(R, A∨) ∼= Λ(G)(d−1)r.

2. In [Ja1] 5.4, the structure of (N ab(p))H has been determined as follows:

(N ab(p))H ∼=
⊕

v∈S′∞(K)

IndG
Gv
Zp

⊕
Λ(G)d−r1(K)′−r2(K)−1
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where S′∞(K) is the set of real places of K which ramify in K∞, and r1(K)′ is the
cardinality of S′∞(K) and r2(K) is the number of complex places of K.

3. Lemma 4.5 also holds for local fields. In the local case we have H2(K∞, A) = 0 and
hence the projective dimension of Y is less than 2.

The following theorem generalizes the theorems of Nguyen-Quang-Do ([Ng]) and Green-
berg ([Gr2]), who considered the case G ∼= Zk

p, A = Qp/Zp, i.e. X ∼= GS(K∞)ab(p).

Theorem 4.6 If H2(GS,∞, A) = 0, then H1(GS,∞, A)∨ has no nontrivial pseudo-null
submodule.

Proof: By the diagram, it is enough to show that Y has no nontrivial pesudo-null
submodule. By the assumption H2(GS,∞, A) = 0, we have pdΛ(Y ) ≤ 1. Hence from
Proposition 2.5 follows the theorem. ¤

Recall that there is the “weak Leopoldt conjecture” stating that if K∞ contains the
cyclotomic Zp-extension of K, then H2(GS,∞, A) = 0 (e.g., [Gr3] or [Ja2]). As an
important case of the theorem, we have the following

Corollary 4.7 Let A be an abelian variety defined over a number field K. Let S be a
finite set of places of K containing all primes above p and ∞ and all primes at which
A has bad reduction. Put K∞ = K(A[p∞]). Then we have H1(GS(K∞),A[p∞])∨ has
no nonzero pseudo-null submodule.

Proof: We need to show H2(GS(K∞),A[p∞]) = 0. Since H2(GS(K∞),A[p∞]) =
H2(GS(K∞),Qp /Zp)dimA as abelian groups, we only need to show
H2(GS(K∞),Qp /Zp) = 0. First we check that K∞ contains K(µp∞). LetA′ be its dual
abelian variety. From the Galois equivariant Weil pairing Vp(A)×Vp(A′) → Vp(µp∞) we
know that K(A[p∞],A′[p∞]) contains K(µp∞). But Vp(A) and Vp(A′) are isomorphic
as a Galois module since A is isogenious to A′ over K. Hence K(A[p∞],A′[p∞]) =
K(A[p∞]). It is known that the weak Leopoldt conjecture holds ([NSW] Theorem
(10.3.25)): H2(Gal(FS/F (µp∞)),Qp /Zp) = 0. Hence we have
H2(Gal(FS/F∞),Qp /Zp) = lim−→ nH2(Gal(FS/Fn(µp∞)),Qp /Zp) = 0. ¤

Definition 4.8 Let K be either a finite extension of Qp or a finite extension of Q.
Put GS(K) = G(KS/K) (if K is a finite extension of Qp , then by KS we mean an
algebraic closure K̄). Let F be an extension of K contained in KS. Then we define

Z = ZA(F/K) := H0(GS(F ), lim−→ nD2(Apn))∨

where
D2(Apn) = lim−→K⊂L⊂KS

(H2(L,Apn))∨

and the direct limit in lim−→ nD2(Apn) is taken with respect to the p-th power map
Apn+1

p
-→Apn.

The following is immediate from Tate local duality and Poitou-Tate global duality.
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Lemma 4.9 (i) If K is a finite extension of Qp and F is an extension of K, then
ZA(F/K) = A∗(F )∨.

(ii) If K is a finite extension of Q and F is an extension of K contained in KS, then

Z ∼= lim←−K⊂L⊂F H2(GS(L), TpA).

Proposition 4.10 Let K be a finite extension of Qp or a finite extension of Q and let
K∞ be a p-adic Lie extension of K. We keep the assumption above.

(i) YA ' DZA.

(ii) Z+
A = H2(GS,∞, A)∨ where GS,∞ should be replaced by K∞ if K is local.

Proof: These are proved for A = Qp /Zp (with trivial Galois action) in [Ja1]. The
same proof works for a general A. However, let us use this place to correct the following
misprint on p. 190 in [Ja1], which was pointed out to us by Jannsen himself. It should
read as follows: For profinite groups H, G and Γ such that there is an exact sequence
1 → H → G → Γ → 1, the following isomorphism holds for every finitely generated
projective Λ(G)-module P ;

(HomΛ(G)(P, Λ(G)))H
∼= HomΛ(Γ)(PH , Λ(Γ)). (10)

¤

4.3 The Case K(A) ⊂ K∞

In the paper [Ja1], U. Jannsen has proved the following as a main theorem via homotopy
theory of modules.

Theorem. Let k be a finite extension of Qp or a finite extension of Q and K/k a Galois
extension with G = Gal(K/k). Put Λ = Λ(G)3.

(i) Let k be a local field and let M be the maximal abelian p-extension of K. Then the
Λ-module X = Gal(M/K) is homotopically determined by the Λ-module µK(p) and a
canonical class χ ∈ H2(G,µK(p))∨, where µK(p) is the group of p-power roots of unity
in K.

(ii) Let k be a global field. Let S ⊇ {v|p} be a finite set of places of k. Assume that
K/k is unramified outside S, and let kS (resp. MS) be the maximal (resp. maximal
abelian) S-ramified p-extension of k (resp.K). Then the Λ-module XS = Gal(MS/K)
is homotopically determined by the Λ-module WS = H0(Gal(kS/K), E(p)

2 ) −where E
(p)
2

is the dualizing module of Gal(kS/K)− and a canonical class χ ∈ H2(G,WS)∨.

In this section we assume K(A) ⊂ K∞. Then we can give a generalization of the above
theorem of Jannsen as follows.

3In order for the Λ to be Noetherian, it may be necessary to restrict the extension K/k such as a
p-adic Lie extension.
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Theorem 4.11 Let K be either a finite extension of Qp or a finite extension of Q,
K∞/K a p-adic Lie extension such that K(A) ⊂ K∞, and A as before. Put G =
Gal(K∞/K) and Λ = Λ(G).

(i) Let K be a a finite extension of Qp and put X = H1(K∞, A)∨. Then the Λ-module X
is homotopically determined by the Λ-module A∗(K∞) and a class ξ ∈ Ext2Λ(A∨, A∗)∨.

(ii) Let K be a finite extension of Q. Let S be a finite set of places of K as ex-
plained above. Assume that K∞/K is unramified outside S. Then the Λ-module
XS = H1(GS,∞, A)∨ is homotopically determined by the Λ-module ZA and and a class
ξ ∈ Ext2Λ(A∨, Z∨A)∨.

Recall the notation [M, N ] = HomHo(Λ)(M,N) = HomΛ(M, N)/{f : f ' 0} for finitely
generated Λ-modules M , N . First we show the following

Lemma 4.12 Let G and Λ be the same as in Theorem 4.11, and let M be a finitely
generated Λ-module. Write I = I(G). Then we have the following isomorphisms:

[DM, I[A]] = TorΛ2 (A∨,M) = Ext2Λ(A∨,M∨)∨

where DM is transpose of M .

Proof: Take a projective presentation of M : P1 → P0 → M → 0 and let N be the
kernel of the map so that we have the following exact sequence: 0 → N → P1 → P0 →
M → 0. We now show that TorΛ2 (A∨,M) = Ker(N ⊗Λ A∨ → P1 ⊗Λ A∨). In [Ja1], it is
shown that TorΛ(G)

2 (Zp,M) = Ker(N ⊗Λ Zp → P1 ⊗Λ Zp). Hence the following is exact:

0 → TorΛ(G)
2 (Zp,M) → N ⊗Λ Zp → P1 ⊗Λ Zp.

As (N ⊗ΛZp)⊗Zp A∨ ∼= N ⊗Λ A∨ and (P1⊗ΛZp)⊗Zp A∨ ∼= P1 ⊗Λ A∨, noting also that
A∨ is a free Zp-module (hence flat as a Zp-module), we see that the following is exact:

0 → TorΛ(G)
2 (Zp,M)⊗Zp A∨ → N ⊗Λ A∨ → P1 ⊗Λ A∨.

In [Ja1], it is also shown that TorΛ(G)
2 (Zp,M) = [DM, I]. Therefore we have to show

[DM, I]⊗Zp A∨ = [DM, I[A]].

Firstly one checks HomΛ(DM, I)⊗Zp A∨ = HomΛ(DM, I⊗Zp A∨). Write Hom0(M, N)
for {f ∈ HomΛ(M,N) : f ' 0}. Now the lemma is proved by looking at the following
exact sequences:

0 → Hom0(DM, I) → Hom(DM, I) → [DM, I] → 0

and
Hom0(DM, I)⊗Zp A∨ = Hom0(DM, I ⊗Zp A∨),

¤

Now we prove Theorem 4.11. By Proposition 4.10 and Lemma 4.12 , in the local case
we have DY ' A∗(K∞)∨; in the global case we have DY ' lim←−H2(GS(Kn), TpA).
Recall we have the exact sequence

0 → X → Y
φ→ I[A] → 0.
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This map φ from Y to I[A] determines an element in

[Y, I[A]] = [DZ, I[A]] = Ext2Λ(A∨, Z∨)∨

by Lemma 4.12. This finishes the proof.

Remark. To calculate Ext2Λ(A∨, Z∨), the following spectral sequence (base change of
rings) may be useful sometimes:

Ei,j
2 = ExtiZp

(B,Extj
Λ(Zp, N)) =⇒ Exti+j

Λ (B, N)

where B is a Zp-module and N a Λ-module. For instance, let N be a p- primary discrete
G-module (eg. N = A∗). Then Extj

Λ(A∨, N) are p-torsion modules. We have an exact
sequence:

Ext2Λ((A[p])∨, N) → Ext2Λ(A∨, N)
p

-→Ext2Λ(A∨, N).

Therefore if Ext2Λ((A[p])∨, N) = 0, then Ext2Λ(A∨, N) = 0. Assume K0 = K. Then as
Λ-modules, A[p] ∼= (Z /pZ)r. From the spectral sequence ExtiZp

(Z /pZ, Extj
Λ(Zp, N)) ⇒

Exti+j
Λ (Z /pZ, N), we have

Ext2Λ(Z /pZ, N) = HomZp(Z /pZ, Ext2Λ(Zp, N)) (11)

Hence if H2(G,N) = 0, then Ext2Λ(A∨, N) = 0.

Examples. 1. Of course, if A = Qp /Zp (with trivial Galois action), then K(A) = K
and Theorem 4.11 is the theorem of Jannsen at the beginning of this section.

2. Suppose µp ⊂ K, A = µp∞(= Gm(p)) and K∞ = K(µp∞). Then Ext2Λ(µ∨p∞ , Z∨) =
Ext1Λ(I#, Z∨) = 0 since I# is projective in this case (as is easily seen or see [Ja1]).
Hence, in particular, if K is a finite extension of Qp, then X is determined only by Zp

in the stable category; one can show actually that X ∼= Λr ⊕Zp where r is free rank of
X++ which is a free Λ-module.

3. Assume K is a finite extension of Qp. Let E be an elliptic curve over K. Let
A = Ep∞ . Put X = H1(K∞, Ep∞). Assume K(E[p]) = K and K∞ = K(Ep∞) with
G = G(K∞/K) and Λ = Λ(G). Suppose dim(G) = 2. Then Ext2Λ(E∨

p∞ , Ep∞) = 0. To
show this, by the remark above, it is enough to show H2(G,Ep∞) = 0. But by using
Poincare duality, H2(G,Ep∞) = (lim←− i,nH0(Gi, Ep∞/pn))∨ = 0. Hence in this case, X
is homotopically determined by Ep∞ . In relation to this there is an exact sequence:

0 → X → X++ → TpE → 0.

Note that (E2(DX) =) HomZp(Ep∞
∨ ⊗Qp /Zp,Qp /Zp) = TpE.

Let us end this section by noting the following remark: In the proof of Lemma 4.5 is
given a projective resolution of A∨ and from it we have a chain complex whose homology
groups are H i(GS,∞, A)∨.
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Corollary 4.13 We keep the notation as before and assume K(A) ⊂ K∞. Then in the
category of Λ(G)-modules (with usual Λ-linear homomorphisms as morphisms), there
is a projective resolution of A∨:

0 → N ab(p)[A] → Λ(G)[A]d → Λ(G)[A] → A∨ → 0.

The following is a chain complex whose homology groups are H i(GS,∞, A)∨:

0 → N ab(p)[A]H → Λ(G)[A]d → Λ(G)[A] → 0.

5 Nonexistence of Pseudo-Null Submodules

Let E be an elliptic curve over a number field F without complex multiplication (over
Q̄). Let Ep∞ = ∪n≥1Epn and F∞ = F (Ep∞). Denote by G any open subgroup having
no p-torsion of the Galois group G(F∞/F ). Recall the definition of the Selmer group:

Selp(F∞, E) := Ker(H1(F∞, Ep∞) →
∏
w

H1(F∞,w, E)) (12)

where w runs over all places of F∞ and F∞,w means the union of the completions at
F∞ of all finite extensions of Q contained in F∞. The Selmer group has a G-module
structure through the usual G-action on H1(F∞, Ep∞) (see below). In this section we
shall prove that the Pontryagin dual of the Selmer group has no nonzero pseudo-null
Λ(G)-submodule. However, if we have shown that it has no pseudo-null Λ(U)-module
for some open subgroup U of G, then it will imply that it has no nonzero pseudo-null
Λ(G)-submodule because, as was pointed out in the proof of Theorem 2.6, there is the
following isomorphism of Λ(U)-modules:

Exti
Λ(G)(M, Λ(G)) ∼= Exti

Λ(U)(M, Λ(U))

for any Λ(G)-module M and all i ≥ 0 ([Ja1], Lemma 2.3). Recall that M does not
contain any pseudo-null submodules if EiEi(M) = 0 for all i ≥ 2. Therefore we may
take F0 = F (Ep) as our base field instead of F and write K = F0, K∞ = F∞ and
G0 = Gal(K∞/K). We then regard Ep∞ as a GK-module so that H1(K∞, Ep∞) has
the usual G0-action: for g ∈ G0, φ ∈ H1(K∞, Ep∞), any cocycle, and σ ∈ GK∞ ,
(gφ)(σ) := gφ(g̃−1σg̃), where g̃ is any lift of g to GK . Denote by S the following set of
places of K:

S = {v : v|p} ∪ {v : v|∞} ∪ {v : E has bad reduction at v}.
By KS we denote the maximal S-ramified extension of K. Then we have the following
exact sequence:

0 → Selp(K∞, E) → H1(GS,∞, Ep∞) →
⊕

v∈S

CoindG
Gv

H1(Kv,∞, E)(p)

where GS,∞ = G(KS/K∞) and Gv = G(Kv,∞/Kv), Kv,∞ = Kv(Ep∞).

Now assume that E has good reduction at all v|p. Then Coates and Greenberg ([CG])
showed the following isomorphism for v|p:

H1(Kv,∞, E)(p) ∼= H1(Kv,∞, Ẽp∞)
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where Ẽp∞ is the Gv-module which sits in the following exact sequence:

0 → Êp∞ → Ep∞
g→ Ẽp∞ → 0

where g is the reduction map. If v does not divide p, then since E(Kv,∞)⊗Qp /Zp = 0
bu virtue of Mattuck’s theorem, we have

H1(Kv,∞, E)(p) ∼= H1(Kv,∞, Ep∞)

by Kummer sequence. Hence the above exact sequence is written as follows:

0 → Selp(K∞, E) → H1(GS,∞, Ep∞)
φ→
M
v∈S′

CoindG
Gv

H1(Kv,∞, Ep∞)⊕
M
v|p

CoindG
Gv

H1(Kv,∞, eEp∞)

(13)

where S′ denotes the subset of S which consists of all the primes that do not divide p.
It is conjectured that the map φ above is surjective. Indeed, at least if p ≥ 5, then it
is equivalent to a generalized conjecture of Harris (See Conjecture 2.4 and Proposition
3.4 in [CH]).

Theorem 5.1 Let E/F , K, and K∞ be as above. Put G0 = G(K∞/K).

Assume:

(i) E has good reduction at all v|p, v ∈ S.

(ii) The map φ in the above exact sequence (13) is surjective.

Then Selp(K∞, E)∨ has no nonzero pseudo-null Λ(G0)-submodule. Therefore it has
no nonzero pseudo-null Λ(G)-submodule for any open p-adic Lie subgroup G without
p-torsion of Gal(K∞/F ).

In particular, the theorem holds, if E has good supersingular reduction at any v|p,
because then Selp(K∞, E) ∼= H1(GS,∞, Ep∞), see below.

We would like to prove the theorem in a slightly more general setting. First we recall
Greenberg’s Selmer group ([Gr2]). Let A be as before. Let K∞/K be a pro-p Lie
extension such that G = G(K∞/K) has no elements of order p. Greenberg’s Selmer
group for this A over K∞ is defined as follows:

Sel(K∞, A) := ker(H1(K∞, A) →
∏

w-p
H1(Knr

∞,w, A)
⊕∏

w|p
H1(Knr

∞,w, A/Av)) (14)

Here Knr∞,w is the maximal unramified extension of K∞,w and Av is a p-divisible Gv-
submodule of A. The choice of Av is rather subtle (see [Gr2] and [Sc2]). But we will
not make this explicit here, since it does not matter for our purposes. However, in
the case A = Ep∞, we always take Av = Êp∞ if E has ordinary reduction at v, and
Av = Ep∞ if E has supersingular reduction at v. We write Ãv for A/Av. Denote by S

S = {v : v|p} ∪ {v : v|∞} ∪ {v : the inertia group Iw acts on A nontrivially (w|v)}.
Then again we have the following exact sequence.

0 → Sel(K∞, A) → H1(GS,∞, A)
φ→
M
v∈S′

CoindG
Gv

H1(Knr
v,∞, A)⊕

M
v|p

CoindG
Gv

H1(Knr
v,∞, eAv). (15)

We always assume that K∞ is contained in KS . We shall prove the following
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Theorem 5.2 Let K, A, S and K∞/K be as above. Write G = Gal(K∞/K) and
Λ = Λ(G). Assume:

(i) H2(GS,∞, A) = 0;

(ii) φ in the sequence (15) is surjective;

(iii) Knr
v,∞ = Kv,∞ (for simplicity) if v - p or if v|p and H1(Kv,∞, Ãv) 6= 0 ;

(iv) dim(G) > dim(Gv) ≥ 2 if v - p;
(v) For any v|p such that H1(Knr

v,∞, Ã) 6= 0, we assume dim(G) > dim(Gv) ≥ 3.

Then Sel(K∞, A)∨ has no nonzero pseudo-null Λ(G)-submodule.

This will imply Theorem 5.1. For first it is easy to see Knr
v,∞ = Kv,∞. If E has supersin-

gular good reduction at some v|p, then by Coates-Greenberg, we have H1(Kv,∞, Ẽp∞) =
0. In the case of supersingular reduction at any v|p, we have actually Selp(K∞, E) =
Sel(K∞, Ep∞) = H1(GS,∞, Ep∞). So already by Theorem 4.6, Selp(K∞, E)∨ has no
nonzero pseudo-null submodule. If E has ordinary reduction at v|p, then by a result
of Serre (see [Se2] IV-43), we have dim(Gv) = 3 (see [CH] Lemma 5.1). Also if v - p
and E has potentially multiplicative reduction at v, then dim(Gv) = 2 and by a result
of Serre-Tate ([ST] 2 Corollary 2) it does not occur that E has bad but potential good
reduction at v. Finally we know dim(G) = 4 and H2(GS,∞, Ep∞) = 0 (Corollary 4.7).

Before beginning to prove Theorem 5.2, we would like to make sure that Sel(K∞, A)∨

is not trivial. This follows, for instance, from

Proposition 5.3 Under the same assumptions as in Theorem 5.2, the projective di-
mensions of Sel(K∞, A)∨ and H1(GS,∞, A)∨ are the same and it is dim(G) − 2 if
A(K∞)∨ has no finite submodule and dim(G)− 1 if A(K∞)∨ has a nonzero finite sub-
module.

Proof: See [HO]. ¤

Put U =
⊕

v∈S′ IndG
Gv

H1(Kv,∞, A)∨⊕⊕
v|p IndG

Gv
H1(Kv,∞, Ãv)∨, XS = H1(GS,∞, A)∨

and Xf = Sel(K∞, A)∨. By the assumption (ii), we have the following exact sequence:

0 → U → XS → Xf → 0. (16)

From now on, for simplicity of the argument, we assume that A(K∞) has no nontrivial
finite submodule.

Put Xv = H1(Kv,∞, Ãv)∨ or H1(Kv,∞, A)∨, according to v being over p or not. Also
with Xv we write Yv for the Λ(Gv)-module Y in the diagram in Lemma 4.5.

Lemma 5.4 (i) If dim(Gv) ≥ 2, then Xv and Yv are torsion-free. If dim(Gv) > 2,
then Xv and Yv are reflexive.

(ii) Suppose v does not divide p. If dim(Gv) ≥ 2, then Xv = 0.
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Proof: (i) For the first statement, see [HO]. For the second statement of (i), consider
the following commutative diagram:

I

0 - Yv

6

- Y ++
v

- E2(DYv) - 0

0 - Xv

6

- X++
v

6

- E2(DXv)

6

- 0

0

6

0

6

0

6

Now if dim(G) > 2, then E2(DYv) = E2((Ã(Kv,∞)∗)∨) = 0 by [Ja1] 2.6.

(ii) See [HO]. ¤

Lemma 5.5 For a finitely generated Λ(Gv)-module M and any i ≥ 0, we have an
isomorphism:

Exti
Λ(G)(IndG

Gv
M, Λ(G)) = IndG

Gv
Exti

Λ(Gv)(M, Λ(Gv)). (17)

Proof: First we check that Λ(G) is a flat Λ(Gv)-module. For it we just need to check
that for any ideal a of Λ(Gv), the natural map a⊗Λ(Gv)Λ(G) → Λ(G) is injective. Write
Gn = G/Un, where Un is a open normal subgroup, and Gn,v for Gv/(Gv ∩ Un). Then
Λ(G) = lim←− n Zp[Gn] and Λ(Gv) = lim←− n Zp[Gn,v]. Let fn be the natural surjective map
Λ(Gv) → Zp[Gn,v]. Let a be any (left, say) ideal of Λ(Gv). Then a = lim←− nan, where an

is the ideal of Zp[Gn,v] generated by fn(a). Then the following is exact since Zp[Gn] is
a projective Zp[Gn,v]-module:

0 → an ⊗Zp[Gn,v] Zp[Gn] → Zp[Gn].

Take projective limit and we have

0 → lim←− n(an ⊗Zp[Gn,v] Zp[Gn]) → lim←− n Zp[Gn].

But lim←− n(an ⊗Zp[Gn,v] Zp[Gn]) ∼= a ⊗Zp[[Gv ]] Zp[[G]] ([Br] Lemma A.4 and Lemma 2.1
(ii)). Hence the claim at the beginning. Now since Λ(G) is flat over Λ(Gv), we have
the following isomorphism:

HomΛ(Gv)(M, Λ(Gv))⊗Λ(Gv) Λ(G) ∼= HomΛ(G)(M ⊗Λ(Gv) Λ(G), Λ(G)).

Because completed tensor product ⊗̂ is right exact, IndG
Gv

is an exact functor from
the category of Λ(Gv)-modules to the category of Λ(G)-modules. Finally, to show the
isomorphisms (17), use the definition of Exti

Λ(Gv)(M, Λ(Gv)) by taking a free resolution
of the finitely generated Λ(Gv)-module M .

0 → Λ(Gv)rn → · · · → Λ(Gv)r1 → Λ(Gv)r0 → M → 0. (18)
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This yields a free resolution of IndG
Gv

M :

0 → Λ(Gv)rn ⊗Λ(Gv) Λ(G) → · · · → Λ(Gv)r1 ⊗Λ(Gv) Λ(G) → Λ(Gv)r0 ⊗Λ(Gv) Λ(G) → IndG
Gv

M → 0.

On the other hand, the resolution (18) gives rise to a chain complex:

0
φ−1→ Hom(Λ(Gv)r0 , Λ(Gv))

φ0→ · · · φn−1→ Hom(Λ(Gv)rn−1 , Λ(Gv))
φn→ Hom(Λ(Gv)rn , Λ(Gv))

φn+1→ 0

such that Exti(M, Λ(Gv)) := Ker(φi)/Im(φi−1) for i ≥ 0. As IndG
Gv

is an exact functor,
we have

Exti(M, Λ(Gv))⊗Λ(Gv) Λ(G) = (Ker(φi)/Im(φi−1))⊗Λ(Gv) Λ(G)

= (Ker(φi)⊗Λ(Gv) Λ(G))/(Im(φi−1)⊗Λ(Gv) Λ(G)) = Exti(IndG
Gv

M, Λ(G)).

¤

Lemma 5.6 (i) Ei(XS) = 0 for all i 6= 0, 1, dim(G)− 2.

(ii) Ei+1Ei(U) = 0 for any i ≥ 1.

Proof: (i) This follows from pd(Y ) ≤ 1 and so Ei(XS) = Ei+2(A(K∞)∨) for i ≥ 2.

(ii) By Lemma 5.5 we have

Exti
Λ(G)(U) =

⊕
IndG

Gv
Exti

Λ(Gv)(Xv).

hence for any i ≥ 2, we have

Ei
Λ(G)E

i
Λ(G)(U) =

⊕
IndG

Gv
Ei

Λ(Gv)E
i+2
Λ(Gv)(Ãv) = 0.

Now we show E2E1(U) = 0. We need to show E2
Λ(Gv)E

1
Λ(Gv)(Xv) = 0. Write Ei =

Ei
Λ(Gv). We have an exact sequence 0 → Xv → Yv → Iv → 0. This gives E1(Iv) →

E1(Yv) → E1(Xv) → E2(Iv). But Ei(Iv) = 0 for i = 1, 2 since dim(Gv) ≥ 3. Therefore
E2E1(Yv) = E2E1(Xv). Since pd(Yv) ≤ 1, E2E1(Yv) = E2(DYv). But this is zero since
Yv is reflexive. Therefore E2E1(Xv) = 0. ¤

We are going to show EiEi(Xf ) = 0 for all i ≥ 2. We will repeatedly use the fact that
EiEi(XS) = 0 for all i > 1, which is because XS does not have nonzero pseudo-null
submodules (Corollary 4.7 and Proposition 2.4, 1, (b)). Now suppose i > 2. We have
an exact sequence

Ei−1(XS) → Ei−1(U) → Ei(Xf ) → Ei(XS) → Ei(U).

Assume i = pdΛ(XS)(= dim(G) − 2). Then we know by Lemma 5.6 and the last
hypothesis in Theorem 5.2 that Ei−1(XS) = Ei(U) = 0. Hence we get a short exact
sequence 0 → Ei−1(U) → Ei(Xf ) → Ei(XS) → 0. This gives

EiEi(XS) → EiEi(Xf ) → EiEi−1(U).

We have EiEi(XS) = 0 as noted above and EiEi−1(U) = 0 by Lemma 5.6. Hence
EiEi(Xf ) = 0. Since i = pdΛ(Xf ) as well (Proposition 5.3), We also have EnEn(Xf ) = 0
for all n ≥ pdΛ(XS).
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If 2 < i < pdΛ(XS), then we have Ei−1(U) = Ei(Xf ). Hence EiEi(Xf ) = EiEi−1(U) =
0.

Finally we have to show E2E2(Xf ) = 0. Assume dim(G) = 4. Consider the following
long exact sequence

E1(Xf ) → E1(XS) → E1(U) → E2(Xf ) → E2(XS) → E2(U).

We have E2(U) = 0 since pdΛ(U) ≤ 1. From this we make the following three short
exact sequences:

0 → B → E2(Xf ) → E2(XS) → 0;

0 → C → E1(U) → B → 0;

0 → D → E1(XS) → C → 0.

From the first sequence, we have an exact sequence

E2E2(XS) → E2E2(Xf ) → E2(B).

But E2E2(XS) = 0. Hence E2E2(Xf ) = E2(B) since E3E2(XS) = E3E4(A∨(K∞)) = 0.
From the second sequence, we have an exact sequence

E1E1(U) → E1(C) → E2(B) → E2E1(U).

But E2E1(U) = 0 by Lemma 5.6 and E1E1(U) = 0 as U is torsion free.

Therefore we get E1(C) = E2(B). From the third sequence, we have an immersion:

0 → E1(C) ↪→ E1E1(XS).

Claim: torΛ(XS) = E1E1(XS).

To show this, first we get E1(Y ) = E1(XS) from the exact sequence 0 → XS → Y →
I → 0 in the (powerful) diagram because Ei−1(I) = Ei(A(K∞)∨) = 0 for i = 2, 3 by
the assumption dim(G) = 4 and 2.6 of [Ja1] or (5.4.15) of [NSW] (recall we assume
that A(K∞) has no nontrivial finite submodule). But pdΛ(Y ) ≤ 1, hence, as we noted
in the section 3, we have DY ' E1(Y ). Therefore torΛ(XS) = torΛ(Y ) = E1(DY ) =
E1(E1(Y )) = E1(E1(XS)).

We now have that E1(C) = E2(B) and E2(B) is a pseudo-null module by Proposi-
tion 2.4, 3, (b). But XS has no pseudo-null submodule. Therefore E2(B) = 0, i.e.,
E2E2(Xf ) = 0.

If dim(G) > 4, the argument is similar. In this case E2(XS) = 0, hence we have an
exact sequence 0 → V → E1(Xf ) → E1(XS) → E1(U) → E2(Xf ) → 0 with some V .
Split this into two exact sequences:

0 → W → E1(U) → E2(Xf ) → 0;

0 → V → E1(XS) → W → 0.

Then from the first sequence we have E1E1(U) = 0 → E1(W ) → E2E2(Xf ) →
E2E1(U) = 0. Hence E1(W ) is pseudo-null. From the second sequence we know
that E1(W ) is a submodule of torΛ(XS). Hence E1(W ) = 0, and in consequence
E2E2(Xf ) = 0.
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6 Structure as Λ(H)- and Λ(C)-Module

Let E, F , F∞, G and Selp(F∞, E) be the same as at the beginning of the last section.
By Fcycl we denote the cyclotomic Zp-extension F (µp∞) of F, which is contained in
F∞ as we have seen. Putting H = Gal(F∞/Fcycl) Coates and Howson have shown
that under some conditions (see the assumptions in the theorem below), Selp(F∞, E)∨

is finitely generated over Λ(H) ([CH], Theorem 6.4). The question of John Coates
was whether in this case the previous Theorem 5.1 could tell if the Iwasawa module
Selp(F∞, E)∨ has no Λ(H)-torsion. We answer this question with the following

Theorem 6.1 Let E, F , F∞, G, H and Selp(F∞, E) be as above. Assume the follow-
ing:

(i) G = Gal(F∞/F ) is pro-p.

(ii) Selp(Fcycl, E)∨ is a finitely generated Zp-module.

Then Selp(F∞, E)∨ is a torsion-free finitely generated Λ(H)-module.

Remark. Note that condition (ii) of the theorem is equivalent to
(ii)’ Selp(Fcycl, E)∨ is Λ(Γ)-torsion, where Γ = G(Fcycl/F ), and the µ-invariant of
Selp(Fcycl, E)∨ is zero.

The point is to show that the set of all the Λ(H)-torsion elements, say N , forms a
pseudo-null Λ(G)-module. It is easy to see that N becomes a Λ(G)-module. To show
that it is pseudo-null is equivalent to showing E1(N) = 0 by Proposition 3.4. In [Ve]
the vanishing has been proved by using a certain spectral sequence in a more general
setting. For completeness, however, we would like to give another proof here using the
graduation which has been shown to exist in Theorem 2.8.

We first prove a few lemmas. First let us recall Theorem 2.8: there exists an open sub-
group G′ of G called “extra powerful” pro-p group such that gr(Λ(G′)) ∼= Fp[X0, · · · , Xr]
with r = pd(Λ(G′)) through M-adic filtration, where M is the maximal ideal of Λ(G′).
Assume now G = G′. Then any Λ(G)-module M has a good filtration and we can as-
sociate a graded module grM(M) =

⊕∞
i=0 MiM/Mi+1M , which is a finitely generated

gr(Λ(G))-module. Now grM(M) is a finitely generated module over a commutative
Noetherian ring, so the dimension is defined in the usual way.

Lemma 6.2 The dimension of M , δ(M), is equal to the dimension of grM(M).

Proof: Recall δ(M) + j(M) = pd(Λ(G)) (Proposition 2.4). But j(M) = j(grM(M))
according to [Bj1]. On the other hand, from commutative algebra, we know
dim(grM(M)) + j(grM(M)) = dim(gr(Λ(G))). But dim(gr(Λ(G))) = pd(Λ(G)), hence
the equality. ¤
Put S = gr(Λ(G)). Now let us consider Λ(H) too. Denote the maximal ideal by N.
Put R = grN(Λ(H)). Suppose M is a finitely generated S-module. Of course M is
also a R-module by restriction. If M is also finitely generated over R, then what is the
relation between dimS(M) and dimR(M)? The following lemma gives a partial answer.
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Lemma 6.3 Let R, S and M be as above. Then we have always

dimS(M) ≤ dimR(M).

This is also deduced from the spectral sequence in [Ve]. The following proof is provided
us by J. Manoharmayum4.

Proof: Put dR = dimR(M) and dS = dimS(M). Also put aj = dimk(NjM/Nj+1M)
and bj = dimk(MjM/Mj+1M). Then there exist polynomials HR(t),HS(t) ∈ Q[t]
such that HR(j) = aj and HS(j) = bj for all j À 0 and deg(HR) = dR − 1 and
deg(HS) = dS − 1. Hence there exist polynomials LR(t), LS(t) ∈ Q[t] of degree dR,
dS respectively such that LR(j) = `R(M/Nj+1M) and LS(j) = `S(M/Mj+1M) for all
j À 0 (here ` denotes length). Now there is the natural surjective map of R-modules:
fj+1 : M/Nj+1M → M/Mj+1M . Hence if any chain of S-modules is given:0 & N1 &
N2 · · · & Nr & M/Mj+1M , we will have a chain of R-modules: 0 & f−1

j+1(N1) &
f−1

j+1(N2) · · · & f−1
j+1(Nr) & M/Nj+1M . Hence `S(M/Mj+1M) ≤ `R(M/Nj+1M).

Therefore LS(j) ≤ LR(j) for all j À 0. This implies dS ≤ dR. ¤

Proof: (of Theorem 6.1) First note that Theorem 5.1 holds in the category of
Λ(G(F∞/Fn))-modules for any n ≥ 0. Let N be set of all Λ(H)-torsion elements in
Selp(F∞, E)∨. Then N is a Λ(H)-module since it is isomorphic to
E1

Λ(H)(D(Selp(F∞, E)∨)) as Λ(H) is a Noetherian ring without zero divisors. We are
going to show N = 0. For the purpose, we may take F (Epn) as a base field for some
sufficiently large n so that we have G ∼= {A ∈ GL2(Zp) : A ≡ 1(mod pn)}. Then we have
G = CH where H ∼= {A ∈ GL2(Zp) : det(A) = 1} and C ∼= {a ∈ Z×p : a ≡ 1(mod pn)}.
Let us check that N is G-stable for this G. Take any g ∈ G and write g = ch. Take any
x ∈ N . Since N is a Λ(H)-module, hx ∈ N and z(hx) = 0 for some z ∈ Λ(H). Then
since c is in the centre of G, we have z(gx) = z(chx) = cz(hx) = 0. Therefore N is a
Λ(G)-submodule of Selp(F∞, E)∨. But now N is finitely generated Λ(G)-torsion mod-
ule and also finitely generated and torsion over Λ(H) by Coates-Howson. From the two
lemmas above, we have dimΛ(G)(N) ≤ dimΛ(H)(N) ≤ 3. Therefore codimΛ(G)(N) ≥ 2,
which means N is a pseudo-null Λ(G)-submodules of Selp(F∞, E)∨. By Theorem 5.1,
we conclude N = 0. ¤
Another important question is how the centre C of G acts on the Selmer group. The
only implication we get about it is the following corollary to our main theorem, which
follows by the same argument as above:

Theorem 6.4 Assume that G is a pro-p-group or that G is a profinite group with its
centre C isomorphic to Zp. Then the Λ(C)-torsion submodule torΛ(C)(Selp(F∞, E)∨) is
either zero or not finitely generated as Λ(C)-module.
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