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Abstract. In this paper we study the Selmer groups of elliptic curves
over Galois extensions of number fields whose Galois group G ∼= ZpoZp is
isomorphic to the semidirect product of two couples of the p-adic numbers
Zp. In particular, we give examples where its Pontryagin dual is a faithful
torsion module under the Iwasawa algebra of G. Then we calculate its
Euler characteristic and give a criterion for the Selmer group being trivial.
Furthermore, we describe a new asymptotic bound of the rank of the
Mordell-Weil group in these towers of number fields.
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1. Introduction

Throughout this paper, let p be a fixed odd prime number. For an elliptic curve
E over Q with good ordinary reduction over p, Mazur’s Main Conjecture predicts
that the Mazur-Swinnerton-Dyer p-adic L-function LMSD associated with E can
be interpreted as an element of the Iwasawa-algebra Λ = Zp[[Gal(Qcyc/Q)]] of the
cyclotomic Zp-extension Qcyc of Q and is a generator of the characteristic ideal of
the Pontryagin dual Xf (Qcyc) of the Selmer group of E over Qcyc

char(Xf (Qcyc)) = (LMSD).

Kato [?] has proved a partial result towards it showing that, for some m ≥ 0, the
function pmLMSD lies in Λ and is divided by the algebraic L-function of Xf (Qcyc).
In particular, up to a power of p, the p-adic L-function LMSD annihilatesXf (Qcyc)
modulo pseudo-null modules: “LMSD Xf (Qcyc) ≡ 0.” Moreover, if Xf (Qcyc) does
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not contain any pseudo-null submodule, then LMSDXf (Qcyc) = 0. Thus, in classi-
cal Iwasawa theory the p-adic L-function is closely related to the annihilator ideal
AnnΛ(Xf (Qcyc)) of Xf (Qcyc).

Now, the challenging aim of noncommutative Iwasawa theory is to find and even-
tually prove a main conjecture over certain field extensions k∞ of some number
field k whose Galois group G = G(k∞/k) is a (non-abelian) p-adic Lie group, e.g.
over the field k∞ = k(Ep∞) which arises by adjoining to k all p-power division
points Ep∞ . If there should exist some p-adic L-function adapted to this situation,
it would thus be natural to expect that it has the property of annihilating the dual
of the Selmer group Xf (k∞) over k∞. One could even hope that investigating the
global annihilator ideal

AnnΛ(G)(Xf (k∞)) := {λ ε Λ(G)|λx = 0 for all x ε Xf (k∞)}

gives some hints for candidates of such a hypothetic L-function in this noncom-
mutative setting, where Λ(G) = Zp[[G]] denotes the Iwasawa-algebra of G. This
question, which motivated the present paper, was already posed by Harris in [?],
whereas Coates, Schneider and Sujatha [?] defined a characteristic ideal of Xf (k∞)
in case AnnΛ(G)(Xf (k∞)) is not zero.

The first main result of this article however tells that in general, over arbitrary
p-adic Lie-extensions, such a link between global annihilator elements and p-adic
L-functions is not possible (but we should stress that this result is no obstruction to
the existence of p-adic L-functions in which we nevertheless still believe). Indeed,
we prove that Xf (k∞) over some infinite Kummer extension k∞ of k is a finitely
generated Λ(G)-torsion module, but with vanishing global annihilator ideal, i.e.
though any single element of Xf (k∞) is annihilated by some element of Λ there is
no “global” λ ε Λ which annihilates the whole dual of the Selmer group. In our
example, the Galois group G = G(k∞/k) is isomorphic to the semidirect product
of two copies of the p-adic integers Zp.
Before stating the precise result we recall that a Λ-module M is called faithful
if AnnΛ(M) = 0 and bounded otherwise. These notions extend to objects of the
quotient category Λ-mod/C of Λ-mod by the full subcategory C of pseudo-null
modules and an objectM of this latter category is called completely faithful if all
its non-zero subquotient objects are faithful.
Now assume that the number field k contains the pth roots of unity and that E is
an elliptic curve over a k which has good ordinary reduction at all places above p.
Further, assume G = G(k∞/k) ∼= H o Γ where both H and Γ are isomorphic to
Zp.

Theorem (Theorem ??). Assume Xf (k∞) is non-zero and finitely generated as a
Λ(H)-module. Then, it is a faithful torsion Λ(G)-module which is not pseudo-null.
Even more, its image in the quotient category is completely faithful and cyclic.

The purely algebraic fact that every Λ(G)-module - whether pseudo-null or not
- which is finitely generated over Λ(H) has a completely faithful, cyclic image in
the quotient category has been proved in [?].
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We should mention that e.g. for p = 5, the elliptic curve E = X1(11) of conductor
11 which is defined by the equation

y2 + y = x3 − x2,

the assumptions of the theorem hold for k = Q(µ5) and k∞ = kcyc(
5∞
√

11). Indeed,
we prove that Xf (k∞) is free of rank 4 as Λ(H)-module where H = G(k∞/kcyc)
(theorem ??). Unfortunately, it is still not known even in a single example of an
elliptic curve without complex multiplication whether over the “GL2”-extension
k(Ep∞) of k the dual of the Selmer group is bounded or faithful.

The above result suggests that it is worth considering Iwasawa theory over the
specified type of extensions whose Galois group is isomorphic to a semidirect prod-
uct Zp o Zp : This is the easiest non-commutative case and some questions are
attackable for the associated group algebra which can be identified with a certain
skew power series ring (cf. [?]). Also our second main result, which describes the
Euler characteristic of the Selmer group, confirms that this example will serve as
a good test candidate for further developments in noncommutative Iwasawa the-
ory. A formula for this Euler characteristic was calculated over Zp-extensions by
Perrin-Riou and Schneider and over the “GL2”-extension by Coates and Howson
[?].

Let ρp(E/k) be the p-Birch-Swinnerton-Dyer constant (see section ?? for the def-
inition). We assume that k contains the pth roots of unity and that k∞ is a
Galois extension of k containing the cyclotomic Zp -extension kcyc and such that
G(k∞/k) ∼= Zp o Zp.

Theorem (Theorem ??). Assume (i) p ≥ 5, (ii) E has good ordinary reduction at
all primes above p and (iii) Selp∞(E/k) is finite. Then the G-Euler characteristic
χ(G,Selp∞(E/k∞)) is defined and

χ(G,Selp∞(E/k∞)) = ρp(E/k)×
∏
v ε M

|Lv(E, 1)|p,

where Lv(E, 1) is the local Euler-factor of the L-function of E evaluated at 1 and
M denotes a certain set of places of k which is defined in section ??.

We note that under the assumptions of the theorem Xf (k∞) is Λ-torsion. In sec-
tion ?? we also treat the case when k does not contain µp. This result follows from
the explicit calculations of the local and global Galois cohomology, see Theorem
?? as well as subsections ?? and ??. We also calculate the “truncated” G-Euler
characteristics introduced by Coates-Schneider-Sujatha ([?]) under some milder
conditions (Theorem ??).

We keep the assumption that k∞ is a Galois extension of k which contains all
p-power roots of unity and whose Galois group is isomorphic to ZpoZp. Then - as
Coates and Sujatha pointed out to us - another striking phenomenon in comparison
with the GL2-theory is the fact that the validity of Mazur’s conjecture (i.e. that
assuming E has good ordinary reduction at all primes above p the dual of Selmer
Xf (kcyc) over the cyclotomic Zp -extension is Λ(Γ)-torsion where Γ = G(kcyc/k))
implies the torsionness of Xf (k∞) over Λ(G) unconditional; in particular, the



4 Y. Hachimori and O. Venjakob

vanishing of the µ-invariant of Xf (kcyc) has not to be assumed, see theorem ??.
As a consequence one obtains a quite general asymptotic bound for the rank of
the Mordell-Weil group. Let α be any non-zero element of k which is not a root
of unity and let kn be the field obtained by adjoining to k the pnth root of unity
and the pnth root of α.

Theorem (Corollary ??). Assume that (i) E has good ordinary reduction at all
primes ν of k dividing p, and (ii) Xf (kcyc) is Λ(Γ)-torsion. Then there exists a
constant C > 0 such that the rank of E(kn) is at most C · pn for all n ≥ 0.

The following special case is an example of the deep unconditional results which
follows from Kato’s work. Assume now that E is defined over the rational numbers
Q and that α is any non-zero element of the maximal abelian extension Qab of Q
which is not a root of unity. Then there exists a constant C such that

rkZ E(Q(µpn , pn√
α)) ≤ C · pn

for all n ≥ 0.

For the sake of completeness we also discuss other properties of the Selmer group
such as having non-zero pseudo-null submodules (theorem ??), being (non-) triv-
ial (see subsection ??, in particular proposition ??) or having non-vanishing µ-
invariants (corollary ?? and an example in section ?? ). In section ?? we study
the behavior of the µ-invariant under isogeny and we compare the µ-invariants of
the duals of Selmer over k∞ and kcyc.

We hope that these results for the “false Tate curves” are indications of what
might be true in general for non-abelian p-adic Lie extensions.

Acknowledgments. We are most grateful to John Coates. It was his kind
invitation of both of us to DPMMS and his inspiring questions which gave the
impulse to this work. Also we would like to express our warmest thanks to both
him and R. Sujatha for suggesting several improvements of our results and keeping
us fully informed on their joint work. We would like to thank Kazuo Matsuno for
reading parts of the manuscript.

2. Non-existence of pseudo-null submodules

We consider an elliptic curve E over a number field k. Let S be a finite set of
places of k containing all places Sp above p, all places Sbad at which E has bad
reduction and all places S∞ above infinity. Then we write kS for the maximal
outside S unramified extension of k and denote by GS(L) = G(kS/L) the Galois
group of kS over L for any intermediate extension kS |L|k.
Throughout the whole paper we assume that E has good reduction at all places in
Sp.

The main object under consideration in this article, the p-Selmer group, is classi-
cally defined as
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Selp∞(E/L) := ker(H1(L,Ep∞)→
⊕
w

H1(Lw, E(Lw))p∞)

∼= ker(H1(GS(L), Ep∞)→
⊕

w ε S(L)

H1(Lw, E(Lw))p∞).

Here, L is a finite extension of k and, in the first line, w runs through all places of
L while, in the second line, S(L) denotes the set of all places of L lying above some
place of S. As usual, Lw denotes the completion of L at the place w and for any
field K we fix an algebraic closure K̄. For infinite extensions K of k, Selp∞(E/K) is
defined to be the direct limit of Selp∞(E/L) over all finite intermediate extensions
L.

Now, let k∞ be a Galois extension of k contained in kS such that its Galois
group G := G(k∞/k) is a pro-p p-adic Lie group of cohomological p-dimension
cdpG = 2. With other words, the set Sram(k∞/k) of all places which ramify in
k∞|k is contained in S. Note that G is soluble, because its Lie algebra over Qp is
2-dimensional, and has no element of finite order. The last fact implies that the
Iwasawa algebra, i.e. the completed group algebra

Λ(G) := Zp[[G]]

of G is a Noetherian ring without zero-divisors and thus has a skewfield Q(G)
of fractions by Goldie’s theorem. Moreover, Λ(G) is an Auslander regular ring
(see [?] for the definition and the proof of this property) of global dimension
d = cdp(G) + 1 = 3. For Auslander regular rings there exists a nice dimension
theory for modules over it which coincides with the Krull dimension of the support
if Λ is commutative. For a detailed treatment we refer the reader to [?]. We recall
that a Λ-module M is called pseudo-null if E0M = E1M = 0 where we use the
following

Notation 2.1. For a Λ-module M ,

Ei(M) := ExtiΛ(M,Λ)

for any integer i and Ei(M) = 0 for i < 0 by convention.

Also, by the rank rkΛ(G)M of a (left) Λ(G)-module M we denote its dimension
over Q(G) after extension of scalars

rkΛM := dimQ(G)Q(G)⊗Λ(G) M.

Now, the Selmer group Selp∞(E/k∞) bears a natural structure as an discrete (left)
G-module. For some purposes it is more convenient to deal with (left) compact
G-modules, thus we take the Pontryagin duals −∨ and set
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Xν :=
{

H1(k∞,ν , Ep∞)∨ for ν ε S \ Sp,
H1(k∞,ν , (Ẽν)p∞)∨ for ν ε Sp,

US :=
⊕
S

IndGν

G Xν ,

XS := H1(GS(k∞), Ep∞)∨ and
Xf := (Selp∞(E/k∞))∨.

Here we define Ẽν to be the reduction of E at the prime ν. It is well known that
US , XS and Xf are all finitely generated (compact) Λ(G)-modules.

The following two conditions will be crucial for our considerations

Assumption WLS: H2(GS(k∞), Ep∞) = 0.

The validity of this assumption is the statement of a generalized weak Leopoldt
conjecture for E, k∞ and S.

Assumption SEQS: The “defining sequence” for the Selmer group is exact, i.e.
also left exact:

0→ US → XS → Xf → 0.

Note that the (dual of) US is indeed isomorphic to the local conditions occurring
in the above definition of the Selmer group by the work of Coates-Greenberg [?]
and by Mattuck’s theorem (see [?, §4] for details).

We will show in section ?? that if E(k∞)p∞ is finite and Xf a torsion Λ(G)-
module, then both assumptions hold and, in particular, are independent of S. On
the other hand, if k is totally imaginary and both conditions hold for some S (e.g.
S = Σ := Sp ∪ Sbad ∪ Sram(k∞/k)∪ S∞), then - as we will see below - the rank of
Xf is equal to

(2.1) rkΛ(G)Xf =
∑
Ss

p

[kν : Qp],

where Ssp denotes the set of places above p at which E has good supersingular
reduction. In particular, if E has good ordinary reduction at all places over p,
then the dual of its Selmer group Xf must be a Λ(G)-torsion module assuming
WLS and SEQS for some S. We refer the reader to theorem ?? at the end of this
section for a further discussion about cases in which the equation ?? holds.

Remark 2.2. If the cyclotomic Zp-extension kcyc of k is contained in k∞, then
assumption WLS would be a consequence of the vanishing of H2(GS(kcyc), Ep∞),
which is conjecturally true, see e.g. [?, section 1.3.3]. Indeed, as G is a Poincaré
group of cohomological dimension 2 with quotient Γ = G(kcyc/k) ∼= Zp a Poincaré
group of dimension 1, it follows from [?, thm. 3.7.4] that H = G(k∞/kcyc),
which is as p-adic Lie group without element of order p also a Poincaré group, has
cohomological dimension cdpH = 1. Now the Hochschild-Serre spectral sequence
supplies a surjection H2(GS(kcyc)) � H2(GS(k∞))H which implies the claim. We
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should mention that the vanishing over kcyc was shown by Kato [?] for abelian
extensions k of Q for elliptic curves which are defined over Q (and hence modular).

In order to avoid frequent repetition we define two further assumptions. The first
one concerns the base field.

Assumption BASE:

k contains the pth root of unity µp.

We write Gν ⊆ G and Tν ⊆ Gν for the decomposition group and inertia group at
a place ν, respectively. We shall denote by Sordp the set of places in Sp at which E
has good ordinary reduction. The second assumption concerns the dimensions of
these local groups.

Assumption DIMS :

a) dimGν = 2 for all finite places ν ε Sbad ∪ Sram(k∞/k) and
dimGν ≥ 1 for all ν ε S \ Sp.

b) dimGν = 2 for all ν ε Sordp .

c) dimTν = 2 for all ν ε Sordp .

Part c) implies

c’) Ẽp∞(k∞,ν) is finite for all ν ε Sordp .

Indeed, Ẽp∞(k∞,ν) ∼= Ẽp∞(κ∞,ν), where κ∞,ν denotes the residue class field of
k∞,ν which is finite if DIMS c) holds. But an projective variety over a finite field
κ has only finitely many κ- rational points.
Note also that for sets of places S′ ⊇ S ⊇ Σ, the condition DIMS′ implies DIMS

and in particular DIMΣ.

To recover properties of Xf we first have to consider the local modules Xν .

Proposition 2.3. (i) Xν is a Λ(Gν)-torsion module for every ν in S \ Sp
and assuming DIMS a) it holds Xν = 0 for all ν ε Sbad.

(ii) Let ν ε Sordp . Then one has rkΛ(Gν)Xν = [kν : Qp]. If we assume DIMS

b), then there is an exact sequence of Λ(Gν)-modules

0→ Xν → Rν → E2E1Xν → 0,

where Rν is a reflexive, hence torsionfree Λ(Gν)-module.Furthermore,
for the projective dimension of Xν it holds that pdΛ(Gν)Xν ≤ 1 and
E1E1Xν = 0. If, in addition, DIMS c’) holds, then E2E1Xν = 0 van-
ishes, too.

(iii) For all ν ε Ssp, the module Xν is obviously trivial.

Proof. For ν - p the module Xν is torsion by [?, thm. 4.1] and even vanishes
if dim(Gν) = 2 by prop. 4.5 (loc.cit.). Now let ν be in Sordp . The statement
concerning the rank is again thm. 4,1 (loc.cit.). It is easily seen using the diagram
of [?, lem. 4.5, rem. 3], that EiXν

∼= Ei+2(Ẽνp∞(k∞,ν)∨) = 0 for i ≥ 2 because
pdΛ(Gν) = 3 by assumption DIMS b). Thus pdΛ(Gν)Xν ≤ 1 using [?, 6.3,6.4] and
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hence the module E1E1Xν coincides with torΛ(Gν)Xν = 0 (see [?, §2]) while the
short exact sequence of the statement is taken from [?, prop. 3.4]. Now assume
that DIMS c’) holds. Then E2E1Xν = 0 by [?, lem. 3.1, prop. 3.4] (Note that
the additional condition in an earlier version of lemma 3.1 (loc.cit.) in the case
cdp(G) = 2 is superfluous, since in any case pdXν ≤ 1 by the above). �

It follows immediately that rkΛ(G)US =
∑
Sord

p
[kν : Qp], and under assumptions

DIMΣ a) and DIMΣ b) that pdΛ(G)UΣ ≤ 1 and that UΣ is torsionfree where
Σ = Sp ∪ Sbad ∪ Sram(k∞/k) ∪ S∞ as above.

With respect to the global modules we have the following

Proposition 2.4. (i) Assume WLS. Then the projective dimension of XS

is at most one: pdΛ(G)XS ≤ 1, and, if k is totally imaginary, its rank is
rkΛ(G)XS = [k : Q].

(ii) Assuming DIMΣ a), b), WLΣ and SEQΣ the projective dimension of Xf

is less or equal to two: pdΛ(G)Xf ≤ 2.

Proof. As in the proof of proposition ?? we obtain immediately that

EiXS
∼= Ei+2(Ep∞(k∞)∨) = 0

for i ≥ 2 which implies that the projective dimension of XS is less or equal to 1.
The statement about the rank is well known, see (sub)section ?? for a sketch of
the proof. Since both pdXS , pdUS ≤ 1, it follows by homological algebra that
pdXf ≤ 2. �

Remark 2.5. Let k be totally imaginary. Then we obtain from the results above
that assumption SEQS for some S implies the following equality: rkΛ(G)Xf =∑
Ss

p
[kν : Qp], where Ssp denotes the set of places above p at which E has good

supersingular reduction. On the other hand, if we assume DIMΣ a), DIMΣ b)
and WLΣ, then it follows easily from the long exact Poitou-Tate sequence that
condition SEQΣ is equivalent to the validity of this rank formula. Indeed, the
latter condition forces the kernel of UΣ → XΣ to be torsion. But since UΣ is a
torsionfree Λ(G)-module, the kernel must be zero (see[?, prop. 4.32, 4.33]).

Theorem 2.6. (i) [?, thm 4.6] Assume WLS. Then XS does not contain
any non-zero pseudo-null submodule.

(ii) Assume DIMS a), b), c’), WLS and SEQS for some S ⊇ Σ. Then Xf

does not contain any non-zero pseudo-null submodule.

For the proof of (ii) we need the following characterization on the non-existence
of pseudo-null submodules:

Lemma 2.7. [?, prop 2.4 1(b)] A finitely generated Λ(G)-module M has zero max-
imal pseudo-null submodule if and only if EiEiM = 0 for all i ≥ 2. In particular,
if pdΛ(G)M ≤ 2, this is equivalent to E2E2M = 0.

Proof of the theorem. The proof of (ii) is analogous to that of [?, thm 5.2].
Since some calculations are different we nevertheless give it completely: Since
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pdΛ(G)Xf ≤ 2 it suffices by lemma ?? to show that E2E2Xf = 0 vanishes. We
consider the long exact E•-sequence associated with the sequence in condition
SEQS :

E1XS →
⊕
Sord

p

IndGν

G E1Xν → E2Xf → E2XS = 0,

where the last identity follows from proposition ?? while the compatibility of Ind
and E· is the content of [?, lem 5.5]. Splitting this into short exact sequences we
obtain

0→ B →
⊕
Sord

p

IndGν

G E1Xν → E2Xf → 0 and

0→ C → E1XS → B → 0,

where the modules B and C are defined by exactness. Again via the long exact
E•-sequence and using lemma ?? with (i) we obtain

0 =
⊕
Sord

p

IndGν

G E1E1Xν → E1B → E2E2Xf →
⊕
Sord

p

IndGν

G E2E1Xν = 0 and

0 = E0C → E1B → E1E1XS ,

where the vanishing of the local modules follows from proposition ??. Also note
that C ⊆ E1XS is a Λ(G)-torsion module, hence E0C = 0. We conclude that
the pseudo-null module E2E2Xf is contained in the pure module E1E1XS (see [?,
propb 3.5 (v)(a)]) and thus zero. �

For the rest of this section we assume BASE and that k∞ contains the cyclotomic
Zp-extension kcyc of k. As before we put Γ = G(kcyc/k), H = G(k∞/k) and recall
that both groups are isomorphic to Zp.
We are very grateful to John Coates and Sujatha for pointing out to us that an ana-
logue of their proposition 2.9 in [?] also holds in our situation. In fact the following
result is even stronger since their vanishing condition “H2(H,Selp∞(E/k∞)) = 0”
is always satisfied in this situation because now H has p-cohomological dimension
one.

Theorem 2.8. Assume rkΛ(Γ)Xf (kcyc) =
∑
Ss

p
[kν : Qp]. Then

rkΛ(G)Xf (k∞) =
∑
Ss

p

[kν : Qp].

In particular, if E has good ordinary reduction at all primes ν of k dividing p and
Xf (kcyc) is Λ(Γ)-torsion, then Xf (k∞) is Λ(G)-torsion.

The striking point of this result (in ordinary case) is that one does not have to
assume the vanishing of the µ-invariant of Xf (kcyc) as we did in our earlier version
of this theorem and as all results in this direction in the GL2-case did until the
work of Coates and Sujatha [?].
Examples in which the assumption of the Theorem holds arise by the results
of Kato, if k is abelian over Q and E is defined over Q. Alternatively, by the
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(strong) Nakayama lemma, Xf (kcyc) is Λ(Γ)-torsion in the good ordinary case, if
Selp∞(E/k) is finite (and k is arbitrary).

Proof. First note that the assumption implies the validity of the weak Leopoldt
conjecture WLS(kcyc) over kcyc and thus, by remark ??, the weak Leopoldt con-
jecture WLS(k∞) over k∞. Thus it is easily seen that the lemmas 2.3-2.5 as well as
remark 2.6 (loc.cit.) hold also in our situation. In fact their proofs are even easier
due to the smaller p-cohomological dimension of G and H. Thus by literally the
same proof as that of prop. 2.9 (loc.cit.) one derives SEQS , i.e. the surjectivity
of the defining sequence of Xf (k∞). Now the claim follows by remark ??.

We give a second proof: First, rkΛ(Γ)Xf (k∞) ≥ r :=
∑
Ss

p
[kν : Qp] is shown easily.

Next, since the kernel and cokernel of the natural restriction Selp∞(E/kcyc) →
Selp∞(E/k∞)H is Λ(Γ)-torsion (see the proof of Theorem ??), rkΛ(Γ)(Xf (k∞)H) =
r. By Lemma ?? below, we have rkΛ(Γ)Xf (k∞) ≤ r. This shows the Theorem. �

One consequence of this result is the following asymptotic bound of the Mordell-
Weil rank. Let α be any non-zero element of k which is not a root of unity and
let kn be the field obtained by adjoining to k the pnth root of unity and the pnth
root of α. We are interested in the Z-ranks of the Mordell-Weil group E(kn) when
n varies.

Corollary 2.9. Assume that (i) E has good ordinary reduction at all primes ν
of k dividing p, and (ii) Xf (kcyc) is Λ(Γ)-torsion. Then there exists a constant
C > 0 such that the rank of E(kn) is at most C · pn for all n ≥ 0.

Proof. In the next section we will see that k∞ =
⋃
n kn is an Galois extension of k

with Galois group G isomorphic to the semidirect product of two copies of Zp. Thus
the theorem implies that Xf (k∞) is a Λ(G)-torsion module. We denote by Gn the
normal subgroup of G which consists precisely of the pnth powers of elements of
G. Then its index in G is p2n and, since G is uniform, Gn is nothing else than the
lower p-central series, see [?, thm. 3.6]. Now [?, thm. 1.10] (see also [?]) or [?, thm.
2.22] prove the existence of some constant C such that rkZp

Xf (k∞)Gn
≤ C · pn

for all n ≥ 0. Since Gn is contained in the normal subgroup G′
n := G(k∞/kn) of

G this gives also a bound for rkZE(kn) ≤ rkZpXf (kn) ≤ Xf (k∞)G′n , because the
cokernel of the natural map Xf (k∞)G′n → Xf (kn) is finite by lemma ??. �

Combined with one of Kato’s deepest results one obtains the following striking
and general estimate which was suggested to us by John Coates: Assume now
that E is defined over the rational numbers Q and that α is any non-zero element
of the maximal abelian extension Qab of Q which is not a root of unity. Taking as
base field the abelian extension k = Q(µp, α) of Q, Kato’s work on Euler systems
tells us that Xf (kcyc) is a torsion Λ(G)-module. Thus the corollary applies: there
exists a constant C (depending on E and α but not on n) such that

rkZ E(Q(µpn , pn√
α)) ≤ C · pn

for all n ≥ 0.
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3. Completely faithful Selmer groups

Throughout this section, we assume BASE for k. We consider the following k∞ in
this section: k∞ is a Galois extension of k unramified outside a finite set of primes
of k containing Sp. Further we assume k∞ contains kcyc and H := Gal(k∞/kcyc)
is isomorphic to Zp.
In this section, we study the case when Xf (k∞) for an elliptic curve E/k is finitely
generated over Λ(H). The remarkable fact is the completely faithfulness over Λ(G)
(Theorem ??).

One of the examples of k∞ is a “false Tate curve” extension. We collect some facts
on such k∞ in subsection ??.

3.1. Λ(H)-structure of Xf (k∞). Let E/k be an elliptic curve which has good
ordinary reduction at all primes above p. Denote P0 = P0(k∞/kcyc) a set of all
primes of kcyc which are not lying above p and ramified for k∞/kcyc. Note this is
a finite set. Put

P1(k∞/kcyc, E) := {u ε P0| E/kcyc has split multiplicative reduction at u},
P2(k∞/kcyc, E) := {u ε P0| E has good reduction at u and E(kcyc,u)p∞ 6= 0}.

Let Γ = Gal(kcyc/k). We prove the following.

Theorem 3.1. Let p ≥ 5. Assume E has good ordinary reduction at p. Then,

(i) Xf (k∞) is finitely generated over Λ(H) if and only if Xf (kcyc) is finitely
generated over Zp, in other words, Xf (kcyc) is Λ(Γ)-torsion and its µ-
invariant vanishes.

(ii) When Xf (k∞) is finitely generated over Λ(H), then Xf (k∞) is Λ(H)-
torsionfree of rank λ+m1 + 2m2, where λ := rankZp

Xf (kcyc), mi = ]Pi
(i = 1, 2). More precisely, there exists an injective Λ(H)-homomorphism

Xf (k∞) ↪→ Λ(H)λ+m1+2m2

with finite cokernel.

Remark 3.2. By [?], (ii) implies that Xf (k∞) has no non-trivial pseudo-null sub-
module. This gives another proof of Theorem ?? in special cases. We remark that
we did not assume E is ordinary at p nor that Xf is finitely generated over Λ(H)
in Theorem ?? while we do not need the Assumptions DIMS a), b) and c’) in the
above theorem.

We note that Λ(H) is isomorphic to Zp[[X]]. Let Hn := Hpn

for n ≥ 0 and
Fn the intermediate field of k∞/kcyc corresponding to Hn. We have Xf (Fn) =
Selp∞(E/Fn)∨ is finitely generated over Zp since so is Xf (kcyc) (cf. [?] Theorem
3.1). To prove the Theorem, we need the following usual fundamental diagram:

(3.2)

0−→ Selp∞(E/Fn) −→ H1(kS/Fn, Ep∞) −→
λFn

⊕
u ε Scyc

J ′u(Fn) −→0yr′n yg′n y⊕
h′n,u

0−→Selp∞(E/k∞)Hn−→H1(kS/k∞, Ep∞)Hn−→
⊕

u ε Scyc
J ′u(k∞)Hn .
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Here, S is a finite set of primes of k containing Sp ∪ Sbad ∪ Sram, where Sram is
the set of all primes which ramify in k∞/k. We denote by Scyc the set of primes
of kcyc above S. For a prime u of kcyc, put

J ′u(Fn) :=
⊕
un|u

H1(Fn,un
, E(Fn,un

))p∞

and put J ′u(k∞) := lim−→Fn
J ′u(Fn). The map λFn is surjective since Xf (Fn) is

finitely generated over Zp (cf. [?] Prop. 2.3, note that Fn is the cyclotomic Zp-
extension of some field). Then, from (??), we obtain the exact sequences

(3.3) 0→ Ker(r′n)→ Ker(g′n)→
⊕

u ε Scyc

Ker(h′u,n)→ Coker(r′n)→ Coker(g′n),

(3.4) 0→ Ker(r′n)→ Selp∞(E/Fn)→ Selp∞(E/k∞)Hn → Coker(r′n)→ 0.

By the inflation-restriction exact sequence we have

Ker(g′n) = H1(Hn, E(k∞)p∞) and Coker(g′n) ↪→ H2(Hn, E(k∞)p∞).

We have H2(Hn, E(k∞)p∞) = 0 because cdp(Hn) = 1.

Lemma 3.3. ]H1(Hn, E(k∞)p∞) is finite and bounded for n. Hence, ]Ker(g′n) and
]Ker(r′n) are finite and bounded for n.

Proof. Since H1(Hn, E(k∞)p∞) ∼= (E(k∞)p∞)Hn
, Lemma follows from the facts

that E(k∞)p∞ is cofinitely generated and (E(k∞)p∞)Hn = E(Fn)p∞ is finite. The
latter fact is a Theorem of Imai[?]. �

By Shapiro’s lemma, we have

Ker(h′n,u) =
⊕
un|u

H1(Hn,w, E(k∞,w))p∞ .

Here, we choose w a prime of k∞ above un and Hn,w denotes the decomposition
group of w in Hn. We will prove later the following.

Lemma 3.4. (i) Let u be a prime of kcyc such that u - p. Let un and w
be primes above u of Fn and k∞ respectively such that u|un|w. Then
H1(Hn,w, E(k∞,w))p∞ ∼= H1(Hn,w, E(k∞,w)p∞) and

H1(Hn,w, E(k∞,w)p∞) ∼=


Qp/Zp if u ε P1(k∞/kcyc, E),
(Qp/Zp)2 if u ε P2(k∞/kcyc, E),
0 otherwise

as an abelian group.
(ii) If u|p, then ]H1(Hn,w, E(k∞,w))p∞ is finite and bounded for n.
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Note that the number of primes of Fn dividing p such thatH1(Hn,w, E(k∞,w))p∞ 6=
0 is bounded if n varies, because H1(Hn,w, E(k∞,w))p∞ = 0 if u splits completely.
By this fact and Lemma ??, we have ⊕uKer(h′n,u) ∼= (Qp/Zp)tn ⊕Dn where

tn =
∑
u ε P1

∑
un|u

1 +
∑
u ε P2

∑
un|u

2

and ]Dn is finite and bounded for n. Since the kernel and cokernel of the map
⊕uKer(h′u,n)→ Coker(r′n) are finite, we have that

(3.5) Coker(r′n) ∼= (Qp/Zp)tn ⊕D′
n

where ]D′
n is finite and bounded.

Since Coker(r′n) is cofinitely generated over Zp, we have Selp∞(E/k∞)H is
cofinitely generated over Zp if and only if so is Selp∞(E/kcyc) by (??) for n = 0.
This implies Theorem ?? (i) by Nakayama’s Lemma.

For Theorem ?? (ii), we need the following which is a result of Matsuno[?] on finite
Λ(Γ)-submodules of Selmer groups.

Lemma 3.5 (Matsuno[?]). Let F be a totally imaginary algebraic number field and
Γ = Gal(Fcyc/F ). Let E be an elliptic curve over F which has good ordinary
reduction at all primes above p. If the dual of Selmer group Xf (Fcyc) is Λ(Γ)-
torsion and its µ-invariant vanishes, then it is Zp-torsionfree.

Combining this with [?] Theorem 3.1, we have the following.

Lemma 3.6. Under the assumptions of the Theorem, Selp∞(E/Fn) ∼= (Qp/Zp)en

where

en = pnλ+
∑
u ε P1

∑
un|u

(pn/dn(u)− 1) + 2
∑
u ε P2

∑
un|u

(pn/dn(u)− 1).

Here, we put dn(u) = min(pn, [H : Hw]) where w is a prime of k∞ above u and
Hw is the decomposition group of w in H.

Proof. By [?] Theorem 3.1,

corankZp
Selp∞(E/Fn) = pnλ+

∑
u ε P1

∑
un|u

(e(un)− 1) + 2
∑
u ε P2

∑
un|u

(e(un)− 1)

where e(un) is the ramification index of un|u. For u - p, the decomposition group
of un|u coincides with its inertia group. Thus,

e(un) = [Hw : (Hn ∩Hw)] = pn/dn(u).

The cofreeness of Selp∞(E/Fn) follows from Lemma ??. �

Thus, from (??), we have

(3.6) Selp∞(E/k∞)Hn ∼= (Qp/Zp)sn ⊕D′′
n

where
sn = corankZp

Selp∞(E/Fn) + corankZp
Coker(r′n),
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and ]D′′
n is finite and bounded for n, because ]D′

n in (??) is bounded and
Selp∞(E/Fn) is cotorsion-free. By (??) and Lemma ??, we have

sn =pnλ+
∑
u ε P1

∑
un|u

(pn/dn(u)) + 2
∑
u ε P2

∑
un|u

(pn/dn(u)) = pn(λ+m1 + 2m2)

since we see that dn(u) = ]{un|u}.
From the well known structure theory of modules over Λ(H)(∼= Zp[[X]]), we see
that Xf (k∞) is pseudo-isomorphic to Λ(H)λ+m1+2m2 by (??). Since Xf (Fn) is Zp-
torsionfree by Lemma ??, we have Xf (k∞) = lim←−Xf (Fn) is also Zp-torsionfree.
Therefore it can not have non-trivial finite Λ(H)-submodules. This proves the
Theorem.

Finally, we give a proof of Lemma ??. The first assertion of (i) is proven by
a standard argument (cf. [?] §5.1 (59)). If u is unramified for k∞/k, then u
splits completely, so Hn,w = 0. Thus, H1(Hn,w, E(k∞,w)p∞) = 0. Note that
the type of reduction of at any prime does not change in k∞/kcyc since p ≥
5. Assume u is not contained in P1 ∪ P2. Then we have E(Fn,un)p∞ = 0 (cf.
[?] Prop. 5.1 (i),(iii); note that µp ⊆ Fn,un

). Thus H1(Hn,w, E(k∞,w)p∞) =
0. Assume u ε P2. Then E(Fn,un

)p∞ ∼= (Qp/Zp)⊕2 (cf. [?] Prop. 5.1 (i)), so
we have H1(Hn,w, E(k∞,w)p∞) = Hom(Hn,w, E(k∞,w)p∞) ∼= (Qp/Zp)2. Next,
assume u ε P1. Then, E(Fn,un)p∞ ∼= Qp/Zp ⊕ (finite group) (cf. [?] Prop. 5.1
(ii)). We have E(k∞)p∞ ∼= Ep∞ because k∞ is the maximal tame p-extension.
Thus we have

H1(Hn,w, E(k∞,w)p∞) ∼= (E(k∞,w)p∞)Hn,w
∼= Qp/Zp.

We prove Lemma ?? (ii). If u splits completely, H1(Hn,w, E(k∞,w)p∞) = 0. If u
is finitely decomposed, then Hn,w

∼= Zp. Since Fn is a deeply ramified extension,
we have by Coates-Greenberg([?])

H1(Hn,w, E)p∞ ∼= H1(Hn,w, Ẽu(κ∞,w)p∞)

where Ẽu is the reduction at u of E and κ∞,w is the residue field of k∞,w. Thus we
have H1(Hw, E)p∞ is finite and its order is bounded for n by the same argument
of Lemma ?? because of the facts that Ẽu(κ∞,w)p∞ is cofinitely generated and
that Ẽu(κcyc,u)p∞ is finite where κcyc,u is the residue field of kcyc,u.

3.2. Completely faithfulness of Xf (k∞). In [?], some properties of Λ(G)-
modules for this specific group G, in particular the global annihilator ideal
AnnΛ(G)M of a Λ(G)-torsion module M, were studied. Recall that a module is
called faithful if its annihilator ideal is identical zero. Furthermore, an objectM of
the quotient category Λ-mod/C of the category of finitely generated Λ-modules by
the Serre subcategory C of pseudo-null modules is faithful, by definition, if every
lift M (Q(M) ∼=M) ofM is a faithful Λ-module. If this condition holds for every
non-zero subquotient, thenM is called completely faithful.

The following result is a direct consequence of theorem 6.3 (loc.cit.) and theorem
??:
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Theorem 3.7. If Xf is non-zero and finitely generated as a Λ(H)-module, then
Xf is a faithful, but torsion Λ(G)-module which is not pseudo-null. Even more,
its image in the quotient category is completely faithful and thus cyclic.

Recall that here the cyclicity in the quotient category means that there exists a
cyclic submodule C ofXf with pseudo-null cokernel, see [?, lem 2.7]. The following
implication is arithmetically by no means obvious:

Corollary 3.8. Under the assumptions of the theorem the Pontryagin dual
X(E/k∞)(p)∨ of the (p-primary part of the) Tate-Shafarevich group contains a
cyclic submodule with pseudo-null cokernel.

Proof. Subobjects of completely faithful objects are again completely faithful. �

3.3. The “false Tate curve” case. The typical examples of k∞ in previous
subsections which we keep in our mind are the extensions of the type

k∞ = kcyc(αp
−∞

)

where kcyc denotes the cyclotomic Zp-extension of k and α is in k∗ which is not
any root of unity. (We call this the “false Tate curve case”.) Then by Kummer
theory, the Galois group G = G(k∞/k) is isomorphic to the semi-direct product
G = H o Γ of H = G(k∞/kcyc) ∼= Zp and Γ = G(kcyc/k) ∼= Zp the latter group
acting on the prior by the cyclotomic character, see [?].

In this subsection, we collect some facts on k∞.

First we consider DIMS . Before we determine the dimensions of the decomposition
groups we would like to remark that in the actual situation

DIMS b)⇒ DIMS c) ⇒ DIMS c’).

Indeed, if dimTν(k∞/kcyc) were finite, hence zero, k∞,ν would be the compositum
of the Zp -extensions kcyc,ν and knrν which denotes the maximal unramified exten-
sion of kν inside k∞,ν . With other words, Gν would be an 2-dimensional abelian
subgroup of G, a contradiction.

For α ε k∗ \µ we write Sα for the set of finite places of k which divide (α) and set
as before k∞ = kcyc(αp

−∞
).

Lemma 3.9. (i) If S = Sα ∪ Sp ∪ S∞, then k∞ is outside S unramified, i.e.
contained in kS . In other words Sram(k∞/k) is contained in Sα ∪ Sp.

(ii) Let ν ε Sp. Then dimGν = 2. If, in addition, α ε Q∗, k = Q(µp) and α
is not contained in (Qp

∗)p, then the extension k∞|Q is totally ramified at
p.

(iii) Assume that α is not a pth power in kcyc and let ν ε Sα \ Sp. Then,
for all places ω∞ of k∞ lying above ν the local extension k∞,ω∞ |kcyc,ω,
where ω denotes the place of kcyc induced by ω∞, is a totally ramified
Zp -extension, i.e. ω is almost totally ramified in k∞|kcyc. The number
of primes which are over kcyc conjugate to ω∞ equals the maximal power
of p which divides ν(α), where ν is normalized such that ν(kν) = Z. In
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particular, dimGν = dimG = 2 and the places of Sα \Sp decompose only
into finitely many ones at k∞.

Remark 3.10. Assume that for some ν ε Sα \Sp it holds ν(α) < p. Then α is not a
pth power in kcyc. Indeed, by [?, lem. 6] k( p

√
α)|k ramifies totally at ν, thus cannot

be contained in kcyc.

Proof. [?, lem. 5] tells us that k∞ is outside S unramified. In order to prove the
first statement of (ii) it suffices to show that if k(αp

−n

) is contained in kcyc for all
n ≥ 0, then α is a root of unity. Using the long exact cohomology sequence for
the diagram

1 // µpn // k∗cyc
pn

// (k∗cyc)
pn // 1

1 // µpn // µp∞
pn

//?�

OO

µp∞ //?�

OO

1
and Hilbert’s theorem 90 one easily sees that the canonical map µ(k)(p) �
(k∗cyc)

pn ∩k∗/(k∗)pn

is surjective. Now, if α is contained in (k∗cyc)
pn ∩k∗ there exist

ζn ε µ(k)(p) = µpn0 and bn ε (k∗)p
n

such that α = ζn · bn and hence αp
n0
ε (k∗)p

n

.

Since this holds for all n ≥ 0, the element αp
n0 must be in

⋂
n(k

∗)p
n

= µq, the
roots of unity of order prime to p in k, thus α is a root of unity as we had to show.

Now we consider the local extensions K = Qp(µpn) and L = K(αp
−n

) of Qp. Since
the extension Qp(αp

−1
)/Qp is not Galois, no pth root of α can be contained in

the cyclic extension K/Qp. Hence, it follows from Kummer theory that the degree
of L over K is [L : K] = pn, i.e. [L : Qp] = [Q(µpn , αp

−n

) : Q](= (p− 1)p2n−1) and
in particular p does not split in k(µpn , αp

−n

). Since the maximal abelian quotient
Gab of G = G(L/Qp) ∼= G(L/K) oG(K/Qp) is isomorphic to

Gab ∼= G(L/K)G(K/Qp) ⊕G(K/Qp) = G(K/Qp)

(note that G(L/K) ∼= Z/pn(1) has no non-zero G(K/Qp)-invariant quotient be-
cause G(K/Qp) acts via the cyclotomic character on G(L/K)), the only cyclic
extensions of Qp in L are contained in K and cannot be unramified. Hence p is
totally ramified in k(µpn , αp

−n

) for all n and the second statement of (ii) follows.

Finally, we prove (iii): It follows from [?, lem. 6] that for sufficiently large n

the extension kn(αp
−n

)|kn, where kn := k(µpn), is non-trivial and ramified at
ωn = ω|kn

and thus not contained in kcyc. Since kcyc,ω is the maximal unramified
p-extension of kν , the local extension k∞,ω∞ |kcyc,ω must be a totally ramified Zp -
extension. Let Hν denote the decomposition group of H = G(k∞/kcyc) at ω∞ and
set L = (k∞)Hν . For sufficiently large n the extensions kcyc|kn and kn(αp

−n

)|kn
are linearly disjoint and thus

[L : kcyc] =
[kn(αp

−n

) : kn]
[kn,ωn

(αp−n) : kn,ωn
]

=
pn

[kn,ωn
(αp−n) : kn,ωn

]
,

by assumption and Kummer theory. On the other hand, since kn,ωn
(αp

−n

)|kn,ωn

has no unramified intermediate extension, the order of α in k∗n,ωn
/(k∗n,ωn

)p
n

, which
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is by Kummer theory the same as the degree [kn,ωn
(αp

−n

) : kn,ωn
], is equal to

the order of ωn(α) in Z/pn (Note that k∗n,ν/(k
∗
n,ν)

pn ∼= Z/pn × µpn , where we
assume without lost of generality that µpn+1 * kn,ν , and that the subgroups of
µpn correspond to the unramified extensions of kn,ν of exponent dividing pn).
Since kcyc|k is unramified at ν, ν(α) = ωn(α) and thus the claim follows. �

Put
ME =

∏
l, ν|l for some ν ε Sbad

l

and note that ME is prime to p under our general assumption. The lemma above
now implies

Lemma 3.11. For all α ε Z \ {0} such that ME divides α, k∞ = kcyc(αp
−∞

) is
contained in kS and the assumption DIMS holds with respect to S = Sα∪Sp∪S∞ ⊇
Σ.

Proof. Condition DIMS b) follows from (ii) of lemma ??. By definition Sbad is
contained in Sα. Since α is a rational number it follows easily from Kummer theory
that for sufficiently big n none pnth root of α is a pth power in kcyc. Applying
lemma ?? (iii) to such a root shows DIMS a). �

At the end of this section, we consider the torsion group of an elliptic curve. Let
E/k be an elliptic curve. The following result is quoted as the Assumption FIN
for E and k∞ in section ??. Recall that by lemma ?? the conditions DIMS b), c),
c’) are always satisfied in the false Tate curve case.

Lemma 3.12. Let v be a prime of k above p. Assume E has good ordinary reduc-
tion at v. Then, for k∞ = kcyc(αp

−∞
), we have E(k∞,w)p∞ is finite for w|v. In

particular, E(k∞)p∞ is finite.

Proof. Let Êv be the formal group law of E and Ẽv be the reduction at v. Then
we have

0→ Êv(M(k∞,w))p∞ → E(k∞,w)p∞ → Ẽv(κ∞,w)p∞ → 0

where M(k∞,w) is the maximal ideal of k∞,w and κ∞,w is the residue field of
k∞,w. Since κ∞,w is a finite field, Ẽv(κ∞,w)p∞ is a finite group. So we show
Êv(M(k∞,w))p∞ is finite. Since E has good ordinary reduction at v, Êv(M(kv))p∞
is isomorphic to Qp/Zp where M(kv) is the maximal ideal of kv. Thus, the field
kv(Êv,p∞) is abelian extension of kv. By a theorem of Imai ([?]), kcyc,u∩kv(Êv,p∞)
is a finite extension of kv where u|w. Since the maximal abelian extension of kv
in k∞,w is kcyc,u, we have

k∞,w ∩ kv(Êv,p∞) = kcyc,u ∩ kv(Êv,p∞)

This means Êv(M(k∞,w))p∞ is finite. �
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4. Euler Characteristics

In this section, we do not assume the Assumption BASE, i.e. k does not necessarily
contain the p-th roots of unity. Put

K = k(µp) and Kcyc = k(µp)cyc = k(µp∞).

Let k∞ be a Galois extension of k unramified outside a finite set of primes of k such
that k∞ ⊃ Kcyc and H := Gal(k∞/Kcyc) is isomorphic to Zp. Assume further k∞
satisfies DIM c).

For an elliptic curve E/k and k∞, with good ordinary reduction at p, we consider
the following.

Assumption FIN: E(k∞)p∞ is a finite group.

When k∞/k is a “false Tate curve” extension (see subsection ??), DIM c) and FIN
are always satisfied (Lemma ?? and ??).

We denote G = Gal(k∞/k) and Γ = G/H. Note that G may not be a pro-p group.

4.1. G-Euler Characteristics. For an discrete G-module M , we define its
Euler characteristic by

χ(G,M) :=
2∏
i=0

(]Hi(G,M))(−1)i

if this is defined. In this section, we calculate the Euler characteristics of Selmer
groups. The formula as well as its proof is similar to that obtained in [?] Theorem
1.1 for GL2-case.

Let E be an elliptic curve defined over k which has good reduction at all the primes
above p.

We define the p-Birch-Swinnerton-Dyer constant as

ρp(E/k) :=
]X(E/k)p∞

(]E(k)p∞)2
∏
v |cv|p

×
∏
v|p

(]Ẽv(κv)p∞)2.

Here, X(E/k) is the Tate-Shafarevich group of E over k, κv is the residue field of
k at v and Ẽv is the reduction of E over κv. We denote by cv the local Tamagawa
factor at v, [E(kv) : E0(kv)], where E0(kv) is the subgroup of E(kv) consisting
from all of the points which maps to smooth points by reduction modulo v. | ∗ |p
denotes the p-adic valuation normalized such that |p|p = 1

p . For any prime v of k,
let Lv(E, s) be the local L-factor of E at v. Let P0(k∞/k) be a set of all primes
of k which are not lying above p and ramified for k∞/Kcyc. We put

P1(k∞/k,E) := {v ε P0(k∞/k)| E/K has

split multiplicative reduction at any w|v of K = k(µp)},

P2(k∞/k,E) := {v ε P0(k∞/k)| E/K has good reduction

at any w|v of K and E(Kw)p∞ 6= 0.}
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and M = M(k∞/k,E) := P1(k∞/k,E) ∪ P2(k∞/k,E). We prove the following:

Theorem 4.1. Under DIM c) and FIN, assume (i) p ≥ 5, (ii) E has good ordinary
reduction at all primes above p, (iii) Selp∞(E/k) is finite and (iv) Xf (k∞) :=
Selp∞(E/k∞)∨ is Λ(G0)-torsion where G0 = Gal(k∞/K) and K = k(µp). Then
χ(G,Selp∞(E/k∞)) is defined and equals

ρp(E/k)×
∏
v ε M

|Lv(E, 1)|p.

Note that condition (iv) is already a consequence of (i)-(iii), whenever G itself
happens to be a pro-p-group since the strong Nakayama’s Lemma holds for G.

In fact, we prove more. Let us consider the usual fundamental diagram.

(4.7)

0−→ Selp∞(E/k) −→ H1(kS/k,Ep∞) −→
λk

⊕
v ε S Jv(k)yr yg y⊕hv

0−→Selp∞(E/k∞)G−→H1(kS/k∞, Ep∞)G−→
ψ∞

⊕
v ε S Jv(k∞)G.

Here, S is a finite set of primes of k containing Sp ∪Sbad ∪Sram where Sram is the
set of primes which is ramified for k∞/k, kS is the maximal unramified extension
of k outside S. For any finite extension L of k, we put

Jv(L) :=
⊕
w|v

H1(Lw, E(Lw))p∞

and for infinite extension M , put Jv(M) := lim−→L
Jv(L) where L runs over all finite

extensions of k contained in M . Note that IndGw

G Xw(k∞) defined in §?? is the
Pontryagin dual of Jv(k∞).

We have the following and we get Theorem ?? as an immediate corollary of this.

Theorem 4.2. Assume the same hypothesis of Theorem ??. Then we have

(i) ]H0(G,Selp∞(E/k∞)) = ρp(E/k)×
∏
v ε M |Lv(E, 1)|p × ](Coker(ψ∞)),

(ii) ]H1(G,Selp∞(E/k∞)) = ](Coker(ψ∞)),
(iii) Hi(G,Selp∞(E/k∞)) = 0 for i ≥ 2.

We split the proof of Theorem ?? into some subsections.

Throughout this section, we assume the conditions of Theorem ?? except condition
(iv) if not explicitly stated.

4.2. Global cohomology. First, we consider about the map g. We prove

Lemma 4.3.
]Ker(g)
]Coker(g)

= ]E(k)p∞

To prove this, we need the following lemma.
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Lemma 4.4. If a G-module M is finite, then χ(G,M) is defined and equals to 1.

Proof. This is an immediate consequence of Hochschild-Serre spectral sequence for

1→ H → G→ Γ→ 1

and the fact that the same statement of the Lemma holds if we replace G with Γ.
�

Proof of Lemma ??.

By Hochschild-Serre, we have

0→ H1(G,E(k∞)p∞)→ H1(kS/k,Ep∞)→ H1(kS/k∞, Ep∞)G

→ H2(G,E(k∞)p∞)→ H2(kS/k,Ep∞)

Since Selp∞(E/k) is finite, H2(kS/k,Ep∞) = 0 (see [?] Lemma 4.3 or [?]). Thus,
we have that Ker(g) = H1(G,E(k∞)p∞) and Coker(g) = H2(G,E(k∞)p∞), which
are finite. This prove the Lemma by Lemma ?? because of FIN. �

Next, we consider the global cohomology of k∞. We first have the following. (See
section ?? for a proof.)

Theorem 4.5. Assume Xf (k∞) is Λ(G0)-torsion. Then we have

(i) H2(kS/k∞, Ep∞) = 0 and

(ii) The map H1(kS/k∞, Ep∞)
λk∞→

⊕
v ε S Jv(k∞) is surjective.

As a Corollary, we have

Corollary 4.6. If Xf (k∞) is Λ(G0)-torsion,

Hi(G,H1(kS/k∞, Ep∞)) = 0

for all i ≥ 1 (and still for all i ≥ 2 if Selp∞(E/k) is not assumed to be finite.)

Proof. By above Theorem, Hi(kS/k∞, Ep∞) = 0 for i ≥ 2. So, we have the
following by Hochschild-Serre that

Hi+1(kS/k,Ep∞)→ Hi(G,H1(kS/k∞, Ep∞))→ Hi+2(G,Ep∞)

are exact for all i ≥ 1. If Selp∞(E/k) is finite, Hi(kS/k,Ep∞) = 0 for i ≥ 2 (see [?]
Lemma 4.3 or [?]). Since the p-cohomological dimension of G is 2, Hi(G,Ep∞) = 0
for i ≥ 3. These proves the Corollary. �

4.3. Local cohomology. Next, we consider the cohomology of Jv(k∞) and the
kernel and cokernel of hv.

Proposition 4.7. For all i ≥ 1, we have Hi(G, Jv(k∞)) = 0.

Proof. By Shapiro’s Lemma,

Hi(G, Jv(k∞)) ∼= Hi(Gw,H1(k∞,w, E)p∞)



Completely faithful Selmer groups 21

where w|v and Gw is the decomposition group Gal(k∞,w/kv) (see [?] Lemma 2.8).
Thus we show the latter is zero.

(i) The case when v does not divide p.

In this case, H1(k∞,w, E)p∞ ∼= H1(k∞,w, Ep∞) (cf. [?] §5.1 (59)). We also
have Hi(k∞,w, Ep∞) = 0 for i ≥ 2 because the p-cohomological dimension of
Gal(kv/k∞,w) is less than or equals 1. So, we have by Hochschild-Serre that

Hi+1(kv, Ep∞)→ Hi(G,H1(k∞,w, Ep∞))→ Hi+2(Gw, E(k∞)p∞)

are exact for all i ≥ 1. It is also known Hi(kv, Ep∞) = 0 for i ≥ 2. Further,
Hi(Gw, Ep∞) = 0 for i ≥ 3 since the p-cohomological dimension of Gw is less than
or equals 2. Thus we have the Lemma for v - p.
(ii) The case when v divides p.

In this case, the proof is exactly same as that of [?] Corollary 5.23 because k∞,w

is a deeply ramified extension. We have

H1(k∞,w, E)p∞ ∼= H1(k∞,w, Ẽv,p∞)

by [?]. Then we get Hi(Gw,H1(k∞,w, Ẽv,p∞)) = 0 by the same argument
using Hochschild-Serre as (i) above because the p-cohomological dimension of
Gal(kv/k∞,w) is less than or equals 1 and Hi(kv, Ẽv,p∞) = 0 for i ≥ 2. �

Lemma 4.8. Let v be a prime which does not divide p. If v is in P1(k∞/k,E) ∪
P2(k∞/k,E), then

]Ker(hv)
]Coker(hv)

=
∣∣∣∣ cv
Lv(E, 1)

∣∣∣∣−1

p

,

while otherwise, ]Ker(hv)/]Coker(hv) = |cv|−1.

Proof. By Shapiro’s Lemma, the kernel and cokernel of hv are isomorphic to those
of the restriction map

H1(kv, E)p∞
resw→ H1(k∞,w, E)p∞ .

Since v - p, E can be replaced by Ep∞ . So, Ker(hv) ∼= H1(Gw, E(k∞,w)p∞) and
Coker(hv) ∼= H2(Gw, E(k∞,w)p∞).

First we consider the case v is not ramified for k∞/k. Then, we have k∞,w =
Kcyc,w. It is well known that ]H1(Gal(Kcyc,w/kv), E(Kcyc,w)p∞) = |cv|−1

p and
H2(Gal(Kcyc,w/kv), E(Kcyc,w)p∞) = 0.

Next consider the case where E(Kw)p∞ = 0 or the case where v has bad reduction
which is not split multiplicative. In this case, E(Kcyc,w)p∞ = 0 (cf. [?] Prop. 5.1),
thus we have E(k∞,w)p∞ = 0. ThusH1(Gw, E(k∞,w)p∞) and H2(Gw, E(k∞,w)p∞)
are zero. Since we assume p ≥ 5, |cv|p = 1 in this case.

Finally, consider the case v ε P1(k∞/k,E) ∪ P2(k∞/k,E). Then k∞,w/Kw

should be a maximal tame p-extension and therefore k∞,w contains kv(Ep∞). So
we have H1(k∞,w, Ep∞) = 0 because there is no p-extension of k∞,w. Thus,
H1(Gw, E(k∞,w)) = H1(kv, Ep∞) and H2(Gw, E(k∞,w)) = 0. Therefore, Lemma
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follows from the fact that ]H1(kv, Ep∞) = |cv/Lv(E, 1)|−1
p (cf. [?] Lemma 5.6 or

[?]). �

Lemma 4.9. Let v be a prime above p. Then

]Ker(hv)
]Coker(hv)

= (]Ẽv(κv)p∞)2

Proof. By Shapiro’s Lemma,

Ker(hv) ∼= H1(Gw, E(k∞,w))p∞ and Coker(hv) ∼= H2(Gw, E(k∞,w))p∞ .

Since k∞,w is deeply ramified extension, we have that

Hi(Gw, E(k∞,w))p∞ ∼= Hi(Gw, Ẽv(κ∞,w)p∞)

for i ≥ 2 and

0→ H1(kv, Êv(M(kv)))p∞ → H1(Gw, E(k∞,w))p∞

→ H1(Gw, Ẽv(κ∞,w)p∞)→ 0

is exact by the exactly same way as [?] Lemma 3.14. Here Êv is the formal group
law for E, M(kv) is the maximal ideal of the integer ring of kv and κ∞,w is the
residue field of k∞,w. It is known that

]H1(kv, Êv(M(kv)) = ]Ẽv(κv)

(cf. [?] Lemma 3.13). Since Ẽv(κ∞,w)p∞ is finite by DIM c), we have
χ(Gw, Ẽv(κ∞,w)p∞) = 1 by the same way as Lemma ??. Thus we have

]H1(Gw, Ẽv(κ∞,w)p∞)/]H2(Gw, Ẽv(κ∞,w)p∞) = ]Ẽv(κv)p∞ .

Combining them, we have the lemma. �

4.4. Proof of Theorem ??. Now we are ready to prove the Theorem ??. To
this aim let us assume conditions (i)-(iv). First, by Theorem ??,

0→ Selp∞(E/k∞)→ H1(kS/k∞, Ep∞)
λk∞→

⊕
v ε S

Jv(k∞)→ 0

is exact. Taking G-cohomology and by Lemma ?? and Proposition ??, we have

Hi(G,Selp∞(E/k∞)) = 0

for i ≥ 2. At the same time, we have that

0→ Selp∞(E/k∞)G → H1(kS/k∞, Ep∞)G
ψ∞→

⊕
v ε S

Jv(k∞)G

→ H1(G,Selp∞(E/k∞))→ 0

is exact, which means Cokerψ∞ ∼= H1(G,Selp∞(E/k∞)).

Next, we calculate Selp∞(E/k∞)G. Consider the diagrams induced from the fun-
damental diagram (??),
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0−→ Selp∞(E/k) −→ H1(kS/k,Ep∞) −→
λk

Imλk −→0yr yg y⊕hv

0−→Selp∞(E/k∞)G−→H1(kS/k∞, Ep∞)G−→
ψ∞

Imψ∞−→0,

0−→ Imλk −→
⊕

v ε S Jv(k) −→Cokerλk −→0y y⊕hv

y
0−→Imψ∞−→

⊕
v ε S Jv(k∞)G−→Cokerψ∞−→0.

Since Selp∞(E/k) is finite, ]Cokerλk = ]E(k)p∞ (cf. [?] Lemma 2.7 or [?]). The
kernel and cokernel of ⊕hv are finite by Lemma ?? and ??. Therefore Cokerψ∞ is
finite by the latter diagram. By applying the Snake Lemma for the two diagrams,
we have

]Selp∞(E/k∞)G = ]Selp∞(E/k)× ]Cokerψ∞
]Cokerλk

×
∏
v ε S

]Kerhv
]Cokerhv

× ]Cokerg
]Kerg

.

Thus we have Theorem by combining Lemma ??, Lemma ?? and Lemma ??.

4.5. Truncated Euler Characteristics. The usual Euler characteristic at
the beginning of this section is not defined for Selp∞(E/k∞) if Selp∞(E/k) is
infinite, e.g. if E(k) has a point of infinite order. To circumvent this problem
(and since the higher cohomology groups Hi(G,Selp∞(E/k∞)), i ≥ 2, are conjec-
turally trivial), the truncated G-Euler characteristics was introduced by Coates-
Schneider-Sujatha in the GL2-case extending ideas of Schneider and Perrin-Riou
in the cyclotomic situation. Similarly to Theorem 3.1 of [?], we can calculate these
modified Euler characteristics in our case.

For an G-module M , let

φM : H0(G,M)→ H1(G,M)

be the composition of

H0(G,M) ∼= H0(Γ,MH)
ψM→ H1(Γ,MH) res→ H1(G,M)

where ψM is the map induced from the natural map

H0(Γ,MH) ∼= (MH)Γ → (MH)Γ ∼= H1(Γ,MH).

We define the truncated G-Euler characteristics of M as

χt(G,M) := q(φM )

where q(φM ) := ]Ker(φM )/]Cok(φM ) and say that this is finite if both Ker(φM )
and Cok(φM ) are finite. Setting formally H = 1, e.g. G = Γ, in the above we
obtain the definition of the modified Γ-Euler characteristic χt(Γ, N) of a discrete
Γ-module N. Then we have
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Theorem 4.10. Assume that (i) p ≥ 5, (ii) E has good ordinary reduction at
all primes above p and (iii) Xf (Kcyc) is Λ(Γ0)-torsion where Γ0 = Gal(Kcyc/K).
Then χt(G,Selp∞(E/k∞)) is finite if and only if χt(Γ,Selp∞(E/Kcyc)) is finite.
Furthermore, if χt(Γ,Selp∞(E/Kcyc)) is finite, we have

χt(G,Selp∞(E/k∞)) = χt(Γ,Selp∞(E/Kcyc))×
∏
M

|Lv(E, 1)|p

where M is defined in Theorem ??.

Remarks 4.11. As mentioned above we do not have to assume the finiteness of
Selp∞(E/k) here. A formula for χt(Γ,Selp∞(E/Kcyc)) was obtained by Schneider
[?] and Perrin-Riou [?] involving p-adic heights and the constant ρp(E/k). Thus,
if we assume k contains µp (k = K), then we have another proof of Theorem
??. In fact, in this case, if we assume Selp∞(E/k) is finite then assumption (iii)
of Theorem ?? is true. Furthermore, we can prove Hi(G,Selp∞(E/k∞)) is finite
for i = 0, 1 and H2(G,Selp∞(E/k∞)) = 0. Thus we obtain the Theorem ??
as a corollary of Theorem ?? by using the formula for χ(Γ,Selp∞(E/Kcyc)) =
χt(Γ,Selp∞(E/Kcyc)).

Proof. The proof goes exactly similar to Theorem 3.1 of [?]. Thus we give only a
sketch. First, we see that

H1(Γ,Selp∞(E/k∞)H) ∼→ H1(G,Selp∞(E/k∞))

since H1(H,Selp∞(E/k∞)) = 0 by assumption (iii) which is proved similarly as
Lemma 2.5 of [?]. Thus we have χt(G,Selp∞(E/k∞)) = q(ψ) where

ψ : H0(Γ,Selp∞(E/k∞)H)→ H1(Γ,Selp∞(E/k∞)H).

Next, we define

Sel′p∞(E/Kcyc) := Ker(H1(kS/Kcyc, Ep∞)→
⊕
S\M

Jv(Kcyc)).

Then we have

0→ Selp∞(E/Kcyc)→ Sel′p∞(E/Kcyc)→
⊕
M

Jv(Kcyc)→ 0

is exact by the assumption (iii). Thus,

χt(Γ,Sel′p∞(E/Kcyc)) = χt(Γ,Selp∞(E/Kcyc))×
∏
M

χt(Γ, Jv(Kcyc))

and χt(Γ, Jv(Kcyc)) = |Lv(E, 1)|p (cf. Lemma 3.4 of [?]). Further, we can see the
restriction map

res : Sel′p∞(E/Kcyc)→ Selp∞(E/k∞)H

is defined and the kernel and cokernel of this map are finite (cf. Lemma 3.6 of [?],
see also Lemma ?? in section ??.)
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Then, by the commutative diagram induced from the restriction

H0(Γ,Selp∞(E/Kcyc)) −−−−→ H0(Γ,Selp∞(E/k∞)H)

ψ′
y yψ

H1(Γ,Selp∞(E/Kcyc)) −−−−→ H1(Γ,Selp∞(E/k∞)H)

and Lemma 3.5 of [?], we have q(ψ) = q(ψ′)(= χt(Γ,Sel′p∞(E/Kcyc))). Putting
all together, we have the Theorem. �

4.6. A condition for triviality. Finally, we consider a question when the
Selmer group Selp∞(E/k∞) is trivial. We assume here BASE,

k = K(= k(µp)), G = G0.

The following is an immediate corollary of Theorem ??.

Proposition 4.12. We have

Selp∞(E/k∞) = 0 if and only if χ(G,Selp∞(E/k∞)) = 1.

Proof. Note that if Selp∞(E/k) is not finite then χ(G,Selp∞(E/k∞)) is not defined,
since Selp∞(E/k∞)G is not finite. Thus, we can see that χ(G,Selp∞(E/k∞)) = 1
if and only if both

(i) Selp∞(E/k) is finite and ρp(E/k) = 1.
(ii) P1(k∞/k,E) ∪ P2(k∞/k,E) = ∅.

holds, since ρp(E/k) ≥ 1 and |Lv(E, 1)|p > 1 if v ε P1 ∪ P2. As is well known, (i)
is equivalent to Selp∞(E/kcyc) = 0. Assume Selp∞(E/kcyc) = 0 and (ii). Then by
the Theorem ??, Xf (k∞) has rank 0 and is Λ(H)-torsionfree. Thus Xf (k∞) = 0.
Assume Xf (k∞) = 0. Then Xf (k∞)H = 0. By (??), we have Selp∞(E/kcyc) = 0
and (ii). �

Example 4.13. Let E = X1(11) defined by the equation y2 + y = x3 − x. Let
p = 5, k = Q(µ5) and k∞ = Q(µ5∞ , α

5−∞) with α ε Q×. This satisfies DIM c)
and FIN (subsection ??). Since E(Q)5 ∼= Z/5, the condition (ii) in the proof of
the Proposition ?? holds only when α is some power of ±5. When α = (±5)n,
(i) and (ii) in the proof Proposition ?? hold. (For example, it is known that
Selp∞(E/kcyc) = 0 by [?]). Hence we have Selp∞(E/k∞) = 0.
We see further structures of Xf (k∞) for α = 11 in §??.
Another example is p = 7 and the curve E defined by y2 + xy = x3 − 141x+ 657
whose conductor is 294. This has good ordinary reduction at p = 7 over k = Q(µ7).
For k∞ = Q(µ7∞ , α

7−∞) with α ε Q×, we see that Selp∞(E/k∞) = 0 if and only
if α is a power of ±7 thanks to a result of Fisher ([?], see also [?]).

5. µ-invariants

In the GL2-extension case, Coates and Sujatha (unpublished) and Howson [?, §3]
considered the behavior of the µ-invariant for Selmer groups of elliptic curves,
hereby generalizing the formulas in the Zp -case of Perrin-Riou (cyclotomic case)
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and Schneider (general case, also for abelian varieties). Under suitable assump-
tions, see below, analogous statements can be proven in our situation by almost
literally the same proof as for [?, thm 3.1, cor. 3.2]. To avoid redundancies in the
literature we shall therefore just state the results with some comments and leave
the detailed proof to the interested reader.

Assume that k contains µp and that k∞ contains kcyc. Since the Galois group
G = G(k∞/k) ∼= Zp o Zp is without p-torsion, the Iwasawa algebras Λ(G) and
Ω(G) := Fp[[G]] are both integral. Recall that the µ-invariant of a finitely generated
Λ(G)-module M can be defined as

µ(M) :=
∑
i≥0

rkΩ(G)pi+1M/piM

(cf. [?]) but can be calculated via the relation

pµ(M) = χ(G,M(p)),

where M(p) denotes the Zp -torsion submodule of M (see [?, cor 8]).

Assume ϕ : E1 → E2 is an isogeny of the elliptic curves E1 and E2 above k and
denote by A the p-part of the group scheme kerϕ. Throughout this subsection we
assume that Assumption SEQS holds for E1 or E2 (and hence for both) and that
Assumption WLS holds for E1 (and hence for E2).

The above isogeny induces a Λ(G)-homomorphism

ϕ∗ : Xf,2 → Xf,1

of the corresponding Pontryagin duals Xf,i of the Selmer groups of Ei, i = 1, 2.

Theorem 5.1. Let p ≥ 5. Then, under the above assumptions, the following holds

µ(ker(ϕ∗))−µ(coker(ϕ∗)) =
∑
v|∞

logp #(A(kv))−|k : Q| logp #A−
∑
v|p

logp |#Ãv|v,

where v denotes a place of k, | − |v its absolute value (normalized such that |p|v =
p−[kv :Qp]) and Ãv denotes the image of A under the reduction map of E1 at v.

The theorem holds for more general pro-p Lie extensions without p-torsion as long
as in addition to Assumption SEQS for E1 or E2 it holds that

H2(kS/k∞, E1,p∞) is finite

(The corresponding local condition, i.e. the finiteness of H2(k∞,w, Ep∞) for all w|v,
v ε Sp∪Sbad∪Sram where E denotes Ẽv if v|p and E otherwise, is always satisfied,
see [?, §2 (12),(13)]).

For the proof note also that the image of E2,p∞(k∞) and E2,p∞ in H1(kS/k∞, A)
and H1(k∞,w, A) are always finite, because the cohomology groups are annihilated
by some power of p. Thus their Euler characteristic is 1. Furthermore, it is easy
to see that the Euler characteristics χ(G,Hi(kS/k∞, A)) are well-defined for all
i ≥ 0.

By the additivity of the µ-invariant on short exact sequences of torsion modules
it follows immediately (cf. [?, cor 3.2])
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Corollary 5.2. Suppose, in addition to the assumptions of the theorem, that
Xf,i is a Λ(G)-torsion module for i = 1 or i = 0 (and hence for both). Then
the difference between the µ-invariants of Xf,2 and Xf,1 is given by the following
formula

µ(Xf,2)− µ(Xf,1) =
∑
v|∞

logp #(A(kv))− |k : Q| logp #A−
∑
v|p

logp |#Ãv|v,

where the notation is as in the theorem.

We conclude this section studying the relationship between the µ-invariants of the
duals of the Selmer group over k∞ on the one hand and over kcyc on the other hand.
In the GL2-case this was investigated by Coates-Sujatha [?, §2] and we will follow
closely their arguments. We assume now that p ≥ 5 and we keep the assumption
BASE and that kcyc is contained in k∞. As before we set H := G(k∞/kcyc) and
Γ := G(kcyc/k). In order to distinguish between the two situations we shall write in
the following µG(M) and µΓ(M) for the µ-invariant of a finitely generated Λ(G)-
or Λ(Γ)-module M, respectively.

Theorem 5.3. Let E be an elliptic curve defined over k with good ordinary reduc-
tion at Sp and assume that Xf (kcyc) is a Λ(Γ)-torsion module. Then one always
has µG(Xf (k∞)) less than or equal to µΓ(Xf (kcyc)) :

µG(Xf (k∞)) ≤ µΓ(Xf (kcyc)).

Remark 5.4. Assume that E is isogenous over k to an elliptic curve E′ such that
µΓ(X ′

f (kcyc)) = 0 where X ′
f denotes the dual of Selmer of E′. Then

µG(Xf (k∞)) = µΓ(Xf (kcyc)).

Indeed, this follows immediately from the formulae for the change of the µ-invariant
under isogeny over both k∞ and kcyc. More generally, the above equality holds if
and only if the quotient Z := X/T of X := Xf (k∞) by its Zp -torsion submodule
T := Xf (k∞)(p) is finitely generated over Λ(H) (Indeed, we will see in the proof
below, that equality is equivalent to the vanishing of µΓ(ZH). Since ZH is a Λ(Γ)-
torsion module this in turn is equivalent to ZH being a finitely generated Zp
-module. Now the claim follows from the Nakayama lemma).

Proof. We shall use the notation of the remark. By the analogue of [?, lem. 2.5],
we know that H1(H,X) = 0. Since cdpH = 1, one immediately obtains that also
H1(H,T ) = 0 and that H1(H,Z) has no p-torsion, because multiplication by p is
injective on Z. But, again as H1(H,X) = 0, we have that H1(H,Z) injects into
TH , which is a Zp-torsion module. Thus we have shown that H1(H,Z) vanishes,
too, and we have the exact sequence

0 // TH // XH
// ZH // 0

of Λ(Γ)-torsion modules. It is plain from this sequence that µΓ(TH) ≤ µΓ(XH)
(with equality if and only if µΓ(ZH) is zero).

Now we claim (i) that µΓ(TH) = µG(X) and (ii) that µΓ(XH) = µΓ(Xf (kcyc)).
The latter claim is clear because it follows easily from the usual fundamental
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diagram ?? that the kernel and cokernel of the canonical map XH → Xf (kcyc) are
finitely generated over Zp . To prove (i), we use the fact that for a module which
is annihilated by a power of p, the µ-invariant is given by the Euler characteristic
(cf. [?, cor. 1.8]). As H2(G,X) = 0 (in theorem ?? we state this only under
too restrictive assumptions, but use the validity of SEQS to derive this from the
vanishing of H2(G,XS) (corollary ??) and of H2(G,US) (proposition ??), which
both hold in this generality) and as cdpG = 2, we see that H2(G,T ) = 0 and we
obtain that

pµG(X) = pµ(T ) =
#H0(G,T )
#H1(G,T )

=
#H0(Γ, TH)
#H1(Γ, TH)

= pµΓ(TH).

The last equality follows from the Hochschild-Sere spectral sequence using again
the vanishing of H1(H,T ). Thus the theorem follows. �

6. An example

In this section, we consider the following special example where p = 5 as a first
case. Let k = Q(µ5) and kcyc be the cyclotomic Z5-extension of k. Then, we put

k∞ := kcyc(
5∞
√

11).

First, we have the following (cf. Lemma ??).

Lemma 6.1. (i) k∞ is unramified outside 5 and 11 over Q.
(ii) The number of primes of k above 11 is four. They are not decomposed in

k∞/k. Further, they are totally ramified for k∞/kcyc.
(iii) There are unique prime of k above 5. They inert and totally ramified for

k∞/k.

We consider the Selmer group over k∞ of

E = X1(11) : y2 + y = x3 − x2,

the elliptic curve over Q of conductor 11. In this case, we can determine slightly
more precise structure as a module over Iwasawa algebras.

Theorem 6.2. Let H = Gal(k∞/kcyc). Then, the Pontryagin dual of the Selmer
group Xf (k∞) := Selp∞(E/k∞)∨ is free of rank four as a Λ(H)-module.

It is shown that Selp∞(E/kcyc) = 0 in [?]. Thus we have Xf (k∞) is a submodule
of Λ(H)⊕4 whose cokernel is finite by Theorem ?? and Lemma ??. For n ≥ 1, let
Hn and Fn be as the same as subsection ??:

Fn := kcyc(
5n√

11) and Hn := Gal(k∞/Fn).

Here, we put F0 = kcyc andH0 = H. For the Λ(H)-freeness, it suffices to show that
Selp∞(E/k∞)Hn is cotorsion-free for any n ≥ 0 by the structure theory of Λ(H)-
modules. By (??) and Lemma ??, it is enough to show Coker(r′n) is cotorsion-free.
Taking S = {5, 11} we have

(6.8) H1(Hn, E(k∞)5∞)→
⊕

w|11,w|5

H1(Hn, E(k∞,w)5∞)→ Coker(r′n)→ 0,
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from (??). For w|11, H1(Hn, E(k∞,w))5∞ ∼= Qp/Zp by Lemma ??, we have
Coker(r′n) is cotorsion-free if we show the following.

Lemma 6.3. Let w be the (unique) prime of k∞ above 5. Then,

(6.9) H1(Hn, E(k∞)5∞)→ H1(Hn, E(k∞,w))5∞

is an isomorphism.

To prove this, we have first

Lemma 6.4. E(k∞)5∞ = E(Q)5∞ ∼= Z/5.

Proof. The field adjoining all of 5-th division points of E is an extension of degree 5
over k. But it is well known that this is disjoint from k( 5

√
11) and kcyc over k. 52-th

division points of E are defined over the field containing the maximal real subfield
of Q(µ11), which is not contained in k∞. Therefore we have E(k∞)5∞ = E(Q)5∞ .

�

By this Lemma, we have

(6.10) H1(Hn, E(k∞)5∞) = Hom(Hn, E(k∞)5∞) ∼= Z/5.

Let w be the unique prime above 5. Let Ẽ5 be the reduction of E modulo 5. Then
it is well known that Ẽ5(F5) ∼= Z/5. Since k∞/Q is totally ramified at 5 by Lemma
??, we have

(6.11) Ẽ5(κ∞,w) = Ẽ5(F5) ∼= Z/5.
Further, we have the following.

Lemma 6.5. The composition of natural injection

E(k∞)5∞ ↪→ E(k∞,w)5∞

and the reduction map

E(k∞,w)5∞ → Ẽ5(κ∞,w)5∞

is an isomorphism.

Proof. It is enough to show the same assertion replacing k∞ by Q5 by Lemma ??
and (??). But this is well known (cf. [?]). �

Now we can show Lemma ??. Since Fn is a deeply ramified extension, we have
the following isomorphism by Coates-Greenberg:

H1(Hn, E(k∞,w))5∞
∼→ H1(Hn, Ẽ5(κ∞,w)5∞).

By (??),
H1(Hn, Ẽ5(κ∞,w)5∞) = Hom(Hn, Ẽ5(κ∞,w)5∞) ∼= Z/5.

So,

(6.12) H1(Hn, E(k∞)5∞)→ H1(Hn, Ẽ5(κ∞)5∞)

is an isomorphism by (??) and Lemma ??. �
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The formula of corollary ?? enables us to calculate for p = 5 the µ-invariant of the
elliptic curve E2 := X0(11), given by the Weierstrass equation y2 + y = x3 − x2 −
10x− 20, see [?, ex. in §3] for more details needed for this calculations. There is
an isogeny ϕ : E1 → E2 with E1 := X1(11) and A ∼= Z/5. Since µ(Xf,1(k∞)) = 0
by theorem ??, we obtain

µ(Xf,2(k∞)) =
1
2
|k : Q|,

where k is a finite extension of Q(µ5) inside k∞ = Q(µp∞ ,
5∞
√

11).

This result in turn can be used to calculate the µ-invariant of the Galois module

XS
cs := G(L/k∞),

where L denotes the maximal unramified abelian p-extension of k∞ in which all
places lying above S are completely split. For further results on this module we
refer the reader to [?]. Let us now fix k = Q(µ5) and E = X0(11), i.e. µ(Xf ) = 2
by the above formula. Using the fact that E5

∼= µ5 × Z/5 as GQ-module where
µ5
∼= ker(E5 → Ẽ5

∼= Z/5) identifies with the kernel of the reduction map at 5,
one easily obtains the following exact sequence of Λ(G)-modules

0→ XS
cs/5→ Xf/5→ XS/5→ 0,

where XS := H1(GS(k∞), Ep∞)∨ and ∨ means taking the Pontryagin dual.

Using the formula [?, cor. 1.11] rkΩM/pM = rkΩ(pM)+rkΛM where pM denotes
the kernel of multiplication by p on a finitely generated Λ-module M, we conclude

2 = µ(Xf ) ≥ rkΩ(5Xf ) = rkΩ(Xf/5)

= rkΩ(XS/5) + rkΩ(XS
cs/5)

= rkΛ(XS) + rkΩ(5XS) + rkΩ(5XS
cs)

= 2 + rkΩ(5XS) + rkΩ(5XS
cs).

Here we used that both Xf and XS
cs are Λ-torsion modules and that rkΛ(XS) = 2

by [?, thm 3.2]. Thus rkΩ(5XS) = rkΩ(5XS
cs) = 0 which implies

µ(XS) = µ(XS
cs) = 0

by [?, rem 3.33]. Of course, the same calculation holds over the field Q(E5∞)
thus showing the vanishing of µ(Xnr) = µ(XS

cs) = 0 where Xnr denotes the Galois
group of the p-Hilbert class field of Q(E5∞). We should point out that the modules
Xnr and XS

cs are probably pseudo-null, but that the vanishing of the µ-invariants
is all we can show at the moment.

At the end of this section, we mention to the further structure of the Selmer group
for p = 5, E = X1(11) and α = 11. Let G̃ := Gal(k∞/Q). Note that this is not a
pro-p group.

Theorem 6.6. The Pontryagin dual of the Selmer group Xf (k∞) is cyclic over
Λ(G̃).
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Proof. We see that (??) for n = 0 is an exact sequence of Λ(Γ̃)-modules where
Γ̃ = Gal(kcyc/Q). By Lemma ??,

Coker(r0) ∼=
⊕
u|11

H1(H,E(k∞,w)5∞) ∼= CoindΓ̃
Γ(H1(H,E(k∞,w)5∞)).

because the decomposition group of 11 in Γ̃ is Γ = Gal(kcyc/k). Since we have
H1(H,E(k∞,w)5∞) ∼= Qp/Zp for w|11, its dual is cyclic over Λ(Γ). (In fact,
H1(H,E(k∞,w)5∞) ∼= Qp/Zp(−1) as a Γ-module, but we omit the proof here.)
Because Selp∞(E/k∞)H ∼= Coker(r0), Xf (k∞)H is isomorphic to Λ(Γ̃) ⊗Λ(Γ)

H1(H,E(k∞,w)5∞)∨, which is a cyclic Λ(Γ̃)-module. Thus, to prove Theorem
??, we have only to see the following general Lemma which is an immediate con-
sequence of Nakayama’s Lemma. �

Lemma 6.7. Let G̃ be a profinite group which is not necessarily pro-p, and M a
compact Λ(G)-module. Let H be a closed subgroup of G̃ which is a pro-p group.
Then, if MH is a cyclic Λ(G̃/H)-module we have M is cyclic over Λ(G̃).

Finally, we propose an interesting question: what is the rank of E(k∞) ? We
know nothing about it so far. The only known result is rank(E(F1)) = 0 where
F1 = k(µ5∞ ,

5
√

11) ⊂ k∞ by Fisher ([?]). See also Corollary ??.

7. Appendix

In this section, we collect some facts used in previous sections and prove them for
the completeness.

7.1. Surjectivity of the localization map. We see a relation between the
Λ-torsionness of Selmer groups and the Assumptions WLS and SEQS . We prove
Theorem ??. The proofs are exactly the same as [?] Lemma 4 and 5.

Let F/k be a Galois extension with G = Gal(F/k). Let E be an elliptic curve
defined over k. We analyze the localization map

λF : H1(kS/F,Ep∞)→
⊕
v ε S

Jv(F )

and H2(kS/F,Ep∞) where S is a set of primes of k containing Sp ∪ Sbad and all
the primes which are ramified for F/k.

First, we define the following module

Rp(E/F ) := lim←−
n,M

Selpn(E/M).

Here, we denote

Selpn(E/M) := Ker

(
H1(kS/M,Epn)→

⊕
v ε S

Jv(M)

)
,

M runs over all finite extensions of k contained in F and the limit is taken
with respect to corestrictions and the map induced by multiplication by p-maps,
Epn+1 → Epn .
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Theorem 7.1. Assume that G is an infinite pro-p group. Further, assume E(F )p∞
is finite. Then, there is an injection of Λ(G)-modules.

(7.13) Rp(E/F ) ↪→ HomΛ(G)(Selp∞(E/F )∨,Λ(G)).

Here, HomΛ(G)(Selp∞(E/F )∨,Λ(G)) is considered as a left Λ(G)-module by its
right action on Λ(G) and the involution g → g−1.

Proof. For a finite subextension M of F/k, there is an exact sequence

0→ E(M)p∞ → lim←−
n

Selpn(E/M)→ Tp(Selp∞(E/M))→ 0

where Tp(∗) is the Tate module of ∗. We note that

Tp(Selp∞(E/M)) ∼= HomZp(Selp∞(E/M)∨,Zp).

So we have the exact sequence by taking the inverse limit with respect to core-
strictions,

0→ lim←−
M

E(M)p∞ → Rp(E/F )
φ→ lim←−

M

HomZp
(Selp∞(E/M)∨,Zp)→ 0

where M runs over all of finite Galois subextensions of F/k. By the assumption
that E(F )p∞ is finite, lim←−M E(M)p∞ = 0 since G is infinite pro-p. So φ is an
injection.

Next, we consider the restriction map

rM : Selp∞(E/M)→ Selp∞(E/F )UM

with UM := Gal(F/M). Then we have the following.

0→ lim←−
M

HomZp(Ker(rM )∨,Zp)→ lim←−
M

HomZp(Selp∞(E/M)∨,Zp)

ψ→ lim←−
M

HomZp
((Selp∞(E/F )∨)UM

,Zp).

Here, the inverse limits are taken w.r.t. corestrictions for the first two. For the
last term, we take the limit w.r.t. the map induced from the map defined by

(Selp∞(E/F )∨)UM
→ (Selp∞(E/F )∨)UM′ : x 7→

∑
σ ε UM/UM′

σ(x)

for M ′ ⊃ M . Since Ker(rM ) is contained in H1(UM , E(F )p∞) and E(F )p∞ is
finite, Ker(rM ) is finite. So we have HomZp

(Ker(rM )∨,Zp) = 0 and ψ is an
injection.

Finally we see that

HomZp
((Selp∞(E/F )∨)UM

,Zp) ∼= HomΛ(G)(Selp∞(E/F )∨,Zp[G/UM ])

by the map

f 7→

x ε Selp∞(E/F )∨ 7→
∑

σ ε G/UM

f(σ−1x)σ ε Zp[G/UM ]

 .
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Thus we have the isomorphism

lim←−
M

HomZp
((Selp∞(E/F )∨)UM

,Zp) ∼= lim←−
M

HomΛ(G)(Selp∞(E/F )∨,Zp[G/UM ])

where the inverse limit of the right hand side is taken w.r.t the natural surjection
Zp[G/UM ′ ]→ Zp[G/UM ] for M ′ ⊃M . Therefore,

lim←−
M

HomΛ(G)(Selp∞(E/F )∨,Zp[G/UM ]) ∼= HomΛ(G)(Selp∞(E/F )∨,Λ(G))

and we see that Rp(E/F ) maps to this module injectively by the map ψ ◦ φ. �

As a consequence of this Theorem, we have the following (for odd p).

Theorem 7.2. Assume G is a pro-p group with no p-torsion and E(F )p∞ is finite.
If Selp∞(E/F )∨ is Λ(G)-torsion, then we have

(i) H2(kS/F,Ep∞) = 0 and
(ii) The map

H1(kS/F,Ep∞) λF→
⊕
v ε S

Jv(F )

is surjective.

Proof. By the assumption that Selp∞(E/F ) is Λ(G)-torsion, we have

HomΛ(G)(Selp∞(E/F )∨,Λ(G)) = 0.

Thus we have Rp(E/F ) = 0 by Theorem ??. This proves the Theorem because of
the exact sequence

0→ Selp∞(E/F )→ H1(kS/F,Ep∞) λF→
⊕
v ε S

Jv(F )

→ Rp(E/F )∨ → H2(kS/F,Ep∞)→ 0.

by Poitou-Tate global duality. �

7.2. Comparison of the Λ-ranks. Let G ∼= H o Γ where H ∼= Γ ∼= Zp. For
any Λ(G)-module M , the H-coinvariants MH have a structure as Λ(Γ)-module.

Lemma 7.3. Let M be a finitely generated Λ(G)-module. Then,

rankΛ(G)M ≤ rankΛ(Γ)(MH).

Proof. For these G and H, the following fact is proved in the proof of [?, last
Theorem]: A finitely generated Λ(G)-module M is Λ(G)-torsion if MH is Λ(Γ)-
torsion (This fact fails in the GL2-case in general.) It is easy to see that it is
enough to show the Lemma when M is Λ(G)-torsion free. We use an induction on
n = rankΛ(G)M . Assume n = 1. Then the above fact shows rankΛ(Γ)(MH) ≥ 1.
If n ≥ 2, then there exists an exact sequence 0 → N → M → L → 0 where N ,
M , L are torsionfree Λ(G)-modules with rankΛ(G)N = n− 1 and rankΛ(G)L = 1.
Since LH = 0, the sequence 0 → NH → MH → LH → 0 is exact. Thus we have
the Lemma by induction. �
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7.3. Euler-Poincaré formula for Λ-ranks. For the convenience of the
reader we include here the well-known determination of the alternating sum of
the Λ-ranks of Hi(GS(k∞), A)∨ using Tate’s global Euler-Poincaré characteristic
formula (see also [?, thm. 3.2]).

For that purpose let p be any prime, k be a number field (totally imaginary, if
p = 2), S a finite set of places of k containing Sp and S∞, k∞ a non-trivial Galois
extension of k contained in kS such that G = G(k∞/k) is a pro-p p-adic Lie group
without torsion element. As usual we write r1(k) and r2(k) for the number of real
and complex places of k, respectively.

Furthermore, we denote by A ∼= (Qp/Zp)d a discrete p-divisible p-primary GS(k)-
module of Zp-corank d. Then the cohomology groups Hi(GS(k∞), A)∨ are finitely
generated Λ-modules, where Λ = Λ(G) denotes the Iwasawa algebra of G. Their
ranks are related as follows

Proposition 7.4.

rkΛH1(GS(k∞), A)∨− rkΛH2(GS(k∞), A)∨ = (r1(k)+ r2(k))d−
∑
v real

dimFp
(pA)+,

where (−)+ denotes the invariant part with respect to the complex conjugation and
pA is the kernel of multiplication by p.

Note that rkΛH0(GS(k∞), A)∨ = 0 because the dual of A(k∞) ⊆ A is finitely
generated over Zp.

Proof. Following [?, thm. 1.1] the rank of any finitely generated Λ-module M can
be calculated via its homology groups as

rkΛM =
∑
j≥0

(−1)j rkZpHi(G,M).

Using the Hochschild-Serre spectral sequence, the well known behaviour of
Euler-characteristics with spectral sequences and the fact that in our situation
cdpGS(k∞) ≤ cdpGS(k) ≤ 2, we obtain immediately that the term in the propo-
sition of the left hand side is equal to

∑
i≥0

(−1)i+1rkΛHi(GS(k∞), A)∨ =
∑
i,j≥0

(−1)i+j+1rkZp
Hj(G,Hi(GS(k∞), A))∨

=
∑
n≥0

(−1)n+1rkZpHn(GS(k), A)∨

=
2∑

n≥0

(−1)n+1 dimFp Hn(GS(k), pA)

= (r1(k) + r2(k))d−
∑
v real

dimFp(pA)+.

For the last equality we used Tate’s global Euler-Poincaré characteristic formula,
see e.g. [?, 8.6.14]. �
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