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Abstract

Inspired by Nakamura’s work [Nal7a] on e-isomorphisms for (¢, I')-modules over (rel-
ative) Robba rings with respect to the cyclotomic theory, we formulate an analogous con-
jecture for L-analytic Lubin-Tate (¢r,I's)-modules over (relative) Robba rings for any
finite extension L of Q,. In contrast to Kato’s and Nakamura’s setting, our conjecture
involves L-analytic cohomology instead of continuous cohomology within the generalized
Herr complex. Similarly, we restrict to the identity components of D...;s and Dgyg, respec-
tively. For rank one modules of the above type or slightly more generally for trianguline
ones, we construct e-isomorphisms for their Lubin-Tate deformations satisfying the desired
interpolation property.

Contents

2 Notation

[3

(¢r,1'r)-Modules over the Robba ring|

[3.1 Definition of the RobbaringR| . . . . . . .. ... ... ... ... ...
3.2 Frobemus and I';-actionon R). . . . . . . . .. ... o
3.3 (pr,I'r)-Modules| . . . . ... ..
3.4 Rank one modules and characters| . . . . . . .. ... ...
3.5 The modules DY (M) . ... ... ...

(Analytic) Cohomology groups|

4.1 Finiteness of analytic Cohomologyl . . . . . . . . . .. ... ... ... ...
4.2  Perfectness ot analytic Iwasawa cohomology and the Lubin-Tate deformation|

4.3  Replacing Local Tate duality| . . . . ... ... ... ... ... ... ......
4.4 Cohomological computations in the character casel . . . . . .. ... ... ...

Bloch—Kato exponential for analytic (¢, )-modules|

5.1 Dggr and D, for analytic (p7,Lz)-modules] . . . ... ... ... ... .. ..
5.2 exp for analytic (pr,['z)-modules|. . . . . ... ... ... .. ... .. ... ..
B3 Derivatives of ameasures . . . . . . . ... ..
[6.4 The dual exponenfial map €XpT] . . - v v o v v v i




-constan 51

[7 Epsilon-isomorphisms - the statement of the conjecture] 53
1 Determinant functorl . . . . . . .. . ... 53

[[2 Fundamental fined . . ... . ... ... .. . o 54
(.3 Statement]l . . . . . . L 56
(4 Thede Rham casel . . . . . . .. .. o L 57
[7.4.1  Equivariant de Rham epsilon constants|. . . . . . . . .. ... ... ... 59

[7.4.2  The de Rham epsilon-isomorphism| . . . . .. . ... ... ... .. .. 61

I8  Epsilon-isomorphisms for (Lubin-Tate deformations of) rank one modules| 64
8.1 Property (v)|. . . . . . o 68
8.2 Property (1)l . . . . . . .. 69
8.3 Property (1)l . . . . . . . . 69

8 escent] . ... 70
8.5  Verification of the conditions (iv), (vi).|. . . . . ... ... ... L. 71
[8.5.1 Twisting] . . . . . . . . . 71

8.0.2 Genericcasel. . . . ... 72

[8.5.3 Exceptional casel . . . .. . ... oo 80

[A Density Argument| 87

1 Introduction

In [Nal7a] Nakamura generalized Kato’s p-adic local e-conjecture [Katl [FK] to the framework
of (¢,I')-modules over the Robba ring (over Q,-affinoid algebras) and proved the essential
parts of it for rigid analytic families of trianguline (¢, T")-modules. The technical foundations
for this had been laid by the work of Kedalya, Pottharst and Xiao [KPX] who had established
the fundamental theorems concerning their cohomology (finiteness, base change property, Tate
duality, Euler-Poincaré formula) and Nakamura’s work |[Nal4al, in which he generalized the
theory of Bloch-Kato exponential maps and Perrin-Riou’s exponential maps in that framework.

Recently there has been much progress concerning (¢, ' )-modules over Lubin-Tate ex-
tensions [Fou, KRl BEF], [FX| [SV15, [SV20]. In particular, the results by Steingart [Stl1l St2]
regarding such (¢, 'r)-modules over families (finiteness, base change property, Euler-Poincaé
formula, perfectness of Iwasawa cohomology) make it possible to study a version of Nakamura’s
approach for L-analytic trianguline modules.

Let L < C, be a finite extension of Q, and Ly a Lubin-Tate extension of L with Galois
group I'r, = Gal(Ly/L) corresponding to a uniformiser 7y, of the ring of integers or, of L.
A continuous representation of G on a finite dimensional L-vector space V is called L-
analytic, if the semi-linear representation C, ®q, V = [],. 1—c, Cp ®L,o V is trivial at the
components where o # id . By a theorem of Berger the category of L-analytic representations
is equivalent to the category of étale L-analytic (¢, ' )-modules over the Robba ring R, (cf.
[Bel6]). Analyticity means here, that the action of the Lie group I'y, is differentiable and the
action of Lie(I'z) is (not only Q,-, but even) L-bilinear. For analytic (¢r,I'r)-modules one
can define analytic cohomology (see Section [4] for a precise definition). Finiteness of analytic
cohomology allows us to attach to a family M of analytic (¢r,'r)-modules over A a graded
invertible line bundle A4(M) over A which is essentially the determinant of the analytic



cohomology of M. Note that, for an L-analytic étale (¢r,T'r)-module attached to some L-
analytic Galois representation V of G with coefficients in L, these analytic cohomology
groups in general do not coincide with the Galois cohomology groups H'(L,V) of V for
1 > 0. Nonetheless they behave similarly to Galois cohomology and allow us to study certain
invariants of V' “at the identity component”. If M is the (¢r,I'r)-module attached to an L-
analytic de Rham representation V, then one can also attach an e-constant to the “identity
component” of Dys(V), i.e., the G-smooth vectors in By ®p,, V' (which injects into the full
Bt ®g, V). This can be generalised to the non-étale case as well (see Section for details).
The content of the analytic variant of the e-conjecture is a trivialisation of A4(M) which
interpolates these e-constants at the de Rham points, i.e., the points 2z € Sp(A) where the
specialisation M, is de Rham.

We formulate the following conjecture in a more general setting (and indicate in Remark
(i) how to formulate a version of this conjecture for L-analytic (¢r,I'r)-modules over the
character variety X,, in the sense of Schneider-Teitelbaum).

Conjecture (See Conjecture [7.6). Choose a compatible system uw = (un) of [n}]-torsion
points of the Lubin-Tate group and a generator t{, of the Tate module of its Cartier dual. Let
K be a complete field extension of L containing L%, and A an affinoid algebra over K. For
each L-analytic (or,Tr)-module M over R4 satisfying condition there exists a unique
trivialisation
€A7U(M) : ]—A = AA(M)
satisfying the following axioms:
(i) For any affinoid algebra B over A we have
eau(M)®aidg = epu(M®4B)
under the canonical isomorphism A (M) ®a B =~ Ag(M®4B).

(i) €a,u is multiplicative in short ezact sequences.

(iii) For any a € o] we have
5A,a~u(M) = 6detM(a)5A,u-
(iv) eau(M) is compatible with duality in the sense that for the dual module M (see section

we have

EA,u(M)* ® h(XTIM) — (_l)dimK HO(]\/[)Q%TJWEA7_U(M)

under the natural isomorphisms 14 = 14®14 and A(M) = A(M)*®(A(ra),0), where
h(x™): A(rar) — A maps eyrm to 1 and ry denotes the rank of M over R.

(v) For L = Qp, w1, = p and u = ({pn—1), the trivialisation coincides with that of Nakamura,
in the sense of Proposition[8.7

(vi) Let F/L be a finite subextension of K, My be a de Rham (pr,'r)-module over Rr and
M = K@FMQ Then
exu(M) = 5dF},§L(M0),

where the isomorphism E%i(Mo) :1x — Ag(M) is called the de Rham e-isomorphism
which is defined in unconditionally using a generalized Bloch—Kato exponential and
dual exponential map as well as the e-constant associated to My in section [7.4)



While in the cyclotomic setting the e-constants depend on the choice of a norm compatible
system of p-power roots of unity, in the Lubin-Tate setting this is replaced by a compatible
system of wz-power torsion points of the Lubin-Tate formal group, see Remarks for a
comparison of both. We also fix a generator ¢, of the Tate module of the Cartier dual of the
Lubin Tate group which determines a certain period Qy € Cp (cf. [ST]). We prove parts of
this conjecture for L-analytic trianguline (¢r,I'r)-modules. More precisely, we construct the
e-isomorphism for the Lubin-Tate deformation of a rank one, de Rham L-analytic (¢r,'1)-
module M over some finite extension F' of L

ep(ry)u(DIM(K®pM)) : 1pr,) = Az, (Dfm(K®pM)),

see Theorem This lives over the rigid analytic character variety Xr, over L. The Cp,-
points of this variety correspond to locally L-analytic characters I', — C;. We refer to
subsection [4.2]for the precise definition of the Lubin-Tate deformation Dfm(N) of a (¢, I'z)-
module N over Ry . Heuristically one can think of it as the base changed (¢r,I'1)-module
D'y, K)®k N over the relative Robba ring D(I'y, K)®xRy. But due to the complicated
behaviour of completed tensor products over LF-spaces which are not Fréchet, it requires a
more technical treatment. The correct point of view, which is used for the cyclotomic setting
in earlier articles of Pottharst (but apparently neither consequently pursued nor carefully
explained in [KPX] Def. 4.4.7, Thm. 4.4.8] unfortunately), consists of viewing this deformation
as a sheaf of (pr,I'r)-modules over Xr,, which is not affinoid and hence does not strictly
speaking fit into the above Conjecture. Instead, the isomorphism epr, ), is a trivialisation
of a line bundle over Xr, which restricts to an isomorphism of the conjectured type on each
affinoid subdomain.

Philosophically, the L-analytic theory over Lubin-Tate extensions is one-dimensional and
thus very similar to the cyclotomic case in the sense that I'z, is - although [L : Q,]-dimensional
over @, - one-dimensional as p-adic Lie group over L. Nevertheless, technically we have had
to overcome serious difficulties. We are going to describe these differences compared to Naka-
mura’s work in the following.

In the cyclotomic setting, Herr-complezes are formed with respect to the two operators ¢
and y—1 for a topological generator  of the torsion-free part of I'; moreover, one can directly
go over to the complex consisting of the fixed part under the torsion subgroup A of I'. In the
Lubin-Tate setting (with L # Q) there is no intrinsic counterpart of v as one needs at least
[L : Qp] elements to generate the (torsion-free part of) I', topologically. So instead we make
use of Fourier theory and the Lubin-Tate isomorphism & la Schneider and Teitelbaum [ST]

D'y, K) = O(%r,) = O(B)

over a huge field extension K of L, over which the character variety Xr, for the subgroup of
n-th higher units I';, = oy, of I'f, can be identified with the open unit disk B for n sufficiently
big. Via this isomorphism we can now choose 3, € D(I',,, K) corresponding to the choice of a
coordinate of B. The generalized Herr-complex in the Lubin-Tate setting can thus be formed
using the two operators ¢y and 3,. Unfortunately, in contrast to A < I'g,, the remaining
quotient I'z, /T, in general cannot be identified with a subgroup of I'z, whence we cannot take
'z /Ty -invariants as before, but have to circumvent this problem.

An important step for our approach consists of establishing the analogue of local Tate
duality for analytic cohomology, see subsection . In contrast to [Nal7a] we find an intrinsic
way to normalize our trace map without any comparison to Galois cohomology (which is not



available anyway as we indicated); nevertheless for L = Q, our choice coincides with that of
Nakamura (for an appropriate choice of period €2).

Another price we have to pay is the fact that even the minimal choice for K is no longer
spherically complete, which means that the functional analysis requires some additional care.
For the explicit descent calculation Lemma we make use of the explicit reciprocity law
from [SV15].

Contrary to the cyclotomic case, it seems difficult to establish integral results in the an-
alytic case. On the one hand the “dualizing character” y used to establish Tate duality has
Frobenius action given by % and hence does not make sense integrally (unless L = Q,),
on the other hand the period Q is not a unit (unless L = Q). The L-analytic distribution
algebra D(I'z, L) contains the ring AggFL of power-bounded functions on the character variety.
It is not known whether Ay, = or[I'.]. Paradoxically, the Iwasawa algebra o [I'L][1/p] is
dense inside both, the d-dimensional Q,-analytic distribution algebra and the 1-dimensional
L-analytic distribution algebra making it unclear how to descend to integral results even under
the assumption Ax. = or[I'L].

The structure of the paper is as follows: In section |3| we introduce (analytic) (pr,I'z)-
modules. In section 4] we introduce and study analytic cohomology of analytic (¢r,I'r)-
modules and recall the main results of [Stl] while providing some generalisations suited to
our needs. Furthermore we develop an analogue of Tate duality for analytic cohomology. In
section [5| we develop an analogue of the Bloch-Kato (dual) exponential map for analytic co-
homology. We recall classical e-constants in section [ and state the conjecture in Section
Section [§] is dedicated to proving the main result. In the Appendix we adapt Nakamura’s
density argument to the Lubin-Tate setting.

Acknowledgements: We are grateful to Léo Poyeton for discussions about analytic B-
pairs and to Kentaro Nakamura for answering generously questions concerning his work. The
project has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under TRR 326, Geometry and Arithmetic of Uniformized Structures, project-ID
444845124,

2 Notation

We denote by N the natural numbers including 0.

Let Q, © L < C,, be afield of finite degree d over Q,, o, the ring of integers of L, 77, € or, a
fixed prime element, k1, = or/mror the residue field, ¢ := |k | and e the absolute ramification
index of L. We always use the absolute value | | on C, which is normalized by |7z| = ¢!

We fix a Lubin-Tate formal or-module LT" = LT}, over o, corresponding to the prime
element m7,. We always identify LT with the open unit disk around zero, which gives us a global
coordinate Z on LT. The or-action then is given by formal power series [a|(Z) € or[[Z]]. For
simplicity the formal group law will be denoted by +r7.

The power series % is a unit in oy [[Z]] and we let grr(Z) denote its

I(X,Y)=(2,0)
inverse. Then grr(Z)dZ is, up to scalars, the unique invariant differential form on LT ([Haz|

§5.8). We also let

denote the unique formal power series in L|[Z]] whose formal derivative is grp. This log; - is
the logarithm of LT in the sense of [Lanl, §8.6] and converges on the maximal ideal in oc, (by



§8.6, Lemma 3 (ii) ibid.). By exp; := log7 in L[[Z]] we denote the inverse power series of
log;r, i.e., satisfying log;roexprp(Z) = expprologrr(Z) = ZEI

In particular, grrdZ = dlogyp. The invariant derivation éi,, corresponding to the form
dlogrr is determined by

fldZ = df = Gin(f)dlogr = Oine(f)9rTdZ

and hence is given by

(2) Oinn () = grpf" -

For any a € oy, we have

(3)  logrr([al(Z)) = a-logry  and hence  agrr(Z) = grr([al(2)) - [a]' (Z)

(|[Lan| 8.6 Lemma 2).

Let T; be the Tate module of LT. Then T} is a free or-module of rank one and we choose
a generator u = (up)neny Where ug = 0, u3 # 0 and, for all n, we have u,, € mc, as well as
[7L](tn+1) = up. Then the action of G, := Gal(L/L) on T is given by a continuous character
xrr : G, — o] . Let T} denote the Tate module of the p-divisible group Cartier dual to LT

with period Q% € L2 which again is a free or-module of rank one and where ¢ is a generator.
The Galois action on T, = T*(1) is given by the continuous character 7 := xcyc - XZ:lra where

Xeye 15 the cyclotomic character. As mentioned in [Box| §1| and [ST2, §3] it follows from the
work of Tate on p-divisible groups that we have natural or-linear isomorphisms

(4) Th ~ Hom,, (LT, Gm) = Homgz,, (T, Zy(1)) = Homgz, cts(Tr @0y, L/oL, 1u(p)),

where the last isomorphism is induced by Pontrjagin duality and the adjunction between Hom
and ®. According to the proof of [Box, Lem. 13| the above composite sends at{, to the map
sending u @ - to Ny (a, un), where, for z € or, we define 1y (2, Z) := exp <Qt6xlogLT(Z)) €
L

1+ Zo—~[[Z]]; when the choice of ¢ is clear from the context, we often omit this index from
Qt{) or ntt) (./,U, Z)

Our constructions will depend crucially on the choices of u and ¢, which determines the
period Q = Qt& . By these two choices automatically determine a system

(L, T)ir=u, = exp(Qlogrr(T))|1=u,

of compatible p-power roots of unityE] In the cyclotomic case where LT = G, it suffices to
fix a choice of compatible p-power roots of unity because one can then take the identity as a
canonical generator t(, of T = Hom(G,,, G,,).

For n > 0 we let L, /L denote the extension (in C,) generated by the 7}-torsion points of
LT, and we put Lo := | J,, Ln. The extension Lo /L is Galois. We let I'z, := Gal(Le /L) and

Hj := Gal(L/Ly). The Lubin-Tate character yr7 induces an isomorphism T'f, = of. Note
that by [BSX], Rem. 1.17] we have Ny g, © XLT = Xeye if and only if Ny g (71) € p”.

lexp, o converges on D := {z € Cplvx, (2) > q%l} and induces on D the inverse of log; ;- respecting the
valuation, see [Lanl §8.6, Lem. 4]

’E.g. if L = Q, and LT is the special group corresponding to pX + X and Q = 1, then n(1,7) is the
Artin-Hasse exponential exp(X + X?P/p+...).



Note that we have homomorphisms o, — 1+ Zo~[[Z]],  — n(z,Z), and LT —
G, Z > n(x, Z), respectively. For a m-torsion point a (whence p"-torsion with m = [Z] be-
ing the smallest integer greater or equal to 2) we thus obtain a character oy, — Zy[(ym]™, z
n(x,a), of finite order. In particular n(x,u,) belongs to p,m for any x € or,. If v € I',, we have
y(x, Z) = n(xer(v)z, Z), while o(n(x, Z)) = n(rrz, Z).

Remark 2.1. Since for o in G, one has o(Q) = Qr(o) by [SV20, Lem. 4.1.24], it fol-
lows that °n(z,Z) = n(z7(0),Z) = n(z,[T(0)|(Z2)), if we let act Gr on the coefficients
only, and o(n(z,2)) = n(wr(o). Dur(@)(Z) = 00, eelo))(2), if we let act Gy, on
the coefficients and on the variable. In particular, o(n(x,u,)) = n(z7(o), [xrr(0)(usn)) =
(2, [Xeye(@)](Un)) = N(@Xeye(0); un) = n(x, un)Xev<l?) . Moreover, for a fived choice (pn of a
primitive p"th root of unity, there is a unique homomorphism B, : o — Z/p"7Z such that the
following diagram is commutative

7/
S
n(_’un)
oL Hpr s

i.e., n(z,up) = Cgff”(m). One easily checks that By, (Xeye(0)T) = Xeye(0) * Bu, ().

Henceforth we use the same notation as in [SV15]. In particular, the ring endomorphisms
induced by sending Z to [71](Z) are called ¢, where applicable; e.g. for the ring <77, defined
to be the 7r-adic completion of or[[Z]][Z7!], or B, := «[r;'] which denotes the field of
fractions of 77. Recall that we also have introduced the unique additive endomorphism vy, of
A1, (and then o77) which satisfies

proyr = WZI “Trap /o (2) -

Moreover, the projection formula

Yr(er(fi)f2) = fivn(fz)  for any f; € #p

as well as the formula

q .
Yropr =—-id
L

hold. An étale (¢r,')-module M comes with a Frobenius operator ¢p; and an induced
operator denoted by ;.

Let Bt := LiLnOCp/pNOCP with the transition maps being given by the Frobenius ¢(a) = a”.
We may also identify ET with anon/TrLocp with the transition maps being given by the
g-Frobenius ¢, (a) = a?. Recall that E* is a complete valuation ring with residue field F, and
its field of fractions ENZ lim C,, being algebraically closed of characteristic p. Let mg denote
the maximal ideal in E*.

The g-Frobenius ¢, first extends by functoriality to the rings of the Witt vectors W(]NEJ’) c
W(E) and then oy-linearly to W(ET), := W(]§)+)®0LO or, € W(E)L, := W(E) ®oy, O, Where
L is the maximal unramified subextension of L. The Galois group G obviously acts on E
and W(f}) 1 by automorphisms commuting with ¢,. This G'r-action is continuous for the weak
topology on W (E), (cf. [GAL] Lemma 1.5.3).



Sometimes we omit the index ¢, L, or M from the Frobenius operator, but we always write
¢p when dealing with the p-Frobenius.

Evaluation of the global coordinate Z of LT at mwp-power torsion points induces a map
(not a homomorphism of abelian groups) ¢ : T —> Et. Namely, if t = (z,)n>1 € Tr with
[72](2n+1) = 2zn and [7mr](z1) = 0, then szH = z, mod 77, and hence «(t) := (2, mod 7p), €
ET. As before we fix an oj-generator u of Ty and put w, := ¢(u). Then there exists a (unique)
lift Z, € W(E")y, of w, satisfying (cf. [SVI5] Lem. 4.1])

(i) if v' = au with a € o] denotes another generator of Ty, then Z, = [a](Z,) is the
corresponding lift;

(i) ¢q(Zu) = [7L](Zu);
(ii) 0(Zy) = [xer(0)](Zy) for any o € Gf.

By sending Z to Z,, € W(E*) 1, we obtain an Gp-equivariant, Frobenius compatible embedding
of rings

() or[2] — W(E")L .

Let K < C, be a complete subfield containing Ly and €2, i.e., the minimal choice is the

completion of the extension Le(Q) of Lo; by an observation of Colmez the completion La
would be a possible choice, where we write L% = L™ Ly, and L™ for the maximal abelian
and for the maximal unramified extension of L, respectively. If L # Q,, such K cannot be
discretely valued even if we replace Lo, by L, see [ST2], Lem. 3.9]. Following Colmez we define
K, :=L,®, K = H(OL/WE)X K, where the latter identification is given by mapping [ ®r, k to
(0a(l) - K)ae(op,jany<» and have the maps

TrKn/K : H K - K, (la)ae(oL/ﬂ'Z)>< = Z la-

(o/mL)* ae(or/Tp)*

Note that we have v,(Q) = -1 L and, for n > 1, rp := vp(uy) =

T p—1 7 elg—D) e(qg—1)g"~1-

In the following, let F' be a complete nonarchimedean field F' containing L, with valuation
vr extending the p-adic valuation on Q.

For any ring R, let Dl[)ao’rbf](R) (respectively Dlp’)erf(R), D_..;(?)) denote the triangulated
subcategory of the derived category D(R) of (cochain) complexes of R-modules consisting of
the complexes of R-modules which are quasi-isomorphic to complexes of finitely generated
projective R-modules concentrated in degrees [a,b] (respectively bounded degrees, degrees
bounded above).

For a locally L-analytic group G and a complete field F' < C, containing L we write
D(G, F) for the locally L-analytic distribution algebra with coefficients in F’; if the coefficients
are clear from the context we often abbreviate this as D(G). Dirac distributions associated
with group elements g € G' are denoted by d, or [g].



3 (vr1,I'L)-Modules over the Robba ring

3.1 Definition of the Robba ring R

For any intervall I < (0, 00) that is either compact or of the form (0,7], r > 0, we define

RL .— {Zak'zk|ak€Fa Ikllim vr(ag) + kt = oo for alltel}.
keZ -

We always assume that the boundary points of I are in the value group of vg, so that R% is
the ring of rigid analytic functions on the annulus

{xe F|vp(x)el}.
Furthermore, for r > 0, let
0,
= R% ",

i.e. the ring of rigid analytic functions on the annulus with outer radius 1 and inner radius

depending on r. For any s € (0,r], one has Rgﬁ’r] € R, and RE;S’T] is a Banach algebra over

F with the norm

. . . _ k [s,7]
Viss) (f) = trer[lng] (llfrelg(’l)p(ak) + kt)) ,  where f = éakz eRE .

Thus R} = ﬂo <s<r Rgﬁ’r] is a Fréchet space. There are natural inclusions R}, © R for s < 7.
Now the Robba ring over F' in the variable Z is defined by

RrF := U Rl.

r>0

We endow R with the locally convex direct limit topology of the R, making it an LF-space.
Moreover, let

R} = Rr n F[[Z]].

This is the ring of power series with coefficients in F' that are convergent on the open unit disk.
In particular, we have R}, € R’ for all r > 0. For a complete field extension F ¢ F'  C,, we
have

F’®F7i'R,F = RF/

(see. [BSX|, Corollary 2.1.8]). Their proof also shows F'®p R} = R,

3.2 Frobenius and I';-action on R
On Rp, we define a Frobenius ¢, and a commuting I'z-action by
er(Z) = [r](Z) and  (Z):=[xer(V](Z) for ye Ty

on the variable and trivial actions on the coefficients. For r» > 0, the Frobenius ¢, and each
v € I'g, restrict to maps

o: Ry — RYT and  y: Ry =5 R



For r small enough, there is a left inverse
v R — R

-1
of ¢, given by ¥ = #L—o TrRTF/q/@ see [FX], §2|. We have W = ZL¢y.

L(RE)’

3.3 (¢r,I'L)-Modules

Definition 3.1. A ¢pr-module over Ry is a finitely generated free Rp-module M, equipped
with a contmuouﬂ wr-semilinear endomorphism s, such that the induced Rp-linear map

RF@RF,L,DLM—)M7 f®w'—)f¢M(x)

1s an isomorphism. Note that in the above tensor product, Rr is viewed as a left-module over
itself in the usual way and as a right module via pr,.
We will often simply write ¢ instead of .

Proposition 3.2. Let M be a pr-module over Rp. Then there exists an r(M) > 0 such that,
for each 0 < r < (M), there exists a unique finitely generated free R'p-submodule M"™ < M
satisfying the following properties:

(i) M = Re @y, M".
(ii) @ induces an isomorphism RTF/q ®Ry 01 M= RrF/q QR MT.
In particular, for 0 < s <r < r(M), one has
M* = Ry @y, M.
Proof. See Thm. 1.3.3 in [Be04]. O

Remark 3.3. Let M be a @r-module over Rp. Then for 0 < s < r < r(M) and 7 €
{s,[s,r], @} we write

M" = R @ ron M.
F
Composing the canonical map M™ —> R;/q Rt o M", m—> 1@ m with the isomorphism
R%q Ry o, M = M/ from Prop. (ii} above, we obtain pr-semilinear maps
o: M"— M.
There s also an operator
Wy M7= R @pe oy M7 — M7
given by f @m —— VU(f)-m.

Definition 3.4. A (pr,I'r)-module over Rp is a pr-module M over Rp which carries a
continuous, semilinear action of T'p that commutes with @pr. We shall write M(Rp) for the
category of (pr,1'r)-modules over Rp.

3where M is, of course, endowed with the product topology from Rp.
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Remark 3.5. If M is a (¢, 'p)-module over Ry and 0 < r < r(M), then from the uniqueness
in Prop. it follows that y(M") = M" for all ye T'L.

1

Definition 3.6. (i) Forn > 1 we put ry, := vy(uy) = =T

(ii) Let M be a (¢r,'r)-module over Rp. For any n such that r, < (M), define
M®™ = M,

Observe that for the Frobenius we then have @: M — M®+D forn » 0.

Definition 3.7. For an affinoid algebra A over F we define RY := A®FR% (with the projec-
tive tensor product topology) and similarly R"y and Ra. We can extend A-linearly the actions
of or. and T'p. By a (pr,T'p)-module over R we mean a Ra-module M which arises as a
base change of a projective R'y-module M" for some r » 0, together with a continuous R'j-
semilinear action of 'y on M" and a pr-semilinear map opr: M™ — M which commutes
with I'r. We can analogously extend the definition of V.

If F is not spherically complete, we do not know if there exist non-free, projective (¢r,I'z)-
modules over Rp. In all cases considered by us, we will only need free modules. According to
[BSX]| Prop. 2.25 the I'p-action on a (¢r,'r)-module M is differentiable so that the derived
action of the Lie algebra Lie(o;) on M is available.

Definition 3.8. A (¢, I'r)-module M over R € {Rr, Ra} is called L-analytic, if the derived
action Lie(I'r) x M — M is L-bilinear, i.c., if the induced action Lie(I'r) — End(M) of the
Lie algebra Lie(I'y) of I'y, is L-linear (and not just Qp-linear). We shall write M**(R) for the
category of L-analytic (pr,'r)-modules over R. An L-analytic (pr,T'r)-module M over R is
called étale, if every (vr,'p)-submodule has slope = 0 (cf. [BSX|, Definition 3.22]). We write
M (R) for the category of étale, L-analytic (¢r,T1)-modules over R.

For the relation with L-analytic continuous Galois representations Rep$"(Gr) of G, on
finite dimensional vector spaces V, which are analytic, i.e., satisfying that, if D%%(V) =
(V ®q, Bar)®", the filtration on Di%’é(V)m is trivial for each maximal ideal m of L ®q, L
which does not correspond to the identity id : L — L, Berger’s theorem is crucial.

Theorem 3.9. There is an equivalences of categories

Rep™"(Gp) «— MR )

Vo Dl (V).

Proof. Thm. D in [Bel6] O

The embedding or[Z] — W(E)L in depends by construction on the choice of w.
Any other choice does not change the image of the embedding or[Z] — WL(C;) because
Zau = |a](Zy) for a € o} by property (i) above (). As explained in [SV23] §8]| the image Z,
of the variable Z already lies in W(L%)y, so that we actually have an embedding oy [[Z]] —
W(L’,)r. Similarly as in [KLI, Def. 4.3.1] for the cyclotomic situation one shows that the
latter embedding extends to a I'z- and ¢ -equivariant topological monomorphism Ry — 7~€L
into the perfect Robba ring, see [SV23, §5] for a definition and [W| Konstruktion 1.3.27] for a
proof in the Lubin-Tate setting.
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Remark 3.10. In order to trace the choice of u in our constructions, we should view Ry as
a subring of ﬁL via the embedding induced by Z — Z,, and define (o1, 'r)-modules over this
(isomorphic) subring. We will ignore this dependence for the most part by working with a fized
Z = Zy. This “hidden” dependence on u is only relevant if an element of a (vr,'r)-module is

explicitly defined in terms of power series in the variable Z, see e.q. , , .

3.4 Rank one modules and characters

Let A be an affinoid algebra over F. To each continuous character §: L* — A* we can
attach a (or,I'r)-module of rank one RA(5) := Raes by setting ¢pr(es) = d(wr)es and
v(es) = d(xrr(7))es for v € I'. We say a module is of character type if it arises in this
way. A (pp,'p)-module of character type is L-analytic (in the sense of Definition if and
only if 5‘02 is locally L-analytic. Over Ry any rank one module is of character type (cf. [FX]

Proposition 1.9]). We write ¥ = ¥(A) for the set of continuous characters 6 : L* — A*. We
denote by X4, 1= Xan(A) the set of locally L-analytic characters 6: L* — A*. Consider the
following characters drp, x = z|x|, 08" : L* — L* for ce L* given by

5LT(7TL) = 17 5LT‘OE = idoza
TL .

X(WL) = ?7 X‘OL = 1d02<7

0" (mr) = ¢, (3:")x = 1.

In particular, x = 0% 0r7. Then 07 corresponds via class field theory (see section for
q
the normalisation we choose) to the character xr7: G — oy . Let §: L* — L* be any con-
tinuous character; setting do := 5™ (WL)é we may always decompose § = 5%{ L)éo satisfying
5‘02 = (60)‘02 and 0o(mp) = 1. If § is étale, i.e., |0(7)| = 1, we shall write xs for the corre-
sponding Galois character via local class field theory sending 7, to the geometric Frobenius
automorphism. Then D;r,ig(L(X(g)) = RL(9).

Later, for descent calculations we will have to select out the sets of special characters
Y1 := { i € N} and X5 := {2x|i € N} from the generic ones Ygen 1= Zan\(X1 U X2).

Note that we have two -operators. While ¢ satisfies the identity Yoy = % id and makes
sense even integrally, ¥ denotes the left inverse of ¢, i.e., satisfying W o ¢ = id. In particular,
we have ¢ = I 0. Note that ¢(es) = %(5—1(7@)%.

If 6 € ¥on(K) and a € o] such that log(a) # 0, then one defines the weight of ¢ as
ws := log(d(a))/log(a) (which is independent of a). We shall say that ¢ is de Rham, if the
attached (pr,'r)-module Rk (6) is de Rham in the sense that will be introduced in subsection
below. As shown in the Appendix [A] Remark 0 is de Rham if and only if there exist

some locally constant character 0. and k(= ws) € Z, such that
§ = 8iea® (or equivalently & = &1.0%, for some other dy),

see also [SV20, Rem. 3.2.3/4] for the étale case.
We fix some notation for the remainder of the article. Consider the differential operator
0 = Oy = m% acting on Rg. (This differs from [Co2| by a constant.) Assume V €
LT

Lie(I'r,) = L corresponds to 1.
Remark 3.11. We obtain the following properties (cf. [Co2, 1.2.4]):
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(i) dop=rmppod.

(ii) oy =xrr(y)yo0.

(i) Vf =trrdf for f € Ri.

(iv) V(fes) = (Vf +wsf)es for § € Zqp.
(v) on(z,T) = Qan(z,T)

3.5 The modules D((Jf)(M)
We set trr = logrr(Z) € L[| Z]], so that

o(tpr) =7np -tpr and  ~A(tpr) = xor(y) - tpp for all vy e T

by . Forn > 1, we set

Wﬂ@%ﬂmﬂNWHGQGMWﬂ

Then [77](un +rrexpr(1EL)) = Z, which is how Colmez justifies this notation in [Co2} 1.4.2].

L
Note that the constant term of [r;"](Z) is equal to u, and hence is non-zero, so [7,"|(Z) is
a unit in L, [[Z]].

Furthermore, let 6 : K,,[[tr7]] = K, denote the K,-linear map sending tr7 to 0, i.e., the
reduction modulo ¢ 7. This is the completed base change to K of the restriction of 6 : B;R —
(Cp to Ln[[tLT]] — Ln.

In the following, let F' be a complete nonarchimedean field containing L.

Definition 3.12. The group I'y, acts diagonally on
F,=L,®L F

(trivially on the right factor and naturally on the left), and we extend this to an action on
F,[[Z]] via its usual action on Z[f| Now define

o= Ry - Fylter]] = Fal[Z]),
S a2 o Y alm"2)),

keZ k€eZ

where on the right-hand side ay denotes (by abuse of notation) the image under the canonical
embedding F' —— L, ®r F and |7, "|(Z) is viewed as a power series over L, ®r, F via the
embedding L, — L, @ F.

Remark 3.13 (Well-definedness of ¢,,). By [Co4l, Prop. 8.10], the ring Bl contains a period
tr, for the Lubin-Tate character, i.e. we have g(tr) = xrr(9)tr for all g € G, and ty, differs
from the usual t by a unit. Thus Ly[[trr]] embeds into B:{R via tr — tr, and we endow
it with the subspace topology, making it a closed subspace of B;’R. A series of the form x =

“Note that F,[[trr]] = Fn[[Z]] because the map F,[[Z]]/Z* — F.[[Z]]/Z", Z — tr7 is an isomorphism
for all k, a consequence of trr being an element of Z + Z>L[[Z]].
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S oo PFlTK] € W(OC;) converges in BYy if and only if 6(x) converges in Cp, (which is the case
precisely when k+v(xy) — oo for k — ©). As in [CC99, Prop. 111.2.1 (i)], the condition for an
x € Ap to be of the form x = 3, . aywh o with a € o, and v,(ag) +k-ry, — o0 for k — —o0 is
equivalent to x being an element of AE” = AT’”mAL and hence in particular implies that v, (x)
converges in B;{R. Even though the coefficients of an element x € R}" are not bounded, they
do satisfy the same growth condition, which suffices for v,(x) to converge. The case of general
F is obtained via completed base change Ry = FQp R — Fyu[[trr]] = FOL «Lu[[trr]]-

Remark 3.14.

(i) For the power series trp = logrp(Z) € R}, we have

n
Tr

1) = o8 ([, "1(2)) = 1ok () +logir expir (27 ) = 27,
— Vv L

tLT) _ trr

(ii) ¢y is injective for every n. (cf. [BeOl, Corollaire 11.11] for a proof in the cyclotomic case,
the LT-case over L works analogously. In the general case the completed base change
F®p -— preserves injectivity by [Eme, 1.1.26].)

The map ¢, commutes with the action of I'y,. Writing Tr = idg ®%Tan+1/Ln we obtain

the commutative diagrams

Ry —"— Fu[[trr]]

¢ |
Ryt 2 By [[trr]]

and

Ry —"— Fulltor]]

J ]

Rt 2 Fy([ter]l.

Definition 3.15. Let M be a (¢r,I'r)-module over Rp. Viewing F,[[trr]] as an R -module
via Ly, we define the F,|[trr]]- and F,((trr))-modules

D}, (M) := Fyl[ter]] ®rre M™  and  Dgign (M) := D, (M)[1/t7],

respectively, where D(jrif’n(M) carries the diagonal action of I',, which also extends to Dgirn(M).
Under the isomorphism @*(M™) = R+ @, Rin M™ >~ MO ghe map o MM —
M+ corresponds to the canonical map cany n41: M cp*(M(")); z+— 1®x. The above
diagrams then induce the diagrams (see [Nal7d, §2.B] for details)

Mm) D((:l—i;,)n(M)

l‘p \Ecann,n-%—l

MO 2 pl) (M)
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where the map cany, p+1 s given by f(t)@x — f(t)Qp(z) 2 f(t)®cany, n11(z) = f(H) R1®z,

and t, by m — 1 ®m, as well as, forn =1,

4 TJ

M) iy pll) ()

with transitions maps f(t) @ x — Tr(f(t)) @ ¥ (x) on the right hand side. Finally, we define

D' (M) := liy D) (M)

with can, n4+1 as transition maps.

As in [NalTa], we have Dy (M) ®p, [t 1] Fnt1lltrr]] = Dy, (M) and hence

Dfi;)(M):DglJirf,)n( ) @rf1tzo1 (U Fmlltrr]]

mzn
for n > 0.

Remark 3.16. Since M™ is a free module over Rg), say of rank d, we have DCTifn(M) ~

Ful[trr]]?. The Fréchet-space-structure on Fy[[trr]] = @Fn[[tLT]]/(t]ZT) (with base field F,
where each factor is a finite-dimensional F-vector space endowed with it’s canonical topology)
thus induces one on Dgif (M), which is of course independent of the choice of the isomorphism

above. Furthermore, Dait (M) = lim D:flf n(M)tZéi becomes an LF-space over F in this way.
Finally, the modules DL.(M) and Ddlf(M) are also LF—space over F.

Later on it will be crucial to form the cohomology groups H;’B(Darif(M)) from Section
For this we need a D(I'y, F')-module-structure on D((;irf) (M), which we will obtain by employing
the following result.

Proposition 3.17. Let W be an LF-space over F carrying a pro-L-analytic action of I'p.
Then this action extends uniquely to a separately continuous action of D(U'p, F) on W.

Proof. This follows from the proof of [SV20, Proposition 4.3.10]. O
Lemma 3.18. Let B be a Fréchet I'p-ring over F and W a finitely generated free B-module
with a compatible T'p-action. Assume there is a basis A := (e1,...,eq) for W such that the
map

I', — GL4(B), v+ Matgy(y)

is pro-L-analytic. The7ﬁ Wwil—pa — (—B;.lzl BL=pa. ¢,

Proof. This is proven for F' = L = Q, in [Bel6l Prop. 2.4] and the identical proof applies for
general F' and L. O

% Note that this topology is not the norm topology on L., because a strict LF-space is complete.
bcf. [Bel6] §2] for a definition of the subspace (—)*~P* of pro-L-analytic vectors.
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Proposition 3.19. For an L-analytic (or,T'r)-module M over Rp, the T'r-action on the
LF-spaces D3 (M) and Dgi(M) is pro-L-analytic.
Proof. We start with DJ;;(M) =lim _ D%, (M). By definition, it suffices to check that the

—>n>»0
I'z-action on the Fréchet space DY, (M) is pro-L-analytic for n » 0.

We wish to apply Lemma [3.18 with B := F,[[t;r]] and W := D%, (M) = B @ (m) M)
’ F

Choose any Rgl)—module basis 1, ...,xq of M. Then A := (1®z1,...,1®z4) is a basis of
the free B-module W, and the map v —— Matg(~) is given by the composite

T, —> GLg(RM™) “25 GLy(B)

where the first map is pro-L-analytic because M ("™ is pro- L-analytic by assumption. Moreover,
since ¢, is a continuous homomorphism of F-algebras, we conclude that is applicable. Thus
we obtain

d
Wwl-pa (_Bl BL-pa. (1 ®$j) _ Fn[[tLT]]Lipa ®R%n) i
j:

Finally, from [Por, Prop. 2.6 2] it follows that F,[[t;r]]*P* = F,[[tzr]], which completes
the proof for D}, (M).

Moving on to Dgif (M), we write D (M) = lim Da’if’n(M) t;% as a direct limit of Fréchet
spaces. By what we have just shown, one can ez’cpress D(;f’n(M ) for n » 0 as inverse limit
D(J{if,n(M ) = im B, , for certain F-Banach spaces By, on which I'y acts L-analytically. So
for any k one has

D, (M) - tr7 = lim By - 177,
r

where by B, - tﬁ? we denote the I';-module B, , whose I'p-action is twisted by XZ; Since
the inversion in I';, is an L-analytic map, we see that the twisted action b —— xr7(7 %) - (b)
on By, is again L-analytic. Thus I'f, acts pro-L-analytically on Dgif,n (M) -t;{,ﬁ for n » 0 and
k =1, so the claim follows. O

Note that Dgi(M) depends on the coefficient field of Rp. For a complete field extension
F'/F and an L-analytic (pr, I'z)-module M over R one checks that F'®p ;M is an L-analytic
(¢r,T'p)-module over Rpr. Here ®FZ denotes the inductive tensor product topology.

Remark 3.20. Let F'/F be a complete field extension and let M be an L-analytic (¢r,Tr)-
module over Rp. The natural maps

F'®piDgit(M) — Daig(MQp, F')

and
F'&®p Dt n(M) — Daig n (Mg, F')

are ' -equivariant isomorphisms.

Proof. The completed inductive tensor product commutes with strict locally convex inductive
limits by [Emel Theorem 1.1.30] together with the argument in the proof of [BSX| 2.1.7(i)].
Hence the first statement follows from the second. For Fréchet spaces inductive and projective
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tensor products agree and commute with projective limits (of Hausdorfl spaces) with dense
transition maps (cf. [BSX| 2.1.4] and [NFA| 17.6]). This allows us to first reduce to the cor-
; + —ko . — L + —k

responding statement for Dy, (M)t 7 since Daifn(M) = lim, D3, (M)t77 and by
we have D:fif,n(M) = lim, D(Jﬁf’n(M)/(t’ZT), hence we even have surjective transition maps
which allow us to reduce to the corresponding statement for DL, (M)/(t ) (assuming for
simplicity ko = 0, the general case being treated analogously). Since each D, (M)/(th ) is
finite dimensional over F', we may omit the completion and see that

F'®@p D ,(M)/(t1r) = Dy, (M&®riF")/(t )

is an isomorphism of finite dimensional F’-vector spaces, which follows from the fact that
any basis of M (™ gives rise on the one hand to a F,[[t;r]] basis of D, (M) and on the

other hand to a basis of F'QM ™ and thus to a F![[t;r]] basis of D$f7n(F’®M). Note that
Fulltrr]l/(ter)* ®F F' = F![[trr]]/(trr)* by a dimension argument. O

Lemma 3.21. Let V be a F-Banach space and let G be a group acting on V via continuous F-
linear maps. Let W be an F-Banach space of countable type endowed with the trivial G-action.
Then

(VOW)Y = vEQW

Proof. Assume without loss of generality, that W is infinite dimensional (the finite dimensional
case being simpler). By [PGS, Corollary 2.3.9] W is isomorphic to co(F), the space of zero
sequences in F' indexed by N. We obtain a G-equivariant isomorphism VW = cq(V) by first
identifying co(F') (resp. (co(V')) ) with the completion of @, F (resp. @,y V) and using
the G-equivariant isomorphism (,,.n F) Qr V = @,,cn V and passing to completions. Note
that g € G acts via continuous automorphisms with respect to the product topology and hence
extends to an automorphism of the completions with g acting on a sequence (vy,vs,...) via
g(v1,v2,...) = (gv1,gve,...). It is clear that any such sequence is G-invariant if and only if
each component is G-invariant. O

Corollary 3.22. Let F'/F be a complete field extension contained in C, and let M be an
L-analytic (¢, T'1)-module over Rp. We have

D (M) @p, F' = D (M&p,F) .

Proof. Like in the proof of we reduce to the corresponding statement for the Banach spaces
Dot (M)t 50 /Dyig (M) 5. The field F' is of countable type over F since F' A Q, is
dense in F' by [IZ, Theorem 1] (and of at most countable dimension over Q) and hence also
F(F' n Q) is a dense F-subspace of at most countable F-dimension. Because the action on
F’ is trivial, we can deduce the result from O

4 (Analytic) Cohomology groups

We define cohomology groups Hg 4(V) for & € {¢, ¢} and & € {D(G, F), 3, Lie(G), V} as
follows: For the moment let F' be any field extension of L and G be any L-analytic group
(of dimension one); we shall reserve the letter U for a (sub)group isomorphic to or. Let
V be any (abstract) D(G, F')-module. Then by RHompg(F,V) we denote any (bounded)
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complex of F-vector spaces whose cohomology gives EXt.D<G)(F V) (extensions as abstract
D(G)-modules). Let f be any endomorphism of V' which commutes with the D(G)-action
inducing an operator on RHomp ) (F, V) and we denote by

—id
K} p(c (V) = cone (RHomD(G) (F,V) L% RHom pe (F, V)) [1]
the induced mapping fibre.

Assume U = oy, and K being big enough such that D(U) := D(U,K) =~ R}, =: R*.
Denote by 3 € D(U) the element corresponding to the variable Z € R*. Then

3

0— D(U) D(U) K—0
is a projective resolution of the trivial representation K and we can choose V SNV (func-
torially) for RHompy(K, V). In this context we shall also use the notation Ky 3(V) for

Ky p (V). Note that
K¢s(V) > V@Y - K EimiNg 7 ®F o K ) [-2
£,3(V) = cone D(G) D(G) [-2]

as RHomp(q) (K, V) = V®HE)(G) K[—1]. Analogous isomorphisms exist for Ky p(q)(V') for any
G of dimension one, since in our context taking G/U-invariants and -coinvariants coincide and
form exact functors by Maschke’s theorem.

Following [Ko| we write D®(G) for the algebra of locally constant distributions, i.e., the
quotient of D(G) by the ideal generated by Lie(G) < D(G). We then obtain isomorphisms by
[ST3. p. 306]

(6) Ext}y ) (D*(G), V) = H*(Lie(G),V),

where the latter denotes Lie algebra cohomology. Since the reference does not cover coefficient
fields such as our K, which is not spherically complete, we would like to briefl justify this
isomorphism: For Lie(G) = LV we have a strict exact sequence of Hausdorff locally convex
vector spaces over L

pr

(7) 0— D(G,L) —Y— D(G, L) D*(G,L)—=0

by [ST3], §3], i.e., a resolution of D*(G, L) by free D(G, L)-modules. Moreover, it arises by base
change D(G, L) ®u, (Lie(c)) — from the following resolution of L by free Uy (Lie(G))-modules,
where the latter denotes the enveloping algebra of Lie(G) :

(8) 0 — Up(Lie(G)) —Y— UL (Lie(G)) L—0

see [ST3, Rem. 1.1]. Base change K®y— of ([7]) leads to the strict exact sequence of Hausdorff
locally convex K-vector spaces

v pr

(9) 0— K&.D(G, L) K& D(G, L) K&, D®(G, L) —0

by [SV20, Lem. 4.3.6]. Since K&, D(G, L) =~ D(G, K) by the proof of [SV20, Lem. 4.1.2],
we also obtain K&, D®(G, L) =~ D®(G, K), i.e., this sequence is the analogue of for K
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replacing L and visibly it arises again by base change D(G, K) QUi (Lie(q)) — from the analogue

of

(10) 0 — U (Lie(G)) —— U (Lie(G)) 2 K—=0.

Since Homp i) (D(G, K), V) = Homy, (Lie(cy)(Uk (Lie(G), V) the isomorphism (6]) follows.

If RHomp ) (D™(G), V) denotes any (bounded) complex of K-vector spaces having the
groups @ as cohomology, we again write

—id
K 1ie()(V) i= cone (RHom () (D*(G), V) =% RHomp(c) (D*(G), V) [-1]

for the induced mapping fibre.

Assume V € Lie(U) = K corresponds to 1. Then V Y, V is a valid (functorial) choice for
RHom p¢7) (D (U), V) and we shall also use the notation Ky (V) instead.

Finally, we set

Hia(V) = b (Kg.a(V)).

Note that we have isomorphisms (see proof of [Kol Thm. 4.8] or [Wei, §10.8.2|)
RHom pe- () (K, RHom p(y (D (G), V) = RHomp) (K, V)
and, for Gy € G any L-analytic normal subgroup, (see [Wei, Exc. 10.8.5])
RHom (/) (K, RHom p () (K, V)) = RHompg) (K, V)
in the derived category, therefore inducing the spectral sequences

Ext]y () (K, Extg(G)(Doo(G), V) = Ext%)(K, V)
and

(V) = Extgr(]é)(K, V).

They both degenerate by the projectivity of K as D®(G)- and D(G/Gy) = K[G/Go]-module
(cf. the proof of [Ko, Thm. 4.10| for the first claim over L, from which the general case again
follows by complete base change to K, and using Maschke’s theorem for the second claim).
Moreover, note that Hompe«(q) (K, W) = W&, for any D®(G, K)-module W, because the
Dirac measures 6, € D(G, K) induce the elements d, — 1 in the augmentation ideal, which
is the kernel of D®(G, K) — K and which is a finitely generated ideal by Cor. 4.6 of (loc.
cit.) plus complete (exact) base change; using this, the above spectral sequences induce the
isomorphisms

H'(G/Go, Ext),

(11) H'(Lie(G), V) = Exthy o) (K, V)
and
(12) H(G/Gy, Extg(GO)(K, V)) = ExtjD(G)(K, V).

Remark 4.1. In [Co2] the pro-L-locally analytic cohomology groups HE, (A", M) for the L-
analytic semi-group AT =T x {p?} with M being specified below are defined. By [TH, 3.7.6]
they are 1somorphic to the cohomology groups H;L,FL,an(M) which arise as follows: Following
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[Co2, §5] we write C2,,(G, M) for the locally L-analytic cochain complex of an L-analytic
group G with coefficients in M and H., (G, M) := h'(C:,(G, M)) for locally L-analytic group
cohomology. More precisely, let M = l'l)ns lim Ms) with Banach spaces M™1 be an LF
space with a pro-L-analytic action of G, i.e., a locally analytic action on each MU . If
Maps;oer —an (G, M51) denotes the space of locally L-analytic maps from G to M5! then

an (Gv M) = h_r)n Lin MapslocL—an(Gn7 M[T7S])
S T
is the space of locally L-analytic functions (locally with values in hm MUl for some s and
such that the composite with the projection onto M1 s locally L analytzc for all ). Then

H;L,G (M) = hY(K,, G.an(M)) is the cohomology of the mapping fibre K,, G an(M) of

Co. (G 1) and analogously for v instead of ¢r. By [Stl, Corollary 4.9] we have natural
isomorphisms

(13) Hgy (G, M) = Extl (K, M)

and hence, for & € {p, 1},

(14) Hy, Gan(M) = H&,D(G)(M)~
Lemma 4.2.

()H“(V) 0 fori#0,1,2.

(i) HS piey(M) = HS 1o (M) for M in M(R).
(1) H? poey (M) = Hy, py (M) for M in 9(R).

Proof. Part (1) holds due to the length the of total complex. (ii) follows immediately from
upon considering one of the spectral sequences attached to the double complexes arising
from the defining mapping ﬁbres.ﬁ By (12), (iii) is reduced to the case H; 5(M) = Hy, 5(M),
for which we note that 3 is invertible on M¥=° by [SV20, Thm. 4.3.21], see also [Co2, Thm.
5.5] and [BE), Cor. 2.2.3].

0

4.1 Finiteness of analytic Cohomology

Theorem 4.3. Let A, B be K-affinoid and let M be an L-analytic (o1, T'r)-module over R 4.
Let f: A — B be a morphism of K-affinoid algebras. Then:

(1) Koy 3(M) e DYZ(4).
2) The natural morphism K, M)®% B - K. M®aB) is a quasi-isomorphism.
YrL,3 A YrL,3

Proof. See [Stll Theorem 2.20]. O

"This means that for all m € M™] there exists an open L-analytic subgroup I'y, € G together with a chart
¢: T — 7ior such that the orbit map of m restricted to T', is a power series of the form g(m) = 33, ., 2(g)Fmy

for a sequence my of elements in M1 with 77*m;, converging to zero.
8In [Co2, Thm. 5.6] the analogous statement for H., (A", M) and Hi, (A", M), as defined in (loc. cit.), is
claimed referring to [FX] Thm. 4.2], but this only covers i = 0, 1.
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For a commutative ring R and an object C' € D*(R) whose cohomology groups are of finite
rank over R, we denote by xg(C) = >.,(—1)'rank H'(C) the Euler-Poincaré-characteristic of
C.

Remark 4.4. Let A/K be affinoid and let M be a trianguline L-analytic (vr,'r)-module
over R4. Then the Fuler-Poincaré Formula holds, i.e.,

X(M) = x(Kpp 3,(M)) = Y (=1) kg, (H, 5, (M)) = [[p : Dultkr, (M).

Proof. Without loss of generality we may assume that M = R4(0) is an L-analytic module
of character type (attached to an A-valued locally L-analytic character §: L* — A*). Then
the case A = K is treated in [St2l Remark 6.3|. The validity of the formula can be checked
at each maximal ideal of A. Note that R4(0)/m is a (¢r,'r,)-module of character type over
Rk for some finite extension K’/K for each m € Max(A) by the Nullstellensatz and the claim
hence follows from the previous case. O

We will require a slight generalization of Recall that K, 3(M) is (up to shift) quasi
isomorphic to the cone of 1 —¢ on RHom p(y, iy (K, M). As a consequence of [St2, Lemma 2.5]
K admits a finite projective resolution consisting of finitely generated projective D(I'z, K)-
modules. In particular the complex computing RHom p(y, iy (K, M) (and hence also K, 3(M))
can be represented by a complex of A[I'z/U]-modules the terms of which are all of the form
Hom p(y, iy (P, M), where P is the restriction of scalars of a projective D(I'r,, K')-module with
'y, acting via (vf)(z) = v(f(y 'z)) and A acting by multiplication on M.

Remark 4.5. In the situation of[{.5, if we view K, 3(M) as an object in D(A[T'L/U]) we
have
Ko, 5(M) € DU (ALL/U]).

perf

Proof. The finiteness of the cohomology groups over A already implies that K., 3(M) be-
longs to D, ((A[I'L/U]). Choosing a complex of bounded above projective A[I'r/U]-modules
representing K, 3(M), truncating and using [KPX| Lemma 4.1.3|, we can conclude that the
complex in question is quasi isomorphic to a bounded complex of finitely generated projec-
tives outside of perhaps degree 0, where the module is finitely generated over A[I'z/U] and
its underlying A-module is flat. But then it is projective as an A-module and by [St2, Lemma
2.5] also projective as an A[I'z,/U]-module, hence the claim. O

4.2 Perfectness of analytic Iwasawa cohomology and the Lubin-Tate defor-
mation

For M any (pr,'r)-module over any basis consider the complex
To(M) = [M == M]

concentrated in degrees 1 and 2, whose cohomology we call (analytic) Iwasawa cohomology
due to Fontaine’s classical result, which relates these groups in the étale case to usual Iwasawa
cohomology defined in terms of Galois cohomology. We set D := D(I'r, K). The following
result [St2, Thm. 4.8] will be central for the whole article:

Theorem 4.6. For M € M (K) trianguline, Ty (M) is a perfect complex of D-modules, i.e.,

belongs to Dgerf(D) .
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For the rest of this subsection we assume that M € 9*"(K) is trianguline.

Later for our approach it will be important to interpret Iwasawa cohomology as analytic
cohomology of a deformation Dfm(M) of M via generalized Herr complexes. This deformation
lives over the character variety Xr, (base changed to K) of the locally L-analytic group I'g,
([ST2]) and will allow to use density arguments to deduce many properties of the Epsilon-
isomorphism for rank one modules just from properties over its de Rham points.

We pick an affinoid cover X, = Sp(D,,) of Xr, with D, := K[I'L] ®k[v] Dr, (U, K) for
a decreasing sequence r, such that each D, (U, K) corresponds to the ring of rigid analytic
functions on the annulus [r,, 0] via the Fourier isomorphism for D(U, K'). Over the space X,
we have the sheaf of Robba rings Ry, ~given by mapping X, to RO%FL (x,) and Dfm(M)

should be thought of as a (1, I'z)-module (sheaf) over Ry~ (but unfortunately, Schneider’s
and Teitelbaum’s formalism of coadmissible modules does not apply here as Ry (Xr,) does
not form a Frechet-Stein algebra in any obvious sense):

For an L-analytic (p,I'r)-module M over Ry, we define

Dfm(M)(X,) := Dfm, (M) := Ox, (Xn)®LM,

where I';, acts diagonally, on the left factor via the inversion and on M via its given action.
For each n this is a (¢, 'r)-module M over Rox, (xa) by [St2l, Prop. 3.2].
L

As definition for the generalized Herr complex for the sheaf Dfm(M ), philosophically, we
would like to take the complex in D(D(I', K)) [] defined as total derived sheaf cohomology
of the complex of sheaves

Ky p(r, i) DIm(M)) = Ty (DE(M)®P(r, 1) ding K (7 = Ku3(DIM)®(r, j17ding K-

where for the last (quasi-)isomorphism in quotation marks we used implicitly the free resolution

(15) 0—D(I'z, K)

DT, K)—— K[T',JU] —0

which induces an isomorphism 7y (Dfm(M)) ®H5(FL7K)7diag K|I't/U] = Ky 3(Dfm(M))
But instead of verifying that we really have a complex of (coherent) sheaves we just use the
facts as a motivation that on a Stein space I'(Xr,,—) = lim I'(X,, —) and that higher sheaf
cohomology of coherent sheaves vanishes on affinoids. Thus we rather take the total derived

%instead of e.g. forming the generalized Herr complex attached to the global sections Dfm(M)(Xr, )!

10 But strictly speaking one needs a resolution of D(I'r, K) ®x K[['r/U]-modules in order to define the
(Dn, K[I'./U])-bimodule structure on Ky, 3(Dfm,(M)) = T¢(Dfm, (M)) ®Hb(rL,K) K[I'p,/U]. E.g. we could
formally work with the resolution

a®b»—>H(a)-bK

0—C:=ker— D(I'y,K) ®x K[I'L/U] [[L/U] —0

for an explicit construction of Ky 3(Dfm(M)) in D(D,, —mod — K[I',/U]). Indeed, the kernel C' is projective
(hence flat) as D-modules by the same reasoning as for [St2) Lem. 2.5]. Here H : D(I't, K) — K[I't/U]
denotes the augmentation map sending the Delta distributions of u € U to 1. This sequence is related to (the

direct sum of) the sequences

WHxiil(v)
0—1I,, :=ker —— D', K) —— K(xi) —0

for the characters x; of I'y which factor through I'z/U.
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inverse limit as formal definition, i.e.,
C* = RF\I/,D(FL,K)(:{FU Dfm(M)) := Rlim (K\IJ,D(FL,K)(Dfmn(M))) .

The following results are variants of those in [St2] §3.3]; among others they are based on the
observation that for the sheaf of cohomology groups sending X, to Hj, Dy K)(Dfmn(M))

the formalism of coadmissible modules over D(I'z, K) does apply.
Theorem 4.7.

(i) For all i, the cohomology groups H&/D(FL K)(%FL,Dfm(M)) of the complex
RUy pr, k) (Xr,, Dfm(M)) coincide with the global sections

liI_nH\iIl,D(FL,K) (Dfm,,(M))

n

of the sheaf of cohomology groups sending X, to H&j D(T,K) (Dfm,, (M)).

(ii) There is an isomorphism in Dgerf(D(I’L, K))

RUy pr, k) (Xr,, Dfm(M)) = Ty (M).

Remark 4.8. In accordance with the isomorphism in (ii) only becomes independent of
the choice of 3 if we insert the scalar factor Cp.(3,) (see below) in the identification
Dfm,, (M)/3Dfm, (M) = Dn®D(U,K)M i the proof of Lemma compare with [Nal7d,
(32), p. 369].

For the proof of Theorem we need the following lemma for which we recall some
notation from [St2] Def. 3.20|: We define D,&®pM" as the completion of D, ®p M" with
respect to the quotient topology of the projective tensor product D, @k » M". Then we set
Dp®pM := lim D,&pM".

Lemma 4.9. (i) The natural map D, ®p M — D, ®pM induces a quasi-isomorphism

D, ®p Te(M) = Ty (D,, ®p M) > Ty (Dp®pM).

(ii) Viewing Dfm,, (M) as D,-module via the left tensor factor, there is a natural isomor-
phism in D(D,,)
Dfmn(M) ®Ef)(FL,K),diag K= DTL@DM[O]?

where the latter module is considered as complex concentrated in degree Q.
Proof. For (i) the same proof as for [St2, Lem. 3.23] works and the assumptions are satisfied

by Theorem but note that there D,,, D have a slightly different meaning. Using that D3 is
contained in the augmentation ideal Ir, giving rise to the projective resolution of D-modules

[

0—1Ir, D K—0

"Note that Ir, is a finitely generated submodule of D(T'r,, K) and thus projective as a D(U, K )-module since
the latter is a Priifer Domain. Using [St2] Lemma 2.5] one can conclude projectivity as a D(I'z, K)-module.
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we can represent the complex in question in (ii) by the complex
Dfm,,(M) ®p diag I, — Dfm,, (M) ®p diag D
with cokernel
Dfm, (M)/Ir, Dfm, (M) =~ (Dfm, (M)/3Dfm, (M))/(Ir,/D3)
= (Dn®pw,xyM)r, v
= Dn®@pM,

E] where for the second equality we use an obvious variant of [St2l (31)], while by the exactness
of colimits the last one is easily reduced to the claim that on the level of models M" we have

(Dm&®pw,iyM " )rju = Din@p(r,, k)M
Since I'/U is finite and taking I'z,/U-invariants in this situation is exact by Maschke’s theorem,
this follows in the context of Fréchet spaces by completion from the well-known fact that
(Dm®pw,ryM" )rjr = Dm®p(r,, iy M

The injectivity of the non-trivial differential in the above complex can be checked by calculating
instead the cohomology in degree —1 of Dfm,, (M) ®H5(FL’K)’diag K[I'r/U], because taking
I'1,/U-(co)invariants is exact and leads to the original complex

(Dfmn(M ) @by, i) diag K[LL/U ]> ®xir,/v) K = Dy (M) @pr, ) aing K-

For this composition of functors it is crucial that Dfm,, (M) ®H5(FL7K)’diag K|[I'1/U] belongs to

D((Dy,, K|I',/U])—bimod) as in the footnote [10)in order to allow an action by I'z/U. But then
the vanishing in degree —1 can be checked just as complex of K-vector spaces and therefore
it suffices to calculate the derived functor by a projective resolution of D-modules (instead of
bi-modules). To this end we use the resolution (|15)), which leads to the complex

Dfm,, (M) 2 Dfm, (M),
which is left exact by an obvious variant of [St2, (31)], again. O

Proof of Theorem[{.]. Using Lemma we obtain isomorphisms in D(D,,)
Ky pr, k) (Dfm,, (M))

v—1
= cone (Dfmn(M) ®Hb(I‘L,K),diag K— Dfmn(M) ®%(FL,K),diag K) [_2]

= Dn®D7:I/(M)

compatible for the variation in n by an obvious variant of Theorem (2). Thus, combining

[St2l Prop. 3.15] with Theorem [4.6| we obtain in Dgerf(D) an isomorphism

Te(M) = Rlim(D,, ®p Tu(M)) = Rlim(Ky pr, x)(Dfm,(M))).

This proves (ii) while (i) follows by the same arguments as in [St2, Rem. 3.16| using that the
projective system (Ky, p(r,,r)(Dfm,(M)))m defines a consistent object in D(mod(N, D))
(using the notation of (loc. cit.)) together with the fact that D is a Fréchet-Stein algebra. [

“Here v € I', € D(I'z, K) acts diagonally (via v(a @ b) = 0,-1a ® vb)) on Dn®p(u,x)M and this action
factors over ', /U.

24



4.3 Replacing Local Tate duality

In this subsection we develop local duality analogous to local Tate duality for Galois coho-
mology, see [HerO1] for an approach purely in terms of (¢, I')-modules. We focus technically
on the complexes K3 and shall then apply to deal with K. Assume henceforth that
M is an analytic (¢r,I'1)-module over R = R. For an analytic character § : L* — K* we
define the twisted module M (§) € M**(R), where M(J) := M ®g R(d) endowed with the
diagonal - and I'p-action. Recall the residue map (at Z)

Res: Qf := RdZ Qr R(0Y) = K, Y. aiZ'dZ® esun > at,

and that the (¢r,')-action on RdZ with respect to the basis dlog; = grrdZ is given by
the character xr7. E As a formal consequence, we have the following:

Lemma 4.10. The map

R(x) — Q.

fex — fdlog.r ®esun
is an isomorphism of (pr,T'r)-modules.

Setting M := Homg (M, R)(x) = Homg(M,QL), for any finitely generated projective
‘R-module M, we obtain more generally the pairing

(16) (=0 om Mx M=K, (g,f)— Res(g(f))1"

where by abuse of notation we also write Res : R(x) — K for the map sending Y., a;Z° @ e,
to a_;. This map identifies M and M with the (strong) topological duals of M and M,
respectively. Moreover, the isomorphism M =~ Hompg (M, K) (induced by {, »)is D(T'y,, K)-
linear by [SV20], Corollary 4.5.4].

Lemma 4.11. The residuum map induces an isomorphism Res : H;L 371((2712)“ =~ K.

Proof. We know from Lemma that dimp HZLH% (Q%)'t = 1 while Res is a surjection
QL — K which factorizes over (g, —id)Q% and 3-Qk by [SV20, Lemma 4.5.1] or [Co2, Prop.
1.5]. The claim follows as HS%L:)n Q) = HZ‘»L,Sn(Q%%)FL‘ O
For compatibility questions we renormalise the residuum map to obtain the trace map
Tr = COry(3n)Res : H2 i, (k) = H2, 5 ()™ = K by settin
q 1 q @
q— 1Cg(3n) B q— 17—‘—72

(17) Crr(3n) ==

Note that for L = Q, and 77, = p this trace map is compatible with Tate’s trace map in
Galois cohomology by [Nal7al, Prop. 5.2|. Independence of n follows by the same argument as
for Definition below. The principle is explained as follows:

'3The action on Qf differs by Oy (ry from the action considered in [SV20, Section 4] and agrees with the
action from [Co2| 1.3.5].

' Note that Colmez defines QRes(o_1(g)(f)) instead.

15See for the definition of Cy(3,).

25



The map of complexes, for m = n,

M 3TL M
men(Sn)
M =7 M
induces the restriction maps res), : Hén (M) — Hgm (M), where Q. n(3n) = %—7"; = %37753")

with Q,,—n(0) = 77" ". Since C7,(3,) = 77" "Crr(3m) by the isomorphism
(18) O Hy (M)'E S My, [2] = [Crr(30)2]
into the I'r-coinvariants is compatible with res] , i.e., the diagram

Hj (M)'* I My

n Im
resy,

Hy, (M)'

L

commutes.
For a complex (X*,dx) of topological K-vector spaces we define its K-dual ((X*)*, dxx)
to be the complex with
(X*)! := Hompg os(X %, K)

and
dx (f) = (—1)d6g(f)71f odx.
The following lemma is taken from [SV20, Lemma 5.2.4 and Remark 5.2.6].

Lemma 4.12. Let (C*,d*) be a complex in the category of locally convex topological F-vector
spaces.

(i) IfC consists of Fréchet spaces and h'(C*) is finite-dimensional over F, then d'~' is strict
and has closed 1mage.

(ii) If d* is strict and either F is spherically complete or the spaces are of countable typ
then h=4(C*) = h'(C)*.

(iii) If C* consists of LF-spaces, C**2 = 0 and h*(C*) is finite dimensional, then d' is strict.

(iv) If VS5 W is a continuous linear map of Hausdorff LF-spaces over F with finite dimen-
stonal cokernel, then « is strict and has closed image.

5From [PGS| we recall that a locally convex vector space V is said to be of countable type, if for every
continuous seminorm p on V' its completion V, at p has a dense subspace of countable algebraic dimension.
They are stable under forming subspaces, linear images, projective limits, and countable inductive limits, cf.
theorem 4.2.13 in (loc. cit.). By corollary 4.2.6 in (loc. cit.) for such vector spaces the Hahn-Banach theorem
holds, too. By [Thl Prop. 5.4.3] the Robba ring over any intermediate field Q, € K < C, (and hence also
finitely generated modules over it) is of countable type as K-vector space.
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The translation X [n] of a complex X is given by X[n]" := X*™ and dé([n] = (=1)ndim.
Let ¢ denote the involution on D(or, K) induced by the inversion on the group or. We
observe that

(19) 3*=A3

for a unit A € D(or, K) as they both generate the augmentation ideal: more explicitly, 3* =

[-1](3), A=t = -

Theorem 4.13. (i) There is a canonical quasi-isomorphism

5 6y

(20) K, 3(M): 0 M MeM M 0
) g
3 (3 1-9)
Ky 3.(M): 0 M MeM M 0.

(ii) Via the pairing there are canonical isomorphisms of complexes in the derived cate-
gory D(K)

K‘PL:B(M)* = K‘I’L73L(M)*g <PL73(M*)[2];KS@L73(M)[2]'

given by the following diagram of quasi-isomorphisms

(21)
5
(3 1—¢)"
K, 3(M)*[-2] : 0 M* ( (p) (M@ M)* M* 0
T(—,\\p)* TTE v —1\*
-(3* 1-9)* 3"
Ky 3. (M)*[-2 0 * ( )(MG—)M)* M* 0
5]
K, 5(M*) 0 M* 5 M*® M* (5 1_@ M* 0
®,3
N ! 3 L O B !
K, 5(M): 0 M MeM ( SD) M 0

with T = (=Y @N)*: (MPM)* > (MP M)* and =Z(z,y) = y® —zx. In particular,

we obtain isomorphisms

(22) (M)* = Hg ' (M)=HZ 5 (M).

1
$L,3 Yy, °rL,3

induced by the perfect pairings, denoted by (—,—) :={—, =),

HL3(M) x HL3(31) — K, ((rom), (7.9)) v —Res(io(g) (m) + (X f)(n) ).
H2 5(M) x HO 5(M) = K, (7, ) > —Res (N (m)) )
H&S(M) X Hi&(M) — K, (m,n) — Res (ﬁ(m))
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Remark 4.14. Identify M with M via m — m** and consider the pairing in degree (1,1)
from Theorem obtained by exchanging the roles of M and M, i.e.,

S vE Hia,z,(M) x Hé,S(M) - K,

((f,9), (m™,n™)) > —Res(o(n™*)(f) + (A'm™)(g)).
We have

(23) <(m,n),(f, g)>JW = _<(fv g)a (m**an**)>M

In the other degrees consider

(= =) HZ5(M) x H) 3(M) - K,

(f,m**) = Res(m™ (=X(¢(f)))),

satisfying (f,m**) ;= (m, Par and

H&S(]\Z/) x H23(M) > K,
(g,n**) = Res(n™*(g)),

satisfying (g,n**);; = (W, g)m- |T_TI

Proof. By viewing K%3(]\~4 ) as a Koszul complex attached to the automorphisms ¢ — 1,3 of
M one can see that 3 and ¢, — 1 act as 0 on the cohomology groups. Since

A= —1+ terms divisible by 3

we see that the class (f,g) € H 5(M) is equal to the class of (—=Af,—Ag). Now let (m,n) €
H;g(M)' Using 3f = (¢ — 1)g and 3m = (¢ — 1)n we compute

(), (Fg)ar = Res( = o(g)m) — (X F)(n))

= Res( —g(m) = (\f)g(n)) = (3)(m) + (3 1)(m))

= —((f9), (m**,n**)) iy,

where in the fifth equation we replace (f,g) with (=Af,—\g). Now consider the degree
(0,2) case with regard to (—, —)ps. Since ¢(f) = f we get Res(f(m)) = Res(p(f)(m)) =
—Res(o(f)(Am)) using that 3m = 0 in H" and hence Am = —m. The computation in degree
(2,0) is similar. O

"In the cyclotomic case I = Q, and 3 = v — 1 one has \* = —y because 3* =7 ' —1= (—y H)(y—1). We
see that the pairing from [Nal7al Definition 2.13] agrees with our {(—, —);.
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Later in explicit calculations we will need to work partly with W-versions, which we there-
fore establish in the next remark.

Remark 4.15. As a obvious variant of (i) in Theorem there is also a canonical quasi-

isomorphism
p—1
3 (3 1-9)
(24) K, 3(M): 0 M MeM M 0
Tl |
() o6 ey
Ky 3(M) : 0 M MeM M 0.

In particular, we obtain an isomorphism Y, : H;L,B(M) = H&,LJ(M) sending a class [(x,y)]
to the class [(—V(x),y)].

Using this one derives from {—,—)pr in Theorem the (asymmetric) perfect pairings,
denoted by {—, —}ur,

2}, 5(0) x HA (1) — K. (G ). (F.g)) > Bes(a(m) — (F)(m).
H2 5(M) x HY 5(M) — K, (7, 7) - Res (ﬁ(Am)),

HY 5(M) x H25(M) — K, (m,7) — Res (ﬁ(m)),

for which by construction we have

CRDIVIER BSVIEINT) 372

Moreover, we obtain, for x € H;,S(M), yE Hz_sl(M),

(25) (=D, pomr =y, 2™y = {75 2™ Y,

by Remark [{.14)

Proof of the Theorem. (i) is an immediate consequence of the fact that the action of 3 is
invertible on M¥=9 by [SV20, Thm. 2.35], see also [Co2, Thm. 5.5] and [BE, Cor. 2.2.3]. Now
consider (ii): The first isomorphism is induced by (i). Up to signs, (—)* transforms ¢y, into
1y, and 3 into 3% Using that 3* = A3 one easily verifies that also the second map is an
isomorphism. Finally, the last isomorphism stems from the identification M* ~ M by ISV20,
Cor. 4.5.4].

For the pairing on the level of cohomology groups, we want to apply (ii) of Lemma [4.12]
for which we have to check strictness of the differentials. But this is not sufficient: in order
to get perfectness of the pairings - which amounts to an algebraic duality while the functor
(—)* only measures continuous duals - we also have to check that the induced topology on the
cohomology groups is Hausdorff. In detail this boils down to the following reasoning: Since by
all the H ;L&(M ) are finite-dimensional, we may apply Lemma (iii) to first conclude

that d' (and trivially d?) is strict. By the same reasoning for H;B(M) the d'-differential of
Ky 3.(M*) is strict. Moreover, the H 25 are always Hausdorff by (iv) and we note that
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the H? are always Hausdorff (as they are subspaces of Hausdorff spaces). Applying (ii)
and using that for a finite dimensional Hausdorff space the continuous and algebraic dual
agree we conclude the claim for the pairings involving H? and H?2. By the strictness of d; we
have Hé,B(M)* = Héj(]\z) and, vice versa, H;S(M)* = H;z(M) A priori we don’t know
if the finite dimensional H's are Hausdorff but combining both isomorphisms we see that
(Héa(M)*)* has the same dimension as H;‘%(M) which for a finite dimensional space can
only occur, if every functional is continuous, forcing the H's to be Hausdorff, which allows us
to argue analogously for the pairing of H's. O

4.4 Cohomological computations in the character case
Recall [ST2| Lem. 4.6] or [Co2| §2] for the following. The Amice-Katz transform is the map
A_:D(or,K) > R,

sending a distribution p to

satisfying:
(i) A_ is a - and I'p-equivariant topological isomorphism of rings.

(ii) for z € ox with vp(2) > 0: Ay, (Z2) = Au(Z +rr 2), where SOL g@)(f - p)(x) =
SOL f(z)g(x)p(x) for any locally analytic function f: o — C,.

(iii) (multiplicativity regarding convolution) Ay,, = Ay- A4,

(iv) AReSbergoL(#) = #2[@](@:0 n(=b,a)Au(Z +rr a) = Respino, Ay, where the latter
denotes the multiplication with the corresponding characteristic function.

(v) 0A, = Aqqy where d = dtLT logl iz = On(1,2) dn(l 7
(vi) Agy = trrAy, where § f(z = {,, f'(@)u(z) with f'(x) = iy

Lemma 4.16. (Mellin transform) The natural inclusion D(o; ,K) < D(or, K) combined
with the Fourier isomorphism induces the map
D(0}, K) = D(op, K)£=0 = O (%)¥1 ="
A A(01) = A(evy)

which is a topological isomorphism of D(o} , K)-modules. Here evy denotes the map on the
character variety which evaluates a character in 1. Moreover, we have a commutative diagram

Resox
L
D(o},K) = D(or, K)
> lA_
1—poW¥
)<~
(Ri)"=" =R},

8Note that on(z, Z) = =Qn(z, Z).
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where M denotes the Mellin transform, which by definition sends u to
penL.2) = | nte, Z)ut),
oL
see [SV20, §2.1.4, Lem. 2.6, Thm. 2.33,§2.2.7].
Proof. ;1 € D(of) < D(or) satisfies Resoz(,u) = p, whence A,(Z) = SOL n(z, Z)p(x) =
Sox M@, Z)p(x) = M(p). O

We write LA(or) := LA(or, K) for the set of locally L-analytic functions ¢ : o — K
endowed with the following operators:

o = { (L
(@) (x) :=¢(mrr)

1(@)(x) :=d(xT7(7)2).

By [Coll Thm. 2.3] (for the exact sequence), [BE, Cor. 2.3.4] (for the surjectivity on
R7:(8)), we have for all § € 5, the following commutative diagram of D(I',, L)-modules with
exact rows

(26) 0 — > R}(0) —= Ry (8) — LA(or)(x16) —=0

vl ml v

0 —>R5(6) —= Rk (6) —= LA(or)(x 16) —=0
which we can also interpret as short exact sequence of complexes of D(I'z, L)-modules

0 — Ty (R (0)) — Tu (R (9)) Tu(LA(oL)(x™'9)) —0.

with Tg(R%(0)) = (RE(6))¥=1[0] in degree zero. Here the map Rx(5) — LA(or)(x ')
sends fes to ¢re,—15 With@

(27) ¢f(2) := Res(n(—z, Z) fdtrr) = Res(n(—z, 2)f(Z)gLr(Z)dZ).
In particular we obtain a short exact sequence

LA(or)(x 1)Y= —0

(28) 0—RE(6)Y ———= R (6)¥1
and an isomorphism
(29) Ri(6)/¥ — 1= LA(or)(x 19)/¥ — 1.

Let Pol<n(or) := Pol<n(op, K) := @i]io Kz' < LA(oy) denote the polynomial functions
on or. This subspace is I';- and W-stable, more precisely we have
(') = nb 2t

—% 1

’Y(Zi) =Xrr? -

"Our map is & times Colmez’ one.
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for all ¢ = 0 and v € I'g. In particular, we obtain, for ¢ =0, 1,

(30) Hi (Pol<y(or)(x10)) = q

k+1

Kzteg, 1, if 6(mp) = "L for some 0 < k < N;
0, otherwise.

It follows that

sze(;x_l, ifo = :ckx for some 0 < k < N;

(31) H%(HE(POZ<N(OL)(X_15))) = { 0, otherwise.

Lemma 4.17. For N > v.(x"16(7)) we have a quasi-isomorphism
Tu(LA(oL)(x'0)) =~ Ty (Pol<y(or)(x'0))
and an tsomorphism
Pol<n(o1)(x0)"~" = Pol<y(or)(x™'8)/(¥ — 1)
as L-vector spaces.

Proof. (see [Chl, Lem. 2.9] for the cyclotomic case, even over affinoid algebras A instead of L).
Use the decomposition LA(or) = N *1LA(0r) ® Pol<xn(or) and show that for N as in the
assumption ¥ — 1 is a topological isomorphism on 2V *'LA(or). O

Similarly, regarding the I';- and W-stable submodule Dy := D y := @l]\;() K tlLT c Ry
we obtain for 4, j € {0, 1},

i _ | Kthres, if §(rp) = 7T£k for some 0 < k < N;
(32) Hy(Dn(9)) = { 0, otherwise,
and

P Ktk es, if § = 2% for some 0 < k < N;

J 1 ~ LT ’ ~ ~ 3
(33) H3(Hy(Dn(9))) = { 0, otherwise.

Remark 4.18. Note that, by the same reasoning, the analogue of Lemma (1) (but in
general not (iti)) does also hold for M of the form R () or LA(or)(6).

Recall that £1 = {x7|i € N}, X9 = {2'x|i € N} and Xgen, = Zan\(Z1 U 32).

Lemma 4.19. The dimensions of the analytic cohomology groups are as follows:

07 d ¢ 21;
: : j 1, 0e¥q,j=0;
J + _ ) s ’
() dimp 7Y e, RO =Y o) g5, 51,
17 o€ Zl; ] = 2.
. 0, 7=0;
(i) For 6 ' ¢ X1 we have dimg H;,D(FL,K)(LA(OL)((S)) =41, j=1;
0, 7=2
) 0, 7=0;
(iii) For 6=! € X1 we have dimp H;,D(FL,K)(LA(OL)((S)) = ?7 ] — ;}.
y J =

32



1, 7=0;
(iv) For 0 € ¥y we have dlmKH Dy K)(RK((S)) =42 j=1;
0, j=2
0, j=0;
(v) For § € ¥y we have dlmKH Dy K)(RK(5)) =42 j=1;
1, j=2

0, 7=0;

(vi) For ¢ € Xgep, we have dlmKH DTy, K)(RK(é)) (1), J = 1;
y J =

In particular, generic characters are precisely those with vanishing H and H?.

Proof. By Remark (AT, M) in [Co2, §5] coincides with H: by, K)(M). Note that
Colmez uses L to denote a Iarge field such as our field K. 0

It is easy to check that analogous results as in this subsection hold for modules of the form
R 4(0) for affinoids A over K instead of the base field K. The only subtlety is the appearance
of non-trivial zero divisors. By imposing some additional conditions we can strengthen to
cover the affinoid case as well.

Remark 4.20.

(i) Let A be affinoid over K and let §: L* — A* be a locally L-analytic character. Assume
that 1 —&(m)7t is not a non-trivial zero divisor in A for every i € Z and assume that (the
image of ) 3(6x34) € AP is not a non-trivial zero divisor in A or any A/(1 — §(m)7?).
Then Ty (M) is perfect as a D(I'r,, A)-module for M in

{,R’X((S)? RA((S)v LA(OLv A) (5X71)7 DA,N(5)7 POléN(Oln A) (Xﬁlé)}

(ii) As in Nakamura’s setting we expect the statement of (i) to be true without any condition.
Unfortunately, the methods of [KPX|, Section 5] do not transfer to our situation directly
due to the fact that [KPX|] makes use of the FEuler characteristic formula and perfectness
of the U-complex in the étale case. The analogues of these results are not known to us
for analytic cohomology over affinoids.

Proof. First observe that for any locally analytic character p: L* — A* the free rank one
module A(p) is perfect as a D(U, A)-module if 3(p) is not a non-trivial zero divisor in A.
Indeed, the operator 3 is an A-linear endomorphism of A(p) and hence acts via multiplication
by a constant a = 3(p) and using the assumptions on « one sees that A(p) = D(U, A)/(3 —
a)D(U, A) is perfect as a D(U, A)-module but then also perfect as a D(I'f,, A)-module by [St2]
Lemma 2.5]. Let us call a module of the form A(p) of type F. Now consider the sequence

(34) 0 — RY(6) > Ra(6) - LA(or, A)(x '6) — 0.

We have that Ty (LA(or, A)(x~19)) is perfect by [SP, Tag 066T]| since the inclusion of the
Pol<n(or, A)(x 19) induces a quasi-isomorphism for N » 0 to a complex whose terms are

20The action of T'z, on A(éx%;«).extends to an action of D(I'z, K) by continuity. The element 3 acts as an
A-linear endomorphism on A(dx 1) hence by multiplication with an element 3(5x15) € A.
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perfect as they are finite direct sums of modules of type F. Similarly for D4 n(5). To see that
R} (6)¥=1 is perfect, consider the exact sequence

0— Vi = (Ra(6)") =" L5 (Ra(5))"=0 - 15 — 0,

where V1, V, are defined as kernel and co-kernel of the middle map. By an adaptation of [Chl
Lemma 2.9 and Proposition 2.20] to our situation the kernel is of type F over A while the
cokernel is a finite direct sum of modules of type F over A/(1 — §(x)n’) with varying i. It
suffices to see that they are perfect as D(I'p, A)-modules. This follows from the assumption
that (1 — §(m)7?) is not a zero divisor and hence D(I'y, A/(1 — &(w)n%)) is itself perfect as
a D(I'r, A)-module. It remains to see that R} (5)/(¥ — 1) is perfect. Again by a similar
argument it is a finite direct sum of perfect D(I'r,, A/(1 —6&(w) %)) modules (the appearance
of §(mr)~! is due to using ¥ — 1 instead of ¢ — 1). Our assumptions ensure that 1 —§(7) !z’ =
(=6(m) 7Y (1 — 6(w)m %) is not a zero divisor and we can proceed as before. This proves

the perfectness of Ty(RA()™). Finally the perfectness of Ty (Ra(0)) follows from the exact
sequence . O

E1

5 Bloch—Kato exponential for analytic (¢, [';)-modules

5.1 Dyr and D, for analytic (p.,';)-modules

In this section we will define versions of Dyg and D..;s for L-analytic (¢r,T'1)-modules M.
The idea is that, for an étale (¢r,'r)-module attached to a representation V', these versions
correspond to the identity component of the full Dyr(V), which arise as (Bqr®r V)" instead
of (Bgr ®q, V), and similarly for Deis(V). The comparison between the definitions used
in this article and Fontaines classical ones is described in [Porl Section 5.2].

Definition 5.1. For an L-analytic (vr,'r)-module M over Rp, we define
Dyr(M) := Ddif(M)FL
and
Deis(M) := M[1/t 7] "

Remark 5.2. Let M be an L-analytic (¢r,T'r)-module M over Ryp. Then Dqr(M) and
Duis(M) are finite dimensional L-vector spaces of dimension < rk(M). Furthermore oy
induces an automorphism of Dyis(M).

Proof. We first show that Dgg (M) is finite dimensional. By construction D := Dg;(M) is a
finite-dimensional B := [ J,,~( Ln((tL7))-semilinear representation of I'y. We claim that the

natural map
B®pgr, D't - D

211f we drop the zero divisor assumption the same proof would show that the complexes lie in D, IfAisa
domain and 6(7) € K* then (1 —§(w)7") is either O or a unit and hence the condition on §(3) is automatically

satisfied!
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is injective and B't = L, which shows dimp(D"'%) < dimp(D) = rk(M). We first show
Bt = L. Let f = > a;tt » € B't. We conclude a; = xr7(7)*y(a;) for every v € I'z. Let n be
large enough such that all a; belong to L,,. Then v(a;) = a; for every v € T';, and we conclude
that a; = 0 holds for every i # 0. Finally v(ag) € L5t = L which proves the claim. For the
injectivity we argue like in the proof of 2.13 in [FOJ. Consider L-linearly independent vectors
v1,...,vq € DVL such that
d
2 )\ﬂ)i =0
i=1

with some \; € B. Suppose d = 2, A1 # 0 and assume without loss of generality A\; = 1. We
obtain v; = y(vy) = 2?22 —v(\i)v;. Arguing by induction we may assume that ve,...,vg are
linearly independent over B and conclude Mg,...,\q € B'Z = L, a contradiction. From the
injectivity of ¢,, according to Remark we deduce that dimy,(Deis(M)) < dimp(Dgg(M)).
Finally ¢js induces an injective endomorphism of M[1/t;r] and by a dimension argument an
automorphism of Deis(M). O

5.2 exp for analytic (¢, I';)-modules

Fix an n » 0, so that 1+ 770y, is isomorphic to 770y, via log,. In particular, we have the chain
of isomorphisms

—n

1 .
(35) 0, T, X151 + Tror N Tror RN or,
which yields
(36) D(T,,K) = D(or, K) =~ Ok (B),

the last isomorphism being the Fourier isomorphism. We denote by 3,, € D(I',,, K) the element
corresponding to the variable on the right-hand side. If we view D(I', 41, K) as a subalgebra
of D(T'y,, K), we obtain the relationship (cf. [Stl, Definition 1.23])

(37) 3n+1 = @L(sn)

Since I';, is clopen in I', every locally analytic function on I, is the restriction of a locally
analytic function on I'. Hence, by considering the restriction of functions from I' to I',, and
taking its dual, we obtain an injective map D(T,,, K) — D(T, K).

Let M be an L-analytic (pr,I'r)-module over Rg. By Prop. we have an action of
D(I',K) on M. Thus we may consider the complex K3, (M), which (up to sign) amounts to

3n®1_¥’)
- 75

Ko, (M) = [M 2299, 1y pr | M]

concentrated in degree [0, 2].
On the other hand, for any D(T", K)-module N, we define

K5 (N) =[N 25 N

concentrated in degree [0, 1], and denote its cohomology by H3 (N).
Next we want to define K;%)n(MO) and Kgf)(Mo) for My € {M, M[1/trr]}. By inspecting the
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proof in the reference for Prop. [3.17] one sees that the action of D(I", K) on M preserves all
the M(™)_For m » 0, we set

~

R 3 (™) o= [ 230 p§™D @ b S22, agm )

concentrated in degree [0, 2]. Passing to the limit with respect to the transition maps induced

)y Ml

by the canonical inclusions Mém recovers K 3. (Mp), but taking the limit with

m+1)

respect to the transition maps induced by ¢: Mém) — Mé produces a new complex

K} (M) :=lim K, 5, (M{™)
m,p

whose cohomology we denote by ng%),: (Mp). Similarly we define

K (M) = 1im K3, (M™)

m7¢

with cohomology groups denoted by H éi)" (Mpy).

Remark 5.3. Note that we have
Dar(M) = H3, (D (M)
and
Deris(M) = H3 (M[1/tr7])"/.

Lemma 5.4. For m » 0 and My € {M, M|[1/trr]|}, the following natural maps induced by ¢
are quasi-isomorphisms:

K3, (DY (M) — K3, (DS L (M),

K3, (M{™) — K3, (M{™Y) and

~

~ 1
K3, (M§™) — K3, (Mg™ )
In particular, the maps

K5, (DY, (M) — I3, (DS (M),
K3, (M{™) — K (M) and

~

K5, (M§™) — K (My)
are quasi-isomorphisms.

Proof. We only need prove the first statement. Recall that in [SV20, §4.3], the following Robba
rings of the groups I' and I'), are defined: first R (I'),) is defined as the the ring extension
of D(T', K) obtained by formally substituting Z by 3,, in Rx and then R (I") is defined as
R (L) xr, T. Then (M,)¥= carries a natural R i (I')-action extending the action of D(T', K),
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by [SV20, Theorem 4.3.21] for My = M and [SV20, Lemma 4.5.23(ii)| for My = M[1/trr].
Since 3, is invertible in R (I'y,) € R (I), it follows that

(Mo)?=0 22 (Mg)¥="
is an isomorphism. The proof of [SV20, Theorem 4.3.21] even shows that
(Mg™)P=0 32 (g™ =0

is an isomorphism for all m » 0. Using this fact, one can conclude the proof with the same
(purely formal) arguments as in the proof of [Nal7a, Lemma 2.17]. O

Lemma 5.5. (i) For m » 0 and My € {M,M|[1/trr]}, the map

~

R 5, (™) — K5, (M)
mduced by the inclusion Mém) — My 18 a quasi-isomorphism.
(ii) In D™(K), by composing the inverse of the isomorphism in (i) with the isomorphism
[?@7371(M0m)) — g‘gn (Mp) from Lemma one obtains an isomorphism
Kp3,(My) = K73 (M)
which is independent of the choice of m » 0.

Proof. Both statements follow by purely formal arguments from Lemma just as in the
proof of [Nal7a, Lemma 2.20]. O

Notation. If R is a ring, X an R-module and ¢ € R not a zero divisor, we write X; := X[%]
for the localisation at the multiplicatively closed set {1,t,¢2,...}.

Definition 5.6. (a) By the compatibility of the maps ty, with p: M — M+ gnd the
inclusions Dgf)m(M) — Dfi?f)m-u
morphismd®

E¥ (M) — K3,(D5(M))  and K7 (My,,) — K3, (Daie(M))

In

(M) as in Definition |3.15 the ty, induce canonical

which we will both call . Moreover, the inclusions Mém) — Mémﬂ) mduce a map

Frob: K\ (My) — K7 (Mj).
(b) We construct morphisms

fo: Kp3,(Mo) — K (M) and gyt K3, (Mo) — K3, (DS (M)

in the following way:
Define f, as the composition of the isomorphism K3, (M) — Kgp%n(Mo) from Lemma

%2Note that obviously we have K3, (Df{j’f)(M)) =lim K3, (ng})m (M)).
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(z'z') with the map Kc(p%)n(Mg) — éf)(MO) obtained by taking the direct limit of the

morphisms
iyt m m -1,3, m m 3,B(1— m
Ros (™) s Q™ = ) g ) SnECm e
Lk oo
m m 371, m
K, (g™ (g™ Mg™)]

Furthermore, the morphism g, is defined as
fn
gn: Kp3,(Mo) L5 K37 (o) = 165, (D ().
Proposition 5.7. Consider the following diagram:

d2 +1

d
K@,Bn(M) Hl 4,0737L(MtLT) ®K3n (D(—;lf(M))

K3, (Dait(M))

id fn@id x—(0,z)

d d 1
K, 3,(M) —=> K (M) @ K3, (D};(M)) —"> K (M) @ K3, (Dair(M)) — >

where the d; are given by

di(z) = (2, gn(z)), da(w,y) = gn(z) — ¥,
d3(z) := (fu(z), gn(z)), dy(z,y) := (Frob(z) — z,u(z) — y).

Then the vertical map is a morphism between two distinguished triangles.

Proof. The proof can be carried out analogously to the proof of [Nal7a, Prop. 2.21]: We make
use of the following well-known fact from homological algebra (see for instance [Wei, Ex.
10.4.9]):

Let A be a ring and

0—X*—>Y*"—>27"—0

an ezact sequence of complezes of A-modules. Then there exists a natural map Z* — X°*[1]
in the derived category D(A) such that

Xy — 2z I xe)

1s a distinguished triangle.
First, we show that the upper row is a distinguished triangle. Our goal is to replace the

complexes K3",(D((ﬁ+f)(M )) by new, quasi-isomorphic complexes IN(%;n (D((;irf) (M)), which we
define below, and construct an exact sequence

(38)  0— Ky3,(M) — Ky3,(My,,) @ Ky 3, (Dgie(M)) — K3, (Dair(M)) — 0
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that will induce the upper triangle in the statement by the above-stated fact. For £ = 0 and
m >» 0, we put

@mJﬂ(M) = H tiéﬁ ’ D(Jirif,;L(M)

p=m

and denote by IN(%% (toh - D, (M)) the complex concentrated in degree [0, 2]:

D k(M) 25 Dy o (M) @ Dy (M) 25 Doy (M),

where

bO((xu)u) = ((3n$u)u>m7 (xu—l - xu)u?m—i-l)a

and

bl((xu);@my (?/u)u>m+1) = ((xu—l - xu) - Bnyu)@mﬂ-

Furthermore, let

k=0

We now define

(39)
0 - KWan (M(m)) - 807371,(

~

") ® K3, (D (M) — Ky, (Daitn(M)) — 0

tLr

as the sequence of complexes induced by applying f?%g,n(—) to

(40) 0 — M0 5 pim @ [1 D, 00) <2 | J [ tz5Dg (M) — 0,

puz=zm k=0 u=zm

where

ci(z) := (z, (Lu(l‘))uzm) and  ca(w, (yu)u) = (Lu(ﬂf) - yu)u>m

Down below, the sequence will be obtained as a direct limit of the sequences . We
claim that the sequence and hence also is exact. Consequently, the same will then
hold for the direct limit .

The crucial part now is the exactness of , which generalizes the exactness of the se-
quence (5) in the proof of [Nal7a, Prop. 2.21|. The latter is demonstrated in [Nal4a, Lem. 2.9],
and we check that the arguments carry over to our sequence . The non-trivial statements
are ker(cy) = im(eq) and the surjectivity of co.

The second statement can be reduced to showing that the map

(41) M —s T D, (M) /trr, @ — (1u(2)) uzm

p=m

is surjective, using the fact that Mt = Ui=0 tLTM(m) and reducing inductively to the case

k =1 via dévissage. Now we fix an R% )_basis e1,...,eqof MU assuming m is large enough
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for Proposition [3.2] to hold. From [Be02, Prop. 4.8 & Lem. 4.9] it follows that for any pu > m
the composition

RY™ 5 Lllter]] 25 L,

induces an isomorphism R /(Qu) ~ L, where Q, := (pf‘ 1Z) I Therefore, using [SV20]
Lemma 4.3.6], we obtain on the level of the extension F' an isomorphlsm

RE/Q, = (RYVOLF)/Qu = (R Q)& F = L, @1 F = F,

for ,u > m. As a result, we see that (tu(€i))iz1, .4 is an Fy-basis of D}, ¢, (M)/trr for any
1 = m. Now the surjectivity of ({ is proven Just as in [Na14a Lem 2 9]: For a family

>m in the target, we write Q.+ ty(e;) for m. Choosing a representative
Yu)uz= get, yu i=1Aui by I l g 1Y
4

a; € R%m) of the preimage of (a,.;)u=m under the natural isomorphis

(42) R /(trr) =5 T Fur ar— (0u(@))psm

pzm

for each i, we obtain a preimage Zle a;e; of (y,), under .

Concerning the first statement ker(ca) = im(c;), one needs to show for any x € Mt(zr;) that if
tu(x) € Dz{lfu( ) for all 4 > m, then we have in fact x € M™). Writing = = 20 - t 5 with

zo € M(™) Remark implies

So the claim follows if we show that if t§ . divides ¢, (z0) in F,[[trr]] for all u > m, then it
also divides xg in M (m) Of course, we can assume k = 1 as well as M = Rp after choosing a
basis of M. Then the isomorphism vields the desired result.

Now that the exactness of is established, it follows by construction that the sequence
of complexes is exact as well.
Next we form the direct limit of the sequences over m, where the transition maps are the

(m) _—, pg(m+D)

ones induced by the natural inclusions M, and the maps

a*: K3, (DG, (M) — K3, (Dl (M)
given by "cutting oft" the component at the lowest index. So by defining

K,3,(DS (M) = limy K, 3, (DS, (M)

m,a®

2In case the underlying Lubin-Tate group law is special, then Q.. is just the minimal polynomial of a
uniformizer of L,,/L.

20ne uses trr = Z[]

v < m the @, are units as they have no zeros inside the annulus of convergence of R(m). Now follows via

9u as well as the fact that ¢;7 and I £ differ by a unit in R< ™) since for

pn=l p,>'m 7r

a projective limit argument from the isomorphisms R%m)/(Qu) =~ F,, and the chinese remainder theorem.
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we obtain the desired exact sequence .

This sequence yields a distinguished triangle as explained in the beginning of the proof; in order
to bring this triangle into the desired form, it remains to define suitable quasi-isomorphisms
of complexes K3, (Dgrf)(M)) — N%gn (D((;irf)(M)), which is done in the following way: First,
for m » 0 consider the morphisms K, (D;{if’m(M)) — N%Bn (D:{if’m(M)) defined by

3n
(43) D(Jirifm(M)

D(;f,m(M)
z'—>($)u>m I'—>((z)#>m’0)

[1 Dy, (M) — T[] D§; ,(M)® [l Dy, (M)— T[] Dy (M)

u=m u=m u=m—+1 pu=m+1

There are similar morphisms K3, (Dqif,m(M)) — N%gn (Dgit,m(M)), and one checks that
they are all quasi-isomorphisms, using the exactness of the sequence
(2 pzm + (Tp)= (Tp—1—Tp) pzma1 +

2 T DY, () R TEns 1T DR (M) —— .

p=m puzm+1

0——D4 (M)

It is obvious that the quasi-isomorphisms K3n(Dgi+f)m(M)) — N<p,3n (Dgf)m(M)) are com-

patible with the transition maps, induced by the inclusions Dgirf)m(M) — D((Jf)mH(M) on
the left and given by the a® on the right, so they induce a quasi-isomorphism

K3, (D (M) = K, 5,(DS) (M),

Putting everything together, and inspecting the explicit definitions of the morphisms involved,
we get that the upper row of the diagram in the statement is in fact a distinguished triangle.

To demonstrate that the second row is also a distinguished triangle, we start again with
forming a certain direct limit of the exact sequences of complexes. But this time, instead
of the a* from above, we define morphisms

()" K3, (D (M) — K5, (DG, (M)

given by shifting (,)u=m — (€u—1)u=m+1 instead of cutting off. Then let

I}(%)

@) @) = tim K5, (DG, ().

m7(al)o
Furthermore, note that the quasi-isomorphisms K3 (Dgf)m(M)) — N¢’3H(D§h+f?m(M)) from

also form a morphism of directed systems if we use the (a')* instead of the a® as transition
maps on the right, so they yield a quasi-isomorphism
+ ~ +
(44) K, (DG (M) = K7 (D) ().
After these preparations, we consider the chain of quasi-isomorphisms
(45)

~ ~

tor

> cone (K3, (M{17) ® R .3, (Dfig (M) — K, (M{[3") @ K 3, Dty (M) ) [-11,

trr trr
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where the first one follows from applying the fact from homological algebra stated at the
beginning of the proof to the sequence and the second one is formally obtained by the
identity

Koy3,(MI™) = cone (Ksn (M) =5 Ksn(M(mH))) [—1].

trr trr (9%

Taking the direct limit of the quasi-isomorphisms with respect to the transition maps (a’)
and the morphisms induced by ¢: M) —> Mémﬂ), and applying the quasi-isomorphism
5

K3, (M) = Kff;n (M) from Lemma (ii) to the left-hand side and to right-hand side,

we obtain the distinguished triangle
1
Kp3,(M) — K§7 (M) @ K3, (Dg(M)) — K (M) @ K3, (Dae (M) =
which is the bottom row in the statement of the proposition. O
We define

DE{Q(M) = HY (Dgir(M)) and D™

cris

(M) = Hgn (MtLT)'

For m » 0, the map
o: HY (M) — HY (M)

trr trr

is an isomorphism by Lemma Moreover, the inclusions H(B)n (Mt(znT)) — Dgll)s(M ) are

isomorphisms by a result analogous to [Nal7a, Lemma 2.18] which is formally deduced from
Lemma (and the fact that the cohomologies are finite-dimensional). Thus the above ¢ can
be viewed as an automorphism

Next we construct two isomorphisms ji, ja: Dgz)s (M)~ H éf)’O(Mt ) making the diagram

D) (M) ——£— D) (M)

Js >

Frob — id
Héf)70(MtLT) Ll> H:E}L:)VO(MtLT)
commute, where Frob is induced by the Frob in Definition [5.6(a). Let

ji: DU () = HY (M) S HY (M) s =D (M)

cris trr trr
where the last map is an isomorhism by Lemma Note that j; is independent of the choice
of m » 0. Finally, we set

Frob

Jo: D(n) (M) j_l’ H:"()f)’o(MtLT) - Héf)’O(MtLT)‘

cris

Additionally, we define

i: p™

cris

(M) L5 7P (0, ) - DG (M)

where ¢ is induced by the ¢ in Definition [5.6{a).
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Definition 5.8. Denote by
exply : DY (M) — HJ 5 (M)
and
ex (n) . D(n) (M) -7_2) H(‘p)vo(M Hl M
pf,M' cris B tLT) - <p,3n( )

the boundary maps obtained by taking cohomology of the exact triangles in Proposition [5.7

Set
(n)
n expy,
H}, 5, (M) = Tm(D{R (M) =25 HJ, 5 (M)
and
() (n)
exp; v T exp
HY 5 (M) :=Im(D\Y (M) @ DR (M) ——0 HL 5 (M)
and

)= D (M) /D (M)° where DU (M) := H, (D(M)).

Then Proposition yields the following diagram with exact rows
(46)

i) expl(\f[]) 1

0 —— HY 5 (M) =25 DI (M)#~! 7 1 (M), — 0

lid lxl—»x lmH(O,x) L,Hx

T n ds n n d,
0 —— HO5 (M) "= DI (M) —2— DU (M) @ty) —~ HL 5 (M); — 0

cris

where

ds(z,y) = (1 - 9)z,i(@)) and  dg = exp’y; +exply .

5.3 Derivatives of a measures

In cyclotomic Iwasawa theory the constant log(xcyc(7)) shows up at various places (cp.
[Nal7al) in order to make constructions independent of the choice of a topological genera-
tor v of I'g,. Since we have replaced the element v — 1 by 3, we again have to check the
dependence on this choice. As our computations below show, the constant {2 plays a role in
normalisation and seems conceptually new at a first glance since in the case L = Q, one
can take €2 = 1. But recall that  is only unique up to units in oy, hence in the cyclotomic
case one could just as well take any element of Z; . Comparing with [Nal7al Proposition
5.2] we see that we should take Qg, = logy(x(v)) ™!, where logy(a) := log(a)/p*(®. We first
generalize the derivative of a measure from the cyclotomic case (e.g. [LVZ15, §2.1]) in a naive
way:

By (=) : of = 1 + mpor, we denote the projection which is induced by the Teichmiiller
character w : ki — op. Fix mo > -4 and my > 0 such that log, (o) < 7™ or. Then, for
s € o, with m := mgo + my the map

(=) 0] = 1+7"0p,x— (x)° := exp(slog(x))
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is well-defined. For A€ D(I'y, K) and f € C*(T', K) we define
La(f,s) == M fxaer)’) (La(—,s) in D(T', K) for fixed s)

and

LA(f) := lim LA(f:5) = £4(1,0)

0#5—0 S D(I'z, K).

This limit exists and we have

(47) L5(f) = Mlog(xrr)f)

using that limg.s 0 %

the expression

= log(xr7r(7))- As an example one easily sees using that

(48) £,

I
is independent of n.
For D(T',,) as at the beginning of subsection there is another way of attaching such a
derivative better adapted to the Lubin-Tate situation as follows:
By [ST, §3, Thm. 3.6] the characters of T, are all of the form v.(vy) := k.(€,(7y)) using
their notation. For small v we have

Y2(7) = exp(QLn(7) logp(2))

and for z = exp LT(%) the characters ¢, and xpr coincide on an open subgroup of I'z. For

Ae D(T'y,) and f € C*(T',, K) we may define

LTS, z) == AN fv.) (LTA(—,2) in D(I'y, K) for fixed z)

and
4 T Lﬂ(fvz) —Lﬂ(f,())
LT(f) := Oylélznl>0 ~ e D(I'y, K).
This limit exists and we have
, Q
(49) LT(f) = F)‘(log(XLT)f)
L

using that limg,, 0 % = ﬂ% log(xrr(7)) as gr7(0) =1 by .
We conclude this discussion by considering again A = 3,, and the trivial character f = 1.
Then £73,(1,2) = 3,(¢.) = z by [ST], Lem. 4.6], whence £73,(1,0) = 0 and becomes

Q 5, 1
(50) 1=LT3,(1) = ﬁan(log(XLT)) and 3;2() -
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5.4 The dual exponential map exp*

Let M be a free L-analytic (¢r,'r)-module over Rg. We say that M is (n)-de Rham if the
B = ,, Km((trr))-module Dy (M) is trivial as a (B,I';)-module. If n = 0 we simply say
that M is de Rham. Being (n)-de Rham implies dimg Dgg(M) = [Ly : L] - rpr where ras
is the rank of M over R . Note that Dgg(M) is then a K ®;, Ly-module with a semi-linear
't /Ty, = Gal(L,/L)-action (which is trivial on K). By Galois descent (technically in the form
of [SP, Tag 0CDR] for the Scheme X = Spec(K')) we can conclude that being n-de Rham is
equivalent to being de Rham and note that Dg}g (M) is in fact free as a K ®p, L,-module. We
denote by d2 37 the connecting homomorphism

Hj, (Dait(M)) — Hy 5, (M)

obtained from the sequence in [5.7 We define

ﬂ.n

(51) Cy(3n) := L5, (1) = 3n(log(xrr)) = ﬁL
for the trivial character 1. We stress that this is compatible with Nakamura’s definition when
specializing to the cyclotomic situation.

Lemma 5.9. Let M be (n)-de Rham. Then the natural map

(U Km((tLT))> K, D%(M) — Dy (M)

1s an isomorphism and the induced map
gii : DER(M) - H), (Dair(M)), - Cy(3:)(1®)

is an isomorphism. The inverse is induced by sending f ® d € K, ((trr)) ®k,, DEZ;L%)(M) to
Cg(3n)71MTTKm/Kn(fVLT:O)d, where by abuse of notation (although trr gets inverted!)
we denote by [y, .—o the constant term of [ with respect to tpp.

Proof. The first part follows immediately from the definition and implies that Dgs(M) is
isomorphic to the trivial B-semi-linear I',,-representation. For the second statement it thus
suffices to consider the rank 1 case and prove the statement for B itself, namely that the
natural map B'» - B — B/3,, is an isomorphism. Because the I-action respects the direct
product decomposition Ky, ((trr)) = [ [ez Kmthr and BT = K, it suffices to show that any
Laurent series, whose constant term vanishes, lies in the image of 3, and that there is an
exact sequence of the form

PR SR
377, m:Kn] Km/Kn
K K,

0— K, K,

—0

by Wedderburn theory. Using the product decomposition it suffices to treat the monomials
at’zT with some a € K,,. Taking 1 # v € I';;, we obtain v(a) = a and y(tz7) = xrr(y)trr. By
construction (y — 1)(tzr) = whutpy for some | € Z,u € of and hence (y — 1)(atLT7eru*1) =
ar;'u ((y — 1)(trr)) = atpr. Since 8, — 1 is divisible by 3, in D(T', K), we conclude that
at’ZT lies in the image of 3,. O
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Note that DgQ(M), for a (¢r,I'r)-module M, carries a natural filtration given by
Fil' D) (M) = DIl (M)  t D (M),
Definition 5.10. Let M be a de Rham (1, 'r)-module over Ri. We define the dual expo-
nential map as the composite

(95!

H 5 (M) — Hj (Dg(M)) — H3 (Daie(M)) DI (M).

Where the first map is given by mapping [z,y] to [t,(y)] with p > 0. Its image is contained
in FilO(Dg;{)(M)) and we thus obtain a map

(W HL L (M) — Filo(DI (M),

*
EXPyr " 3, dR

We define
expy; : Hl,D(rL)(M) — Fil’(Dggr (M))

©
by taking U -invariants of expz(n), which is independent of the choice of n. Indeed, as shown

in [St1, Lem. 3.9/ the restriction map
H;,BH(M) - H;,BW(M)v [wvy] = [:U,meny],

for m = n induces an isomorphism after taking T p-invariants, where Qp—n(35) = 277: =
@ with Q- (0) = 77" and we have Cy(3y) = 77 "Cy(3n) by [@8).
Definition 5.11. We define a pairing
Uaie: HY, (Daig(M1)) x H3 (Daie(M2)) — H3, (Dait (M @, M2))
given by (z,y) — [x ® y]. Furthermore we define
(=, =ait : H3, (Daie(M)) x H3 (Dai(M)) = H3 (Daie(M Qg M)) - K
as composite of Ugir with

~ ev (g(n))71 n
H} (Daie(M @, M) <> H} (Dair(2})) —2— DR(QY) = K,

[ ei] T/
using that Dgg (QY) = K,, via t ;e — 1, where e corresponds to 1 in Q' = R (5). We further
define {(—, —)qr via the composite

1
[Kn:K] Trgn/k
LR BN

DR (M) x D (M) — DR (M @ ) > DR (@) = K,
Remark 5.12. The pairing {(—, —)ar := {—, —)drR.M
D{ (M) x D (M) - K
15 perfect if M is de Rham and induces a perfect pairing

DY) (M)/Fil* DY (M) x Fil* D (41) — K.
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Proof. Let us abbreviate V' := Dgfg(M) G =T, and B = K,((trr)). For a suitable r,, we
have that V = (B ®,, M(”>) = (B ®g, V)¢ by definition. We will first show that the
pairing on the level of K, is perfect. Observe that base change to B provides us with an
injection Hompg, (V, K,,) < Homp(B ®k,, V, B). The target can be endowed with a G action
by (g\)(x) = gA(g 'x) and, because the action on V is trivial, we see that the image of the
above map is precisely the set of G-invariant elements. Indeed, since B¢ = K,,, a linear form
A which is fixed by ¢ has to map elements of the form 1®wv into B¢ = K,, and hence restricts
to an element of Hompg, (V, K,). The perfectness now follows from Homp(B ®Qk, V,B) =
Homp(B ®,, M,B) =~ Homp(B ®,, M,B(x1r)) = B®,, M by taking G-invariants, using
that the evaluation pairing commutes with base change. Note that we used that B = B{xrr)
as I'r-modules (since B* contains t77) and that Dy (M (xzr)) = Dair(M(x)) as they have
“the same” I'-action. To conclude perfectness of the K-valued pairing, it suffices to show that
the pairing is non-degenerate on one side. Set W = Homg, (V, K},). Let V' := Homg (V, K)
which we view as a K,,-module in the obvious way; we endow W and V' with a I'y,/T,-action
via vf(—=) = vf(y~'=). By the above perfectness at the level of K,, it thus suffices to show
that the map W — V' given by w + Trg, /i (w(—)) is injective. One easily checks that it
is compatible with the K- and I'z/T',;-structure on V'. We thus have constructed a 'z /T,-
semilinear map between free K,-modules of the same rank. By Galois descent it suffices to show
that it is injective on I' /T, -invariant elements. Suppose w € W' satisfies Trg,/k(w(v)) =0
for all v € V. This means that the image of the map w: V — K, is contained in the kernel of
the trace map. For any x € V1L, we obtain w(z) € K n ker(Tr) = 0 by the I';-equivariance
of w. Thus w is trivial on I'g-invariants and by Galois descent trivial, because V is generated
by I'p-invariant elements, which implies w = 0.

For the second statement observe first that FilO(Dgg (1)) = 0and Fil_l(Dg}g QYY) = K,,.

Hence Fil° (DEIR) (M)) is contained in the subspace orthogonal to Fil® Dggg (M). Tn order to see
that this inclusion is an equality, it suffices to show that the canonical bijective morphism of
filtered vectorspaces D((ﬂg( M)® D(n)( M) = Dgg (M @ M) is in fact an isomorphism. This
is not entirely trivial and can be achieved by an analogue of [BC| Proposition 6.3.3]. As in
their case one reduces to the corresponding statement about graded objects and finally to the
corresponding statement of rank one objects (which is clear in our case as well). O

Lemma 5.13. The diagram

(n) o) ——— ex Ly X7
(52 DO ——= K, K,
900 K] LK /K

o

— Tr=Cr,(3n)Res
Hj (Dair(QY) ——H} 5 (@) ——>K

18 commutative.

Proof. Given any a € K, (in the right upper corner of the diagram) we first have to calculate
(1®ey)asz:=1Q e € K, [[trr]1[72]ey = Daitn(Q') represents - up to a constant

3%y
- the image of Tex € DéR) (1) under gél). In order to calculate the transition map d2 we use
an analogue of [Naldal Lem. 2.12(2)], which is an easy snake-lemma application ton 5.7t Assume
that = belongs to D¢ (') for some k = 0. For any element € ; 1 Ql (k) = TR( )*) such
that

Lm(.f) — Cank:,m( ) € DcIfm(Ql)
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(using the notation of Definition 3.15) for all m > k, we then have dy([z]) = [(¢ — 1)Z] €

Hy s, (21).
We construct & as follows. Consider the isomorphism
(53) Ric/(ter) = [ | Kur a— (1u(a)) =0

©=0

analogous to and let f be an element in R;C, whose class in the left hand side corresponds
to the tuple (a,)u=0 with

7qﬂ—iw§’ it p = k;
ap =< T (@)
H Kj,/K - .
kwiﬁu’ ifk>=p=0;

on the right hand side. Note that the operator ¥ on R}g induces the map

v [ [E. - [] K

pz0 p=0

() = (¢ 2o + ¢ " Try iy (1), ¢ Trpey i, (22), - - 7q71TrKH+1/KH (Tps1)s.-)-

Moreover, (z,,),, satisfies q¥((z,,),) = (v,), if and only Trg, /i (z1) = 0and Trg,,/k,, (Tmt1) =
Ty, for all m > 1. In particular, ¢¥((a,),) = (a,), if and only if Trg, /x,(a) = 0. We now set

i=-Le c én(x)(lﬂ and check that, for m > k,

tor

T (um)
Lm(ﬁ) = TTmeX mOd D(if,m(R(X))
T am
LT
K
_ e
g Rt

= cany , ()

|
—
—
AS
|
—_
SN—
~~
>
h
N
@
=
S—r
[E—
|
~—
~~
‘ﬁ
PN
|
=
N—
~+
[
@
<
e
w2
—
=
Q
o’

as required, i.e., d2(1 ® ﬁex)

(‘p(qf) — f) (Um) BACTE Y Flum) = "1 — 4y =0

for all m > k, we conclude from that % —fe (HOO Qm) R;r{, whence

m>k T,

(54) (ngv__f> 4}—76 <I1g;ﬁ6627>73+ 1 +

. =

trr trr K=y ]_[k Qu K

n=l 7

using trr = Z[[,2 %‘ Since all involved maps are K-linear and K, = K @ ker(Trg, /) it
suffices to check the commutativity in the two cases a € K, i.e., k =0, or TrKn/K(a) =0, i.e.,

qu((au);@O) = (au)uzo'
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If k£ =0, the element ;*-e, is sent via the lower composite to

Crr(3n)Res © (=02) 0991(%%) Cy(30)Crr(3n) Res 0 62(1® éex)

()
- q—]-< P )w 0

()

where we use for the second equality the definition and for the third equality (54). Thus
the claim follows on the subspace Dglf{) (YL because [KT{K]TTKn/K((Z) = a.

If ¢V ((ay)u=0) = (au)u=o0, ie., ¢¥(f mod trr) = f mod trrp, it follows from the sur-
jectivity of %\Il — % on R by [BE], Cor. 2.3.4] and the commutative diagram with exact
rows

0—>RE L RE Rb/torRE —0
lei @_1i w—ll
™K q q q

0—=RL L RL R /tirRy; —=0

that we may assume without loss of generality that f also satisfies qU(f) = f, whence we
obtain \I/(M — f) = 0. Using the identity Res(¥(f)dtrr) = x(mr)Res(fdtrr) from [Co2l

Prop. 1.5] we conclude that Res( (“’(f ) f) %dt rr) vanishes, from which the commutativity
follows also in this case by a similar calculation as above. O

Lemma 5.14. Let z € HY (Dae(M)), [z,y] € H. 5 (M),a€ HO 5 (M) and [b] € H2 5 (M).
Using {—,—) :={(—, —)n as before to denote the pairing

L3(M) x H2S (M) - K
obtained from we have
(exp§ (=), [, 9> = G2, [on () Dae

and
Ca, 62,0 ([b])) = Cen(@), [O]Dait-
Proof. Let z be in DE&L{)(M) and [z,y] € H;,Bn(M) with z € M y e M"+D)_ Then we have

(el =

by and, by the same snake-lemma application in order to calculate the transition map 9
induced by Proposition [p.7|(cp. [Naldal Lem. 2.12(2)]),

Tric,ic © 95 00w ([2® ta@)]) = ~Tr 0 ([ @ n(y)])

—Tr(éz([z(@bn(y)])) = —Cr: (3 Res<[ Z®y)]>
= —Cr.(3 Res([ Qpy) +2 ®3nx])
= —Cr.(3,)Res (cp (2)) + (3nz) (2 )
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where in the second equality we have used the co-boundary condition (¢ — 1)(y) = 3nz.

Moreover, Z € M, (n) is an element with the property that ¢,,(Z ) 2z belongs to D, dif.m (M) for all
m = n, the existence of which is granted by the exactness of (@0)), whence 1y, (3Qy)— 2Qum (y) €
D(;f’m(M ® M) for all m >

On the other hand we have by a straightforward analogue of [Nalda, Lem. 2.12 (1)| for
the first, the formula in Theorem for the second equality and for the third equality

(exp (2), [, y]) = (e = D). 302, [, y])
= —Cry(3u)Res(9(v) (¢ = D(Z) + (V) (329))
= ~Crr(3a)Res (2 () ((p — 1)) + (3n2) (2))

which agrees with the above formula. We leave the easy proof of the second identity to the
reader. O

Proposition 5.15. Let M be (n)-de Rham. Let x € Dd%)( M)/Fil°D )( M) andy € H;,Bn(M)‘

We have
exp (@), yoar = (o expt™ (1) dar,

(n) "

i.e., exp,, s adjoint to expz

Proof. This is a formal consequence of Lemma after plugging in the definition of
#,(n)
exp,; - O

Ouly for the purpose of the next lemma (needed in the proof of the subsequent proposition)
we introduce the notation H!. (N) as the i-th cohomology of the complex K(W) (Nt ) @

mix

K3, (Dgi¢(N)) of the bottom right in Proposition [5.7} We define a pairing

Unmix: Hpyioe(M1) X Hpyio (Ma) — Hy (My @Ry M)

mix mix

given by (z,y) — [z ® y]. Furthermore, we set
<_ _>m1x le(M) X Hrlmx(M) - Hle(M Ry M)) Hrlnlx(Q)

Finally, by

G HL 5 (M) — H' (K (M) @ K3, (D5 (M))) — Hy, (M)

mix

we denote the composite H' (d7)oH!(d3), where dy : K{® )(MtLT)@KBn (D(L(M)) — Kgf)(MtLT)G—)
K3, (Dgir(M)) sends (z, %) to itself using the natural 1nc1u51on D, (M) < Dyt (M). Then the

next Lemma is formally analogous to Lemma [5.14] thus we leave the details to the interested
reader.

Lemma 5.16. The following diagram is commutative

HOL(M)  x HL (V) === (1)
lexp( 1\)[ +exp1(;f) T—G l&g

(M) xHLy (b)) — == @),

n’llX

1
HQD 3n

9073n

20



Proposition 5.17. Let M be o trianguline L-analytic (goL,FL)—modyle over Ry which is de
Rham. Then Hé 3,n(]\i)?L is the orthogonal complement of Hé,Sn(M)gL with respect to the
duality pairing {—,—) .

Proof. Analogous to [Nal7al, Prop. 2.24]: Replacing the sequence (13) in (loc. cit.) by (@6),
using the Euler-Poincaré formula as well as duality and the de Rham property of
M one shows that dimpg Héﬁn(M)fL + dimg Hglo,Bn(M)fL = dimg HLB”(M)I:L. Therefore
it suffices to show that {(z,y) = 0 for all x € Héﬁn(M);L and y € Héh,)n(M)?L. This is
accomplished by Lemma because G(y) = 0 since y € ker H!(d3) by assumption. O

6 e-constants

Let E be a field of characteristic zero containing pu,=, ¥ := ¥¢ : Q, — E* the character
(with kernel Z,) attached to a fixed compatible system § = (§,)n>1 of p-power roots of unity
via wO(#) = &n.

Similarly, we may define for the compatible system u = (up)neny € T (and a choice of
generator t; of T7) the character ¢y 1= b, : L — E*, % = 1y (T, Un).

But there is another (canonical) choice: ¢, := 1 0 Try g, : L — E* is a locally constant
character (with kernel the inverse of the different ideal Dy q, ).

Remark 6.1. The character vy, factorizes over or. Hence, by there exists a = a(tf), u) € of,
such that the following diagram commutes

w% (1u)
Ljor, Qp/Zp w(p)

rHuRx \L ~ nt6 T

T7T ®0L L/OL - T7r ®0L L/OL-

T"‘L/Qp

Here ny (1,u) 1= (ny (1,un))n is a generator of Zy(1), again by M. In particular, for the
choice § = ny (1,u) we obtain

(55) Yr(x) = Yulaz)

Jor all x € L. It is clear thal a is a generator of the different ideal D g,

Let dx be the Haar measure on L such that SOL dxr = 1. Let ¢: L — E* be a non-trivial
character which kills an open subgroup of L.

For a finite-dimensional E-linear representation D of the Weil-group Wy, := W (L/L) which
is locally constant (i.e., the image of the inertia group is finite) we have local constants

e(D,¢§) :=ep(L,D,v,dx) € E™,
see [Del| or [Ta77| and [DEL §2.2].

If dimg D = 1 corresponding to a locally constant homomorphism ¢ : L* — E* via local
class field theory (see section [7.4] for the normalisation we choose), i.e., D = E(§), then

a n Y L

(56) ep(L, Dy, da) = 3(m)" g0 ST 5(0) (),
ie(oL/ﬂZ(é))X L

(57) ep(L, Dy, dx) = 8(rp)* g™ @) N1 50 (i, ).

ie(or,/m5 ) x
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Here n(1)) denotes the largest integer n such that 7 "or, < ker, a(é) denotes the con-
ductor of 6, (0 if ¢ is unramified, the smallest positive integer m such that 1 + 7}"or, < ker 4,
if ¢ is ramified). If W = (D, N) is a Weil Deligne representation of Wy with monodromy
operator N and underlying Weil group representation D we modify, following Nakamura, its
e-constant by the factor

(58) e(W) := e(D) det(— Frob | (D/DN=%)1),
where I;, denotes the inertia subgroup. Both definitions agree if N acts as 0 on D.
Remark 6.2. ¢, (y) is independent of the choice of n such that y = x/7} and n(1,) = 0.

Proof. The independence follows inductively from n(npz,u,) = n(z, or(un)) = n(x, up—1).
On the one hand, by definition or, < ker ¢,,. On the other hand by §1, Fact 2 in [Box|, using
that u; is a non-zero mp-torsion point we may find a € oy, such that ¢, (a/7r) = n(a,u;) is a
primitive p-th root of unity. This proves that 7T210 L, is not contained in ker(v,,). We conclude

n(¢u) = 0. O

How do the epsilon-constants for the two choices ¢ and 1, compare? The first choice
behaves well under induction: there is a constant A € E depending on L/Q,, the choices of
Haar measures dxq,,dzy and the choice of 1o, such thatE]

e(Qp, Ind§ 8,40, dzg,) = Aeg (L, 8,91, dx1)

for all locally constant characters § : L* — E* (see |BB0S| or [Del, (5.6)]).
The second choice is obviously better adapted to the Lubin-Tate situation. By (55]) there
exists a € L™ such that ¢ (z) = ¥,(ax). Moreover, one knows that eg(L,d, ¢ (bx),dry) =

5(7) ep(L,d,v¢r,dzr) by [Ta77, (3.2.3) or (3.4.4)] for all b € L*. Combining the above we get
t£e following:

Remark 6.3. There erists A € I depending on L/Q,, the choices of Haar measures dxq,, dxr,
and the choice of ¥, as well as a € L™ depending on g and u such that

)
(59) 5@y, Tndb 6,0, dirg,) = A|(a“|)eE<L, 5, 1, dar)

for all 6.

If we start with a Haar measure dx of L, then the dual Haar measure dz with respect to
the duality induced by 1, i.e.,

L x L_):upf‘ = Ex’(‘r?y) H¢(xy)7

—x) = §, f(y)y(—zy)dz(y) holds for all test

s>
—

is the unique Haar measure such that f(z) =
functions in L'(L), where

ff loy)do(z)

?5As ep is inductive with regard to virtual representations of dimension 0, one concludes that A\ =

L
€g(Qp,Indg S¢riv,P0,dzg,)
> v) ¢ .. . .
or the trivial representation Oty .
eg(L,0triv,¥r.dzr) p triv

02



denotes the Fourier transform of f. Especially for f = 1W_n(w)0L we obtain:
L

1 oo — dr |1
——c1 (L;"% x) o

1, () = ( | da:) | ot

(LG(w% da:) ( L ) dfvc(y)> L, @

ie, §, dz(y) = qn% and dr = qn%dx.
From [Ta77, (3.4.7)] we obtain

whence

(60) E(L7 (S,LZ),CZIL‘)E(L,(S_1| - |,77Z)(—1'),dASL‘) =1
and similarly for higher rank representations D instead of . Since by (3.2.2/3) in (loc. cit.) we

have e(L, 0,1, rdx) = re(L, 6, dz) for r > 0 and e(L, 6, (ax),dr) = 6(a)|a| " e(L, 8,1 (x), dx),
we conclude that

(61) e(L, 0,0, dx)e(L, 67| — |, (z), dz) = 6(—1)g"¥).
Moreover, by (3.4.5) in (loc. cit.) it holds that

(62) €(L,67Y = |,1p(x), dz) = ¢ DL, 57 p(x), da) = |2 O D|e(L, 572, (a), da).

7 Epsilon-isomorphisms - the statement of the conjecture

7.1 Determinant functor

Let R be a commutative ring. A graded invertible R-module is a pair (£,r), where £ is an
invertible R-module and r : Spec(R) — Z is a locally constant function. We define the category
Pr of graded invertible R-modules by setting Mor((L1,7), (L2,s)) := Isomp(L1,Ls) if r = s
and empty otherwise. We further define

(ﬁl,T) . (52,8) = (ﬁl,T) ) (EQ,S) = (ﬁl ® Lo, + 8)

for each pair of objects and we identify (L1, 7)® (L2, s) with (L2, s)®(L1,7) via the morphism
induced by I3 ® lp — (—1)""%ly ® ;. We denote by 1 the object (R,0), which acts as a unit
with respect to the tensor product and we remark that every object (L£,r) has an inverse
given by (L', —r), where £ ! denotes the R-dual of £. For a ring morphism R — S and
(L,r) e Prweset (L,r)s := (L®S,r*), where r* denotes the pullback of  along R — S. An
isomorphism 1p — L is called a trivialisation of £. Let Py,(R) be the category of finitely
generated projective R-modules and let (Pgq(R),is) be its core, i.e. the subcategory consisting
of the same objects with isomorphisms as morphisms. We have a functor

dr: (Prg(R),is) = Pr
P+ (det P,rankp(P)),
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where det P denotes the highest exterior power of P. Note that dgr is compatible with short
exact sequences and base change in the sense that given an exact sequence 0 - P, —» P —
P3; — 0 the natural isomorphism

det Py ®@ det P3 = det P»

induces an isomorphism
drP; -dgrP; = dgrhPs.

Moreover, for a morphism of rings R — S we have dg(P)s = ds(P ®S). This functor can be
extended to the category (CP(R), gis) of bounded complexes in P(R) with quasi-isomorphisms
as morphisms. On the level of objects this extension can be described as follows: Let C* € CP(R)
then ‘

dR(C*) = @ dr(C) V.

€7

This functor is again compatible with exact sequences and if C* is acyclic, then the quasi iso-
morphism 0 — C* induces a trivialisation of dz(C*®) that we take as an identification. One can
show that dg factorises over (Dgerf(R), qis), the image of the category of bounded complexes
of finitely generated projective modules in the derived category with quasi isomorphisms as
morphisms. If a complex C* is cohomologically perfect meaning that H*(C*) considered as a

complex concentrated in degree 0 is in Dg orf(R) for all i, then we have a canonical isomorphism

dr(C*) = @ dr(H' (C*)V,

that we take as an identification. This extension is further compatible with duality and base
change in the following sense: There exist canonical isomorphisms

dr(RHompg(C*,R)) = dr(C*)!

and
ds(S ®p (C*)) = dr(C*)s.

7.2 Fundamental lines

Let M be a (¢r,I'r)-module over R4, where A is an affinoid algebra over K. We assume that
M satisfies the following technical condition:

(63) There exist £ € Pic(A) and 6 = dget mr € Xan(A) such thatdetr , M = L®4 Ra(6),

where det M denotes the highest exterior power of M. Clearly det M is always a module of
rank 1 and the technical condition is asking det M to be of character type up to a twist on
the base. The full subcategory of (¢r,I'1)-modules satisfying the above contains all modules
that arise as a base change from Ry by [EX| Proposition 1.9] and furthermore contains all
trianguline modules (even with £ = A). If M satisfies the above condition the isomorphism
class of £ and the character ¢ are uniquely determined. Furthermore £ can be identified with
the subset

LaA(M) :={xedet M | or(z) = daet m(TL)T, 7T = daet 1 ()7}
by sending l € L to [ ®@es € L®4 RA(9).
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Definition 7.1. Let M be an L-analytic (o1, T'1)-module of rank ra; over R4 satisfying .
Write det(M) = L ® Ra(dget ar). We define

Ay a(M) = dar, (Ko, pw,i)(M)) ®arr, o1 4
using Remark (4.5)), and

Ao A(M) := ({ﬂf € det M | pr(7) = bdet M (TL)T, YT = gt (V) T}, _XA[FL/U](K@,D(U,K)(M)))a

i.e., the underlying line bundle of Ay 4 is L which has a canonical (pr,T'1)-action given by
Odet M»- We also write L(Oget pr) if we wish to emphasize the action.

Remark 7.2. We have
{(x € Ric(0) | pr(x) = 6(mp)a, v = 6(y)a} = R ey = Kes = K

whence Ay g (Ri (0)) = (Kes, 1) = (K, 1) using Remark[4.4]
Proposition 7.3. A; 4(M) and Ag o(M) are well-defined graded invertible modules and

AA(M) := Ay Ao(M) - Ao a(M)
satisfies the following properties

(i) For any continuous map of affinoid algebras A — B induces a canonical isomorphism

AA(M) ®q B = AB(M®AB).

(ii) Aa(M) is multiplicative in short exact sequences.
(iii) Aa(M) = As(M)* @ (A(X™),0).

Proof. Compatibility with base change can be checked for A; := A; 4 individually. For Ay it
follows from Theorem and for A, it is clear. The compatibility with short exact sequences
can also be checked individually for A;. For ¢ = 2 it follows from the corresponding statement
for determinants and for ¢ = 1 it follows from the fact that a short exact sequence of (¢, U)-
modules induces a short exact sequence of the complexes Ky p(y, k). The quasi-isomorphism
F(M) : K,3(M) = K, 3(M)*[-2] induced from by identifying M = M gives an iso-
morphism Ar (M) = As 1 (M)* while the isomorphism Ag (M) = Ax2(M)* ® (A(X™),0)
arises as follows: First observe that M satisfies (63)), if M does, and since M = A(x) @4 M*
one sees that det(M) = A(x™ ) ® det(M*). Hence we see Ago(M) = Aao(M*) ® A(X").
A small calculation shows A4 o(M*) = Ag2(M)*, hence the claim.

O

Definition 7.4. Let X be a rigid analytic space over K. Given a family of (¢r,'r)-modules
M over Ox, i.e., a compatible collection of (vr,I'r)-modules My over R4 for every affinoid
Sp(A) € X, we define Ax(M) as the global sections of the line-bundle © x (M) defined by
Sp(A) = As(My). If X is quasi-Stein covered by an increasing union X, of affinoids we also
have Ax(M)[0] = RTI(X,Dx(M)) = Rlim(Ax, (Mx,)) = lim Ax, (Mx,)[0] by Theorem B
for quasi-Stein spaces. We have analogous definitions and statements for A; x (M)and ©; x,
it = 1,2 respectively. ®x,D; x are graded invertible Ox-modules by definition.
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A word of caution is in order. A priori the A; x (M) are not necessarily graded invertible
Ox (X)-modules because the global sections do not have to be finitely generated over Ox. In
our applications (in section |§) we will have Ay x = Ox(X) and will be in a position to apply
the subsequent remark in order to conclude that A; x is an invertible Ox (X)-module.

Remark 7.5. Let X =X, be a quasi-Stein space. Let Cy, be a family of perfect complezes of
Ox (Xy,)-modules together with quasi-isomorphisms Ox(X,—1) ®H(5X(Xn) Cy ~ Cr_,. Assume
that there exists a perfect complex C* of Ox(X)-modules (in the ring-theoretic sense @) such
that Ox (Xn) ®p, (x) C* =~ Cr.

Then we have dp (x,)(Cr) = Ox(Xn) ® doy(x)(C*). Furthermore do, (x)(C*) is coadmis-
sible, i.e., do(x)(C*) =lim doy(x,)(C}).

Proof. The proof is formal using that determinant functors commute with derived tensor
products and Ox(X,) —» Ox(X,—1) is flat together with the fact that d(C*) is a rank one
projective module over Ox (X) and hence coadmissible by [ST, Corollary 3.4]. O
7.3 Statement

We expect that the results in section Hf extend to affinoids (where only stated or proven over
fields) and to all analytic (pr,I'r)-modules (where only stated for rank one or trianguline

ones), explicitly this refers to Remark and Theorems 4.13] Hence we state the
conjecture below in this level of generality.

Conjecture 7.6. Choose a compatible system u = (up) of 7} |-torsion points of the Lubin-
Tate group and a generator t, of T.. Let A be an affinoid algebra over K, a complete field
extension of L containing L. For each L-analytic (or,T1)-module M over R satisfying
condition there exists a unique trivialisation

eau(M): 14 = Aa(M)
satisfying the following axioms:
(i) For any affinoid algebra B over A we have
eau(M)®aidg = epu(M®aB)
under the canonical isomorphism Aa(M)®4 B =~ Ap(M®4B).
(ii) €4, is multiplicative in short exact sequences.

(iii) For any a € o] we have
5A,a-u(M) = 6detM(a)5A,u-

(iv) ean(M) is compatible with duality in the sense that
EA,u(M)* ® h(XT‘M) _ (_1)dimK HO(M)Q%TMEA,,U(M)

under the natural isomorphisms 14 = 1,®14 and AM) = AM)* ®(A(rr),0), where

h(X™): A(rar) — A maps exrar to 1.

12

26Here one has to make a distinction between a perfect complex of O(X)-modules and a perfect complex
of sheaves of Ox-modules, i.e., a complex whose restriction to each Ox,, is perfect. One can show that C' is
isomorphic to RlimC),. Hence this remark could be restated to require RlimC),, to be perfect.
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(v) For L = Qp, m1, = p and u = ({pn—1),, the trivialisation coincides with that of Nakamura,
in the sense of Proposition[8.7

(vi) Let F//L be a finite subextension of K, My be a de Rham (pr,I'r)-module over Rp and
M = KQpMy. Then
z’:‘K,u(M) = 8%@(]\40)

Remark 7.7. (i) The occurrence of the power of § in the compatibility with duality (iv) is
a conceptually new phenomenon in our conjecture, see also Proposition |7.1/).

(ii) Due to the equivalence of categories stated in [BSX, Thm. 3.16] there is an analogous
conjecture for L-analytic (pr,Tp)-modules over the character variety, i.e., by replacing
the usual Robba ring Rx = Rk (B) (attached to the open unit ball B) by the Robba
ring Ri(Xo,) of the character variety X,, attached to the group or, see |[BSX|, §2.4]
or [SV20, §4.3.6]. In this situation, we expect that the conditions concerning K can be
weakened and perhaps the descent to L (or any finite extension of it) instead of the huge
field K should be feasible, compare with Thm. 4.3.23 in (loc. cit.). Moreover, due to
[SV20, Lem. 4.3.25] there should be no occurrence of Q! We will pursue this in future
work.

(iii) The assumption that K contains L% can be dropped in the case that L = Q, as the
period g, can be taken to be any element in Z,; . In order to specialise our construction
to Naokamura’s one has to make more specific choices. Fizing an element v € ', whose
image in I'/T p_power-torsion @5 a topological generator implictly determines the period as
Qg, = logo(Xeye(¥)) . But this would not necessarily be compatible with Nakamuras
variant of the de Rham isomorphism, since his variant does not involve any period.
Instead one should choose a v such that logy(xcye(Y)) = 1. This defect is due to the fact
our variant of the exponential map involves the period Q) as part of its definition and hence
so does our de Rham isomorphism. This is not a contradiction to the uniqueness of the
e-1somorphisms in question. Indeed in the rank one case, we can see the e-isomorphism
is determined by its behaviour at de Rham points. If Qq, # 1 then our variant asks for
a different behaviour at these de Rham points thus leading to o different result.

7.4 The de Rham case

In this section we explain how to attach a Weil-Deligne Representation to an L-analytic
de Rham (¢r,T'1)-module over Ry, in order to define the de Rham epsilon-constants. We
denote by B» for 7 € {max, cris, dR, st} Fontaine’s usual period rings. Without difficulty this
construction can be generalised to (¢, ')-modules over F®p R, for a finite extension F with
trivial action. In order to keep notation light we will assume without loss of generality F' = L.
We will make use of the equivalence of categories between L-analytic (pr,'r)-modules and
L-analytic B-pairs originally suggested in [Bel6l Remark 10.3] and detailed in |[Poy, Theorem
5.5]. A priori these results are only applicable to E-linear representations of G, where E
denotes a Galois closure of L/Q,. If we start with an analytic (¢r,I'r)-module M over Ry,
then by [Poy| we can attach to E ®; M a B-pair (called Bjg-pair in (loc. cit.)), i.e., a pair
consisting of a finite free EQB,-module WJR,id,E with a B ,-semi-linear (and E-linear) G-
action and a finite free BY := E ®p R[1/t;r]#-~ -module Wiﬁ?:E with semi-linear G'r-action
together with an isomorphism after base change to Byr. By Galois descent, taking invariants
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with respect to the G(F/L)-action (acting via the first tensor factor) provides us with a B-
pair W(M) := (W (M), We(M)) over (B, Be), where Be = R[1/tr7]#*=". The ring B,
can be viewed as a subring of L ®p,, Beis. Indeed, since o(tpr) = mptpr it suffices to consider
elements of R satisfying ¢(x) = mjx for some j € Z, which by Frobenius regularisation are
already contained in R* (cf. [BeOll Proposition 3.2] in the cyclotomic case, and a similar
result holds for ramified Witt-vectors as well (cf. [St3, Satz 3.19])). The ring R+ is even a sub
ring of the smaller period ring L ®r, Bmax-

We call a B-pair (W}, W.) de Rham if W,[1/t] admits a G-invariant basis. One can
show, that this is equivalent to the corresponding (¢, 'z )-module being de Rham (cf. [Porl
Section 3.2, Proposition 3.7| for a proof in the étale case). Note that our notion of de Rham
coincides with L-de Rham in loc. cit.). Consider for F'/L finite the vector space

Dst(M|F) = (Bst ®Be We(M))GF

over the maximal unramified subextension I’ of F//L. We define Dy (M) as their colimit
over all F'/L finite. By a standard argument (cf. proof of Theorem 2.13 Part (1) in [FO]),
each F'-vector space Dg(M|p) is of dimension < rk M and Dpg (M) is hence an L™-vector
space of dimension < rk M. We say that M is potentially semi-stable if this dimension is
precisely rk M or, equivalently, if there exists a finite extension F'/L such that D (M p) is
an F’-vector space of dimension rk M. The p-adic monodromy theorem also holds for B-pairs
in the cyclotomic case and there is an obvious L-analytic analogue providing us with the
following (see [Por, Corollary 3.10] for a treatment in the étale case).

Remark 7.8. M is de Rham if and only if M is potentially semi-stable.

Note that Dy (M) naturally has a semi-linear Gr-action and inherits from B 1, = B ®r,
L an action of ¢, and the monodromy operator N satisfying N¢, = qpqN.

We now explain how to modify this action in order to obtain an L™ -linear representation
of the Weil group Wp,. By local class field theory the maximal abelian extension L of L is
given by the composite L™ Lo, and L™ n Ly, = L. Consider the reciprocity map

recy, : L* — Gal(L®/L)

normed such that recy, (7z) acts as the geometric Frobenius on L™". This induces an isomor-
phism L* =~ ng > go% x I'r,. We denote by =~ : W — ng the canonical surjection and
define a linearised action of Wi, on Dje (M) by setting

Plin (g) (1‘) = ¢Zﬁ(reC71(g)) (psemiflm (g) (x))a

where psemi—iin denotes the action we considered previously. For a € L™, we then have

piin(9)(az) = Um0 D) (i 1in(g)(az))

rec (g
= &y D (pernitin(9) (@)Psemiiin(9) ()
rec (g — rec (g rec (g
= yr e @O (g )l O (@) - e (pyepmi—iin (9) ()
= apiin(9)(x).

By passing to the base change Dy (M) ®r, Lo (with trivial action on L) we are finally
able to define W (M) := (Dpsi(M) ®L Leo, piin, N) which is an L%®-linear Weil-Deligne repre-
sentation (Note that since Dps(M) can be written as a base extension of some Dg (M), the
action of the inertia group I is discrete and because I is open in Wy, the action of Wy, is
discrete.)
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Example 7.9. The linearized Weil-Deligne representation W := W (R (8)) with 6 = §cxFis
given by the character oy = 5165:’lk : L* — (L®)* wia class field theory sending 1, to the
L

geometric Frobenius. In particular,
—k
(64) Ow)jox = 9ox (277) -

Proof. For the convenience of the reader we give a proof using B-pairs. Let e be the obvious
basis of Rp(8) and write §(m) = §c(m)m* = nla with a € of. We can find a € L™ < R such
that ¢,(a) = aa and hence y := —1— ® es € We(RL(5)) = (R[1/trr] ®r RL(6))¥:=L. Note

atlLT
that G, acts diagonally on W.(R(6)), where the action on R (§) is given via the quotient
I'r. Let F be a field extension of L such that J;. is trivial when restricted to the image of Gp in
I'z. Then the action of g € G is given by ¢(y) = a/g(a)xrr(g)* 'y and hence z := tlL_jl‘“a@y is

a basis of (Bsy @ W.(RL(6)))%F. Write 6 = zF6U 64" p where p is a locally constant character
L

with p(7) = 1 and p(vy) = 0;.(7y) for v € I'r. In this representation it is clear that the residual
(non-linearised) action of G, is given by gz = p(g)z and hence the linearised action is given
by

—1

N(z) = (' Fa)rreeT D p(g) 2
— 510(7T)U7r(r6(3_1 g) (ﬂ-fk)v-n(rec_l g)p(g) = 5[05;-“216 (g)z

7.4.1 Equivariant de Rham epsilon constants

For a de Rham (¢r,T'1)-module M over Ry we would like to define the epsilon constant of
M to be the e-constant associated to W (M)

e(M, 1), dz) := (L, W(M), b, dz)

defined in section @] using the adjustment . In the cyclotomic case (take for simplicity
L = K = Qy), these e-constants can be viewed as elements of L, = Q,({p»). In our case the
constants are defined using p-power roots of unity which are "built" from the LT-torsion points
using the power series n(—,T"). The problem we run into is that, contrary to the classical case,
we can not assume that L, contains the p-power roots of unity.

Suppose K contains L. Then it makes sense to view e(M,,dz) as an element of K,
but by our convention that K carries the trivial I'z-action, we do not have vy(e(M, ¥y, dx)) =
e(M, z/J,y(u),dx), which we will need for technical reasons below in , cp. Remark
Roughly speaking we would like to define the e-constants as elements of L, ®r K with n
large enough, such that the definition of the epsilon constants “involves only” the 77-division
points of the Lubin-Tate group. We make this concept precise via the following equivariant
construction.

Definition 7.10. Suppose the complete subfield K of C, contains L% and let W be a Weil-
Deligne representation of Wi, with coefficients in K. Building on the e-constants defined in
section [0 with E = K we define the I'f-equivariant c-constant

é(VV, u, dZE) = (EK(L> w, w%(u)v dx))7'7
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for lifts P7| 7 of 7 to T'r,, viewed as an element o

[] K=2L.®@K<SL,®LK
7: Lpn—K

via the canonical isomorphism, where n » 0 is large enough such that the e-constant can be
defined in terms of characters of conductor < n according to Deligne’s (inductive) construction
principle: In the rank one case, i.e., in the case of a locally constant character 6: L™ — K*,
one can take n = a(0). In general, the definition of the e-constant involves multiple such
characters defined over finite extensions of L (cf. [Del, p. 536, Equation 4.2.1]) and one has
to choose n greater than the supremum of all appearing conductors.

Remark 7.11. With respect to the I'p-action on L, ®p K wvia the left tensor factor we have
VEW, u, dx)) = EW,v(u), dz) = (1@ daetw (XL (V)))E(W, u, dz).

Proof. Without loss of generality we can assume W is of rank one corresponding to a locally
constant character §: L* — K due to Deligne’s construction principle. First of all we note
that € is well-defined since uq(5) € Ly, by assumption. Because the natural isomorphism L, ®r,
K =Tl ,xK maps u®1 to (7(u))-, we can see that £ is obtained by replacing in (57)
the elements 7(a, u,s)) by the series n(a,T) evaluated at the element (u,5 ® 1), i.e., by
Yien, (1 ® ai) (uq(sy ® 1)°, where n(a,T) = > a;T* (this expression converges with respect to
the tensor product topology). The formula for the y-action can be read off from (57)). O

Definition 7.12. For a de Rham (pr,I'r)-module M over R we define the epsilon constant
of M to be the T'1-equivariant e-constant associated to W (M)

E(M,u,dx) := E(W(M),u,dz).
We usually omit dx from the notation and write
E(M,u) := E(M, 1)y, dx).
Remark 7.13. Let dx be the self dual Haar measure with respect to i, then
E(M, —u,dx)é(M,u,dz) = 1

Proof. In order to apply we check that we have an isomorphism Dy (M) 2= Dpst (M)*(|z)).
Using the usual functorialities it suffices to check that Dpst (') = L™ (|z]), which is a special
case of Example The proof of the other required equation

det(_%0|Dst(M)/DcriS(M))det(_@|Dst(M)/DcriS(M)) =1

is then also standard, see e.g. [Dal claim 5 in proof of Prop. 2.2.20]. O

2"The independence of the choice of lifts 7 follows from the more precise description within the proof of the

following Remark

281f § takes values in a finite extension F of L and W = W (Rr(J)), then as an element of

K= [] FOLK=2FQL.®KSF®rLe® K
7: Lpn—>Kio: F>K 7: Lp—K

assuming F' € K for the first isomorphism. Also the o should be involved as W (M), in the defining tuple
then.
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We now describe how our construction relates to the étale and the cyclotomic case. The
comparison of e-constants involves a number of choices and we will only give an informal
comparison of the constructions presented here and the ones from [Nal7al - by which we mean
that we give a comparison up to constants that only depend on L/Q,,. There are two avenues
to be considered. On the one hand, we can specialise our constructions to the cyclotomic case
L = Qy, taking u, = (p» — 1 and Q = 1. Because (,n = 1 + u, = 1(1, (uy,)) in this case our
construction specialises to Nakamura’s, more precisely, our € is equal to en, ® 1 viewed as an
element of Lo ®q, K, where ey, denotes the constant from [Nal7a, Section 3C]. Indeed the
elements 7(a,u, ® 1) = (j» ® 1 appearing in lie inside L, ®q, Qp.

On the other hand, we take the induction of an L-linear G -representation V and treat
it as an L-linear representation of Gg,. For the moment let us assume V' € Repy, G, is semi-
stable and L-analytic and set X := Indp g, V. Let Q, € Lo € L be the maximal unramified
subextension. We can decompose

(Bst ®Qp V)GL = H (Bst ®L0,T V)GL
T: Loﬁ@

and have a similar decomposition for (B ®q, X )G‘@p. The epsilon constants of the induction
(given suitable choices of additive characters) are related by explicit constants independent
of V' (see (b9))). Ignoring these, the e-constants defined by Nakamura are the product of
the e-constants of each component in the sense that he attaches to X a tuple (W), of
Wg,-representations to which he attaches a tuple (e(W;)), (cf. [Nal7al p.359] for details) of
constants living over Q,((p= ) ®q, L. In contrast we attach (informally speaking) to the 7 = id
component a constant (W;4). As we can not assume that Lo, contains the p-th roots of unity,
an analogous construction involving Lo, does not work in the obvious sense and taking the
base change to L with G, acting naturally on L% does not provide us with the Galois action
needed to make the constructions in[7.11] work. By assuming L% c K we can make sense of the
elements n(a, (u, ® 1)) € L, ®, K, which allow us to define £(W;4) with the desired technical
properties now living over Ly ®r K = | [seniom, (k) K for n > 0 (note that the index set of
the product is different in comparison to Nakamura’s situation). By projecting to the o = id
component we can recover Nakamura’s €(Wiq) and our constant e(Wiq) = (e(Wid, ¥s(u), d7))o
should be informally thought of as (o(e(Wiq)))o, which is not well-defined as o does not act
on K but only on L,.

The fact that V is semi-stable and L-analytic forces each non-identity component to be
potentially unramified (since they are semi-stable with Hodge-Tate weights 0). If they are
even unramified, all e-constants at non-identity components would be 1 and both methods
give comparable e-constants (more precisely, at o = id they would be the same up to explicit
constants independent of V). If the action on the non-identity components is only potentially
unramified, we cannot assume that the e-constants at the non-identity embeddings are 1. In
particular these embeddings contribute to the e-constant attached to V by Nakamura in a
way that can not be captured by only considering the identity embedding.

7.4.2 The de Rham epsilon-isomorphism

For each de Rham (¢, I'r)-module M over Ri which arises as a base change of a (¢r,I'1)-
module My over Rp for some finite extension F'/L, and for each generator u of T we are
going to define a trivialization

(65) e (M) : 1x = Ak (M)
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as product of three terms
et (M) := T(M) - ©(M) - Ogr u(Mo)
where

O(M): 1 = Ag,1(M)dx(Dar(M)),
Oaru(Mo): d(Dar(M)) = Ago(M),
(M)e K*.
To keep notation light and consistent with the previous subsection we will, without loss of

generality, restrict ourselves to the case L = F. Firstly, we define I'(M ), which depends only
on the Hodge—Tate weights of M. For r € Z let

n(r) = dimg gr~" Dgr (M),
so n(r) is the multiplicity of r as a Hodge-Tate weigh@ of M. We define

. (r—1)! ifr>0,
F (T) = {(_1)r

W lng(),

the leading coefficient of the Taylor series of I'(s) at s = r. Then we set
D(M) = [ [(@T*(r)) =)
reZ

Secondly, ©(M) is obtained by applying the determinant functor to the following exact
sequence

( ) 0— H<273n (M)FL - Dcris (M) - Dcris(M) Dim Hé,‘?)n (M)FL -
66
Dcris(M)* S DdR(M)O - Dcris(M)* - H?pjn (M)FL - 0)

which arises from joining the bottom exact sequence of with the dual of the same sequence
applied to M by local duality (—, —)ps in and using Remark , upon

(i) using the tautological exact sequence 0—= D 4 (M)°

D (M) —— o — 0
as well as de Rham duality in the form

DdR(M)O i) t}k\}p €T = {g = [y7x]dR7]\;[}7

and

(ii) identifying each time the two instances of D_ . (M )* and D

identity.

M), respectively, by the

cris( cris(

29We adopt the convention in this paper that the Hodge-Tate weight of the cyclotomic character is 1.
307* (k) in [Nai7a] has been replaced by QFT'* (k) in our setting.
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Thirdly - here comes the reason why we use a model M - Ogp (M) := f]\_/[i ,, is defined by
the analogue of [Nal7al Lem. 3.4] which - using Remark and (64]) - induces an isomorphism
Frtgw s A2(M) S dg (Dgg (M)) from the map (cp. Remark D

(67) Lx(M) = Dyigp(detr, M) =Kn((tr)) ®, pom (detr, M )
- 11 n
e (E(Mo,u)™h - =) @ 9" (x)
LT

for sufficiently large n such that the equivariant constant £(W (My), u, dz) from Defintion
lies in L, ® K < K,((tyr)), where hy; denotes the Hodge-Tate weight of det M. One easily
checks independence of the choice of a model M - the reason why we use My in the notation
is to indicate that we need a model to define these objects. Note that depends on v in
two ways. On the one hand via € and on the other hand due to the explicit appearance of
tr which, as pointed out in [3.10] depends on the choice of u. An analogous computation to
[INal7al Remark 3.5] shows that fazyqu = ‘5detRK (@)™ fag . for a € of.

Proposition 7.14 (Properties (ii) and (iv) for E%i(MO)).

(i) For any exact sequence 00— M Mo Ms — 0, we have
et (Myy) = eff (M1 ) @ 1% (M3 o)
under the canonical isomorphism Ag(Ma) = A (M) @ A (Ms).
(ii) The following diagram of isomorphisms commutes

Ag (M) R A (M)* ® (K (rar),0)

ia%{mMo)*@h(er)

(—1)dim g HO (M) ()~7 01 can
1k 1 ®1g,

where h(x") : (K(x"),0) = 1k sends e, to 1.

Proof. Analogous to [Nal7al Lem. 3.7|, but with some differences. Due to the period € in the
definition of I'(M) we now obtain

(68) T(M)T(M) = Q"0 (—1)har+dimic b

instead of (27) in (loc. cit.). By definition the second part of the long exact sequence for
M is given by the commutativity of the following diagram with exact rows
(69)

0 —— H'(M)/H" (M) —= Dyyis (M)* @ D (M)® —> Do (M)* —=HZ 5 (M) —0

cris ©,3n
F}f(M)J/ l /2(N1)l
(epr,M Dexpp)*
0 (s P EERE @, D,y (M)* ——> HO(M)* —— 0

where we have identified M = M and abbreviated Hfo,Sn (N)' by H(N). Moreover the maps
F}f(M), F2(M) and similarly F}(M) cH' (M) — (H'(M)/H"(M)¢)* are induced from the
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complex isomorphism K., 3(M) = K, 3(M)*[—2] from (21). Taking duals gives the following
commutative diagram with exact rows

(70)
0 HHO(M) 4>Dcris(M) Dcris(M) @tM HI(M)f

FQ(M)*l J/ J/ F}f(m’kl

0 —— H*(M)* —— Dyjs (M) — Dyyjs (M) @(Dyg (M)°)* —— (H'(M)/H" (M)5)* —0

eXPr M Dexpu

cris(

Upon noting that f2(M)* = fO(M) while F'(M)* = —F (M), whence also F}f(M)* =
—F }(M ), we obtain the modified commutative diagram with exact rows
(71)

0—=H(M)——=D

€XPyr M Dexpas

H' (M)

Cris( Dcris (M) (—B tm
FO(M)\L —idl id@canl F}(M)i

0 —— H*(M)* —— D35 (M) — D3 (M) @(Dgg (M)°)* —— (H'(M)/H" (M) 5)* —0

M)

cris

Combining this diagram with the analogue of diagram for M instead of M we obtain the
commutative diagram

(72) 1 —22 Ay 1 (M) ® dic(Dyg (M)

(—1)dimp tar+dimpe HO(]VI)\L iF(M)@can

@*

1k <JIAK,1(M)* ® di (Dar(M))*.
Finally one has the commutative diagram

©ar,—u(Mo)
(73) di(Dyg (M)) S

(—1)Pm Canl

~ Oar,u(Mo)*®h(X M) ~
dx(Dar(M))* @1k CLLXAKQ(M) ® (K(x™),0),

because of Remark and since changing u to —u requires the change trp to —trp (cp.
[Nal7a, Rem. 3.5] which applies analogously here) in the definition of fay, ., above. Then (ii)
follows from (68),(72)) and while the proof of (i) is literally the same as in (loc. cit.). O

Remark 7.15. As in [Nal7d, Rem. 3.5] one shows property (iii) for 5%§L(M0) using Remark
[Z11)

{':%I,Zu(MU) = 6detRK (M) (a)ECL“?L(MO)

for all a € of .

8 Epsilon-isomorphisms for (Lubin-Tate deformations of) rank
one modules

In order to construct the Epsilon-isomorphism for rank one modules M in 9M**(K) we shall
construct it on the level of the deformation Dfm(M) of M (introduced in §4.2) and descend
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the results to M. As this deformation lives over the character variety Xr, (base changed to
K) of the locally L-analytic group I'y, we can use density arguments to deduce many of its
properties just from its de Rham points.

Definition 8.1. Using that the complexes Cy, := Ky p(r, ix)(Dfm, (M)) are perfect by The-
orem[4.3 (1) we can apply our definition

Ay x, (Dfm,,(M)) :=dp, (v, k) (Kv pr, k) (Dfm,(M))),

which defines a (graded) line-bundle on Xr, by (2) of the same theorem, with global sections
Az, (Dfm(M)) = lim Ay x,, (Dfm, (M)).

n

From the proof of Theorem [[.7 we know that for the derived limit C* and for every n,

L o O .
Ozr, (Xn) @0y, () € = C

in D(Ox,. (Xy)). Hence, by Definition Remark and again Theorem together with

Remark we obtain

(74) Al,xpL (Dfm(M)) = dD(FL,K)(RF\I!,D(FL,K) (Xr,, Dfm(M))) = dpr;, k) (Tw(M)).
Furthermore,

(75)  Agxy, (Dfm(M)) = lim Ay y, (Dfim, (M) = lim(Ox,. (X,),1) = (D(Tz, K), 1).

n

We survey some preliminary results that allow us to construct an isomorphism
Ag x. (Dfm(M)) = dpr, x)(Ty(M)) 1.

Let 6 € X4y, Using (R(6))Y=0 = (R})¥=°(6) combined with Lemma and since p(es) dif-
fers from e only by a scalar in K, we can take n(1, Z)es as a D(I'r, K)-basis of (R}’((é))‘l’zo,
which gives rise to the Mellin isomorphism

(76) Ms :D(Tr, K) = (R5(6)Y=°, A= An(1, 2)es).

It turns out that for technical reasons (more precisely, in order to obtain the commutative
diagram below), we have to renormalize the Mellin isomorphism by inserting the operator
o_1 € I';, with XLT(Ufl) =—1:

(77) Msoo_1: DT, K) = (REG)V0 N Mo_1(n(1, Z)es)).
Remark 8.2.

(i) The complezes Ty(LA(op)(x ) = To(Rx(0)/Rk(d)"), Te(Rk(5)) and
Tu(R(0)), are all perfect complezes of D(I'r, K)-modules. Indeed, by Lemma
the cohomology groups of Tu(LA(or)(x 19)) are finite-dimensional K-vector spaces,
whence perfect as D(I'r, K)-modules by [St2, Lem. 3.7 (with v = 0 and using the
Fourier-isomorphism). Then [SP, Tag 066U] implies that Ty(LA(or)(x~'6)) belongs

to Dgerf(D(FL,K)). Since Ty (R (0)) is in Di’)erf(D(FL,K)) by Theorem 50 18

Tw(R(0)) as the third complez in an obvious exact triangle with the previous ones. The

same holds for Tu(Dn(8)) and Te(R7(5)/Dn(8)) for similar reasons.
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(ii) Since over affinoids A the analogous conclusion of [St2, Lem. 3.7] - i.e., that a D(I',, A)-
module, which is finitely generated as an A-module, is perfect - is not available, we are
not sure whether the construction below also carries over to families directly. It certainly

does, if Ra(6) € M (A) satisfies the conditions of Remark[§.20,

Lemma 8.3. Let § € ¥y, and let M = Ry (6) be the associated (¢r,,1'1)-module of rank one.
We denote by M™ the submodule R;’(((S) We have the following isomorphisms in Ppr, k)

(1) dpr,,x)(Te(M)) = dpr, k) (Te(M™)) induced by the canonical inclusion M* < M
and the trivialisation of dp(r, ry(Tw(M/M™)) from Lemma .

(i) dpr,,x)(Te(M™)) = dp(r, k) ([M* 2, MT]) induced by (1 — ¢r,id) and the trivial-
ization of dp(r, k) (Te(Dn(0))).

(iti) (D(T'z, K),1) = (dpr,,x)[M* 2, M*)) =L induced by identifying ker(¥) with D(T'1, K)
via Ms o o_1.

Chaining these together gives an isomorphism dpr, ) (Te(M))™" = (D(I'r, K)(6),1).

Proof. The first statement follows since the short exact sequence 0 > M* - M — M/M+ —
0 induces a short exact sequence of complexes. For the second statement we use that by [FX],
Lem. 5.1] we have a commutative diagram with exact rows

0 —— (R(0))" —=RE(6) >R (6) —0

1gol; 1<plg

0——=RE(6)Y0 ——=RL(0) —= RE(6) —0,

which induces a quasi-isomorphism between the complexes, if §(7y) # n;" for all i € N.

Otherwise, kernel and cokernel of R} (8) N R}(8) are isomorphic to Kt} and can be
trivialized by each other when taking determinants (formally this is achieved by replacing
R (6) by Rj(6)/Dn(8) and then trivializing the determinant of Ty (Dy(d)) as in [NalTa,
(40),(44) in §4.1]). For the third statement we first remark that the complex M™ RN

(concentrated in degrees 1, 2) is cohomologically perfect by Lemma - using (R (0))¥=0 =
(R%)Y=9)(6) - because on the one hand W is surjective and on the other hand its kernel is free

over D(T', K) by (77)). Therefore the determinant of M ™ L, M+ is equal to (D(T'p,K),1)~L
O

From Lemma [8.3| we obtain finally an isomorphism (cf. [NalT7al Def. 4.1])
0(5) : dp,. k) (Te(R(8)) ™ = dp(ry, 1) (DL, K)) = Ao xy, (DIm(Rk(6)))

which in turn induces an isomorphism over K

can

ep(ry,k)u(DIM(RK(8)) : 1pr, 1) —> dpr,,x)(Te(Rk (0)dpr, ) (Te(Ri(8)))

(78) MEOO), dpry 10 (To(Ri(8)) Aoz, (DEm(Ri(5))
= Az, (Dfm(Rx(8))).
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Note that the map depends implicitly on u. If we consider instead of Ry, the isomorphic
subring Rr(Z,) of R, as pointed out in Remark , then for @ = xr7(7.) € 0] we have
Zau = [a](Z,) and thus we get a commutative diagram

(79) D(Tp, ) —2 (R} (8))¥=0

%al'i l«xa)—l-

D(T'p, K) 22 (R (8)) V=0,

Indeed, we have
M (3,11) = A (5%1 (n(1, zau>)5%1e5)
= A(n(a ™ al(Z)o(a) s
=6(a)t- <)\(77(1,Zu)e5)>.

Concerning the descent, we have to distinguish the following two ways.

Remark 8.4. Let § : T', > K* be an L-analytic character. Mapping a dirac distribution -y
to §(v)es induces a surjection of D(T'p, K)-modules

ps: D(FL,K) — Keg.

Alternatively we may equip D(Tp, K) with the T-action yn = [y~ 1|n, denoting the resulting
I'r-module by D(I'p, K)*, and map « to §(y)es to obtain a surjection of D(I'r, K)-modules

fs : DI, K)" - Kes.

Proof. Since ¢ is analytic K(0) = Kes comes equipped with a D(I'p, K)-module structure
extending the K[I'z]-module structure. The map ps is surjective because 1 is mapped to a
K-basis es and D(I'r, K)-linear by construction. The second statement follows analogously
since the inverted action is also L-analytic. O

Now, for the descent we observe that, if fs5, : D(I'r, K) — K arises from a character

do 0] € L* — K* interpreted as character of I'z,, we have the following:

Lemma 8.5. The isomorphism induces the canonical isomorphism
SPs, * Aer (Dfm(R())) ®D(Ir,K). f5, K = Ag(Rk(6d0))
taking the normalisation from Remark[{.§ into account, cp. with [Nal7d, (34), p. 370].

Proof. We show this isomorphism for each part of A separately:

At xp, (DIm(M) ®p(ry 1).55, K = dicir, /o) (Ty (M (80)) @y, iy PTL/U)) Okpry oy K
(80) = dicir, Ty (M (60)) ®pry K) @xcir, oy K
= dyr, v (Kw,, 3(M(60))) ®kr, o) K
= dr, u1(Ky,,3(M(d0))) ®xr, o) K = A1,k (M(do))
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and
81)  Agx, (DIm(M)) ®p(r,, k),f5, K = Do,k (M) @k D(I'L, K) @p(r, k), f5, K
= AQ,K(M((SO)) = (Ke(5507 1)
using Remark [7.2] ]
With these preparations we are now able to state the main result of this article.

Theorem 8.6 (Local e-conjecture for Lubin-Tate deformations of rank one modules). Let
F'/L be a finite subextension of K and M be a rank one analytic (pr,T)-module over Ry
and denote by My the completed base change M@p K. Then the isomorphism

€D(FL,K),u(Dfm(MK)) t1pr, k) = ABEFL (Dfm(Mk))

induces for every L-analytic character ¥ : I'y, — F* with finite intermediate extension F' €
F € K such that Mg (¥) is de Rham the following commutative diagram

can

(82) 1pr,,k) ®Op(rp,K). 0 B 1k

ED(FL,K),u(Dfm(MK))®idKl le%ﬁt(RF(éﬁ))

Az, (DIm(Mk)) ®p(ry, x).fo K P A (Mg (9)),

where the notation fy has been defined in Remark[8.4] and the specialisation isomorphism spy
is explained in Lemma above. Moreover, ep(r, k)u(Dfm(M)) is uniquely determined by
this property.

The uniqueness follows from the considerations in Appendix [A] while the specialisation
property will be proved in subsection below.

Note that the isomorphism e p(r, ) (Dfm(Rk(5)) does not literally fit into Conjecture
because D(I'y, K) is not an affinoid algebra over K. But for any morphism of rigid analytic
spaces f : Sp(A) — Xr with an affinoid algebra A (e.g. Dy,) over K it induces the isomorphism

ea(f*DIm(Rk(6))(Sp(A))) := epr,, k) (DIM(Rk () @pr, i) A):
L4 = Aa(f*DEm(Ri (5)(Sp(A)))

which provides instances of the conjectured type. Note that for the inclusion f : Sp(D,) — Xr
we obtain

S*DIm(Rk (6))(Sp(Dn)) = Dimy, (R (6)).

8.1 Property (v)

Specialization to the case considered by Nakamura requires some special care, because we
used a different definition of e-constants. As discussed in the agsumption that K contains
L can be dropped since Ly contains the p-power roots of unity. We can thus even assume
K = Q, in the construction of the de Rham e-constants. Similarly we can take 2 = 1 and
hence do not need any special assumptions on K in order to make use of p-adic Fourier theory.
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Proposition 8.7. Assume L = Q,, assume 7y, = p. take u, = (pn —1 for a compatible system
of p-power roots of unity and choose a y € I'g,, which is a topological generator of the torsion-
free part, such that logy(Xeye(v)) = 1, and take Qq, = 1. Then, if one assumes K = Q,, our
construction agrees with the one in [Nal7dl.

Proof. Note that by a density argument and by property (vi) it suffices to see that the con-
structions in the de Rham case coincide. The condition of L-analyticity is automatic, if L = Q.
We remark that the complex K ;73(—) considered by us specialises to a variant of the usual
Herr-complex as we can take 3 = v — 1, but there is a small difference to [Nal7al Definition
2.10]. The order of ¢ — 1 and v — 1 is exchanged (which poses no problem), Nakamura uses
a topological generator ynq of I'/A, with A = I'y_power-torsion While we use a generator of
the free part. In the case p = 2 the terms of Nakamura’s complex are M. In this case our
choice of v is a valid choice for the variant in (loc.cit.) while in the case p # 2 we can arrange
that fyﬁ,_al = 7. In both cases the torsion subgroup A’ € T is a split subgroup and taking
A'-invariants is exact in characteristic 0. Let U = {y) € T'. For p = 2 we have A = A’ and
plugging in the isomorphism M# =~ M/A and A = T'/U we see that our Q, ®q,a] Kop,3(M)
is canonically isomorphic to the complex considered in (loc.cit.). For p # 2 we can consider
instead the natural map of complexes

[M 22 A — (M 25 M

given by m +— Z%Z gear gm in both degrees, which induces a quasi-isomorphism onto the
A'-(co)invariants of the right-hand side and induces a corresponding quasi-isomorphism of
the Herr-complexes by taking ¢ — 1-cones. We can thus conclude that the fundamental lines
are canonically isomorphic to the ones considered by Nakamura. Similarly the exponential
maps are the same. Because m;, = p = ¢ we see that the character x is just Xy and the
duality pairing (—, —); from section is the pairing used by Nakamura. In we use
{(—, =>p which by the same reasoning corresponds to the pairing used by Nakamura, namely
the duality pairing for My = M . The assumptions on v and Q avoid the problem discussed
in (ii) concerning normalisation factors and the appearance of € in the I-factor. Finally,
the series 1(1, Z) is just 1 + Z and we can view 7(1, (un, ® 1)) appearing in the construction
of the equivariant e-constants as an element of Ly, in fact we have n(1,u, ® 1) = (pn» under
the isomorphism L, ®q, Qp = Lo. Combining all of the above shows that our e-constants
constructed in the de Rham case agree with those in Nakamura’s work. O

8.2 Property (i)

For all f: A — A’, such that we are able to construct the e-isomorphism as above for A and
A’ the base change property (i) with respect to f : A — A’ obviously holds by construction.

8.3 Property (iii)
We can rephrase the diagram to the following commutative diagram for any a € o}

D(T1, K)(6) 2% (R (8) Y0,

[al]l
D(Tp, K)(8) 2% (R (8))¥=0



where [a] acts on D(I'p, K)(0) as 6, - 6(a) (here 8., denotes the dirac distribution attached
to vq € 'L with xz7(74) = @). Note that the action on N := Dfm(Rx(9)) with respect to the
basis 1®e;s is given precisely by the character 6: I', — D(T'z, K)*;v — (8,) ' (xrr(7)) and
hence property (iii) follows from the above diagram by specialising along D(I'f,, K)(5) — K (6).

8.4 Descent

For ¢ € Xy, (F) with F a finite extension of L, we consider the decomposition § = §""dy as in
section and define on the basis of

erxu(R(0)) : 1x = A (R(5))

as ep(r,,x)(DIM(R g (0)) ®D(T,K), fs, K) followed by the isomorphism from Lemma ﬁ In

order to make this definition more explicit we have to understand the isomorphism () :=
o(5"m) ®D(rp, k), 5, L» which we will consider as an isomorphism

2 .
0(9) : R diyr, /vy (Hy, 53RN @ppr, i K = (Kes, 1)
1=0

by using and the inverse of the natural isomorphism

dp(r,, i) (To(RL(9)) ®p(ry k), f5, K = dier, vy (Kw,, 3(M (00))) @xrp ) K

2 .
= ®dK[FL/U](H&/L,B(RK(d)))(_l)l ®k[r, ) K
=0

induced from using properties of the determinant functor from section
From the exact sequences , , we derive the following exact sequences and
isomorphisms:
(83) 0 —Hy3(RE(9)) = Hy 3(Ri(6)) = Hy 5(LA(or)(x '8)) —
H3(Hy(R(6))) — Hs(Hy(Ri(3))) — H3(Hy(LA(or)(x™14))) — 0,

(84) HG 5(Ric(8)) = HY(Hy (R (9))) = 0

(85) Hy 5(Rj(6)) = H3(HY(RE(0))) = R (5)V="/Z,
(86) HY(Hy (R (5))) = H3(Hy(LA(oL)(x '9)))
(87) Hy 5(Ri(6)) = H 5(LA(oL)(x'0)),

(88)  0—H3(Hy(Rk(0)) — Hy 3(Ri(0)) — H3(Hy (R (6))) — 0.

For the descent it is useful to recall that the determinant functor d; commutes with taking
the derived tensor product —®H5(FL K. fs K. E.g. the additivity on short exact sequences above
k) b 0

turns into the additivity on the associated long exact sequences of cohomology groups below.
Finally, the determinant functor commutes with attached spectral sequences by [V14].
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8.5 Verification of the conditions (iv), (vi).

In this subsection, we prove the condition (iv) using density arguments in the process of
verifying the condition (vi). Indeed, it suffices to prove (vi) as the duality statement for de
Rham characters was shown in and by Zariski density of the de Rham characters (see
Corollary the validity of property (iv) holds in general once we establish (vi), i.e., the
interpolation property in the de Rham case. We follow the strategy of Nakamura and consider
first a generic L-analytic de Rham character of weight k. The case £ < 0 boils down to
Proposition The case k > 1 is treated in Proposition The remaining so-called
exceptional case is treated in Section [8.5.3

8.5.1 Twisting

We define the operator 0 := 0 : Rxk — Rk, f — logl'LT% = dtdfT, and the residuum map

Res : Rx — K, f — res(fdtrr) with res(}c; aiZ'dZ) = a_;. Extending theses maps
coefficientwise, i.e., applying it to f in fes and using [FX| Lem. 2.11, 2.12| we obtain an exact
sequenc

(89) 0 — K(6) — R (8) — 2> Ry (26) —2~ K(6]z|') —0.

It is well-known that the partial operator ¢: Rx — R is related to twisting, see e.g.
[SV20, §4.3.9]f7

(90) D(Tr, K) —> (R )¥r=0

T'wXLT l i
m

DTy, K) —— (RE)¥e=0.

ib3

Q=

0

Here, for a locally L-analytic character p: 'y, — K> we denote by
Tw,: D(G,K) = D(G,K) ,

the isomorphism which on Dirac distributions satisfies Tw,(dg) = p(g)dg.

Using for dp(r, ) Tw(K(0')), &' =4, S|lz|~1, the trivialization by identity, the operator &
induces via the above exact sequence the isomorphism

0: Ay xp, (DEM(Ri(5))) = Az, (Dfm(Ri (20))),
which also descends to an isomorphism
0: AL g(Ri(6) = A1k (Ric(x6)).

Moreover, we have isomorphisms

0: Agxp (DEM(Ri(6))) = Agzp (DEm(Ri (20))),

31This sequence already exists over L instead of K!
32Here Q is required!
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and
0: Ao g (Ri(6)) = Ao i (Ric(26)).

by sending fes to _ﬁl fews. Altogether we obtain an isomorphism

~

0: Az, (DIM(Rk(0))) = Az, (Dfm(Rg (26))),
which also descends to an isomorphism
0 Ag(Ri(0)) = Ag(Ri(26)).

Using diagram and the definition of epr, x)(Dfm(Rk(d)) and e (Rk(5)) respectively,
we conclude the following

Proposition 8.8. If ¢ # 1,|z|, then there are canonical equalities
0o epr,, k) (DIM(Rk(5)) = epr, k) (DIM(Rk (26)) and 0o €L (Rk(0)) = eL(Rk (x6)).

Proof. Since the second statement follows by descent from the first one, we only have to
consider the case of the deformation following the construction in Lemma [8.3] step by step.
Regarding (1) we observe that the operator ¢ restricts to an operator Ry (6) — Ri-(z)
while it induces the operator LA(or)(x '6) — LA(or)(x 'a6), pe,-15 — Que, 1,5, which
can easily be derived from Remark (v) combined with the exactness of (89)). The compat-
ibility with 1 — ¢y, in[8.3(ii) is a consequence of Remark (i). Finally, the compatibility of
0 with M5 0 oy in [8.3[iii) follows from diagram together with the o_; in the definition
of using (ii). Combining both yields the factor —§) which cancels against the factor
in the definition of J|5,. One can check that the twisting construction is compatible with the
various trivializations involved.

O

Proposition 8.9. Let 6 € X" (F) with F/L finite such that Rp(J) is a de Rham (¢,T'1)-
module with Hodge-Tate weight different form zero. Then we have the equality

0o ng{fL(RF(é)) = E%i(RF(:Ué)).
Proof. The proof is analogous to that of [Nal7a, 4.14] upon noting that I'*(k) has to be
replaced by QFI* (k). O

Since €% and e are compatible with respect to @ by the above poropositions, it can be

used to transport the validity of the Conjecture between characters dx and 9.
8.5.2 Generic case

This subsection has been inspired by [Nal7a, 4B1] and [V13]. In this subsection U = T';, and
3 = 3, for an appropriate sufficiently large n » 0, which might be adapted to the specific
situation.

Lemma 8.10. For 6 € Xyen(F) we have

(91) Hy 3(LAoL)(x'6)) = Hy 3(Pol<n(or))= Hy 35(Dn(6)) = 0,
H3(HY(LA(oL)(x™'6))) = H3(Hy(LA(oL)(x ")) =0
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for alli and N =0, and

(92) Hy 3(RE(9) = Hy 3(Ri(9)) = 0
fori#1, and
(93) Hy 3(R7(9)) = H3(Hy(R(9))) = Hy 3(Rk(9)).

Proof. The first claim follows from ,@ and Lemma The second follows from Lemma
(combined with Remark and @ (there for 'y, instead of U, but applying the result
to all twists by characters of the finite group I';, /U also implies the statement concerning U)
combined with and . The last assertion follows from the previous ones combined with

O

By construction according to Lemma and using Lemma we see that ©(0) arises -
upon taking determinants and descending further by — ®Hf<[FL JU] K - by the composite of

(i) (the inverse of) the isomorphism H%(H\(I),(R}Q(é))) ~ H&,BJ(RK(&)) together with the
trivialisations of dp(r, x)(Tw(LA(or)(x '6))) and dp(r, x)(Tw(Pol<n(or)(x 16))),

(ii) H3(HG(R(0))) = H3(R{(6)"=") induced by 1 — ¢, together with the trivialisation of

kernel and cokernel of R} (6) 1o, RE(8) - each isomorphic to Kt} ;. - respectively with
the trivialization of dpr, x)(Te(Dn(d))) and

(i) H1(R(6)¥=0) CO (R1(5)¥=0)y = D(T, K)y = K[I/U] up to choosing basis
elements and using the Mellin transform s oo_1.

Altogether - up to the isomorphism H% (HY (R (9))) = H&,’S(RK(d)), [z] — [(0,2)] - this
amounts to

(00 HYHY(REO) TS HYRE()") = DTy, K)ves = K[T1/Ules.

For the remainder of the section we assume in addition that  is de Rham. We have to compare

with

#,(n)

(95) HY(HY(RE(D)) = HY 3(Ric(6)) — K%, DO (R ().

By the commutativity of the upper square in the (second) diagram of Lemma one im-
mediately sees that a class [A,es] is mapped under to prr,, (Tw(;q(Rest (1)))es while
under to tn(Ayes) i, —0 = 00 tn(Aues) by Definition @ combined with Lemma
Recall that § was defined above Definition [3.12] Consider the K[I'y/T',]-linear map

(96) S K|Iy/Ty] = DR (Ric(9)).
whose p-component, for p running through the characters of G,, := I'r,/T',, is given as the

K-linear map

n _ 4o 1
(97)  ¢,2: K = Ke, — ¢,D{ (R (6)) = Dar(Ri (5p™1)), 1 — €(6p Y res,mt.
LT
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upon noting that Dqr(Rk (d')) = (LOO®LKée5/)FL. Here ¢, := ﬁ 2 0eGn p(g Hg e K[Gy]
denotes the idempotent attached to p satisfying ge, = p(g)e, for all g € G, while for an
analytic character ¢ : L* — (F')* (of weight k < 0) we set

(—QF | ERk(&),u)~H, if a(8') # 0;
(98) ¢(0') := det(1—q o | Deris (R (8 ‘
(—Fk)! fiet(‘{_;‘]Dc'ﬂs(R}({(gf)()) )) , otherwise

in L, ®r, K. Unravelling the definition of 5%{2 and using Proposition one easily sees that
part (vi) of Conjecture is equivalent, for k < 0, to the next

Proposition 8.11 (Explicit reciprocity formula). Let § = 0.2 be de Rham. For k < 0, the
following diagram is commutative.ﬁ
(99)

(R (6) V=" === (R} (8)) ¥~ Tt D(T, K)

i )
— 0oL
q n

2—[(0,Crr(32) "1
[(0,C7y(3n) ™ )] Crr(3n)-10m

Pre,

=] Y
HY, 5, (Ri(6)) "= H} (Dyig) <—= HY, (Daiy) = D) = L @1, Dar <=— K[ /U],
_ IR ¢ (8) Y,
exp*:(m)

i.e., a class |A e5] € H317L(H\%(R}r((5)))m = H&’73n (Ric(6))'2, is mapped under exp* to
1 L1
€(0)ps—1 (1)) g—es = €(0) | d(x) " p(x)z—es.
tor of tor

The left hand triangle in is induced by the commutative diagrams

(100) R (6) —"> Dyis(Ri (9)) = Kus((trr))es
Ri(9) - Kn((trr))es

and

(101) (R (0)¥Y=" /30 —"> Daif(Ri (6))/3n

| |

Hy 5, (Ric(6)) —== H3, (Daig (R (9)).
The middle triangle is commutative by Lemma [5.9| upon recalling that

Cg(Sn)CTT(Bn) = q—il

*3The factor Cr,(3n) 7" in the left vertical map takes (I8), i.e., (iii) above into account.
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by , while the commutativity of the right upper triangle of diagram follows for k =
0 from the (lower rectangle of the) following lemma (applied to each p-component) which
explains how e-constants show up naturally in the descent procedure (cf. with [BB0S|, Lem.
4.9/Cor. 4.10] and |[Nal7al Prop. 4.11] in the cyclotomic situation):

Lemma 8.12. Let § be a locally constant character. Then the following diagram is commuta-

tive: @]

Res x (—)es

(D(or, K)es)"=" = D(T'1, K)es
A()eal Em(>e(5l2 ~
5

(1—p)o¥=1—¢p

(R} (6)) ¥~ (RE@B)V <22 DIy, K)
qql[Lnl,:L]TrKn/KOGOL”\L lpl(_)
HO(Tp, L @, Kes) e K.

Proof. The commutativity of the upper rectangle in this diagram is an immediate consequence
of Lemma [4.16|, that of the triangle is immediate from the definitions, while that for the lower
part is obviously equivalent to the commutativity of the outer diagram

Res x(—)es
°L

(D(or, K)es)¥=! DT, K)es
q(_ll[Lnl:L]TrK”/KOGOL”(A()ew\L lpél()eg
6(—=1)&(s)

Ln ®L Ke§ Ke57

where ps(p) := § « 6(x)p(x) denotes the evaluation at a character é. In order to check this,
L
assume p # 2 (the case p = 2 can be dealt with similarly as in the proof of [Nal7a, Pro. 4.11])

34Here, the notation of a map f(—)es means that des or d is sent to f(d)es.
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and first assume that n := a(d) = 1. Then we have

Tric, i 000 m(Aues) = D 0i(0 0 (Ayes))
i€(or/m})*
= Z Oi (Ln(AMe5)\tLT=0)
i€(or/m})*
= oi (A (un ®1)p ™(es))  in L, ® Ke;s

i€(or/m7)*
_ yunrmm>an>T¢ﬂ%ew in [1, Kes
(s, ww&wL@@nnmmmwiw
- (- (/nyﬂﬂ<Lﬁ@%ﬂwﬁM@>fo

5@ Y MMNWDJ

'Le(oL/ﬂ”)X jeor/m} Jtmgor

s XYY st |

jeoL /a7 ie(or, /aT)* JHmior

e > st ) |

oL/ﬂL)X i€(or,/nm)* jtmior

D <W7ﬂm%dwa

> n
OL/mX i'e(op/m}) JrmLoL

d()n(i, T(up)) 2 §(j—1) w(z)) es
(1G(OL/7FL) )j &( nyx L-HFEOL )T

or/7T)

mwl%

O«z

mml%

Oq

*

mml%

O«)

mml%

Qq

—n(Yu) 6K L K( ¢Tuad$ J 5 ( )) €5

0 e (L, K (5 >me%mmMm)%

T

O (L,67]  | ) ol (Res 1)) s

T

(5
(5
(5
(5
(
(s
(e
(s
(s
(
(s

5(— (6)+n(vzy)
Lézmmdwlml““%€”07%'

In the two last equalities we used and (62). Moreover, the equation () requires part (i)
of the next lemma. Finally, by Remark [6.2| we have n(i,) = 0, whence the result in this case

as [K, : K] = ¢""'(q — 1) upon comparing with (98)), Example and Definition
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Now we consider the case a(d) = 0 and obtain

Trg, 000 u(Aues) = Y, 0i(0ou(Aues))

’L'E(OL/WL)X

= Z o; (Ll (Aue5)\tLT:0)

’iE(OL/TI'L)X

= Y o (Aum ®1)p (es)

i€(or/mp)*

1
o7 fnu,an(ul))u(x)) s

iE(OL/T(L)X oL

T

o5 2 fnmm(ul))u(m)) s

iE(OL/ﬂ'L)X oL r

1
- 5(7TL) Z Z ]Z ! UI L+TFLOL lu(x)) e

ie(or/mr)* jeor /T,

~—

1 ..
5(m Z Z n(ji, 7(u1)) J u(x)) es
L jeor/my i€(or/mL)* Jj+mror :

® ((im (( ”LLOL“(”‘L;“(”>> o
ok 1) J, e

L

q5(7TL)
=q——= Res_x ,
= 3 )m 1(Res, H)eé
where the fact that §(z) = 1 for all i € o] by assumption is used in the fourth and last equality,
while part (ii) from the next Lemma is the justification for the equality (*) . The second last

equality can be derived from the observation that the condition A,es € Rj(6)Y=! implies
that W(A,) = é(mr)A, by the product formula, whence
| w = [ v =sm) [ ) = ) ( | e | u<x>> .
TLOoL oL or, or TLOL
o(m
It follows that § Lo M(T) = 1—(6(;1) So; p(x). O

Lemma 8.13. Assuming n = a(d) = 1 we have for all j € or/7}

(1) ZiE(OL/FZ)X 5(1)77(137’“71) =0 /Lf 7TL|ja

.. .. _ q_la if7TL|j,'
(ii) Zie(oL/wL)X n(ji,u1) = { -1, otherwise.
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Proof. If 7y, divides j, then n(ji,u;) = 1 for all 4 and both statements (for n = 1) follow
by a character sum argument (Note that the assumption n > 1 asserts that J is not trivial).
Otherwise the claim (ii) follows from the character formula 3., .. 7(i,u1) = 0 while for (i)
we may assume n = 2. We first show

(102) > 5(i) =0

ie(op/m})*i=r mod j

for every r € (or/n})* and every proper divisor j' | 7. By shifting it suffices to consider
r = 1. In this case we are looking at
D7 66),

1€H
where H = ker(or/n})* — (or/(j'))*. This character sum can only be different from zero if
¢ is trivial on the subgroup H, contradicting the minimality of n. Without loss of generality
assume that vy, (j) < n, whence 77 /j belongs to or,. Now let R be a system of representatives
of (or/(7} /7)) inside (or/7})* and rewrite

> dmigiun) = Y | nGirun) S s ) )=0

i€(or/m})* reR i,i=r mod 7} /j

by (102)) applied to j' = 7} /4, using that n(ji,u,) = n(jr,u,) if i =7 mod =} /j.
0

Proposition for £ < 0 we will be reduced to the case k = 0 by a twisting argument
based on the previous subsection Similarly the cases k > 1 of the following proposition
will also be reduced to the case k& = 1. But first we have to slightly modify our notation.
Consider the K[I'r/T',]-linear map
(103) ' : K[T1/Ta] = DY (R (6)),

whose p-component, for p running through the characters of G,, := I'/T',,, is given as the
K-linear map

0 B 1
(104)  ¢,Y : K = Ke, - ¢,DY)(Rk(6)) = Dar(Ri (6p™1)), 1 & (6p™ 1) —

€5,-1
tir ™"
with
E(Rk(8"),u) ", if a(8) # 0;
(105) () = Ak = D! det(i—gtp D (R (¥ .
éet(%_ﬁDc‘ris(R,({(ﬁ)()) 0 otherwise,
in Ln ®L K

Proposition 8.14 (Explicit reciprocity formula). Let § = 6;.x* be de Rham. For k =1, the
following diagram is commutative:
(106)

971500,1

(R (8)V=! =2 (R} (5))¥=" D(Iy, K)
z-[(0,C1r(3n) )] pre,

exp(™) n ’
Hy 5 (Ri(6)) P DY (R (8)) = L ® Dan(Ri(8)) <=— K[I/U],
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i.e., a class [A,es5] € H})n(H\%(R}(é)))FL ~ H&,Jn (R (0))1'E, is mapped under exp%i((é) to

¢’<5>p5-1<u>>—e5—e' J 5(a fea

Proof. As mentioned earlier - by the twisting technique - we only have to show the case k = 1
(i.e. § = dx). We will show the commutativity of the following diagram

exp™ (™)

Y (Rc(§)) BT oo (5 (I Ke:)Tr
13, (Rx(0)) — = Dgr(Rk(9)) = (Lo ®L Keg)
0 laegHt;T

exp n
Hy 5, (Ric(6) <= DGRk (6)) = (Lo @1 Keg)™

on the image of (R5(3))Y~" in H&/,Bn (Rk(4)), which together with the diagram implies
the desired formula by comparing the cases k = 1 and k£ = 0. To this end assume

expr " (10, feg) = ae;

with fe; € (R}(8))¥=". Then it follows from definition in combination with Lemma
that

Cy(3n) ™ en(fez)] = [aes] € H3, (D(Ri (0))

for sufficiently large n > 1, i.e., there exists y, € D(;f(RK(é)) such that

(107) Cg(Bn)ilbn(feS) —aey = Bnyn-

Now let V € Lie(T',) = L be the element corresponding to 1. By the considerations in
[SV20, §4.4], especially the proof of Remark 4.4.8, V is divisible in D(I",,, K) by 3, and the

quotient Y e DI, K) correspondlng to <& %

evaluatlon C ,(30)71 = ﬂn at Z =10 accordlng to definition (1.
L
We wish to apply the analogue (in the LT-setting) of the WU-version of the explicit formula
for expr, (5) in [Nal7al Prop. 2.23 (1)] with & = %(%65) and o = 7°—e;, which would tell
us that

under the Fourier-LT-isosomorpism with

Do) = [0 = 15 (Les) 303 (Les)]

_ Svnop 1)(fTe5),V(fTe5)]

= [0,0(f)es],
whence the claim. Here, for the last equality we used the formula (iv) of Remark

v( f;eg) (7 +0,500) s = trd()r—es = (s

noting that Ry (d) — —~=Rx(4), fes — e(;, is an isomorphism of (¢, I'r)-modules and
that the Hodge-Tate Welght Wy s vanlshes
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Thus it remains to verify the assumption of [Nal7a, Prop. 2.23 (1)], i.e., tm(%) — 7z €
DCJ{lf,m(RK((;)) —t tLTD$f7m(RK(6)) for all m = n.
From ([107) we obtain the equality

v
3n
because V = tpr0 by [KR, Lemma 2.1.4.]. Using that (1 — ¢)(fe;) = 3,0 for some § €
Ric(6)¥=0 by [SV20, Thm. 4.3.23] we conlcude for any m = n + 1,

(108) Cy(3n) 'tn(5-(fe5)) = Cy(3n) 'aes + V(yn) € Cy(3n) 'aes + trrDY; (R (9)),

\%

E(feg)) — lm—1 (z(feg))

3n

i

In particular, we obtain

\Y \Y <
Lm(sf(feg)) - Ln(sf(feg)) € trrD i, (R (9))
for any m = n by induction. This finishes the proof. O

By an analogous density argument (using the results from Appendix as in |[Nal7al
Cor. 4.17] the Propositions and @Iimply that ex(Rx(8)) : 1x — Ax (R (0)) satisfies
conditions (iii), (iv) of Conjecture [7.6] for any analytic character 4, i.e., for any rank one
analytic (¢, 'z )-module.

8.5.3 Exceptional case

This subsection has been inspired by [Nal7al 4B2| and [V13], §2.5]|.

By observing that the character 2° is dual to Y = z|z| with respect to the pairing in
Theorem and upon applying compatibility with this duality as well as with twisting
according to Propositions and one easily reduces the verification of condition (vi) in
the exceptional case, i.e., § being of the form =% or 2’y = 2'*!|x| for i € N (recall 0 € N), to
the case of 6 = x = z|x|.

First we are going to describe ©(8). To this aim note that the natural inclusion Kz° =
Pol<o(or) — LA(or), which is a splitting of the projection sending ¢ to ¢(0), induces a
quasi-isomorphism

(109) Ky 3(K2°) — Ky 3(LA(or))

by Lemma [4.17
The long exact pr DT, K)-Sequence attached to together with , (1109)) induces for

dimension reasons (cp. with Lemma [£.19] (v)) an isomorphism
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which - induced by the evaluation at 0 of the Colmez transform given by - sends
[flexuf2ex] to

(111) (Res(f1(2)grr(2)dZ)2°, Res(f2(Z)grr(Z)dZ)2°)

as well as

(112) @z Hy por, 10y (Rr(0) = Hy pry iy (LA(or)) = H pir, ey (K2°) = K27,
which sends [fe,] to

(113) Res(f(Z)grr(2)dZ)2".

Finally, again as part of the long exact pr D(r,K)-Sequence attached to , we have an
isomorphism

(114)
ag: (K2° 2)Hy pr, o (K2°) = Hy per, g (LA(or)) 2= Hy per, 1y (Ric(X) = Hpr, o) (Hy (R (X)))-

But note that in contrast to the generic case the canonical map
(115)
Hy pry w0 (Ri(0) = Hpp, iy (H3 (R (9) = Hpr, gy (Hy(RE(0))) = Hy per, )R (6))

is the zero map, which can be seen by using , and counting dimensions. More-

over, we have H\%,D(FL,K)(R;_((X)) = H&D(FL’K)(RK(X)) =0 = HE(U)(H&,(R}’(((S))) =
H\%,D(FL,K) (R(x)) by Lemma (v) and as well as H\(I)J,D(FL,K)(LA(OL)) ~ Hg,yD(FL’K)(KxO) =
KaY (cf. (31).

Altogether it follows that the isomorphism

i _1Vyi+1
dgeqr, o (Hy, s(RE O™ @k K = (Key, 1)

X

O(x) :
=0

coincides with the composite

2 -
Qdrc(Hy, pery a0 R 0)) D

2
@ i _1)i+1
(116) - ®dK(HmL,D(rL,K)(KxO))( Y ®dK(H11)(rL,K)(H\(I)/(R?((X))))
— dr(Hpr, x)(Hy(RE(X)))) > (Key, 1),
where « is induced by «;, for ¢ = 0,1,2, and § is the canonical isomorphism

2 -
(117) Qi (Hy, pr, roy(Ka®) TV =1,
1=0

which stems from the base change of the trivialisation of dpr, x)(Tw(LA(or))) from (i) of
Lemma . Finally, ~ is induced from , i.e., by

(i) H%(H%(R}F((X))) ~ H%(R}’((X)‘I’ZO) induced by 1 — ¢, and
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.. —oy Orr(3n - - _
(i) HI(RE(0)Y0) <28 (RE(5)V0)y = DTy, K)y = K[T1/Uley using (Myoo_1) L.

Consider the basis fj := 2°, (fl,l = (20,0),]?1,2 := (0, 2%) and fy = 2° ofH\%’D(FbK)(KxO),
Hi,’D(FL’K) (Kz") and H\%’D(FL’K) (K zV), respectively. Then, analogously to [Nal7a, Lem. 4.19]
one easily checks that

(118) BUE®(fi1a fi)®f3) =1

where fl* denotes the dual basis of f; for i = 0,2. So it remains to study the effect of 4. The
following Lemma should be compared to [Nal7al Lem. 4.20] and [V13, Lem. 2.9].

Lemma 8.15. The isomorphism

H\(I)/,D(FL,K)(KxO) % H})(FL,K)(H\%(R;—{(X))) 5 Ke,

sends fo to —Qq%l (3(log(g(1))))ir—0 ex-

Proof. Consider the Coleman power series g := gb(n)m(LLT(n))ﬁ in the notation of [SVI5]
Theorem 2.2, Lem. 4.1], where we consider ¢(n) as an element of lim L} via the natural
_TL

7
identification lim LY = EX (cf. [KR, Lem. 1.4]). Then % belongs to R, ¢ up to the
e—pn L g
identification ¢ (n) = T by the last sentence of section 2 of [SV15]. By the explicit reciprocity
law Prop. 6.3 in (loc. cit.) we obtain
09 dg

(119) Res(;dtLT) = Res(?) = 0,(1)(recg, (t(n))) = 1.
Indeed, under the reciprocity map recELﬁ the uniformiser ¢(n) is sent to the Frobenius (lift)
©q of A, whence the cocycle 0,(1), which is given by sending h € H to ha — a for some a € A
with ¢4(a) —a =1, sends recg, (¢(n)) to 1 tautologically.

In other words we have found an element %gex € Ri(x)¥=! which lifts fo under the

Coleman transform (27)). Thus ag( fo) is represented by

3 (a;ex> = 3(0log(g)ey) = 0(3logg) e,

%For L = Qp,mz = p odd and LT = Gy one has 9(Z) = Z as N(Z) = Z in that case. We do not
know whether [], ., (a +r7 Z) = (—1)*2(P(Z) holds in general? If so, this would have simplified the
proof of [SVI5, Lem. 2.5]. Moreover, it would simplify the argument here considerably as the use of the
reciprocity law is quite a heavy argument. The statement is true in the case that ¢(Z) is a monic polynomial
by the following argument, which was explained to us by Laurent Berger: Observe that the monic degree ¢
polynomial h(T) := o(T) — ¢(Z) € Quot(oc, [Z])[T] vanishes precisely at the a +rr Z,a € LT: and hence
h(T) =[1(T — (a +r7 Z)). Comparing the constant coefficients yields the claim.

Here we are using the normalisation from [NSW| Cor. 7.2.13].
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by (90). It is mapped into H})(FL K) (RE(x)¥=°) to the class of
dg + =0
(1-9¢)3 )= 3(1 —¢) (9log(g)ey) € Ric(x)

—3 (a(l — j)(log(g))ex)

Now we use the commutative diagram

=]

m
K <" D(I'p, K) —> Ri(|z[)¥=°
Ql Ql la
p1 My e (o \T=0
K<~—D{L,K)——RiX)

to conclude by observing that the evaluation at 1 corresponds to setting T' = 0 and that

((1 - g)s(bg(g(T)))) = T (3(og(9(T)))7—o- -

|T=0

Remark 8.16. The map u — (1 — %)(log(guw(T))) generalizes Coleman’s map as used in
Kato’s proof of the classical rank one case, cf. [V13, (2.5)].

Lemma 8.17. With the notation in the proof of Lemma|8.15 we have
(3n(10g(g(TN)))jr—o = £5, (1) = Cy(3n).
Proof. Note that g € Tor [[T]]. Writing g = ;- a;T" we sce that for any v € I';, we have

e e

1o ( 3., a Ber @D ) |
- Ti—1
iz1 0T =0

(a1X21T(’Y))

It follows that for elements A = > a;(v;—1) in the K-span S of v—1, v € I',\{1}, in D(T',,, K)
we have

= log = log(xrr(7))-

(Alog(9(T)))jr—0 = Zai log(xzr(7i)) = Alog(xzr)) = LA(1),

because ). a;(v;i—1) = >, a;ivi—(D; @)1 and log(xrr(1)) = 0. Since 3,, belongs to the closure
of S the claim follows by continuity. O
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ViaEll\Tow we define a basis (f11, f1,2) of H&IL,D(FL,K)(RK(X)) and fo of H\%L,D(FL,K)(RK(X))
(120) ar(fii) = fl,i for i =1,2 and as(f2) = fg.

Combining (116]), (118) and (120) with Lemmata [8.15] we obtain
Corollary 8.18. ©(x)((f1,1 A f12) ® f3§) = —=QL2Cy(32)Crr(3n)ey = —Q ey

Now we shall compare this to the de Rham e-isomorphism, i.e., mainly to the map
O(RK(x)), because

(121) P(Ri(x) = Q!

and Opgr(Rr(x)) : dx (Dar(R(x))) = Aga(Ri(x)) corresponds to the isomorphism
~ 1 a
(122) Lrx(Rr(x)) = Kex = Dgr(Ri (X)) = K—ey, ae, — —ey
trr trr

as £(Ri(x),u) = 1 due to x being crystalline.
By the long exact sequence the map (R (x)) is induced from the following isomor-
phisms and exact sequences

1 1= 1

(123) Dcris(RK(X)) i) Dcris(RK(X))v i.e., Kiex — Kiexa
trr trr
exp ( ) TI

(124) Dy (Ric (X)) — H} 3, (Rx())f* —> Hi 3, (Rx()}*
(with Y’ induced by Y in Remark 4.15)
(125)

2= {y—=((Y") " @), Wrx)} (exppr,)*
Hy s, (Rc()™/Hy 5, (Ric (X))} —— ERO (HY 5, (Ri)F)* —"5 Deig(Ric)*
and

- {y—=>((Y) " @), R0}

(126) Deris(Ri)* = HY 5, (Ric () TR (HY 5, (R,

which is dual to the natural isomorphism ngn (RE)'™ = Deis(Ri), 1 > dy := 1€ K =
Deris(R k). We define basis eg and (ej 1, e12) of ngn (Ri)'E and Hﬂinn (R )'E, respectively,
as follows:

ep:=1eRgk, eq:=][(1,0)], er2:=][(0,1)].

E¥l

Lemma 8.19. (i) exp;g, (do) = €11

3"Nakamura adds here the factor + ——2 —
(p—1) log(Xeye (7))

38In order to normalize e, i.e., to make it independent of the choice of 3,, one would need the factor
Crr(3n) from , but for our calculations this is not needed. Since in our choice for the generalized Herr
complex the order of the operators Z and ¢ — 1 (or ¥ — 1) is the opposite compared to Nakamuras version,
our indexing of the basis elements differs from Nakamura’s!

in front of the «;!
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.. — —1
(ii) Y o expr,(y) (trrey) = qTfl,l

(iii) Using the pairing
{{_v _B’RK(X) : H\Zi/,Bn (RK(X)) X Hi:,:n (RK) - K
from Remark[{.15 we have

{{f1,2761,1}}7zk(x) =1, {{fl,h@l,l}}RK(x) =0,
{fiz,e12bri0 =0, {fiedren =1
{/2,e0dri = —1-

(iv) (expﬁRK)*(<(T’)_1(f172), _>R(X)) = d € D¢yis(Ri)*, where the pairing (—, _>R(X) had
been introduced in Theorem |4.15,

Proof. (i) follows from the analogue of [Nal7al Prop. 2.23 (2)| by taking # = 1. For (ii) we
apply the analogue of Prop. 2.23(1) of (loc. cit.) with z = %ex € RK(X)[é], where f lies
in R}g such that f(uy) = 7%2 for any n > 0. The existence of such f follows from the analogue

of over the Ring R;r{

R;_(/tLT = H L(un)a f'_) (f(un))n>0

nz=0

Moreover, I satisfies
(%) — T € D (Ri (X))

for all n = 1, because

f

S (un) 1
fex) — t e, = P mod D('fif’n(RK(x))
LT LT LT

by Remark Therefore the conditions of the analogue of Prop. 2.23(1) of (loc. cit.) are
satisfied and hence we conclude that

tn(

exXPr . () (trey) = [(¢ = 1)(&), 3n(2)] € Hy 3, (Rx (X))

and
Yy 0 expr o (trrey) = [~V (v — 1)(%), 3n(8)] € Hy 3, (R (X))-

Hence it suffices to show that

LT

(127) Res (‘?nfdlogLT> =0
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L _ Y _
RQSZ <(qt1)fdlogLT> = ReStLT <(qt1)fdtLT>
T

- e
— Resy,, (éi?dtw) — Resy,, (thTdtLT)
= ((p(qf))“wzo = (Nyepr=0
- (“qf)) R
-t - -1,

because —W(p — 1)(%@() =—L \Il<( T)f)ex and

£ _1 f £ _1 f
trr q trr

by [SV20l Lem. 4.5.1 (iii)|. For (127 one shows first the analogous statement for y—1, v € 'z,
instead of 3, by similar arguments and then concludes by continuity.
(iii) follows by direct computation using the formulae of Remark {4.15}

(2 et breoo = —Res((»l)(aggexn - >Res<ag (Adlogy,)) = 1

upon noting that fi2 = [(0, geX ] by the proof and with notation of Lemma
Take fi1 = [(Aiey, A2ey) ]g Then

{11, e11dr ) = —Res((A'1)(Az2ey)) = —p1(X) Res(Aadlogr) = 0
and, for A satisfying [—1](3,) = 3% = A3n ,
{fi1,e12}rc ) = Res(1(Arey)) = Res(Aidlogpr) =1

by definition of fi 1. Finally, writing fo = A3e, we have

{/2,e0dr () =Res(1(Af2)) = Res((\'1)(f2)) = p1(A\)Res(Asdlogrr) = —1
(iv) follows from (i) and (iii) using (25, i.e., (") (f1.2), =m0 = {f1.2: = IRKc(0)- O

Combining the previous lemma with (123)), (124)), (125]), (126) we obtain

Corollary 8.20. O(Rx(x))((fi1 A fi2) ® fF) = — éex =Dy (RK(x))-

Together with Corollary [8.18|and (121)),(122)) this proves property (vi) for the exceptional
case.

1
——e €K

trr

39Gince f(0) # 0 the expression on the left-hand side has a simple pole at Z = 0. The residue formula for
Y _ L2
simple poles gives us Resz (( )fgLTdZ> <( qu;)(fZ()Z)gLT(Z)> = Res¢; (( l)fdtLT>

|Z=0
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A Density Argument

When verifying that e, (M) satisfies a given property we frequently require a density argu-
ment. This is formally justified as follows: We reinterpret a given property as a commutative
diagram in the category of graded line bundles (hence involving only isomorphisms). E.g. for
the property (iii) of Conjecture one takes the diagram

w(M
1 N o)
id lédet m(a)
au(M
1R,
The commutativity of this diagram for a given property P can be reinterpreted as the auto-
morphism P(M) of 1k, which is obtained by going around the diagram, taking the constant
value 1. In this section we will construct a (reduced) rigid analytic space T, over the normal
hull E of L, whose K’'-points parametrise L-analytic (¢, 1 )-modules attached to characters
d: L — K'* such that the map M > P(M) is a map of rigid analytic spaces

En - G%L

This is the same thing as a a global section of (’);(-Em. Since Ty is reduced the vanishing
of a global section (in our case M — P(M) — 1) can be checked on a Zariski dense subset
(essentially by definition as we will see below). Let W (resp. T) be the rigid spaces representing
the functors

W(X) = Homes(of , (X, Ox)™)

resp.
T(X) =Hom (L™, T(X,O0x)").

For the representability of the first functor see [Bul, Lemma 2|. The representabiltiy of the
second functor can be seen by fixing a uniformiser, which provides us with an isomorphism
T = G, x W and we denote by W, the subspace of locally L-analytic characters inside W,
where by convention we call a character locally analytic if the composite with the restriction
map to O(Y) is L-analytic for any affinoid Y < X (this makes sense because O(Y') is a Banach
space). Similarly we define 7g,. Since o] is open in L, we conclude that a character § € T is
L-analytic if and only if its projection to W is L-analytic. Analogously we get an isomorphism
(depending on the choice of uniformiser) Tg, = Gy, X Wy The representability of W, is
shown in [Emel Proposition 6.4.5]. Recall that a character is locally L-analytic if and only if
its differential at 1 is L-linear. A character 6: o] — I'(X,O%) (with X affinoid over a galois
closure E of L) can be written (locally around 1) as

o(x) = 2 an(x — 1",
neN=

with some ay € I'(X, Ox ), where 3 is the set of Q,-homomorphisms o: L — E and (z—1)" is
defined as | [ ey 0(x — 1)" where n = (n,),. The partial derivative at = 1 in the direction
of 0 € ¥, i.e., the coefficient a., of the power series at the o-unit-vector is called the o-part
of the generalised Hodge-Tate weight of 6.

Remark A.1. A character € W is L-analytic if and only if ae, = 0 for every o # id.
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Proof. This is essentially [Bel6, Remark 2.7]. Note that a character is L-analytic if and only
if 1 is an L-analytic vector for the corresponding representation. (Loc. cit.) uses the logarithm

as a chart around 1 € o] rather than the map = +— x — 1. Since logg (T) = T + ... the
coefficients in total degree 1 are unaffected by the change of charts. This means that our a.,
agrees with V(1) in (loc. cit.). O

Recall (cf. [BeChl Chapter 3|) that a subset Z of a rigid analytic space X is called Zariski-
dense if the only reduced analytic subset contaning Z is X,..q. For a reduced Stein space this
is equivalent to requiring that a analytic function vanishing along Z is identically zero. An
illustrating example is the set pN < BI%D_ Tt is Zariski dense because a function vanishing on
pN has infinitely many zeroes inside the affinoids BI"] and thus vanishes identically along an
admissible cover. For n » 0 the group U = I',, of n-units is an open subgroup of o} isomorphic
to or,. Recall that by |[ST2] the corresponding character variety X := Xr, is a smooth one-
dimensional quasi-Stein space. For such spaces it is known (cf. [BSX| Section 1.1]) that the
divisor of an analytic function has finite support in every affinoid subdomain and a similar
argument as before shows, that a set having infinite intersection with infinitely many members
of a given increasing family of affinoids (X,,)men covering X is automatically Zariski dense.
Note that we have a canonical restriction map

Wan — xa
which is finite and flat.

Theorem A.2. Ife < p — 1 then the set Wi, = {x% | d € N} is Zariski dense in Wy, If
e = p—1 we have that the set {x € Wan | xjv = 2%} is Zariski dense in Wey,.

Proof. We first consider the restriction of ¢ to the subgroup I',, as above. Recall that X
is covered by the neighbourhoods X(r) consisting of characters taking values inside the disc
|z — 1| < r Using the fact that for any element of x € of we know that 297! is a l-unit
and @DV for N » 0 is close to 1 we conclude that x(¢=DP™ for m > N are an infinite
family of distinct points inside X(r) for N » 0. If e(L/Q,) < p — 1 we can decompose
of = kX x (1 + mpor). This allows us to cover Wy, by sets of the form w/X(r), with w
the composition of the projection mod 7 and the Teichmiiller character. Since the powers of
r intersect every w’-component infinitely many times we can conclude from the preceding
reasoning, that W, is Zariski-dense. In the general case we consider the finite flat restriction
map. Passing to affinoids we first observe that Zariski density inside an affinoid Sp(A) in the
sense above is equivalent to Zariski density in the scheme Spec(A) since affinoids are Jacobson.
Furthermore, because affinoids are noetherian, we can conclude that the restriction of the map
p: Wan — X to a suitable family of affinoids is finitely presented and flat (in the ring-theoretic
sense) and hence (universally) open with respect to the Zariski topology. The claim follows
from the preceding density statement because openness implies that the preimage of a dense
subset of X is dense inside W,,. Arguing as in the first part, we can show that the image of
Wint inside X is dense and hence also p~ 1 (p(Wint)) = {Xx € Wan | XU = x?. O

Remark A.3. Let F'/L be a finite subextension of K and fix some § € Yo (F'). The map
M — P(M) (for a given property P) corresponds to a unique section of T (Wan, Ow,,.)”,
where we identify Wy, with the space of analytic twists of 4.
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Proof. We will explain the argument for property (iii). The other properties are treated simi-
larly. We consider the isomorphism

epry, k) (DIM(Mg)) : 1pr, ) = Az, (Dfm(Mk))

from Theorem The validity of property (iii) amounts to the commutativity of the diagram

ED(Tr, ,K),u
1pr, k) — Az, (Dfm(Mg))
idl l‘sdet Dfm(M)(a)
ED(FL, ),au

1pr, k) — Axp, (Dfm(Mk)).

Since all arrows are isomorphisms, going around the diagram clockwise (starting at 1p(r, x))
amounts to an automorphism of D(I'z, K), or in other words, an invertible global section
of Xp,. The isomorphism I';, = o] induces an isomorphism Xr, = W,,. Hence we get an
invertible global section P of W,,,. This allows us to interpret the validity of property (iii) for
every twist My (0) with § € W,, as the section P of W, constructed above specialising to 1

at every such 6.
O

Corollary A.4. The set
S = {(\00) € Tan(K') = G (K') xWan(K') | K'/K finite, 0500 generic and (8o);; de Rham }
15 Zariski dense.

Proof. Note that the set of de Rham characters contains the set of characters which restrict
to a power of x on U and is hence dense in W,,,. As a conclusion the analogously defined set
without the genericity condition is dense. For every d there is precisely one A such that 6yz¢
is non-generic. It is not difficult to see that the set S remains dense. O

To restrict some considerations to (¢, 'r)-modules arising as a base change from a finite
extension of L we introduce the following notion.

Definition A.5. A character p: o] — C,, is called classical, if its image is contained in Qp-
Analogously a character L™ — C,, is called classical, if it takes values in Q.

Remark A.6.

(i) The image of a classical character p: of — C, is contained in some finite extension F

of Qp.

(ii) A character is classical if and only if its restriction to some open subgroup U takes values
inside Q).
Proof. Since o is topologically finitely generated we can see that the image of some set of

topological generators is contained inside F'* for a suitable finite extension F' of Q,. Moreover,
by compactness of o7, its image is contained inside the maximal compact subgroup oy < F'*.

Now suppose p(U) c F for some open subgroup U < o} . Let v € o}, then V[OZ:U] e U and
hence p(7) is algebraic over F. Setting F' = F(p(7),7 € R) for a system of representatives
R C o] of o] /U we can see that the image of p is contained in F”. O
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Lemma A.7. Let §: L* — K* be a de Rham (L-analytic) character, i.e., such that Ry (9)
s de Rham in the sense of section . Then §(0}) < Q.

Proof. Let n » 0. Note that D¢ » (R (6)) embeds I'-equivariantly into HjeZ(Ln@LKt]LT((S))
( l[in:L] Kt} +(8)). The de Rham con-

dition hence forces that § agrees with XJLT for some (unique) j when restricted to I',,. As a
consequence the restriction o) is classical. O
°L

and the latter is I',-equivariantly isomorphic to HjeZ

Remark A.8. The proof of the previous Lemma shows that any de Rham L-analytic character
6: L™ — K* is of the form
§ = G’

for some k € Z and some locally constant character 8. : L* — K*. Vice versa any character
of this form is obviously de Rham L-analytic.

Corollary A.9. Using the notation from[A.{] the subset S" of S consisting of classical points
15 Zariski dense.

Proof. This follows from the following easy observations: The set of characters whose restric-
tion to U is of the form z? is classical and the subset of G,, defined by pr both are Zariski
dense. O
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