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Abstract

Inspired by Nakamura's work [Na17a] on ϵ-isomorphisms for pφ,Γq-modules over (rel-
ative) Robba rings with respect to the cyclotomic theory, we formulate an analogous con-
jecture for L-analytic Lubin-Tate pφL,ΓLq-modules over (relative) Robba rings for any
�nite extension L of Qp. In contrast to Kato's and Nakamura's setting, our conjecture
involves L-analytic cohomology instead of continuous cohomology within the generalized
Herr complex. Similarly, we restrict to the identity components of Dcris and DdR, respec-
tively. For rank one modules of the above type or slightly more generally for trianguline
ones, we construct ϵ-isomorphisms for their Lubin-Tate deformations satisfying the desired
interpolation property.
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1 Introduction

In [Na17a] Nakamura generalized Kato's p-adic local ϵ-conjecture [Kat, FK] to the framework
of pφ,Γq-modules over the Robba ring (over Qp-a�noid algebras) and proved the essential
parts of it for rigid analytic families of trianguline pφ,Γq-modules. The technical foundations
for this had been laid by the work of Kedalya, Pottharst and Xiao [KPX] who had established
the fundamental theorems concerning their cohomology (�niteness, base change property, Tate
duality, Euler-Poincaré formula) and Nakamura's work [Na14a], in which he generalized the
theory of Bloch-Kato exponential maps and Perrin-Riou's exponential maps in that framework.

Recently there has been much progress concerning pφL,ΓLq-modules over Lubin-Tate ex-
tensions [Fou, KR, BF, FX, SV15, SV20]. In particular, the results by Steingart [St1, St2]
regarding such pφL,ΓLq-modules over families (�niteness, base change property, Euler-Poincaé
formula, perfectness of Iwasawa cohomology) make it possible to study a version of Nakamura's
approach for L-analytic trianguline modules.

Let L � Cp be a �nite extension of Qp and L8 a Lubin-Tate extension of L with Galois
group ΓL � GalpL8{Lq corresponding to a uniformiser πL of the ring of integers oL of L.
A continuous representation of GL on a �nite dimensional L-vector space V is called L-
analytic, if the semi-linear representation Cp bQp V �

±
σ : LÑCp Cp bL,σ V is trivial at the

components where σ � id . By a theorem of Berger the category of L-analytic representations
is equivalent to the category of étale L-analytic pφL,ΓLq-modules over the Robba ring RL (cf.
[Be16]). Analyticity means here, that the action of the Lie group ΓL is di�erentiable and the
action of LiepΓLq is (not only Qp-, but even) L-bilinear. For analytic pφL,ΓLq-modules one
can de�ne analytic cohomology (see Section 4 for a precise de�nition). Finiteness of analytic
cohomology allows us to attach to a family M of analytic pφL,ΓLq-modules over A a graded
invertible line bundle ∆ApMq over A which is essentially the determinant of the analytic
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cohomology of M . Note that, for an L-analytic étale pφL,ΓLq-module attached to some L-
analytic Galois representation V of GL with coe�cients in L, these analytic cohomology
groups in general do not coincide with the Galois cohomology groups H ipL, V q of V for
i ¡ 0. Nonetheless they behave similarly to Galois cohomology and allow us to study certain
invariants of V �at the identity component�. If M is the pφL,ΓLq-module attached to an L-
analytic de Rham representation V, then one can also attach an ε-constant to the �identity
component� of DpstpV q, i.e., the GL-smooth vectors in Bst bL0 V (which injects into the full
Bst bQp V ). This can be generalised to the non-étale case as well (see Section 7.4 for details).
The content of the analytic variant of the ε-conjecture is a trivialisation of ∆ApMq which
interpolates these ε-constants at the de Rham points, i.e., the points x P SppAq where the
specialisation Mx is de Rham.

We formulate the following conjecture in a more general setting (and indicate in Remark
7.7 (ii) how to formulate a version of this conjecture for L-analytic pφL,ΓLq-modules over the
character variety XoL in the sense of Schneider-Teitelbaum).

Conjecture (See Conjecture 7.6). Choose a compatible system u � punq of rπnLs-torsion
points of the Lubin-Tate group and a generator t10 of the Tate module of its Cartier dual. Let
K be a complete �eld extension of L containing Lab, and A an a�noid algebra over K. For
each L-analytic pφL,ΓLq-module M over RA satisfying condition (63) there exists a unique
trivialisation

εA,upMq : 1A
�
ÝÑ ∆ApMq

satisfying the following axioms:

(i) For any a�noid algebra B over A we have

εA,upMq bA idB � εB,upMb̂ABq

under the canonical isomorphism ∆ApMq bA B � ∆BpMb̂ABq.

(ii) εA,u is multiplicative in short exact sequences.

(iii) For any a P o�L we have
εA,a�upMq � δdetM paqεA,u.

(iv) εA,upMq is compatible with duality in the sense that for the dual module M̃ (see section
4.3) we have

εA,upM̃q� b hpχrM q � p�1qdimK H0pMqΩ�rM
t10

εA,�upMq

under the natural isomorphisms 1A � 1Ab1A and ∆pMq � ∆pM̃q�bpAprM q, 0q, where
hpχrM q : AprM q Ñ A maps eχrM to 1 and rM denotes the rank of M over RK .

(v) For L � Qp, πL � p and u � pζpn�1qn the trivialisation coincides with that of Nakamura,
in the sense of Proposition 8.7.

(vi) Let F {L be a �nite subextension of K, M0 be a de Rham pφL,ΓLq-module over RF and
M � Kb̂FM0. Then

εK,upMq � εdRF,upM0q,

where the isomorphism εdRF,upM0q : 1K
�
ÝÑ ∆KpMq is called the de Rham ε-isomorphism

which is de�ned in (65) unconditionally using a generalized Bloch�Kato exponential and
dual exponential map as well as the ε-constant associated to M0 in section 7.4.

3



While in the cyclotomic setting the ϵ-constants depend on the choice of a norm compatible
system of p-power roots of unity, in the Lubin-Tate setting this is replaced by a compatible
system of πL-power torsion points of the Lubin-Tate formal group, see Remarks 6.1, 6.3 for a
comparison of both. We also �x a generator t10 of the Tate module of the Cartier dual of the
Lubin Tate group which determines a certain period Ωt10 P Cp (cf. [ST]). We prove parts of
this conjecture for L-analytic trianguline pφL,ΓLq-modules. More precisely, we construct the
ε-isomorphism for the Lubin-Tate deformation of a rank one, de Rham L-analytic pφL,ΓLq-
module M over some �nite extension F of L

εDpΓLq,upDfmpKb̂FMqq : 1DpΓLq
�
ÝÑ ∆XΓL

pDfmpKb̂FMqq,

see Theorem 8.6. This lives over the rigid analytic character variety XΓL over L. The Cp-
points of this variety correspond to locally L-analytic characters ΓL Ñ C�

p . We refer to
subsection 4.2 for the precise de�nition of the Lubin-Tate deformation DfmpNq of a pφL,ΓLq-
module N over RK . Heuristically one can think of it as the base changed pφL,ΓLq-module
DpΓL,Kqb̂KN over the relative Robba ring DpΓL,Kqb̂KRK . But due to the complicated
behaviour of completed tensor products over LF-spaces which are not Fréchet, it requires a
more technical treatment. The correct point of view, which is used for the cyclotomic setting
in earlier articles of Pottharst (but apparently neither consequently pursued nor carefully
explained in [KPX, Def. 4.4.7, Thm. 4.4.8] unfortunately), consists of viewing this deformation
as a sheaf of pφL,ΓLq-modules over XΓL , which is not a�noid and hence does not strictly
speaking �t into the above Conjecture. Instead, the isomorphism εDpΓLq,u is a trivialisation
of a line bundle over XΓL which restricts to an isomorphism of the conjectured type on each
a�noid subdomain.

Philosophically, the L-analytic theory over Lubin-Tate extensions is one-dimensional and
thus very similar to the cyclotomic case in the sense that ΓL is - although rL : Qps-dimensional
over Qp - one-dimensional as p-adic Lie group over L. Nevertheless, technically we have had
to overcome serious di�culties. We are going to describe these di�erences compared to Naka-
mura's work in the following.

In the cyclotomic setting, Herr-complexes are formed with respect to the two operators φ
and γ�1 for a topological generator γ of the torsion-free part of Γ; moreover, one can directly
go over to the complex consisting of the �xed part under the torsion subgroup ∆ of Γ. In the
Lubin-Tate setting (with L � Q) there is no intrinsic counterpart of γ as one needs at least
rL : Qps elements to generate the (torsion-free part of) ΓL topologically. So instead we make
use of Fourier theory and the Lubin-Tate isomorphism à la Schneider and Teitelbaum [ST]

DpΓn,Kq � OpXΓnq � OpBq

over a huge �eld extension K of L, over which the character variety XΓn for the subgroup of
n-th higher units Γn � oL of ΓL can be identi�ed with the open unit disk B for n su�ciently
big. Via this isomorphism we can now choose Zn P DpΓn,Kq corresponding to the choice of a
coordinate of B. The generalized Herr-complex in the Lubin-Tate setting can thus be formed
using the two operators φL and Zn. Unfortunately, in contrast to ∆ � ΓQp , the remaining
quotient ΓL{Γn in general cannot be identi�ed with a subgroup of ΓL, whence we cannot take
ΓL{Γn-invariants as before, but have to circumvent this problem.

An important step for our approach consists of establishing the analogue of local Tate
duality for analytic cohomology, see subsection 4.3. In contrast to [Na17a] we �nd an intrinsic
way to normalize our trace map without any comparison to Galois cohomology (which is not
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available anyway as we indicated); nevertheless for L � Qp our choice coincides with that of
Nakamura (for an appropriate choice of period Ω).

Another price we have to pay is the fact that even the minimal choice for K is no longer
spherically complete, which means that the functional analysis requires some additional care.
For the explicit descent calculation Lemma 8.15 we make use of the explicit reciprocity law
from [SV15].

Contrary to the cyclotomic case, it seems di�cult to establish integral results in the an-
alytic case. On the one hand the �dualizing character� χ used to establish Tate duality has
Frobenius action given by πL

q and hence does not make sense integrally (unless L � Qp),
on the other hand the period Ω is not a unit (unless L � Qp). The L-analytic distribution
algebra DpΓL, Lq contains the ring ΛXΓL

of power-bounded functions on the character variety.
It is not known whether ΛXΓL

� oLJΓLK. Paradoxically, the Iwasawa algebra oLJΓLKr1{ps is
dense inside both, the d-dimensional Qp-analytic distribution algebra and the 1-dimensional
L-analytic distribution algebra making it unclear how to descend to integral results even under
the assumption ΛXΓL

� oLJΓLK.
The structure of the paper is as follows: In section 3 we introduce (analytic) pφL,ΓLq-

modules. In section 4 we introduce and study analytic cohomology of analytic pφL,ΓLq-
modules and recall the main results of [St1] while providing some generalisations suited to
our needs. Furthermore we develop an analogue of Tate duality for analytic cohomology. In
section 5 we develop an analogue of the Bloch-Kato (dual) exponential map for analytic co-
homology. We recall classical ε-constants in section 6 and state the conjecture in Section 7.
Section 8 is dedicated to proving the main result. In the Appendix we adapt Nakamura's
density argument to the Lubin-Tate setting.

Acknowledgements: We are grateful to Léo Poyeton for discussions about analytic B-
pairs and to Kentaro Nakamura for answering generously questions concerning his work. The
project has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under TRR 326, Geometry and Arithmetic of Uniformized Structures, project-ID
444845124.

2 Notation

We denote by N the natural numbers including 0.
Let Qp � L � Cp be a �eld of �nite degree d over Qp, oL the ring of integers of L, πL P oL a

�xed prime element, kL � oL{πLoL the residue �eld, q :� |kL| and e the absolute rami�cation
index of L. We always use the absolute value | | on Cp which is normalized by |πL| � q�1.

We �x a Lubin-Tate formal oL-module LT � LTπL over oL corresponding to the prime
element πL. We always identify LT with the open unit disk around zero, which gives us a global
coordinate Z on LT . The oL-action then is given by formal power series raspZq P oLrrZss. For
simplicity the formal group law will be denoted by �LT .

The power series BpX�LTY q
BY |pX,Y q�pZ,0q

is a unit in oLrrZss and we let gLT pZq denote its

inverse. Then gLT pZqdZ is, up to scalars, the unique invariant di�erential form on LT ([Haz]
�5.8). We also let

(1) logLT pZq � Z � . . .

denote the unique formal power series in LrrZss whose formal derivative is gLT . This logLT is
the logarithm of LT in the sense of [Lan, �8.6] and converges on the maximal ideal in oCp (by
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�8.6, Lemma 3 (ii) ibid.). By expLT :� log�1
LT in LrrZss we denote the inverse power series of

logLT , i.e., satisfying logLT � expLT pZq � expLT � logLT pZq � Z.1

In particular, gLTdZ � d logLT . The invariant derivation Binv corresponding to the form
d logLT is determined by

f 1dZ � df � Binvpfqd logLT � BinvpfqgLTdZ

and hence is given by

(2) Binvpfq � g�1
LT f

1 .

For any a P oL we have

(3) logLT praspZqq � a � logLT and hence agLT pZq � gLT praspZqq � ras
1pZq

([Lan] 8.6 Lemma 2).
Let Tπ be the Tate module of LT . Then Tπ is a free oL-module of rank one and we choose

a generator u � punqnPN where u0 � 0, u1 � 0 and, for all n, we have un P mCp as well as
rπLspun�1q � un. Then the action of GL :� GalpL{Lq on Tπ is given by a continuous character
χLT : GL ÝÑ o�L . Let T

1
π denote the Tate module of the p-divisible group Cartier dual to LT

with period Ωt10 P
yLab, which again is a free oL-module of rank one and where t10 is a generator.

The Galois action on T 1π � T �π p1q is given by the continuous character τ :� χcyc � χ
�1
LT , where

χcyc is the cyclotomic character. As mentioned in [Box, �1] and [ST2, �3] it follows from the
work of Tate on p-divisible groups that we have natural oL-linear isomorphisms

T 1π � HomoCp pLT, Ĝmq � HomZppTπ,Zpp1qq � HomZp,ctspTπ boL L{oL, µppqq,(4)

where the last isomorphism is induced by Pontrjagin duality and the adjunction between Hom
and b. According to the proof of [Box, Lem. 13] the above composite sends at10 to the map

sending ub 1
πnL

to ηt10pa, unq, where, for x P oL, we de�ne ηt10px, Zq :� exp
�
Ωt10x logLT pZq

	
P

1�ZoyL8rrZss; when the choice of t10 is clear from the context, we often omit this index from
Ωt10 or ηt10px, Zq.

Our constructions will depend crucially on the choices of u and t10, which determines the
period Ω � Ωt10 . By (4) these two choices automatically determine a system

ηp1, T q|T�un � exppΩ logLT pT qq|T�un

of compatible p-power roots of unity.2 In the cyclotomic case where LT � Gm it su�ces to
�x a choice of compatible p-power roots of unity because one can then take the identity as a
canonical generator t10 of T

1
π � HompGm,Gmq.

For n ¥ 0 we let Ln{L denote the extension (in Cp) generated by the πnL-torsion points of
LT , and we put L8 :�

�
n Ln. The extension L8{L is Galois. We let ΓL :� GalpL8{Lq and

HL :� GalpL{L8q. The Lubin-Tate character χLT induces an isomorphism ΓL
�
ÝÑ o�L . Note

that by [BSX, Rem. 1.17] we have NL{Qp � χLT � χcyc if and only if NL{QppπLq P p
Z.

1expLT converges on D :� tz P Cp|vπLpzq ¡
1
q�1

u and induces on D the inverse of logLT respecting the
valuation, see [Lan, �8.6, Lem. 4]

2E.g. if L � Qp and LT is the special group corresponding to pX � Xp and Ω � 1, then ηp1, T q is the
Artin-Hasse exponential exppX �Xp{p� . . . q.
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Note that we have homomorphisms oL Ñ 1 � ZoyL8rrZss, x ÞÑ ηpx, Zq, and LT Ñ

Ĝm, Z ÞÑ ηpx, Zq, respectively. For a πnL-torsion point a (whence pm-torsion with m � rne s be-
ing the smallest integer greater or equal to n

e ) we thus obtain a character oL Ñ Zprζpms�, x ÞÑ
ηpx, aq, of �nite order. In particular ηpx, unq belongs to µpm for any x P oL. If γ P ΓL, we have
γηpx, Zq � ηpχLT pγqx, Zq, while φpηpx, Zqq � ηpπLx, Zq.

Remark 2.1. Since for σ in GL, one has σpΩq � Ωτpσq by [SV20, Lem. 4.1.24], it fol-
lows that σηpx, Zq � ηpxτpσq, Zq � ηpx, rτpσqspZqq, if we let act GL on the coe�cients
only, and σpηpx, Zqq � ηpxτpσq, rχLT pσqspZqq � ηpx, rχcycpσqspZqq, if we let act GL on
the coe�cients and on the variable. In particular, σpηpx, unqq � ηpxτpσq, rχLT pσqspunqq �
ηpx, rχcycpσqspunqq � ηpxχcycpσq, unq � ηpx, unq

χcycpσq. Moreover, for a �xed choice ζpn of a
primitive pnth root of unity, there is a unique homomorphism βun : oL Ñ Z{pnZ such that the
following diagram is commutative

Z{pnZ
ζ�pn

$$
oL

βun
;;

ηp�,unq // µpn ,

i.e., ηpx, unq � ζ
βun pxq
pn . One easily checks that βunpχcycpσqxq � χcycpσq � βunpxq.

Henceforth we use the same notation as in [SV15]. In particular, the ring endomorphisms
induced by sending Z to rπLspZq are called φL where applicable; e.g. for the ring AL de�ned
to be the πL-adic completion of oLrrZssrZ�1s, or BL :� ALrπ

�1
L s which denotes the �eld of

fractions of AL. Recall that we also have introduced the unique additive endomorphism ψL of
BL (and then AL) which satis�es

φL � ψL � π�1
L � TrBL{φLpBLq .

Moreover, the projection formula

ψLpφLpf1qf2q � f1ψLpf2q for any fi P BL

as well as the formula
ψL � φL �

q

πL
� id

hold. An étale pφL,ΓLq-module M comes with a Frobenius operator φM and an induced
operator denoted by ψM .

Let rE� :� limÐÝ oCp{poCp with the transition maps being given by the Frobenius φpaq � ap.

We may also identify rE� with limÐÝ oCp{πLoCp with the transition maps being given by the

q-Frobenius φqpaq � aq. Recall that rE� is a complete valuation ring with residue �eld Fp and
its �eld of fractions rE � limÐÝCp being algebraically closed of characteristic p. Let mrE denote

the maximal ideal in rE�.
The q-Frobenius φq �rst extends by functoriality to the rings of the Witt vectorsW prE�q �

W prEq and then oL-linearly toW prE�qL :�W prE�qboL0
oL �W prEqL :�W prEqboL0

oL, where

L0 is the maximal unrami�ed subextension of L. The Galois group GL obviously acts on rE
andW prEqL by automorphisms commuting with φq. This GL-action is continuous for the weak
topology on W prEqL (cf. [GAL] Lemma 1.5.3).
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Sometimes we omit the index q, L, orM from the Frobenius operator, but we always write
φp when dealing with the p-Frobenius.

Evaluation of the global coordinate Z of LT at πL-power torsion points induces a map
(not a homomorphism of abelian groups) ι : Tπ ÝÑ rE�. Namely, if t � pznqn¥1 P Tπ with
rπLspzn�1q � zn and rπLspz1q � 0, then zqn�1 � zn mod πL and hence ιptq :� pzn mod πLqn PrE�. As before we �x an oL-generator u of Tπ and put ωu :� ιpuq. Then there exists a (unique)
lift Zu PW prE�qL of ωu satisfying (cf. [SV15, Lem. 4.1])

(i) if u1 � au with a P o�L denotes another generator of Tπ, then Zu1 � raspZuq is the
corresponding lift;

(ii) ϕqpZuq � rπLspZuq;

(iii) σpZuq � rχLT pσqspZuq for any σ P GL.

By sending Z to Zu PW prE�qL we obtain an GL-equivariant, Frobenius compatible embedding
of rings

(5) oLJZK ÝÑW prE�qL .

Let K � Cp be a complete sub�eld containing L8 and Ω, i.e., the minimal choice is the

completion of the extension L8pΩq of L8; by an observation of Colmez the completion yLab
would be a possible choice, where we write Lab � LnrL8 and Lnr for the maximal abelian
and for the maximal unrami�ed extension of L, respectively. If L � Qp, such K cannot be
discretely valued even if we replace L8 by L, see [ST2, Lem. 3.9]. Following Colmez we de�ne
Kn :� Ln bL K �

±
poL{π

n
Lq

� K, where the latter identi�cation is given by mapping l bL k to

pσaplq � kqaPpoL{πnLq� , and have the maps

TrKn{K :
¹

poL{π
n
Lq

�

K Ñ K, plaqaPpoL{πnLq� ÞÑ
¸

aPpoL{π
n
Lq

�

la.

Note that we have vppΩq � 1
p�1 �

1
epq�1q and, for n ¥ 1, rn :� vppunq �

1
epq�1qqn�1 .

In the following, let F be a complete nonarchimedean �eld F containing L, with valuation
vF extending the p-adic valuation on Qp.

For any ring R, let D
ra,bs
perf pRq (respectively Db

perfpRq, D
�
perfpRq) denote the triangulated

subcategory of the derived category DpRq of (cochain) complexes of R-modules consisting of
the complexes of R-modules which are quasi-isomorphic to complexes of �nitely generated
projective R-modules concentrated in degrees ra, bs (respectively bounded degrees, degrees
bounded above).

For a locally L-analytic group G and a complete �eld F � Cp containing L we write
DpG,F q for the locally L-analytic distribution algebra with coe�cients in F ; if the coe�cients
are clear from the context we often abbreviate this as DpGq. Dirac distributions associated
with group elements g P G are denoted by δg or rgs.
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3 pφL,ΓLq-Modules over the Robba ring

3.1 De�nition of the Robba ring R

For any intervall I � p0,8q that is either compact or of the form p0, rs, r ¡ 0, we de�ne

RI
F :�

#¸
kPZ

ak � Z
k | ak P F, lim

|k|Ñ8
vF pakq � kt � 8 for all t P I

+
.

We always assume that the boundary points of I are in the value group of vF , so that RI
F is

the ring of rigid analytic functions on the annulus

tx P F | vF pxq P Iu.

Furthermore, for r ¡ 0, let

Rr
F :� Rp0,rs

F .

i.e. the ring of rigid analytic functions on the annulus with outer radius 1 and inner radius
depending on r. For any s P p0, rs, one has Rrs,rs

F � Rr
F , and Rrs,rs

F is a Banach algebra over
F with the norm

Vrs,rs pfq � min
tPrs,rs

�
inf
kPZ

pvF pakq � ktq



, where f �

¸
kPZ

akZ
k P Rrs,rs

F .

Thus Rr
F �

�
0 s¤rR

rs,rs
F is a Fréchet space. There are natural inclusions Rr

F � Rs
F for s ¤ r.

Now the Robba ring over F in the variable Z is de�ned by

RF :�
¤
r¡0

Rr
F .

We endow RF with the locally convex direct limit topology of the Rr
F , making it an LF-space.

Moreover, let

R�
F :� RF X F rrZss.

This is the ring of power series with coe�cients in F that are convergent on the open unit disk.
In particular, we have R�

F � Rr
F for all r ¡ 0. For a complete �eld extension F � F 1 � Cp we

have
F 1b̂F,iRF � RF 1

(see. [BSX, Corollary 2.1.8]). Their proof also shows F 1b̂F,πRr
F � Rr

F 1 .

3.2 Frobenius and ΓL-action on R

On RF , we de�ne a Frobenius φL and a commuting ΓL-action by

φLpZq :� rπLspZq and γpZq :� rχLT pγqspZq for γ P ΓL

on the variable and trivial actions on the coe�cients. For r ¡ 0, the Frobenius φL and each
γ P ΓL restrict to maps

φ : Rr
F ÝÑ Rr{q

F and γ : Rr
F

�
ÝÑ Rr

F .

9



For r small enough, there is a left inverse

ψL : Rr{q
F ÝÑ Rr

F

of φL, given by Ψ �
φ�1
L
q � TrRr{q

F {φLpRr
F q
, see [FX, �2]. We have Ψ � πL

q ψL.

3.3 pφL,ΓLq-Modules

De�nition 3.1. A φL-module over RF is a �nitely generated free RF -module M , equipped
with a continuous3, φL-semilinear endomorphism φM , such that the induced RF -linear map

RF bRF ,φL M ÝÑM, f b x ÞÝÑ f � φM pxq

is an isomorphism. Note that in the above tensor product, RF is viewed as a left-module over
itself in the usual way and as a right module via φL.
We will often simply write φ instead of φM .

Proposition 3.2. Let M be a φL-module over RF . Then there exists an rpMq ¡ 0 such that,
for each 0   r ¤ rpMq, there exists a unique �nitely generated free Rr

F -submodule M r � M
satisfying the following properties:

(i) M � RF bRr
F
M r.

(ii) φM induces an isomorphism Rr{q
F bRr

F ,φL
M r �

ÝÑ Rr{q
F bRr

F
M r.

In particular, for 0   s ¤ r ¤ rpMq, one has

M s � Rs
F bRr

F
M r.

Proof. See Thm. I.3.3 in [Be04].

Remark 3.3. Let M be a φL-module over RF . Then for 0   s ¤ r ¤ rpMq and ? P
ts, rs, rs,∅u we write

M? :� R?
F bRrpMq

F

M rpMq.

Composing the canonical map M r ÝÑ Rr{q
F bRr

F ,φL
M r, m ÞÝÑ 1bm with the isomorphism

Rr{q
F bRr

F ,φL
M r �M r{q from Prop. 3.2(ii) above, we obtain φL-semilinear maps

φ : M r ÝÑM r{q.

There is also an operator

ΨM : M r{q � Rr{q
F bRr

F ,φL
M r ÝÑM r

given by f bm ÞÝÑ Ψpfq �m.

De�nition 3.4. A pφL,ΓLq-module over RF is a φL-module M over RF which carries a
continuous, semilinear action of ΓL that commutes with φM . We shall write MpRF q for the
category of pφL,ΓLq-modules over RF .

3where M is, of course, endowed with the product topology from RF .
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Remark 3.5. IfM is a pφL,ΓLq-module over RF and 0   r ¤ rpMq, then from the uniqueness
in Prop. 3.2 it follows that γpM rq �M r for all γ P ΓL.

De�nition 3.6. (i) For n ¥ 1 we put rn :� vppunq �
1

epq�1qqn�1 .

(ii) Let M be a pφL,ΓLq-module over RF . For any n such that rn ¤ rpMq, de�ne

M pnq :�M rn .

Observe that for the Frobenius we then have φ : M pnq ÝÑM pn�1q for n " 0.

De�nition 3.7. For an a�noid algebra A over F we de�ne RI
A :� Ab̂FRI

F (with the projec-
tive tensor product topology) and similarly Rr

A and RA. We can extend A-linearly the actions
of φL and ΓL. By a pφL,ΓLq-module over RA we mean a RA-module M which arises as a
base change of a projective Rr

A-module M r for some r " 0, together with a continuous Rr
A-

semilinear action of ΓL on M r and a φL-semilinear map φM : M r Ñ M r{q, which commutes
with ΓL. We can analogously extend the de�nition of Ψ.

If F is not spherically complete, we do not know if there exist non-free, projective pφL,ΓLq-
modules over RF . In all cases considered by us, we will only need free modules. According to
[BSX] Prop. 2.25 the ΓL-action on a pφL,ΓLq-module M is di�erentiable so that the derived
action of the Lie algebra Liepo�L q on M is available.

De�nition 3.8. A pφL,ΓLq-moduleM over R P tRF ,RAu is called L-analytic, if the derived
action LiepΓLq �M Ñ M is L-bilinear, i.e., if the induced action LiepΓLq Ñ EndpMq of the
Lie algebra LiepΓLq of ΓL is L-linear (and not just Qp-linear). We shall write ManpRq for the
category of L-analytic pφL,ΓLq-modules over R. An L-analytic pφL,ΓLq-module M over R is
called étale, if every pφL,ΓLq-submodule has slope ¥ 0 (cf. [BSX, De�nition 3.22]). We write
Man,étpRq for the category of étale, L-analytic pφL,ΓLq-modules over R.

For the relation with L-analytic continuous Galois representations RepanL pGLq of GL on

�nite dimensional vector spaces V , which are analytic, i.e., satisfying that, if DQp
dRpV q :�

pV bQp BdRq
GL , the �ltration on D

Qp
dRpV qm is trivial for each maximal ideal m of L bQp L

which does not correspond to the identity id : LÑ L, Berger's theorem is crucial.

Theorem 3.9. There is an equivalences of categories

RepanL pGLq ÐÑMan,étpRLq

V ÞÑ D:
rigpV q.

Proof. Thm. D in [Be16]

The embedding oLJZK Ñ W pẼqL in (5) depends by construction on the choice of u.
Any other choice does not change the image of the embedding oLJZK Ñ WLpC5

pq because
Zau � raspZuq for a P o

�
L by property (i) above (5). As explained in [SV23, �8] the image Zu

of the variable Z already lies in W pL̂58qL, so that we actually have an embedding oLrrZss Ñ
W pL̂58qL. Similarly as in [KLI, Def. 4.3.1] for the cyclotomic situation one shows that the
latter embedding extends to a ΓL- and φL-equivariant topological monomorphism RL Ñ R̃L

into the perfect Robba ring, see [SV23, �5] for a de�nition and [W, Konstruktion 1.3.27] for a
proof in the Lubin-Tate setting.
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Remark 3.10. In order to trace the choice of u in our constructions, we should view RL as
a subring of rRL via the embedding induced by Z ÞÑ Zu and de�ne pφL,ΓLq-modules over this
(isomorphic) subring. We will ignore this dependence for the most part by working with a �xed
Z � Zu. This �hidden� dependence on u is only relevant if an element of a pφL,ΓLq-module is
explicitly de�ned in terms of power series in the variable Z, see e.g. (77), (79), (27).

3.4 Rank one modules and characters

Let A be an a�noid algebra over F. To each continuous character δ : L� Ñ A� we can
attach a pφL,ΓLq-module of rank one RApδq :� RAeδ by setting φLpeδq � δpπLqeδ and
γpeδq � δpχLT pγqqeδ for γ P ΓL. We say a module is of character type if it arises in this
way. A pφL,ΓLq-module of character type is L-analytic (in the sense of De�nition 3.8) if and
only if δ|o�L

is locally L-analytic. Over RL any rank one module is of character type (cf. [FX,

Proposition 1.9]). We write Σ � ΣpAq for the set of continuous characters δ : L� Ñ A�. We
denote by Σan :� ΣanpAq the set of locally L-analytic characters δ : L� Ñ A�. Consider the
following characters δLT , χ � x|x|, δunc : L� Ñ L� for c P L� given by

δLT pπLq � 1, δLT |o�L
� ido�L

,

χpπLq �
πL
q
, χ|o�L

� ido�L
,

δunc pπLq � c, pδunc q|o�L
� 1.

In particular, χ � δunπL
q

δLT . Then δLT corresponds via class �eld theory (see section 7.4 for

the normalisation we choose) to the character χLT : GL Ñ o�L . Let δ : L
� Ñ L� be any con-

tinuous character; setting δ0 :� δunδ�1pπLq
δ we may always decompose δ � δunδpπLqδ0 satisfying

δ|o�L
� pδ0q|o�L

and δ0pπLq � 1. If δ is étale, i.e., |δpπLq| � 1, we shall write χδ for the corre-
sponding Galois character via local class �eld theory sending πL to the geometric Frobenius
automorphism. Then D:

rigpLpχδqq � RLpδq.
Later, for descent calculations we will have to select out the sets of special characters

Σ1 :� tx�i|i P Nu and Σ2 :� txiχ|i P Nu from the generic ones Σgen :� ΣanzpΣ1 Y Σ2q.
Note that we have two ψ-operators. While ψ satis�es the identity ψ �φ � q

πL
id and makes

sense even integrally, Ψ denotes the left inverse of φ, i.e., satisfying Ψ � φ � id. In particular,
we have ψ � q

πL
Ψ. Note that ψpeδq �

q
πL
δ�1pπLqeδ.

If δ P ΣanpKq and a P o�L such that logpaq � 0, then one de�nes the weight of δ as
ωδ :� logpδpaqq{ logpaq (which is independent of a). We shall say that δ is de Rham, if the
attached pφL,ΓLq-module RKpδq is de Rham in the sense that will be introduced in subsection
5.4 below. As shown in the Appendix A, Remark A.8, δ is de Rham if and only if there exist
some locally constant character δlc and kp� ωδq P Z, such that

δ � δlcx
k (or equivalently δ � δlcδ

k
LT for some other δlc),

see also [SV20, Rem. 3.2.3/4] for the étale case.
We �x some notation for the remainder of the article. Consider the di�erential operator

B :� Binv �
1

log1LT pZq
d
dZ acting on RK . (This di�ers from [Co2] by a constant.) Assume ∇ P

LiepΓLq � L corresponds to 1.

Remark 3.11. We obtain the following properties (cf. [Co2, 1.2.4]):
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(i) B � φ � πLφ � B.

(ii) B � γ � χLT pγqγ � B.

(iii) ∇f � tLT Bf for f P RK .

(iv) ∇pfeδq � p∇f � ωδfqeδ for δ P Σan.

(v) Bηpx, T q � Ωxηpx, T q

3.5 The modules D
p�q
dif pMq

We set tLT � logLT pZq P LrrZss, so that

φptLT q � πL � tLT and γptLT q � χLT pγq � tLT for all γ P ΓL

by (3). For n ¥ 1, we set

rπ�nL spZq :� un �LT expLT p
tLT
πnL

q P LnrrZss.

Then rπnLspun�LT expLT p
tLT
πnL
qq � Z, which is how Colmez justi�es this notation in [Co2, 1.4.2].

Note that the constant term of rπ�nL spZq is equal to un and hence is non-zero, so rπ�nL spZq is
a unit in LnrrZss.

Furthermore, let θ : KnrrtLT ss Ñ Kn denote the Kn-linear map sending tLT to 0, i.e., the
reduction modulo tLT . This is the completed base change to K of the restriction of θ : B�

dR Ñ
Cp to LnrrtLT ss Ñ Ln.

In the following, let F be a complete nonarchimedean �eld containing L.

De�nition 3.12. The group ΓL acts diagonally on

Fn :� Ln bL F

(trivially on the right factor and naturally on the left), and we extend this to an action on
FnrrZss via its usual action on Z.4 Now de�ne

ιn � ιpF qn : Rrn
F Ñ FnrrtLT ss � FnrrZss,¸

kPZ
akZ

k ÞÑ
¸
kPZ

akprπ
�n
L spZqqk,

where on the right-hand side ak denotes (by abuse of notation) the image under the canonical
embedding F ãÝÑ Ln bL F and rπ�nL spZq is viewed as a power series over Ln bL F via the
embedding Ln ãÝÑ Ln bL F .

Remark 3.13 (Well-de�nedness of ιn). By [Co4, Prop. 8.10], the ring B�
dR contains a period

tL for the Lubin-Tate character, i.e. we have gptLq � χLT pgqtL for all g P GL and tL di�ers
from the usual t by a unit. Thus LnrrtLT ss embeds into B�

dR via tLT ÞÝÑ tL and we endow
it with the subspace topology, making it a closed subspace of B�

dR. A series of the form x �

4Note that FnrrtLT ss � FnrrZss because the map FnrrZss{Z
k ÝÑ FnrrZss{Z

k, Z ÞÝÑ tLT is an isomorphism
for all k, a consequence of tLT being an element of Z � Z2LrrZss.
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°
k"�8 p

krxks PW poC5pq converges in B�
dR if and only if θpxq converges in Cp (which is the case

precisely when k�vpxkq Ñ 8 for k Ñ8). As in [CC99, Prop. III.2.1 (i)], the condition for an
x P AL to be of the form x �

°
kPZ akω

k
LT with ak P oL and vppakq�k �rn Ñ8 for k Ñ �8 is

equivalent to x being an element of A:,n
L :� rA:,nXAL and hence in particular implies that ιnpxq

converges in B�
dR. Even though the coe�cients of an element x P Rrn

L are not bounded, they
do satisfy the same growth condition, which su�ces for ιnpxq to converge. The case of general
F is obtained via completed base change Rrn

F � F b̂L,πRrn
L Ñ FnrrtLT ss � F b̂L,πLnrrtLT ss.

Remark 3.14.

(i) For the power series tLT � logLT pZq P R�
F , we have

ιnptLT q � logLT prπ
�n
L spZqq � logLT punqloooomoooon

�0

� logLT expLT

�
tLT
πnL



�
tLT
πnL

.

(ii) ιn is injective for every n. (cf. [Be01, Corollaire II.11] for a proof in the cyclotomic case,
the LT-case over L works analogously. In the general case the completed base change
F b̂L,π� preserves injectivity by [Eme, 1.1.26].)

The map ιn commutes with the action of ΓL. Writing Tr � idF b
1
qTrLn�1{Ln we obtain

the commutative diagrams

Rrn
F FnrrtLT ss

Rrn�1

F Fn�1rrtLT ss

φ

ιn

ιn�1

and
Rrn
F FnrrtLT ss

Rrn�1

F Fn�1rrtLT ss.

ιn

ιn�1

ψ Tr

De�nition 3.15. Let M be a pφL,ΓLq-module over RF . Viewing FnrrtLT ss as an Rrn
F -module

via ιn, we de�ne the FnrrtLT ss- and FnpptLT qq-modules

D�
dif,npMq :� FnrrtLT ss bRrn

F
M pnq and Ddif,npMq :� D�

dif,npMqr1{tLT s,

respectively, whereD�
dif,npMq carries the diagonal action of ΓL, which also extends toDdif,npMq.

Under the isomorphism φ�pM pnqq � Rrn�1

F bφ,Rrn
F
M pnq � M pn�1q, the map φ : M pnq Ñ

M pn�1q corresponds to the canonical map cann,n�1 : M
pnq Ñ φ�pM pnqq;x ÞÑ 1b x. The above

diagrams then induce the diagrams (see [Na17a, �2.B] for details)

M pnq D
p�q
dif,npMq

M pn�1q D
p�q
dif,n�1pMq

φ

ιn

cann,n�1

ιn�1
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where the map cann,n�1 is given by fptqbx ÞÑ fptqbφpxq � fptqbcann,n�1pxq � fptqb1bx,
and ιn by m ÞÑ 1bm, as well as, for n ¥ 1,

M pnq D
p�q
dif,npMq

M pn�1q D
p�q
dif,n�1pMq

ιn

ιn�1

ψ Tr

with transitions maps fptq b x ÞÑ Trpfptqq b ψpxq on the right hand side. Finally, we de�ne

D
p�q
dif pMq :� limÝÑ

n"0

D
p�q
dif,npMq

with cann,n�1 as transition maps.

As in [Na17a], we have D�
dif,npMq bFnrrtLT ss Fn�1rrtLT ss

�
ÝÑ D�

dif,n�1pMq and hence

D
p�q
dif pMq � D

p�q
dif,npMq bFnrrtLT ss p

¤
m¥n

FmrrtLT ssq

for n " 0.

Remark 3.16. Since M pnq is a free module over Rpnq
F , say of rank d, we have D�

dif,npMq �

FnrrtLT ss
d. The Fréchet-space-structure on FnrrtLT ss � limÐÝFnrrtLT ss{pt

k
LT q (with base �eld F,

where each factor is a �nite-dimensional F -vector space endowed with it's canonical topology)
thus induces one on D�

dif,npMq, which is of course independent of the choice of the isomorphism

above. Furthermore, Ddif,npMq � limÝÑk
D�

dif,npMq�t�kLT becomes an LF-space over F in this way.

Finally, the modules D�
difpMq and DdifpMq are also LF-spaces5 over F .

Later on it will be crucial to form the cohomology groups H i
φ,ZpD

�
difpMqq from Section 4.

For this we need aDpΓL, F q-module-structure onD
p�q
dif pMq, which we will obtain by employing

the following result.

Proposition 3.17. Let W be an LF-space over F carrying a pro-L-analytic action of ΓL.
Then this action extends uniquely to a separately continuous action of DpΓL, F q on W .

Proof. This follows from the proof of [SV20, Proposition 4.3.10].

Lemma 3.18. Let B be a Fréchet ΓL-ring over F and W a �nitely generated free B-module
with a compatible ΓL-action. Assume there is a basis A :� pe1, . . . , edq for W such that the
map

ΓL ÝÑ GLdpBq, γ ÞÝÑ MatApγq

is pro-L-analytic. Then6 WL�pa �
Àd

j�1B
L�pa � ej.

Proof. This is proven for F � L � Qp in [Be16, Prop. 2.4] and the identical proof applies for
general F and L.

5 Note that this topology is not the norm topology on L8 because a strict LF-space is complete.
6cf. [Be16, �2] for a de�nition of the subspace p�qL�pa of pro-L-analytic vectors.
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Proposition 3.19. For an L-analytic pφL,ΓLq-module M over RF , the ΓL-action on the
LF-spaces D�

difpMq and DdifpMq is pro-L-analytic.

Proof. We start with D�
difpMq � limÝÑn"0

D�
dif,npMq. By de�nition, it su�ces to check that the

ΓL-action on the Fréchet space D�
dif,npMq is pro-L-analytic for n " 0.

We wish to apply Lemma 3.18 with B :� FnrrtLT ss and W :� D�
dif,npMq � B bRpnq

F

M pnq:

Choose any Rpnq
F -module basis x1, . . . , xd of M pnq. Then A :� p1b x1, . . . , 1b xdq is a basis of

the free B-module W , and the map γ ÞÝÑ MatApγq is given by the composite

ΓL ÝÑ GLdpR
pnq
F q

ιnÝÑ GLdpBq

where the �rst map is pro-L-analytic becauseM pnq is pro-L-analytic by assumption. Moreover,
since ιn is a continuous homomorphism of F -algebras, we conclude that 3.18 is applicable. Thus
we obtain

WL�pa �
dà
j�1

BL�pa � p1b xjq � FnrrtLT ss
L�pa bRpnq

F

M pnq.

Finally, from [Por, Prop. 2.6 2.] it follows that FnrrtLT ssL�pa � FnrrtLT ss, which completes
the proof for D�

difpMq.
Moving on to DdifpMq, we write DdifpMq � limÝÑn,k

D�
dif,npMq � t�kLT as a direct limit of Fréchet

spaces. By what we have just shown, one can express D�
dif,npMq for n " 0 as inverse limit

D�
dif,npMq � limÐÝr Bn,r for certain F -Banach spaces Bn,r on which ΓL acts L-analytically. So

for any k one has
D�

dif,npMq � t�kLT � limÐÝ
r

Bn,r � t
�k
LT ,

where by Bn,r � t
�k
LT we denote the ΓL-module Bn,r whose ΓL-action is twisted by χ�kLT . Since

the inversion in ΓL is an L-analytic map, we see that the twisted action b ÞÝÑ χLT pγ
�kq � γpbq

on Bn,r is again L-analytic. Thus ΓL acts pro-L-analytically on D�
dif,npMq � t�kLT for n " 0 and

k ¥ 1, so the claim follows.

Note that DdifpMq depends on the coe�cient �eld of RF . For a complete �eld extension
F 1{F and an L-analytic pφL,ΓLq-moduleM overRF one checks that F 1b̂F,iM is an L-analytic
pφL,ΓLq-module over RF 1 . Here b̂F,i denotes the inductive tensor product topology.

Remark 3.20. Let F 1{F be a complete �eld extension and let M be an L-analytic pφL,ΓLq-
module over RF . The natural maps

F 1b̂F,iDdifpMq Ñ DdifpMb̂F,iF
1q

and
F 1b̂F,iDdif,npMq Ñ Ddif,npMb̂F,iF

1q

are ΓL-equivariant isomorphisms.

Proof. The completed inductive tensor product commutes with strict locally convex inductive
limits by [Eme, Theorem 1.1.30] together with the argument in the proof of [BSX, 2.1.7(i)].
Hence the �rst statement follows from the second. For Fréchet spaces inductive and projective
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tensor products agree and commute with projective limits (of Hausdor� spaces) with dense
transition maps (cf. [BSX, 2.1.4] and [NFA, 17.6]). This allows us to �rst reduce to the cor-
responding statement for D�

dif,npMqt�k0LT since Ddif,npMq � limÝÑk
D�

dif,npMqt�kLT and by 3.16

we have D�
dif,npMq � limÐÝkD

�
dif,npMq{ptkLT q, hence we even have surjective transition maps

which allow us to reduce to the corresponding statement for D�
dif,npMq{ptkLT q (assuming for

simplicity k0 � 0, the general case being treated analogously). Since each D�
dif,npMq{ptkLT q is

�nite dimensional over F , we may omit the completion and see that

F 1 bF D�
dif,npMq{ptkLT q Ñ D�

dif,npMb̂F,iF
1q{ptkLT q

is an isomorphism of �nite dimensional F 1-vector spaces, which follows from the fact that
any basis of M pnq gives rise on the one hand to a FnrrtLT ss basis of D

�
dif,npMq and on the

other hand to a basis of F 1b̂M pnq and thus to a F 1
nrrtLT ss basis of D

�
dif,npF

1b̂Mq. Note that

FnrrtLT ss{ptLT q
k bF F

1 � F 1
nrrtLT ss{ptLT q

k by a dimension argument.

Lemma 3.21. Let V be a F -Banach space and let G be a group acting on V via continuous F -
linear maps. Let W be an F -Banach space of countable type endowed with the trivial G-action.
Then

pV b̂W qG � V Gb̂W

Proof. Assume without loss of generality, thatW is in�nite dimensional (the �nite dimensional
case being simpler). By [PGS, Corollary 2.3.9] W is isomorphic to c0pF q, the space of zero
sequences in F indexed by N. We obtain a G-equivariant isomorphism V b̂W � c0pV q by �rst
identifying c0pF q (resp. (c0pV q) ) with the completion of

À
nPN F (resp.

À
nPN V ) and using

the G-equivariant isomorphism p
À

nPN F q bF V �
À

nPN V and passing to completions. Note
that g P G acts via continuous automorphisms with respect to the product topology and hence
extends to an automorphism of the completions with g acting on a sequence pv1, v2, . . . q via
gpv1, v2, . . . q � pgv1, gv2, . . . q. It is clear that any such sequence is G-invariant if and only if
each component is G-invariant.

Corollary 3.22. Let F 1{F be a complete �eld extension contained in Cp and let M be an
L-analytic pφL,ΓLq-module over RF . We have

D
p�q
dif pMqΓLb̂F,iF

1 � D
p�q
dif pMb̂F,iF

1qΓL .

Proof. Like in the proof of 3.20 we reduce to the corresponding statement for the Banach spaces
Ddif,npMq�t�k0LT {Ddif,npMq�tk�k0LT . The �eld F 1 is of countable type over F since F 1 X Qp is
dense in F 1 by [IZ, Theorem 1] (and of at most countable dimension over Qp) and hence also
F pF 1 X Qpq is a dense F -subspace of at most countable F -dimension. Because the action on
F 1 is trivial, we can deduce the result from 3.21.

4 (Analytic) Cohomology groups

We de�ne cohomology groups H

♣,♠pV q for ♣ P tφ,ψu and ♠ P tDpG,F q,Z, LiepGq,∇u as

follows: For the moment let F be any �eld extension of L and G be any L-analytic group
(of dimension one); we shall reserve the letter U for a (sub)group isomorphic to oL. Let
V be any (abstract) DpG,F q-module. Then by RHomDpGqpF, V q we denote any (bounded)
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complex of F -vector spaces whose cohomology gives Ext
DpGqpF, V q (extensions as abstract
DpGq-modules). Let f be any endomorphism of V which commutes with the DpGq-action
inducing an operator on RHomDpGqpF, V q and we denote by

Kf,DpGqpV q :� cone
�
RHomDpGqpF, V q

f�id
ÝÝÝÑ RHomDpGqpF, V q

	
r�1s

the induced mapping �bre.
Assume U � oL and K being big enough such that DpUq :� DpU,Kq � R�

K �: R�.
Denote by Z P DpUq the element corresponding to the variable Z P R�. Then

0 // DpUq
Z // DpUq // K // 0

is a projective resolution of the trivial representation K and we can choose V Z
ÝÑ V (func-

torially) for RHomDpUqpK,V q. In this context we shall also use the notation Kf,ZpV q for
Kf,DpUqpV q. Note that

Kf,ZpV q � cone
�
V bL

DpGq K
f�id
ÝÝÝÑ V bL

DpGq K
	
r�2s

as RHomDpGqpK,V q � V bL
DpGqKr�1s. Analogous isomorphisms exist for Kf,DpGqpV q for any

G of dimension one, since in our context taking G{U -invariants and -coinvariants coincide and
form exact functors by Maschke's theorem.

Following [Ko] we write D8pGq for the algebra of locally constant distributions, i.e., the
quotient of DpGq by the ideal generated by LiepGq � DpGq.We then obtain isomorphisms by
[ST3, p. 306]

(6) Ext
DpGqpD
8pGq, V q � H
pLiepGq, V q,

where the latter denotes Lie algebra cohomology. Since the reference does not cover coe�cient
�elds such as our K, which is not spherically complete, we would like to brie� justify this
isomorphism: For LiepGq � L∇ we have a strict exact sequence of Hausdor� locally convex
vector spaces over L

(7) 0 // DpG,Lq
∇ // DpG,Lq

pr // D8pG,Lq // 0

by [ST3, �3], i.e., a resolution ofD8pG,Lq by freeDpG,Lq-modules. Moreover, it arises by base
change DpG,Lq bULpLiepGqq� from the following resolution of L by free ULpLiepGqq-modules,
where the latter denotes the enveloping algebra of LiepGq :

(8) 0 // ULpLiepGqq
∇ // ULpLiepGqq

pr // L // 0

see [ST3, Rem. 1.1]. Base change Kb̂L� of (7) leads to the strict exact sequence of Hausdor�
locally convex K-vector spaces

(9) 0 // Kb̂LDpG,Lq
∇ // Kb̂LDpG,Lq

pr // Kb̂LD
8pG,Lq // 0

by [SV20, Lem. 4.3.6]. Since Kb̂LDpG,Lq � DpG,Kq by the proof of [SV20, Lem. 4.1.2],
we also obtain Kb̂LD8pG,Lq � D8pG,Kq, i.e., this sequence is the analogue of (7) for K
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replacing L and visibly it arises again by base change DpG,KqbUKpLiepGqq� from the analogue
of (8)

(10) 0 // UKpLiepGqq
∇ // UKpLiepGqq

pr // K // 0 .

Since HomDpG,KqpDpG,Kq, V q � HomUKpLiepGqqpUKpLiepGq, V q the isomorphism (6) follows.
If RHomDpGqpD

8pGq, V q denotes any (bounded) complex of K-vector spaces having the
groups (6) as cohomology, we again write

Kf,LiepGqpV q :� cone
�
RHomDpGqpD

8pGq, V q
f�id
ÝÝÝÑ RHomDpGqpD

8pGq, V q
	
r�1s

for the induced mapping �bre.

Assume ∇ P LiepUq � K corresponds to 1. Then V ∇
ÝÑ V is a valid (functorial) choice for

RHomDpUqpD
8pUq, V q and we shall also use the notation Kf,∇pV q instead.

Finally, we set
H


♣,♠pV q :� h
pK♣,♠pV qq.

Note that we have isomorphisms (see proof of [Ko, Thm. 4.8] or [Wei, �10.8.2])

RHomD8pGqpK,RHomDpGqpD
8pGq, V qq � RHomDpGqpK,V q

and, for G0 � G any L-analytic normal subgroup, (see [Wei, Exc. 10.8.5])

RHomDpG{G0qpK,RHomDpG0qpK,V qq � RHomDpGqpK,V q

in the derived category, therefore inducing the spectral sequences

ExtiD8pGqpK,Ext
j
DpGqpD

8pGq, V qq ñ Exti�jDpGqpK,V q

and
H ipG{G0,Ext

j
DpG0q

pK,V qq ñ Exti�jDpGqpK,V q.

They both degenerate by the projectivity of K as D8pGq- and DpG{G0q � KrG{G0s-module
(cf. the proof of [Ko, Thm. 4.10] for the �rst claim over L, from which the general case again
follows by complete base change to K, and using Maschke's theorem for the second claim).
Moreover, note that HomD8pGqpK,W q � WG, for any D8pG,Kq-module W , because the
Dirac measures δγ P D8pG,Kq induce the elements δγ � 1 in the augmentation ideal, which
is the kernel of D8pG,Kq ↠ K and which is a �nitely generated ideal by Cor. 4.6 of (loc.
cit.) plus complete (exact) base change; using this, the above spectral sequences induce the
isomorphisms

(11) H ipLiepGq, V qG � ExtiDpGqpK,V q

and

(12) H0pG{G0,Ext
j
DpG0q

pK,V qq � ExtjDpGqpK,V q.

Remark 4.1. In [Co2] the pro-L-locally analytic cohomology groups H i
anpA

�,Mq for the L-
analytic semi-group A� � ΓL � tφZu with M being speci�ed below are de�ned. By [Th, 3.7.6]
they are isomorphic to the cohomology groups H i

φL,ΓL,an
pMq which arise as follows: Following

19



[Co2, �5] we write C
anpG,Mq for the locally L-analytic cochain complex of an L-analytic
group G with coe�cients in M and H i

anpG,Mq :� hipC
anpG,Mqq for locally L-analytic group
cohomology. More precisely, let M � limÝÑs

limÐÝrM
rr,ss with Banach spaces M rr,ss be an LF

space with a pro-L-analytic action of G, i.e., a locally analytic action on each M rr,ss.7 If
MapslocL�anpG,M

rr,ssq denotes the space of locally L-analytic maps from G to M rr,ss, then

CnanpG,Mq � limÝÑ
s

limÐÝ
r

MapslocL�anpG
n,M rr,ssq

is the space of locally L-analytic functions (locally with values in limÐÝrM
rr,ss for some s and

such that the composite with the projection onto M rr,ss is locally L-analytic for all r). Then
H i
φL,G,an

pMq :� hipKφL,G,anpMqq is the cohomology of the mapping �bre KφL,G,anpMq of
C
anpG,φLq and analogously for ψ instead of φL. By [St1, Corollary 4.9] we have natural
isomorphisms

(13) H i
anpG,Mq � ExtiDpGqpK,Mq

and hence, for ♣ P tφ,ψu,

(14) H i
♣,G,anpMq � H i

♣,DpGqpMq.

Lemma 4.2.

(i) H i
♣,♠pV q � 0 for i � 0, 1, 2.

(ii) H

φ,DpGqpMq � H


φ,LiepGqpMqG for M in MpRq.

(iii) H

φ,DpGqpMq � H


Ψ,DpGqpMq for M in MpRq.

Proof. Part (i) holds due to the length the of total complex. (ii) follows immediately from
(11) upon considering one of the spectral sequences attached to the double complexes arising
from the de�ning mapping �bres.8 By (12), (iii) is reduced to the case H


φ,ZpMq � H

Ψ,ZpMq,

for which we note that Z is invertible on Mψ�0 by [SV20, Thm. 4.3.21], see also [Co2, Thm.
5.5] and [BF, Cor. 2.2.3].

4.1 Finiteness of analytic Cohomology

Theorem 4.3. Let A,B be K-a�noid and let M be an L-analytic pφL,ΓLq-module over RA.
Let f : AÑ B be a morphism of K-a�noid algebras. Then:

(1) KφL,ZpMq P D
r0,2s
perf pAq.

(2) The natural morphism KφL,ZpMq bL
A B Ñ KφL,ZpMb̂ABq is a quasi-isomorphism.

Proof. See [St1, Theorem 2.20].

7This means that for all m P M rr,ss there exists an open L-analytic subgroup Γn � G together with a chart
ℓ : Γn

�
ÝÑ πnLoL such that the orbit map ofm restricted to Γn is a power series of the form gpmq �

°
k¥0 ℓpgq

kmk

for a sequence mk of elements in M rr,ss with πnkL mk converging to zero.
8In [Co2, Thm. 5.6] the analogous statement for Hi

anpA
�,Mq and Hi

LiepA
�,Mq, as de�ned in (loc. cit.), is

claimed referring to [FX, Thm. 4.2], but this only covers i � 0, 1.
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For a commutative ring R and an object C P DbpRq whose cohomology groups are of �nite
rank over R, we denote by χRpCq �

°
ip�1q

i rankH ipCq the Euler-Poincaré-characteristic of
C.

Remark 4.4. Let A{K be a�noid and let M be a trianguline L-analytic pφL,ΓLq-module
over RA. Then the Euler-Poincaré Formula holds, i.e.,

χpMq :� χpKφL,ZnpMqq �
¸
p�1qirkRA

pH i
φL,Zn

pMqq � rΓL : ΓnsrkRA
pMq.

Proof. Without loss of generality we may assume that M � RApδq is an L-analytic module
of character type (attached to an A-valued locally L-analytic character δ : L� Ñ A�q. Then
the case A � K is treated in [St2, Remark 6.3]. The validity of the formula can be checked
at each maximal ideal of A. Note that RApδq{m is a pφL,ΓLq-module of character type over
RK1 for some �nite extension K 1{K for each m P MaxpAq by the Nullstellensatz and the claim
hence follows from the previous case.

We will require a slight generalization of 4.3. Recall that KφL,ZpMq is (up to shift) quasi
isomorphic to the cone of 1�φ on RHomDpU,KqpK,Mq. As a consequence of [St2, Lemma 2.5]
K admits a �nite projective resolution consisting of �nitely generated projective DpΓL,Kq-
modules. In particular the complex computing RHomDpU,KqpK,Mq (and hence alsoKφL,ZpMq)
can be represented by a complex of ArΓL{U s-modules the terms of which are all of the form
HomDpU,KqpP,Mq, where P is the restriction of scalars of a projective DpΓL,Kq-module with
ΓL acting via pγfqpxq � γpfpγ�1xqq and A acting by multiplication on M.

Remark 4.5. In the situation of 4.3, if we view KφL,ZpMq as an object in DpArΓL{U sq we
have

KφL,ZpMq P D
r0,2s
perf pArΓL{U sq.

Proof. The �niteness of the cohomology groups over A already implies that KφL,ZpMq be-
longs to D�

perfpArΓL{U sq. Choosing a complex of bounded above projective ArΓL{U s-modules
representing KφL,ZpMq, truncating and using [KPX, Lemma 4.1.3], we can conclude that the
complex in question is quasi isomorphic to a bounded complex of �nitely generated projec-
tives outside of perhaps degree 0, where the module is �nitely generated over ArΓL{U s and
its underlying A-module is �at. But then it is projective as an A-module and by [St2, Lemma
2.5] also projective as an ArΓL{U s-module, hence the claim.

4.2 Perfectness of analytic Iwasawa cohomology and the Lubin-Tate defor-
mation

For M any pφL,ΓLq-module over any basis consider the complex

TΨpMq :� rM
Ψ�1
ÝÝÝÑM s

concentrated in degrees 1 and 2, whose cohomology we call (analytic) Iwasawa cohomology
due to Fontaine's classical result, which relates these groups in the étale case to usual Iwasawa
cohomology de�ned in terms of Galois cohomology. We set D :� DpΓL,Kq. The following
result [St2, Thm. 4.8] will be central for the whole article:

Theorem 4.6. For M PManpKq trianguline, TΨpMq is a perfect complex of D-modules, i.e.,
belongs to Db

perfpDq.
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For the rest of this subsection we assume that M PManpKq is trianguline.
Later for our approach it will be important to interpret Iwasawa cohomology as analytic

cohomology of a deformationDfmpMq ofM via generalized Herr complexes. This deformation
lives over the character variety XΓL (base changed to K) of the locally L-analytic group ΓL
([ST2]) and will allow to use density arguments to deduce many properties of the Epsilon-
isomorphism for rank one modules just from properties over its de Rham points.

We pick an a�noid cover Xn � SppDnq of XΓL with Dn :� KrΓLs bKrUs DrnpU,Kq for
a decreasing sequence rn such that each DrnpU,Kq corresponds to the ring of rigid analytic
functions on the annulus rrn,8s via the Fourier isomorphism for DpU,Kq. Over the space XΓL

we have the sheaf of Robba rings RXΓL
given by mapping Xn to ROXΓL

pXnq and DfmpMq

should be thought of as a pφL,ΓLq-module (sheaf) over RXΓL
(but unfortunately, Schneider's

and Teitelbaum's formalism of coadmissible modules does not apply here as RXΓL
pXΓLq does

not form a Frechet-Stein algebra in any obvious sense):
For an L-analytic pφ,ΓLq-module M over RL we de�ne

DfmpMqpXnq :� DfmnpMq :� OXΓL
pXnqb̂LM,

where ΓL acts diagonally, on the left factor via the inversion and on M via its given action.
For each n this is a pφ,ΓLq-module M over ROXΓL

pXnq by [St2, Prop. 3.2].

As de�nition for the generalized Herr complex for the sheaf DfmpMq, philosophically, we
would like to take the complex in DpDpΓL,Kqq

9 de�ned as total derived sheaf cohomology
of the complex of sheaves

KΨ,DpΓL,KqpDfmpMqq � TΨpDfmpMqqbL
DpΓL,Kq,diag

K p” � KΨ,ZpDfmpMqqbL
KrΓL{Us,diag

K”q,

where for the last (quasi-)isomorphism in quotation marks we used implicitly the free resolution

(15) 0 // DpΓL,Kq
Z // DpΓL,Kq // KrΓL{U s // 0

which induces an isomorphism TΨpDfmpMqq bL
DpΓL,Kq,diag

KrΓL{U s � KΨ,ZpDfmpMqq 10.
But instead of verifying that we really have a complex of (coherent) sheaves we just use the
facts as a motivation that on a Stein space ΓpXΓL ,�q � limÐÝn ΓpXn,�q and that higher sheaf
cohomology of coherent sheaves vanishes on a�noids. Thus we rather take the total derived

9instead of e.g. forming the generalized Herr complex attached to the global sections DfmpMqpXΓLq!
10 But strictly speaking one needs a resolution of DpΓL,Kq bK KrΓL{U s-modules in order to de�ne the

pDn,KrΓL{U sq-bimodule structure on KΨ,ZpDfmnpMqq � TΨpDfmnpMqq bL
DpΓL,Kq

KrΓL{U s. E.g. we could
formally work with the resolution

0 // C :� ker // DpΓL,Kq bK KrΓL{U s
abb ÞÑHpaq�b// KrΓL{U s // 0

for an explicit construction of KΨ,ZpDfmpMqq in DpDn�mod�KrΓL{U sq. Indeed, the kernel C is projective
(hence �at) as D-modules by the same reasoning as for [St2, Lem. 2.5]. Here H : DpΓL,Kq Ñ KrΓL{U s
denotes the augmentation map sending the Delta distributions of u P U to 1. This sequence is related to (the
direct sum of) the sequences

0 // Iχi :� ker // DpΓL,Kq
γ ÞÑχ�1

i pγq
// Kpχiq // 0

for the characters χi of ΓL which factor through ΓL{U.
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inverse limit as formal de�nition, i.e.,

C
 :� RΓΨ,DpΓL,KqpXΓL ,DfmpMqq :� Rlim

�
KΨ,DpΓL,KqpDfmnpMqq



.

The following results are variants of those in [St2, �3.3]; among others they are based on the
observation that for the sheaf of cohomology groups sending Xn to H i

Ψ,DpΓL,Kq
pDfmnpMqq

the formalism of coadmissible modules over DpΓL,Kq does apply.

Theorem 4.7.

(i) For all i, the cohomology groups H i
Ψ,DpΓL,Kq

pXΓL ,DfmpMqq of the complex
RΓΨ,DpΓL,KqpXΓL ,DfmpMqq coincide with the global sections

limÐÝ
n

H i
Ψ,DpΓL,Kq

pDfmnpMqq

of the sheaf of cohomology groups sending Xn to H i
Ψ,DpΓL,Kq

pDfmnpMqq.

(ii) There is an isomorphism in Db
perfpDpΓL,Kqq

RΓΨ,DpΓL,KqpXΓL ,DfmpMqq � TΨpMq.

Remark 4.8. In accordance with (18) the isomorphism in (ii) only becomes independent of
the choice of Z if we insert the scalar factor CTrpZnq (see (17) below) in the identi�cation
DfmnpMq{ZDfmnpMq � Dnb̃DpU,KqM in the proof of Lemma 4.9, compare with [Na17a,
(32), p. 369].

For the proof of Theorem 4.7 we need the following lemma for which we recall some
notation from [St2, Def. 3.20]: We de�ne Dnb̂DM

r as the completion of Dn bD M r with
respect to the quotient topology of the projective tensor product Dn bK,π M

r. Then we set
Dnb̃DM :� limÝÑr

Dnb̂DM
r.

Lemma 4.9. (i) The natural map Dn bDM Ñ Dnb̃DM induces a quasi-isomorphism

Dn bD TΨpMq � TΨpDn bDMq Ñ TΨpDnb̃DMq.

(ii) Viewing DfmnpMq as Dn-module via the left tensor factor, there is a natural isomor-
phism in DpDnq

DfmnpMq bL
DpΓL,Kq,diag

K � Dnb̃DM r0s,

where the latter module is considered as complex concentrated in degree 0.

Proof. For (i) the same proof as for [St2, Lem. 3.23] works and the assumptions are satis�ed
by Theorem 4.6, but note that there Dn, D have a slightly di�erent meaning. Using that DZ is
contained in the augmentation ideal IΓL giving rise to the projective resolution of D-modules
11

0 // IΓL
// D // K // 0

11Note that IΓL is a �nitely generated submodule ofDpΓL,Kq and thus projective as a DpU,Kq-module since
the latter is a Prüfer Domain. Using [St2, Lemma 2.5] one can conclude projectivity as a DpΓL,Kq-module.

23



we can represent the complex in question in (ii) by the complex

DfmnpMq bD,diag IΓL Ñ DfmnpMq bD,diag D

with cokernel

DfmnpMq{IΓLDfmnpMq � pDfmnpMq{ZDfmnpMqq{pIΓL{DZq

� pDnb̃DpU,KqMqΓL{U

� Dnb̃DM,

12 where for the second equality we use an obvious variant of [St2, (31)], while by the exactness
of colimits the last one is easily reduced to the claim that on the level of models M r we have

pDmb̂DpU,KqM
rqΓ{U � Dmb̂DpΓL,KqM

r.

Since Γ{U is �nite and taking ΓL{U -invariants in this situation is exact by Maschke's theorem,
this follows in the context of Fréchet spaces by completion from the well-known fact that

pDmbDpU,KqM
rqΓ{U � DmbDpΓL,KqM

r.

The injectivity of the non-trivial di�erential in the above complex can be checked by calculating
instead the cohomology in degree �1 of DfmnpMq bL

DpΓL,Kq,diag
KrΓL{U s, because taking

ΓL{U -(co)invariants is exact and leads to the original complex�
DfmnpMq bL

DpΓL,Kq,diag
KrΓL{U s



bKrΓL{Us K � DfmnpMq bL

DpΓL,Kq,diag
K.

For this composition of functors it is crucial that DfmnpMqbL
DpΓL,Kq,diag

KrΓL{U s belongs to
DppDn,KrΓL{U sq�bimodq as in the footnote 10 in order to allow an action by ΓL{U . But then
the vanishing in degree �1 can be checked just as complex of K-vector spaces and therefore
it su�ces to calculate the derived functor by a projective resolution of D-modules (instead of
bi-modules). To this end we use the resolution (15), which leads to the complex

DfmnpMq
Z
ÝÑ DfmnpMq,

which is left exact by an obvious variant of [St2, (31)], again.

Proof of Theorem 4.7. Using Lemma 4.9 we obtain isomorphisms in DpDnq

KΨ,DpΓL,KqpDfmnpMqq

� cone

�
DfmnpMq bL

DpΓL,Kq,diag
K

Ψ�1
ÝÝÝÑ DfmnpMq bL

DpΓL,Kq,diag
K



r�2s

� TΨpDnb̃DMq

� DnbDTΨpMq

compatible for the variation in n by an obvious variant of Theorem 4.3 (2). Thus, combining
[St2, Prop. 3.15] with Theorem 4.6 we obtain in Db

perfpDq an isomorphism

TΨpMq � Rlim
�
Dn bD TΨpMq

�
� Rlim

�
KΨ,DpΓL,KqpDfmnpMqq

�
.

This proves (ii) while (i) follows by the same arguments as in [St2, Rem. 3.16] using that the
projective system pKΨ,DpΓL,KqpDfmnpMqqqm de�nes a consistent object in DpmodpN, Dqq
(using the notation of (loc. cit.)) together with the fact that D is a Fréchet-Stein algebra.

12Here γ P ΓL � DpΓL,Kq acts diagonally (via γpa b bq � δγ�1a b γbq) on Dnb̃DpU,KqM and this action
factors over ΓL{U .
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4.3 Replacing Local Tate duality

In this subsection we develop local duality analogous to local Tate duality for Galois coho-
mology, see [Her01] for an approach purely in terms of pφ,Γq-modules. We focus technically
on the complexes Kf,Z and shall then apply (12) to deal with Kf,U . Assume henceforth that
M is an analytic pφL,ΓLq-module over R � RK . For an analytic character δ : L� Ñ K� we
de�ne the twisted module Mpδq P ManpRq, where Mpδq :� M bR Rpδq endowed with the
diagonal φL- and ΓL-action. Recall the residue map (at Z)

Res : Ω1
R :� RdZ bR Rpδunχpπqq Ñ K,

¸
i

aiZ
idZ b eδun

χpπq
ÞÑ a�1,

and that the pφL,ΓLq-action on RdZ with respect to the basis d logLT � gLTdZ is given by
the character χLT . 13 As a formal consequence, we have the following:

Lemma 4.10. The map

Rpχq �
ÝÝÑ Ω1

R,

feχ ÞÝÑ fd logLT beδunχpπq ,

is an isomorphism of pφL,ΓLq-modules.

Setting M̃ :� HomRpM,Rqpχq � HomRpM,Ω1
Rq, for any �nitely generated projective

R-module M , we obtain more generally the pairing

(16) x , y :� x , yM : M̃ �M Ñ K, pg, fq ÞÑ Respgpfqq, 14

where by abuse of notation we also write Res : Rpχq Ñ K for the map sending
°
i aiZ

i b eχ
to a�1. This map identi�es M and M̃ with the (strong) topological duals of M̃ and M ,
respectively. Moreover, the isomorphism M̃ � HomK,ctspM,Kq (induced by x , y) isDpΓL,Kq-
linear by [SV20, Corollary 4.5.4].

Lemma 4.11. The residuum map induces an isomorphism Res : H2
φL,Zn

pΩ1
Rq

ΓL � K.

Proof. We know from Lemma 4.19 that dimK H
2
φL,Zn

pΩ1
Rq

ΓL � 1 while Res is a surjection
Ω1
R ↠ K which factorizes over pφL� idqΩ1

R and Z �Ω1
R by [SV20, Lemma 4.5.1] or [Co2, Prop.

1.5]. The claim follows as H2
φL,Zn

pΩ1
Rq

ΓL � H2
φL,Zn

pΩ1
RqΓL .

For compatibility questions we renormalise the residuum map to obtain the trace map
Tr � CTrpZnqRes : H

2
φL,DpΓLq

pΩ1
Rq � H2

φL,Zn
pΩ1

Rq
ΓL � K by setting15

(17) CTrpZnq :�
q

q � 1

1

CgpZnq
�

q

q � 1

Ω

πnL
.

Note that for L � Qp and πL � p this trace map is compatible with Tate's trace map in
Galois cohomology by [Na17a, Prop. 5.2]. Independence of n follows by the same argument as
for De�nition 5.10 below. The principle is explained as follows:

13The action on Ω1
R di�ers by δunχpπq from the action considered in [SV20, Section 4] and agrees with the

action from [Co2, 1.3.5].
14Note that Colmez de�nes ΩRespσ�1pgqpfqq instead.
15See (51) for the de�nition of CgpZnq.
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The map of complexes, for m ¥ n,

M
Zn //M

Qm�npZnq
��

M
Zm //M

induces the restriction maps resnm : H i
Zn
pMq Ñ H i

Zm
pMq, where Qm�npZnq :�

Zm
Zn

�
φm�nL pZnq

Zn

with Qm�np0q � πm�nL . Since CTrpZnq � πm�nL CTrpZmq by (48) the isomorphism

ϑn : H1
ZnpMqΓL

�
ÝÑMΓL , rxs ÞÑ rCTrpZnqxs(18)

into the ΓL-coinvariants is compatible with resnm, i.e., the diagram

H1
Zn
pMqΓL

resnm
��

ϑn //MΓL

H1
Zm
pMqΓL

ϑm

99

commutes.
For a complex pX
, dXq of topological K-vector spaces we de�ne its K-dual ppX�q
, dX�q

to be the complex with
pX�qi :� HomK,ctspX

�i,Kq

and
dX�pfq :� p�1qdegpfq�1f � dX .

The following lemma is taken from [SV20, Lemma 5.2.4 and Remark 5.2.6].

Lemma 4.12. Let pC
, d
q be a complex in the category of locally convex topological F -vector
spaces.

(i) If C consists of Fréchet spaces and hipC
q is �nite-dimensional over F , then di�1 is strict
and has closed image.

(ii) If di is strict and either F is spherically complete or the spaces are of countable type16,
then h�ipC�q � hipCq�.

(iii) If C
 consists of LF -spaces, Ci�2 � 0 and hipC
q is �nite dimensional, then di is strict.

(iv) If V α
ÝÑW is a continuous linear map of Hausdor� LF -spaces over F with �nite dimen-

sional cokernel, then α is strict and has closed image.
16From [PGS] we recall that a locally convex vector space V is said to be of countable type, if for every

continuous seminorm p on V its completion Vp at p has a dense subspace of countable algebraic dimension.
They are stable under forming subspaces, linear images, projective limits, and countable inductive limits, cf.
theorem 4.2.13 in (loc. cit.). By corollary 4.2.6 in (loc. cit.) for such vector spaces the Hahn-Banach theorem
holds, too. By [Th, Prop. 5.4.3] the Robba ring over any intermediate �eld Qp � K � Cp (and hence also
�nitely generated modules over it) is of countable type as K-vector space.

26



The translation Xrns of a complex X is given by Xrnsi :� Xi�n and diXrns :� p�1qndi�nX .

Let ι denote the involution on DpoL,Kq induced by the inversion on the group oL. We
observe that

(19) Zι � λZ

for a unit λ P DpoL,Kq as they both generate the augmentation ideal: more explicitly, Zι �
r�1spZq, λ�1 � λι.

Theorem 4.13. (i) There is a canonical quasi-isomorphism

(20) Kφ,ZpMq : 0 //M

�
�φ� 1

Z

�


//M `M

�Ψ`λ

��

�
Z 1� φ

	
//M

�λΨ

��

// 0

KΨ,ZιpMq : 0 //M

�
�Ψ� 1

Zι

�


//M `M

�
Zι 1�Ψ

	
//M // 0.

(ii) Via the pairing (16) there are canonical isomorphisms of complexes in the derived cate-
gory DpKq

KφL,ZpMq� � KΨL,ZιpMq��KφL,ZpM
�qr2s�KφL,ZpM̃qr2s.

given by the following diagram of quasi-isomorphisms
(21)

Kφ,ZpMq�r�2s : 0 // M�
�
�
Z 1� φ

	�
// pM `Mq�

�
�φ� 1

Z

�


�

// M� // 0

KΨ,ZιpMq�r�2s : 0 // M�

p�λΨq�

OO

�
�
Zι 1�Ψ

	�
// pM `Mq�

Υ �

OO
�
�Ψ� 1

Zι

�


�

// M� // 0

Kφ,ZpM
�q : 0 // M�

�
�φ� 1

Z

�



// M� `M�

Ξ

OO

�
Z 1� φ

	

// M� // 0

Kφ,ZpM̃q : 0 // M̃

�
�φ� 1

Z

�



// M̃ ` M̃

�
Z 1� φ

	

// M̃ // 0

with Υ � p�Ψ ` λq� : pM
À
Mq� Ñ pM

À
Mq� and Ξpx, yq � y ` �x. In particular,

we obtain isomorphisms

H i
φL,Z

pMq� � H2�i
ΨL,Z

pM̃q�H2�i
φL,Z

pM̃q.(22)

induced by the perfect pairings, denoted by x�,�y :� x�,�yM ,

H1
φ,ZpMq �H1

φ,ZpM̃q Ñ K, ppm,nq, pf, gqq ÞÑ �Res
�
φpgqpmq � pλιfqpnq

	
,

H2
φ,ZpMq �H0

φ,ZpM̃q Ñ K, pm, ñq ÞÑ �Res
�
ñpλιφpmqq

	
,

H0
φ,ZpMq �H2

φ,ZpM̃q Ñ K, pm, ñq ÞÑ Res
�
ñpmq

	
.
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Remark 4.14. Identify M with ˜̃M via m ÞÑ m�� and consider the pairing in degree p1, 1q
from Theorem 4.13 obtained by exchanging the roles of M and M̃, i.e.,

x�,�yM̃ : H1
φ,ZpM̃q �H1

φ,Zp
˜̃Mq Ñ K,

ppf, gq, pm��, n��qq ÞÑ �Respφpn��qpfq � pλιm��qpgqq.

We have

(23) xpm,nq, pf, gqyM � �xpf, gq, pm��, n��qyM̃ .

In the other degrees consider

x�,�yM̃ : H2
φ,ZpM̃q �H0

φ,Zp
˜̃Mq Ñ K,

pf,m��q ÞÑ Respm��p�λιpφpfqqqq,

satisfying xf,m��yM̃ � xm, fyM and

H0
φ,ZpM̃q �H2

φ,Zp
˜̃Mq Ñ K,

pg, n��q ÞÑ Respn��pgqq,

satisfying xg, n��yM̃ � xn, gyM .
17

Proof. By viewing Kφ,ZpM̃q as a Koszul complex attached to the automorphisms φ� 1,Z of
M one can see that Z and φL � 1 act as 0 on the cohomology groups. Since

λ � �1� terms divisible by Z

we see that the class pf, gq P H1
φ,ZpM̃q is equal to the class of p�λf,�λgq. Now let pm,nq P

H1
φ,ZpMq. Using Zf � pφ� 1qg and Zm � pφ� 1qn we compute

xpm,nq, pf, gqyM � Res
�
� φpgqpmq � pλιfqpnq

	
� Res

�
� rg � Zf spmq � pλιfqpφpnq � Zmq

	
� Res

�
� gpmq � pλιfqφpnqq � pZfqpmq � pλιZιfqpmqlooooooooooooomooooooooooooon

�0

	
� Res

�
pλgqpmq � pλλιfqpφpnqq

	
� Res

�
m��pλgq � φpn��qpfq

	
� �xpf, gq, pm��, n��qyM̃ ,

where in the �fth equation we replace pf, gq with p�λf,�λgq. Now consider the degree
p0, 2q case with regard to x�,�yM . Since φpfq � f we get Respfpmqq � Respφpfqpmqq �
�Respφpfqpλmqq using that Zm � 0 in H0 and hence λm � �m. The computation in degree
p2, 0q is similar.

17In the cyclotomic case L � Qp and Z � γ� 1 one has λι � �γ because Zι � γ�1� 1 � p�γ�1qpγ� 1q. We
see that the pairing from [Na17a, De�nition 2.13] agrees with our x�,�yM̃ .
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Later in explicit calculations we will need to work partly with Ψ-versions, which we there-
fore establish in the next remark.

Remark 4.15. As a obvious variant of (i) in Theorem 4.13 there is also a canonical quasi-
isomorphism

(24) Kφ,ZpMq : 0 //M

�
�φ� 1

Z

�


//M `M

�Ψ`id

��

�
Z 1� φ

	
//M

�Ψ

��

// 0

KΨ,ZpMq : 0 //M

�
�Ψ� 1

Z

�


//M `M

�
Z 1�Ψ

	
//M // 0.

In particular, we obtain an isomorphism Υ1
M : H1

φL,Z
pMq � H1

ΨL,Z
pMq sending a class rpx, yqs

to the class rp�Ψpxq, yqs.
Using this one derives from x�,�yM in Theorem 4.13 the (asymmetric) perfect pairings,

denoted by tt�,�uuM ,

H1
Ψ,ZpMq �H1

φ,ZpM̃q Ñ K, ppm,nq, pf, gqq ÞÑ Res
�
gpmq � pλιfqpnq

	
,

H2
Ψ,ZpMq �H0

φ,ZpM̃q Ñ K, pm, ñq ÞÑ Res
�
ñpλmq

	
,

H0
Ψ,ZpMq �H2

φ,ZpM̃q Ñ K, pm, ñq ÞÑ Res
�
ñpmq

	
,

for which by construction we have

xx, yyM � ttΥ1
M pxq, yuuM .

Moreover, we obtain, for x P H i
φ,ZpMq, y P H2�i

φ,Z pM̃q,

p�1qixx, yyM � xy, x��yM̃ � ttΥ1
M̃
pyq, x��uuM̃ ,(25)

by Remark 4.14.

Proof of the Theorem. (i) is an immediate consequence of the fact that the action of Z is
invertible on MΨ�0 by [SV20, Thm. 2.35], see also [Co2, Thm. 5.5] and [BF, Cor. 2.2.3]. Now
consider (ii): The �rst isomorphism is induced by (i). Up to signs, p�q� transforms φL into
ψL and Z into Zι. Using that Zι � λZ one easily veri�es that also the second map is an
isomorphism. Finally, the last isomorphism stems from the identi�cation M� � M̃ by [SV20,
Cor. 4.5.4].

For the pairing on the level of cohomology groups, we want to apply (ii) of Lemma 4.12,
for which we have to check strictness of the di�erentials. But this is not su�cient: in order
to get perfectness of the pairings - which amounts to an algebraic duality while the functor
p�q� only measures continuous duals - we also have to check that the induced topology on the
cohomology groups is Hausdor�. In detail this boils down to the following reasoning: Since by
4.3 all the H i

φL,Z
pMq are �nite-dimensional, we may apply Lemma 4.12(iii) to �rst conclude

that d1 (and trivially d2) is strict. By the same reasoning for H i
φ,ZpM̃q the d1-di�erential of

KΨ,ZιpM
�q is strict. Moreover, the H2s are always Hausdor� by 4.12 (iv) and we note that
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the H0 are always Hausdor� (as they are subspaces of Hausdor� spaces). Applying 4.12 (ii)
and using that for a �nite dimensional Hausdor� space the continuous and algebraic dual
agree we conclude the claim for the pairings involving H0 and H2. By the strictness of d1 we
have H1

φ,ZpMq� � H1
φ,ZpM̃q and, vice versa, H1

φ,ZpM̃q� � H1
φ,ZpMq. A priori we don't know

if the �nite dimensional H1s are Hausdor� but combining both isomorphisms we see that
pH1

φ,ZpMq�q� has the same dimension as H1
φ,ZpMq which for a �nite dimensional space can

only occur, if every functional is continuous, forcing the H1s to be Hausdor�, which allows us
to argue analogously for the pairing of H1s.

4.4 Cohomological computations in the character case

Recall [ST2, Lem. 4.6] or [Co2, �2] for the following. The Amice-Katz transform is the map

A� : DpoL,Kq Ñ R�
K ,

sending a distribution µ to

AµpZq �

»
oL

ηpx, Zqµpxq,

satisfying:

(i) A� is a φ- and ΓL-equivariant topological isomorphism of rings.

(ii) for z P oK with vppzq ¡ 0: Aηpx,zqµpZq � AµpZ �LT zq, where
³
oL
gpxqpf � µqpxq �³

oL
fpxqgpxqµpxq for any locally analytic function f : oL Ñ Cp.

(iii) (multiplicativity regarding convolution) Aλ�µ � Aλ �Aµ

(iv) AResb�πn
L
oL
pµq �

1
qn
°
rπnLspaq�0 ηp�b, aqAµpZ �LT aq � Resb�πnLoLAµ, where the latter

denotes the multiplication with the corresponding characteristic function.

(v) BAµ � AΩxµ where B � d
dtLT

� 1
log1LT

d
dZ � Ωηp1, Zq d

dηp1,Zq .
18

(vi) Adµ � tLTAµ, where
³
oL
fpxqpdµqpxq �

³
oL
f 1pxqµpxq with f 1pxq � d

dxf.

Lemma 4.16. (Mellin transform) The natural inclusion Dpo�L ,Kq ãÑ DpoL,Kq combined
with the Fourier isomorphism induces the map

Dpo�L ,Kq
�
ÝÝÑ DpoL,Kq

ψDL�0 � OKpXq
ψX
L�0

λ ÞÝÑ λpδ1q � λpev1q

which is a topological isomorphism of Dpo�L ,Kq-modules. Here ev1 denotes the map on the
character variety which evaluates a character in 1. Moreover, we have a commutative diagram

Dpo�L ,Kq �
//

M �
��

DpoL,Kq

A�
��

Res
o�
Lqq

pR�
Kq

Ψ�0
�

// R�
K

1�φ�Ψ
qq

18Note that Bηpx, Zq � xΩηpx, Zq.
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where M denotes the Mellin transform, which by de�nition sends µ to

µ � ηp1, Zq �

»
o�L

ηpx, Zqµpxq,

see [SV20, �2.1.4, Lem. 2.6, Thm. 2.33,�2.2.7].

Proof. µ P Dpo�L q � DpoLq satis�es Reso�L
pµq � µ, whence AµpZq �

³
oL
ηpx, Zqµpxq �³

o�L
ηpx, Zqµpxq �Mpµq.

We write LApoLq :� LApoL,Kq for the set of locally L-analytic functions ϕ : oL Ñ K
endowed with the following operators:

φpϕqpxq :�

"
ϕp xπL q, if x P πLoL;
0, otherwise.

Ψpϕqpxq :�ϕpπLxq

γpϕqpxq :�ϕpχ�1
LT pγqxq.

By [Co1, Thm. 2.3] (for the exact sequence), [BF, Cor. 2.3.4] (for the surjectivity on
R�
Kpδq), we have for all δ P Σan the following commutative diagram of DpΓL, Lq-modules with

exact rows

(26) 0 // R�
Kpδq

Ψ�1
����

// RKpδq

Ψ�1

��

// LApoLqpχ
�1δq

Ψ�1
��

// 0

0 // R�
Kpδq

// RKpδq // LApoLqpχ
�1δq // 0

which we can also interpret as short exact sequence of complexes of DpΓL, Lq-modules

0 // TΨpR�
Kpδqq

// TΨpRKpδqq // TΨpLApoLqpχ�1δqq // 0.

with TΨpR�
Kpδqq � pR�

Kpδqq
Ψ�1r0s in degree zero. Here the map RKpδq Ñ LApoLqpχ

�1δq
sends feδ to ϕfeχ�1δ with

19

(27) ϕf pzq :� Respηp�z, ZqfdtLT q � Respηp�z, ZqfpZqgLT pZqdZq.

In particular we obtain a short exact sequence

0 // R�
Kpδq

Ψ�1 // RKpδq
Ψ�1 // LApoLqpχ

�1δqΨ�1 // 0(28)

and an isomorphism

RKpδq{Ψ� 1 � LApoLqpχ
�1δq{Ψ� 1.(29)

Let Pol¤N poLq :� Pol¤N poL,Kq :�
ÀN

i�0Kz
i � LApoLq denote the polynomial functions

on oL. This subspace is ΓL- and Ψ-stable, more precisely we have

Ψpziq � πiLz
i

γpziq � χ�iLT z
i.

19Our map is 1
Ω
times Colmez' one.
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for all i ¥ 0 and γ P ΓL. In particular, we obtain, for i � 0, 1,

H i
ΨpPol¤N poLqpχ

�1δqq �

#
Kzkeδχ�1 , if δpπLq �

πk�1
L
q for some 0 ¤ k ¤ N ;

0, otherwise.
(30)

It follows that

Hj
ZpH

i
ΨpPol¤N poLqpχ

�1δqqq �

"
Kzkeδχ�1 , if δ � xkχ for some 0 ¤ k ¤ N ;
0, otherwise.

(31)

Lemma 4.17. For N ¡ vπpχ
�1δpπqq we have a quasi-isomorphism

TΨpLApoLqpχ�1δqq � TΨpPol¤N poLqpχ�1δqq

and an isomorphism

Pol¤N poLqpχ
�1δqΨ�1 � Pol¤N poLqpχ

�1δq{pΨ� 1q

as L-vector spaces.

Proof. (see [Ch, Lem. 2.9] for the cyclotomic case, even over a�noid algebras A instead of L).
Use the decomposition LApoLq � xN�1LApoLq ` Pol¤N poLq and show that for N as in the
assumption Ψ� 1 is a topological isomorphism on xN�1LApoLq.

Similarly, regarding the ΓL- and Ψ-stable submodule DN :� DK,N :�
ÀN

l�0Kt
l
LT � R�

K

we obtain for i, j P t0, 1u,

H i
ΨpDN pδqq �

"
KtkLTeδ, if δpπLq � π�kL for some 0 ¤ k ¤ N ;
0, otherwise,

(32)

and

Hj
ZpH

i
ΨpDN pδqqq �

"
KtkLTeδ, if δ � x�k for some 0 ¤ k ¤ N ;
0, otherwise.

(33)

Remark 4.18. Note that, by the same reasoning, the analogue of Lemma 4.2 (ii) (but in
general not (iii)) does also hold for M of the form R�

Kpδq or LApoLqpδq.

Recall that Σ1 � tx�i|i P Nu, Σ2 � txiχ|i P Nu and Σgen � ΣanzpΣ1 Y Σ2q.

Lemma 4.19. The dimensions of the analytic cohomology groups are as follows:

(i) dimK H
j
φ,DpΓL,Kq

pR�
Kpδqq �

$''&''%
0, δ R Σ1;
1, δ P Σ1, j � 0;
2, δ P Σ1, j � 1;
1, δ P Σ1, j � 2.

(ii) For δ�1 R Σ1 we have dimK H
j
φ,DpΓL,Kq

pLApoLqpδqq �

$&%
0, j � 0;
1, j � 1;
0, j � 2.

(iii) For δ�1 P Σ1 we have dimK H
j
φ,DpΓL,Kq

pLApoLqpδqq �

$&%
0, j � 0;
2, j � 1;
1, j � 2.
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(iv) For δ P Σ1 we have dimK H
j
φ,DpΓL,Kq

pRKpδqq �

$&%
1, j � 0;
2, j � 1;
0, j � 2.

(v) For δ P Σ2 we have dimK H
j
φ,DpΓL,Kq

pRKpδqq �

$&%
0, j � 0;
2, j � 1;
1, j � 2.

(vi) For δ P Σgen we have dimK H
j
φ,DpΓL,Kq

pRKpδqq �

$&%
0, j � 0;
1, j � 1;
0, j � 2.

In particular, generic characters are precisely those with vanishing H0 and H2.

Proof. By Remark 4.1 H

anpA

�,Mq in [Co2, �5] coincides with H

φ,DpΓL,Kq

pMq. Note that
Colmez uses L to denote a large �eld such as our �eld K.

It is easy to check that analogous results as in this subsection hold for modules of the form
RApδq for a�noids A over K instead of the base �eld K. The only subtlety is the appearance
of non-trivial zero divisors. By imposing some additional conditions we can strengthen 4.6 to
cover the a�noid case as well.

Remark 4.20.

(i) Let A be a�noid over K and let δ : L� Ñ A� be a locally L-analytic character. Assume
that 1�δpπqπi is not a non-trivial zero divisor in A for every i P Z and assume that (the
image of) Zpδχ�iLT q P A

20 is not a non-trivial zero divisor in A or any A{p1� δpπqπiq.
Then TΨpMq is perfect as a DpΓL, Aq-module for M in

tR�
Apδq,RApδq, LApoL, Aqpδχ

�1q, DA,N pδq, Pol¤N poL, Aqpχ
�1δqu.

(ii) As in Nakamura's setting we expect the statement of (i) to be true without any condition.
Unfortunately, the methods of [KPX, Section 5] do not transfer to our situation directly
due to the fact that [KPX] makes use of the Euler characteristic formula and perfectness
of the Ψ-complex in the étale case. The analogues of these results are not known to us
for analytic cohomology over a�noids.

Proof. First observe that for any locally analytic character ρ : L� Ñ A� the free rank one
module Apρq is perfect as a DpU,Aq-module if Zpρq is not a non-trivial zero divisor in A.
Indeed, the operator Z is an A-linear endomorphism of Apρq and hence acts via multiplication
by a constant α � Zpρq and using the assumptions on α one sees that Apρq � DpU,Aq{pZ �
αqDpU,Aq is perfect as a DpU,Aq-module but then also perfect as a DpΓL, Aq-module by [St2,
Lemma 2.5]. Let us call a module of the form Apρq of type F . Now consider the sequence

(34) 0Ñ R�
Apδq Ñ RApδq Ñ LApoL, Aqpχ

�1δq Ñ 0.

We have that TΨpLApoL, Aqpχ�1δqq is perfect by [SP, Tag 066T] since the inclusion of the
Pol¤N poL, Aqpχ

�1δq induces a quasi-isomorphism for N " 0 to a complex whose terms are

20The action of ΓL on Apδχ�iLT q extends to an action of DpΓL,Kq by continuity. The element Z acts as an
A-linear endomorphism on Apδχ�iLT q hence by multiplication with an element Zpδχ�iLT q P A.
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perfect as they are �nite direct sums of modules of type F . Similarly for DA,N pδq. To see that
R�
Apδq

Ψ�1 is perfect, consider the exact sequence

0Ñ V1 Ñ pRApδq
�qΨ�1 φ�1

ÝÝÑ pRApδq
�qΨ�0 Ñ V2 Ñ 0,

where V1, V2 are de�ned as kernel and co-kernel of the middle map. By an adaptation of [Ch,
Lemma 2.9 and Proposition 2.20] to our situation the kernel is of type F over A while the
cokernel is a �nite direct sum of modules of type F over A{p1 � δpπqπiq with varying i. It
su�ces to see that they are perfect as DpΓL, Aq-modules. This follows from the assumption
that p1 � δpπqπiq is not a zero divisor and hence DpΓL, A{p1 � δpπqπiqq is itself perfect as
a DpΓL, Aq-module. It remains to see that R�

Apδq{pΨ � 1q is perfect. Again by a similar
argument it is a �nite direct sum of perfect DpΓL, A{p1�δpπq�1πiqq modules (the appearance
of δpπq�1 is due to using Ψ�1 instead of φ�1). Our assumptions ensure that 1� δpπq�1πi �
p�δpπq�1πiqp1 � δpπqπ�iq is not a zero divisor and we can proceed as before. This proves
the perfectness of TΨpRApδq

�q. Finally the perfectness of TΨpRApδqq follows from the exact
sequence (34).

21

5 Bloch�Kato exponential for analytic pφL,ΓLq-modules

5.1 DdR and Dcris for analytic pφL,ΓLq-modules

In this section we will de�ne versions of DdR and Dcris for L-analytic pφL,ΓLq-modules M .
The idea is that, for an étale pφL,ΓLq-module attached to a representation V , these versions
correspond to the identity component of the full DdRpV q, which arise as pBdRbLV qGL instead
of pBdR bQp V q

GL , and similarly for DcrispV q. The comparison between the de�nitions used
in this article and Fontaines classical ones is described in [Por, Section 5.2].

De�nition 5.1. For an L-analytic pφL,ΓLq-module M over RF , we de�ne

DdRpMq :� DdifpMqΓL

and

DcrispMq :�M r1{tLT s
ΓL .

Remark 5.2. Let M be an L-analytic pφL,ΓLq-module M over RL. Then DdRpMq and
DcrispMq are �nite dimensional L-vector spaces of dimension ¤ rkpMq. Furthermore φM
induces an automorphism of DcrispMq.

Proof. We �rst show that DdRpMq is �nite dimensional. By construction D :� DdifpMq is a
�nite-dimensional B :�

�
n¥0 LnpptLT qq-semilinear representation of ΓL. We claim that the

natural map
B bBΓL D

ΓL Ñ D

21If we drop the zero divisor assumption the same proof would show that the complexes lie in D�
perf . If A is a

domain and δpπq P K� then p1� δpπqπiq is either 0 or a unit and hence the condition on δpZq is automatically
satis�ed!
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is injective and BΓL � L, which shows dimLpD
ΓLq ¤ dimBpDq � rkpMq. We �rst show

BΓL � L. Let f �
°
ait

i
LT P B

ΓL . We conclude ai � χLT pγq
iγpaiq for every γ P ΓL. Let n be

large enough such that all ai belong to Ln. Then γpaiq � ai for every γ P Γn and we conclude
that ai � 0 holds for every i � 0. Finally γpa0q P LΓL

n � L which proves the claim. For the
injectivity we argue like in the proof of 2.13 in [FO]. Consider L-linearly independent vectors
v1, . . . , vd P D

ΓL such that
ḑ

i�1

λivi � 0

with some λi P B. Suppose d ¥ 2, λ1 � 0 and assume without loss of generality λ1 � 1. We
obtain v1 � γpv1q �

°d
i�2�γpλiqvi. Arguing by induction we may assume that v2, . . . , vd are

linearly independent over B and conclude λ2, . . . , λd P BΓL � L, a contradiction. From the
injectivity of ιn according to Remark 3.14 we deduce that dimLpDcrispMqq ¤ dimLpDdRpMqq.
Finally φM induces an injective endomorphism of M r1{tLT s and by a dimension argument an
automorphism of DcrispMq.

5.2 exp for analytic pφL,ΓLq-modules

Fix an n " 0, so that 1�πnLoL is isomorphic to πnLoL via logp. In particular, we have the chain
of isomorphisms

ℓn : Γn
χLTÝÝÑ 1� πnLoL

logp
ÝÝÑ πnLoL

�π�nLÝÝÝÑ oL(35)

which yields

DpΓn,Kq � DpoL,Kq � OKpBq,(36)

the last isomorphism being the Fourier isomorphism. We denote by Zn P DpΓn,Kq the element
corresponding to the variable on the right-hand side. If we view DpΓn�1,Kq as a subalgebra
of DpΓn,Kq, we obtain the relationship (cf. [St1, De�nition 1.23])

(37) Zn�1 � φLpZnq.

Since Γn is clopen in Γ, every locally analytic function on Γn is the restriction of a locally
analytic function on Γ. Hence, by considering the restriction of functions from Γ to Γn and
taking its dual, we obtain an injective map DpΓn,Kq ãÝÑ DpΓ,Kq.
Let M be an L-analytic pφL,ΓLq-module over RK . By Prop. 3.17, we have an action of
DpΓ,Kq on M . Thus we may consider the complex Kφ,ZnpMq, which (up to sign) amounts to

Kφ,ZnpMq � rM
pφ�1,Znq
ÝÝÝÝÝÝÑM `M

pZn`1�φq
ÝÝÝÝÝÝÑM s

concentrated in degree r0, 2s.
On the other hand, for any DpΓ,Kq-module N , we de�ne

KZnpNq :� rN
ZnÝÑ N s

concentrated in degree r0, 1s, and denote its cohomology by H

Zn
pNq.

Next we want to de�ne Kpφq
φ,Zn

pM0q and K
pφq
Zn
pM0q for M0 P tM,M r1{tLT su. By inspecting the
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proof in the reference for Prop. 3.17, one sees that the action of DpΓ,Kq on M preserves all
the M pmq. For m " 0, we set

rKφ,ZnpM
pmq
0 q :� rM

pmq
0

pφ�1,Znq
ÝÝÝÝÝÝÑM

pm�1q
0 `M

pmq
0

pZn`1�φq
ÝÝÝÝÝÝÑM

pm�1q
0 s

concentrated in degree r0, 2s. Passing to the limit with respect to the transition maps induced

by the canonical inclusions M pmq
0 ãÝÑM

pm�1q
0 recovers Kφ,ZnpM0q, but taking the limit with

respect to the transition maps induced by φ : M pmq
0 ÝÑM

pm�1q
0 produces a new complex

K
pφq
φ,Zn

pM0q :� limÝÑ
m,φ

rKφ,ZnpM
pmq
0 q

whose cohomology we denote by Hpφq,

φ,Zn

pM0q. Similarly we de�ne

K
pφq
Zn
pM0q :� limÝÑ

m,φ

KZnpM
pmq
0 q

with cohomology groups denoted by Hpφq,

Zn

pM0q.

Remark 5.3. Note that we have

DdRpMq � H0
ZnpDdifpMqqΓ{Γn

and

DcrispMq � H0
ZnpM r1{tLT sq

Γ{Γn .

Lemma 5.4. For m " 0 and M0 P tM,M r1{tLT su, the following natural maps induced by φ
are quasi-isomorphisms:

KZnpD
p�q
dif,mpMqq ÝÑ KZnpD

p�q
dif,m�1pMqq,

KZnpM
pmq
0 q ÝÑ KZnpM

pm�1q
0 q andrKφ,ZnpM

pmq
0 q ÝÑ rKφ,ZnpM

pm�1q
0 q

In particular, the maps

KZnpD
p�q
dif,mpMqq ÝÑ KZnpD

p�q
dif pMqq,

KZnpM
pmq
0 q ÝÑ K

pφq
Zn
pM0q andrKφ,ZnpM

pmq
0 q ÝÑ K

pφq
φ,Zn

pM0q

are quasi-isomorphisms.

Proof. We only need prove the �rst statement. Recall that in [SV20, �4.3], the following Robba
rings of the groups Γ and Γn are de�ned: �rst RKpΓnq is de�ned as the the ring extension
of DpΓ,Kq obtained by formally substituting Z by Zn in RK and then RKpΓq is de�ned as
RKpΓnq�ΓnΓ. Then pM0q

ψ�0 carries a naturalRKpΓq-action extending the action ofDpΓ,Kq,
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by [SV20, Theorem 4.3.21] for M0 � M and [SV20, Lemma 4.5.23(ii)] for M0 � M r1{tLT s.
Since Zn is invertible in RKpΓnq � RKpΓq, it follows that

pM0q
ψ�0 ZnÝÑ pM0q

ψ�0

is an isomorphism. The proof of [SV20, Theorem 4.3.21] even shows that

pM
pmq
0 qψ�0 ZnÝÑ pM

pmq
0 qψ�0

is an isomorphism for all m " 0. Using this fact, one can conclude the proof with the same
(purely formal) arguments as in the proof of [Na17a, Lemma 2.17].

Lemma 5.5. (i) For m " 0 and M0 P tM,M r1{tLT su, the map

rKφ,ZnpM
pmq
0 q ÝÑ Kφ,ZnpM0q

induced by the inclusion M pmq
0 ãÝÑM0 is a quasi-isomorphism.

(ii) In D�pKq, by composing the inverse of the isomorphism in (i) with the isomorphismrKφ,ZnpM
pmq
0 q ÝÑ K

pφq
φ,Zn

pM0q from Lemma 5.4, one obtains an isomorphism

Kφ,ZnpM0q
�
ÝÑ K

pφq
φ,Zn

pM0q

which is independent of the choice of m " 0.

Proof. Both statements follow by purely formal arguments from Lemma 5.4, just as in the
proof of [Na17a, Lemma 2.20].

Notation. If R is a ring, X an R-module and t P R not a zero divisor, we write Xt :� Xr1t s
for the localisation at the multiplicatively closed set t1, t, t2, . . .u.

De�nition 5.6. (a) By the compatibility of the maps ιm with φ : M pmq ÝÑ M pm�1q and the

inclusions D
p�q
dif,mpMq ãÝÑ D

p�q
dif,m�1pMq as in De�nition 3.15, the ιm induce canonical

morphisms22

K
pφq
Zn
pMq ÝÑ KZnpD

�
difpMqq and K

pφq
Zn
pMtLT q ÝÑ KZnpDdifpMqq

which we will both call ι. Moreover, the inclusions M pmq
0 ãÝÑM

pm�1q
0 induce a map

Frob: K
pφq
Zn
pM0q ÝÑ K

pφq
Zn
pM0q.

(b) We construct morphisms

fn : Kφ,ZnpM0q ÝÑ K
pφq
Zn
pM0q and gn : Kφ,ZnpM0q ÝÑ KZnpD

p�q
dif pMqq

in the following way:
De�ne fn as the composition of the isomorphism Kφ,ZnpM0q

�
ÝÑ K

pφq
φ,Zn

pM0q from Lemma

22Note that obviously we have KZnpD
p�q
dif

pMqq � lim
ÝÑm

KZnpD
p�q
dif,mpMqq.
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5.5(ii) with the map Kpφq
φ,Zn

pM0q ÝÑ K
pφq
Zn
pM0q obtained by taking the direct limit of the

morphisms

rKφ,ZnpM
pmq
0 q :

��

rM
pmq
0

pφ�1,Znq //

id
��

M
pm�1q
0 `M

pmq
0

Zn`p1�φq //

px,yqÞÝÑy
��

M
pm�1q
0 s

KZnpM
pmq
0 q : rM

pmq
0

Zn //M
pmq
0 s

Furthermore, the morphism gn is de�ned as

gn : Kφ,ZnpM0q
fn
ÝÑ K

pφq
Zn
pM0q

ι
ÝÑ KZnpD

p�q
dif pMqq.

Proposition 5.7. Consider the following diagram:

Kφ,ZnpMq

id

��

d1 // Kφ,ZnpMtLT q `KZnpD
�
difpMqq

fn`id

��

d2 // KZnpDdifpMqq

xÞÝÑp0,xq

��

�1 //

Kφ,ZnpMq
d3 // K

pφq
Zn
pMtLT q `KZnpD

�
difpMqq

d4 // K
pφq
Zn
pMtLT q `KZnpDdifpMqq

�1 //

where the di are given by

d1pxq :� px, gnpxqq, d2px, yq :� gnpxq � y,

d3pxq :� pfnpxq, gnpxqq, d4px, yq :� pFrobpxq � x, ιpxq � yq.

Then the vertical map is a morphism between two distinguished triangles.

Proof. The proof can be carried out analogously to the proof of [Na17a, Prop. 2.21]: We make
use of the following well-known fact from homological algebra (see for instance [Wei, Ex.
10.4.9]):
Let A be a ring and

0 ÝÑ X
 ÝÑ Y 
 ÝÑ Z
 ÝÑ 0

an exact sequence of complexes of A-modules. Then there exists a natural map Z
 ÝÑ X
r1s
in the derived category DpAq such that

X
 ÝÑ Y 
 ÝÑ Z

�1
ÝÑ X
r1s

is a distinguished triangle.
First, we show that the upper row is a distinguished triangle. Our goal is to replace the
complexes KZnpD

p�q
dif pMqq by new, quasi-isomorphic complexes rKφ,ZnpD

p�q
dif pMqq, which we

de�ne below, and construct an exact sequence

0 ÝÑ Kφ,ZnpMq ÝÑ Kφ,ZnpMtLT q `
rKφ,ZnpD

�
difpMqq ÝÑ rKφ,ZnpDdifpMqq ÝÑ 0(38)
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that will induce the upper triangle in the statement by the above-stated fact. For k ¥ 0 and
m " 0, we put

Dm,kpMq :�
¹
µ¥m

t�kLT �D
�
dif,µpMq

and denote by rKφ,Znpt
�k
LT �D

�
dif,mpMqq the complex concentrated in degree r0, 2s:

Dm,kpMq
b0ÝÑ Dm,kpMq `Dm�1,kpMq

b1ÝÑ Dm�1,kpMq,

where

b0ppxµqµq :� ppZnxµqµ¥m, pxµ�1 � xµqµ¥m�1q,

and

b1ppxµqµ¥m, pyµqµ¥m�1q :� ppxµ�1 � xµq � Znyµqµ¥m�1.

Furthermore, let

rKφ,ZnpDdif,mpMqq :�
¤
k¥0

rKφ,Znpt
�k
LTD

�
dif,mpMqq.

We now de�ne

0 ÝÑ rKφ,ZnpM
pmqq ÝÑ rKφ,ZnpM

pmq
tLT

q ` rKφ,ZnpD
�
dif,mpMqq ÝÑ rKφ,ZnpDdif,mpMqq ÝÑ 0

(39)

as the sequence of complexes induced by applying rKφ,Znp�q to

0 ÝÑM pmq c1ÝÑM
pmq
tLT

`
¹
µ¥m

D�
dif,µpMq

c2ÝÑ
¤
k¥0

¹
µ¥m

t�kLTD
�
dif,µpMq ÝÑ 0,(40)

where

c1pxq :� px, pιµpxqqµ¥mq and c2px, pyµqµq :� pιµpxq � yµqµ¥m.

Down below, the sequence (38) will be obtained as a direct limit of the sequences (39). We
claim that the sequence (40) and hence also (39) is exact. Consequently, the same will then
hold for the direct limit (38).

The crucial part now is the exactness of (40), which generalizes the exactness of the se-
quence (5) in the proof of [Na17a, Prop. 2.21]. The latter is demonstrated in [Na14a, Lem. 2.9],
and we check that the arguments carry over to our sequence (40). The non-trivial statements
are kerpc2q � impc1q and the surjectivity of c2.

The second statement can be reduced to showing that the map

M pmq ÝÑ
¹
µ¥m

D�
dif,µpMq{tLT , x ÞÝÑ pιµpxqqµ¥m(41)

is surjective, using the fact that M pmq
tLT

�
�
k¥0 t

�k
LTM

pmq and reducing inductively to the case

k � 1 via dévissage. Now we �x an Rpmq
F -basis e1, . . . , ed of M pmq, assuming m is large enough
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for Proposition 3.2 to hold. From [Be02, Prop. 4.8 & Lem. 4.9] it follows that for any µ ¥ m,
the composition

Rpmq
L

ιµ
ÝÑ LµrrtLT ss

tLT ÞÝÑ0
ÝÑ Lµ

induces an isomorphism Rpmq
L {pQµq � Lµ where Qµ :� φµpZq

φµ�1pZq
.23 Therefore, using [SV20,

Lemma 4.3.6], we obtain on the level of the extension F an isomorphism

Rpmq
F {Qµ � pRpmq

L
pbLF q{Qµ � pRpmq

L {QµqpbLF � Lµ bL F � Fµ

for µ ¥ m. As a result, we see that pιµpeiqqi�1,...,d is an Fµ-basis of D
�
dif,µpMq{tLT for any

µ ¥ m. Now the surjectivity of (41) is proven just as in [Na14a, Lem. 2.9]: For a family
pyµqµ¥m in the target, we write yµ �

°d
i�1 aµ,i � ιµpeiq for µ ¥ m. Choosing a representative

ai P Rpmq
F of the preimage of paµ,iqµ¥m under the natural isomorphism24

Rpmq
F {ptLT q

�
ÝÑ

¹
µ¥m

Fµ, a ÞÝÑ pιµpaqqµ¥m(42)

for each i, we obtain a preimage
°d
i�1 aiei of pyµqµ under (41).

Concerning the �rst statement kerpc2q � impc1q, one needs to show for any x P M pmq
tLT

that if

ιµpxq P D�
dif,µpMq for all µ ¥ m, then we have in fact x P M pmq. Writing x � x0 � t

�k
LT with

x0 PM
pmq, Remark 3.14 implies

ιµpxq �
ιµpx0q � π

µk
LT

tkLT
.

So the claim follows if we show that if tkLT divides ιµpx0q in FµrrtLT ss for all µ ¥ m, then it
also divides x0 in M pmq. Of course, we can assume k � 1 as well as M � RF after choosing a
basis of M . Then the isomorphism (42) yields the desired result.

Now that the exactness of (40) is established, it follows by construction that the sequence
(39) of complexes is exact as well.
Next we form the direct limit of the sequences (39) over m, where the transition maps are the

ones induced by the natural inclusions M pmq
0 ãÝÑM

pm�1q
0 and the maps

a
 : rKφ,ZnpD
p�q
dif,mpMqq ÝÑ rKφ,ZnpD

p�q
dif,m�1pMqq

given by "cutting o�" the component at the lowest index. So by de�ning

rKφ,ZnpD
p�q
dif pMqq :� limÝÑ

m,a


rKφ,ZnpD
p�q
dif,mpMqq

23In case the underlying Lubin-Tate group law is special, then Qm is just the minimal polynomial of a
uniformizer of Lm{L.

24One uses tLT � Z
±
µ¥1

Qµ

πL
as well as the fact that tLT and

±
µ¥m

Qµ

πL
di�er by a unit in Rpmq

F since for

ν   m the Qν are units as they have no zeros inside the annulus of convergence of Rpmq
F . Now (42) follows via

a projective limit argument from the isomorphisms Rpmq
F {pQµq � Fµ and the chinese remainder theorem.
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we obtain the desired exact sequence (38).
This sequence yields a distinguished triangle as explained in the beginning of the proof; in order
to bring this triangle into the desired form, it remains to de�ne suitable quasi-isomorphisms
of complexes KZnpD

p�q
dif pMqq ÝÑ rKφ,ZnpD

p�q
dif pMqq, which is done in the following way: First,

for m " 0 consider the morphisms KZnpD
�
dif,mpMqq ÝÑ rKφ,ZnpD

�
dif,mpMqq de�ned by

D�
dif,mpMq

x ÞÝÑpxqµ¥m

��

Zn // D�
dif,mpMq

x ÞÝÑppxqµ¥m,0q

��±
µ¥m

D�
dif,µpMq //

±
µ¥m

D�
dif,µpMq `

±
µ¥m�1

D�
dif,µpMq //

±
µ¥m�1

D�
dif,µpMq

(43)

There are similar morphisms KZnpDdif,mpMqq ÝÑ rKφ,ZnpDdif,mpMqq, and one checks that
they are all quasi-isomorphisms, using the exactness of the sequence

0 // D
p�q
dif,mpMq

x ÞÑpxqµ¥m //
±
µ¥m

D
p�q
dif,µpMq

pxµqÞÑpxµ�1�xµqµ¥m�1//
±

µ¥m�1
D
p�q
dif,µpMq // 0.

It is obvious that the quasi-isomorphisms KZnpD
p�q
dif,mpMqq

�
ÝÑ rKφ,ZnpD

p�q
dif,mpMqq are com-

patible with the transition maps, induced by the inclusions Dp�q
dif,mpMq ãÝÑ D

p�q
dif,m�1pMq on

the left and given by the a
 on the right, so they induce a quasi-isomorphism

KZnpD
p�q
dif pMqq

�
ÝÑ rKφ,ZnpD

p�q
dif pMqq.

Putting everything together, and inspecting the explicit de�nitions of the morphisms involved,
we get that the upper row of the diagram in the statement is in fact a distinguished triangle.

To demonstrate that the second row is also a distinguished triangle, we start again with
forming a certain direct limit of the exact sequences (39) of complexes. But this time, instead
of the a
 from above, we de�ne morphisms

pa1q
 : rKφ,ZnpD
p�q
dif,mpMqq ÝÑ rKφ,ZnpD

p�q
dif,m�1pMqq

given by shifting pxµqµ¥m ÞÝÑ pxµ�1qµ¥m�1 instead of cutting o�. Then letrKpφq
φ,Zn

pD
p�q
dif pMqq :� limÝÑ

m,pa1q


rKφ,ZnpD
p�q
dif,mpMqq.

Furthermore, note that the quasi-isomorphisms KZnpD
p�q
dif,mpMqq

�
ÝÑ rKφ,ZnpD

p�q
dif,mpMqq from

(43) also form a morphism of directed systems if we use the pa1q
 instead of the a
 as transition
maps on the right, so they yield a quasi-isomorphism

KZnpD
p�q
dif pMqq

�
ÝÑ rKpφq

φ,Zn
pD

p�q
dif pMqq.(44)

After these preparations, we consider the chain of quasi-isomorphisms

rKφ,ZnpM
pmqq � cone

� rKφ,ZnpM
pmq
tLT

q ` rKφ,ZnpD
�
dif,mpMqq ÝÑ rKφ,ZnpDdif,mpMqq

	
r�1s

(45)

� cone
�
KZnpM

pmq
tLT

q ` rKφ,ZnpD
�
dif,mpMqq ÝÑ KZnpM

pm�1q
tLT

q ` rKφ,ZnpDdif,mpMqq
	
r�1s,
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where the �rst one follows from applying the fact from homological algebra stated at the
beginning of the proof to the sequence (39) and the second one is formally obtained by the
identity

rKφ,ZnpM
pmq
tLT

q � cone
�
KZnpM

pmq
tLT

q
1�φ
ÝÑ KZnpM

pm�1q
tLT

q
	
r�1s.

Taking the direct limit of the quasi-isomorphisms (45) with respect to the transition maps pa1q


and the morphisms induced by φ : M pmq
0 ãÝÑ M

pm�1q
0 , and applying the quasi-isomorphism

Kφ,ZnpMq � K
pφq
φ,Zn

pMq from Lemma 5.5(ii) to the left-hand side and (44) to right-hand side,
we obtain the distinguished triangle

Kφ,ZnpMq ÝÑ K
pφq
Zn
pMtLT q `KZnpD

�
difpMqq ÝÑ K

pφq
Zn
pMtLT q `KZnpDdifpMqq

�1
ÝÑ

which is the bottom row in the statement of the proposition.

We de�ne

D
pnq
dR pMq :� H0

ZnpDdifpMqq and D
pnq
crispMq :� H0

ZnpMtLT q.

For m " 0, the map
φ : H0

ZnpM
pmq
tLT

q ÝÑ H0
ZnpM

pm�1q
tLT

q

is an isomorphism by Lemma 5.4. Moreover, the inclusions H0
Zn
pM

pmq
tLT

q ãÝÑ D
pnq
crispMq are

isomorphisms by a result analogous to [Na17a, Lemma 2.18] which is formally deduced from
Lemma 5.4 (and the fact that the cohomologies are �nite-dimensional). Thus the above φ can
be viewed as an automorphism

φ : D
pnq
crispMq

�
ÝÑ D

pnq
crispMq.

Next we construct two isomorphisms j1, j2 : D
pnq
crispMq

�
ÝÑ H

pφq,0
Zn

pMtLT q making the diagram

D
pnq
crispMq D

pnq
crispMq

H
pφq,0
Zn

pMtLT q H
pφq,0
Zn

pMtLT q

j1

1�φ

j2

Frob� id

commute, where Frob is induced by the Frob in De�nition 5.6(a). Let

j1 : D
pnq
crispMq � H0

ZnpM
pmq
tLT

q
φ
ÝÑ H0

ZnpM
pm�1q
tLT

q
�
ÝÑ H

pφq,0
Zn

pMtLT q

where the last map is an isomorhism by Lemma 5.4. Note that j1 is independent of the choice
of m " 0. Finally, we set

j2 : D
pnq
crispMq

j1ÝÑ H
pφq,0
Zn

pMtLT q
Frob
ÝÝÝÑ H

pφq,0
Zn

pMtLT q.

Additionally, we de�ne

i : D
pnq
crispMq

j1ÝÑ H
pφq,0
Zn

pMtLT q
ι
ÝÑ D

pnq
dR pMq

where ι is induced by the ι in De�nition 5.6(a).
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De�nition 5.8. Denote by

exp
pnq
M : D

pnq
dR pMq ÝÑ H1

φ,ZnpMq

and

exp
pnq
f,M : D

pnq
crispMq

j2ÝÑ H
pφq,0
Zn

pMtLT q ÝÑ H1
φ,ZnpMq

the boundary maps obtained by taking cohomology of the exact triangles in Proposition 5.7.

Set

H1
φ,ZnpMqe :� ImpDpnq

dR pMq
exp

pnq
MÝÝÝÝÑ H1

φ,ZnpMqq

and

H1
φ,ZnpMqf :� ImpDpnq

crispMq `D
pnq
dR pMq

exp
pnq
f,M� exp

pnq
M

ÝÝÝÝÝÝÝÝÝÑ H1
φ,ZnpMqq

and

t
pnq
M :� D

pnq
dR pMq{D

pnq
dR pMq0 where D

pnq
dR pMq0 :� H0

ZnpD
�
difpMqq.

Then Proposition 5.7 yields the following diagram with exact rows
(46)

0 H0
φ,Zn

pMq D
pnq
crispMqφ�1 t

pnq
M H1

φ,Zn
pMqe 0

0 H0
φ,Zn

pMq D
pnq
crispMq D

pnq
crispMq ` t

pnq
M H1

φ,Zn
pMqf 0

x ÞÑx

id

x ÞÑipxq

x ÞÑx

exp
pnq
M

x ÞÑp0,xq x ÞÑx

x ÞÑx d5 d6

where

d5px, yq � pp1� φqx, ipxqq and d6 � exp
pnq
f,M� exp

pnq
M .

5.3 Derivatives of a measures

In cyclotomic Iwasawa theory the constant logpχcycpγqq shows up at various places (cp.
[Na17a]) in order to make constructions independent of the choice of a topological genera-
tor γ of ΓQp . Since we have replaced the element γ � 1 by Zn we again have to check the
dependence on this choice. As our computations below show, the constant Ω plays a role in
normalisation and seems conceptually new at a �rst glance since in the case L � Qp one
can take Ω � 1. But recall that Ω is only unique up to units in oL, hence in the cyclotomic
case one could just as well take any element of Z�p . Comparing (17) with [Na17a, Proposition

5.2] we see that we should take ΩQp � log0pχpγqq
�1, where log0paq :� logpaq{pvppaq. We �rst

generalize the derivative of a measure from the cyclotomic case (e.g. [LVZ15, �2.1]) in a naive
way:

By x�y : o�L Ñ 1 � πLoL we denote the projection which is induced by the Teichmüller
character ω : k�L Ñ o�L . Fix m0 ¡

e
p�1 and m1 ¥ 0 such that logppo

�
L q � π�m1

L oL. Then, for
s P πmL oL with m :� m0 �m1 the map

x�ys : o�L Ñ 1� πm0
L oL, x ÞÑ xxys :� expps logpxqq
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is well-de�ned. For λ P DpΓL,Kq and f P CanpΓL,Kq we de�ne

Lλpf, sq :� λpfxχLT y
sq (Lλp�, sq in DpΓL,Kq for �xed s)

and

L1λpfq :� lim
0�sÑ0

Lλpf, sq � Lλpf, 0q
s

P DpΓL,Kq.

This limit exists and we have

(47) L1λpfq � λplogpχLT qfq

using that lim0�sÑ0
xχLT pγqy

s�1
s � logpχLT pγqq. As an example one easily sees using (37) that

the expression

(48)
L1Znp1q
πnL

is independent of n.
For DpΓnq as at the beginning of subsection 5.2 there is another way of attaching such a

derivative better adapted to the Lubin-Tate situation as follows:
By [ST, �3, Thm. 3.6] the characters of Γn are all of the form ψzpγq :� κzpℓnpγqq using

their notation. For small γ we have

ψzpγq � exppΩℓnpγq logLT pzqq

and for z � expLT p
πnL
Ω q the characters ψz and χLT coincide on an open subgroup of ΓL. For

λ P DpΓnq and f P CanpΓn,Kq we may de�ne

LTλpf, zq :� λpfψzq (LTλp�, zq in DpΓn,Kq for �xed z)

and

LT 1
λpfq :� lim

0�zÑ0

LTλpf, zq � LTλpf, 0q
z

P DpΓn,Kq.

This limit exists and we have

(49) LT 1
λpfq �

Ω

πnL
λplogpχLT qfq

using that lim0�zÑ0
ψzpγq�1

z � Ω
πnL

logpχLT pγqq as gLT p0q � 1 by (1).
We conclude this discussion by considering again λ � Zn and the trivial character f � 1.

Then LTZnp1, zq � Znpψzq � z by [ST, Lem. 4.6], whence LTZnp1, 0q � 0 and (49) becomes

(50) 1 � LT 1
Znp1q �

Ω

πnL
ZnplogpχLT qq and

L1Znp1q
πnL

�
1

Ω
.
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5.4 The dual exponential map exp�

Let M be a free L-analytic pφL,ΓLq-module over RK . We say that M is pnq-de Rham if the
B �

�
mKmpptLT qq-module DdifpMq is trivial as a pB,Γnq-module. If n � 0 we simply say

that M is de Rham. Being pnq-de Rham implies dimK D
pnq
dR pMq � rLn : Ls � rM where rM

is the rank of M over RK . Note that D
pnq
dR pMq is then a K bL Ln-module with a semi-linear

ΓL{Γn � GalpLn{Lq-action (which is trivial on K). By Galois descent (technically in the form
of [SP, Tag 0CDR] for the Scheme X � SpecpKq) we can conclude that being n-de Rham is

equivalent to being de Rham and note that Dpnq
dR pMq is in fact free as a K bL Ln-module. We

denote by δ2,M the connecting homomorphism

H1
ZnpDdifpMqq Ñ H2

φ,ZnpMq

obtained from the sequence in 5.7. We de�ne

(51) CgpZnq :� L1Znp1q � ZnplogpχLT qq �
πnL
Ω

for the trivial character 1. We stress that this is compatible with Nakamura's de�nition when
specializing to the cyclotomic situation.

Lemma 5.9. Let M be pnq-de Rham. Then the natural map�¤
m

KmpptLT qq

�
bKn D

pnq
dR pMq Ñ DdifpMq

is an isomorphism and the induced map

g
pnq
M : D

pnq
dR pMq Ñ H1

ZnpDdifpMqq, x ÞÑ CgpZnqp1b xq

is an isomorphism. The inverse is induced by sending f b d P KmpptLT qq bKn D
pnq
dR pMq to

CgpZnq
�1 1

rKm:Kns
TrKm{Knpf|tLT�0qd, where by abuse of notation (although tLT gets inverted!)

we denote by f|tLT�0 the constant term of f with respect to tLT .

Proof. The �rst part follows immediately from the de�nition and implies that DdifpMq is
isomorphic to the trivial B-semi-linear Γn-representation. For the second statement it thus
su�ces to consider the rank 1 case and prove the statement for B itself, namely that the
natural map BΓn Ñ B Ñ B{Zn is an isomorphism. Because the Γ-action respects the direct
product decomposition KmpptLT qq �

±
kPZKmt

k
LT and BΓn � Kn it su�ces to show that any

Laurent series, whose constant term vanishes, lies in the image of Zn and that there is an
exact sequence of the form

0 // Kn
// Km

Zn // Km

1
rKm:Kns

TrKm{Kn// Kn
// 0

by Wedderburn theory. Using the product decomposition it su�ces to treat the monomials
atkLT with some a P Km. Taking 1 � γ P Γm we obtain γpaq � a and γptLT q � χLT pγqtLT . By
construction pγ � 1qptLT q � πlLutLT for some l P Z, u P o�L and hence pγ � 1qpatLTπ

�l
L u

�1q �
aπ�lL u

�1ppγ � 1qptLT qq � atLT . Since δγ � 1 is divisible by Zn in DpΓn,Kq, we conclude that
atkLT lies in the image of Zn.
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Note that Dpnq
dR pMq, for a pφL,ΓLq-module M, carries a natural �ltration given by

FiliD
pnq
dR pMq � D

pnq
dR pMq X tiLTD

�
difpMq.

De�nition 5.10. Let M be a de Rham pφL,ΓLq-module over RK . We de�ne the dual expo-
nential map as the composite

H1
φ,ZnpMq Ñ H1

ZnpD
�
difpMqq Ñ H1

ZnpDdifpMqq
pg
pnq
M q�1

ÝÝÝÝÝÑ D
pnq
dR pMq.

Where the �rst map is given by mapping rx, ys to rιµpyqs with µ " 0. Its image is contained

in Fil0pD
pnq
dR pMqq and we thus obtain a map

exp
�,pnq

M̃
: H1

φ,ZnpMq Ñ Fil0pD
pnq
dR pMqq.

We de�ne
exp�

M̃
: H1

φ,DpΓLq
pMq Ñ Fil0pDdRpMqq

by taking ΓL-invariants of exp
�,pnq

M̃
, which is independent of the choice of n. Indeed, as shown

in [St1, Lem. 3.9] the restriction map

H1
φ,ZnpMq Ñ H1

φ,ZmpMq, rx, ys ÞÑ rx,Qm�nys,

for m ¥ n induces an isomorphism after taking ΓL-invariants, where Qm�npZnq :� Zm
Zn

�
φm�nL pZnq

Zn
with Qm�np0q � πm�nL and we have CgpZmq � πm�nL CgpZnq by (48).

De�nition 5.11. We de�ne a pairing

Ydif : H
0
ZnpDdifpM1qq �H1

ZnpDdifpM2qq Ñ H1
ZnpDdifpM1 bRK

M2qq

given by px, yq ÞÑ rxb ys. Furthermore we de�ne

x�,�ydif : H
0
ZnpDdifpMqq �H1

ZnpDdifpM̃qq
YdifÝÝÑ H1

ZnpDdifpM bRK
M̃qq Ñ K

as composite of Ydif with

H1
ZnpDdifpM bRK

M̃qq
ev
ÝÑ H1

ZnpDdifpΩ
1qq

pg
pnq

Ω1 q
�1

ÝÝÝÝÝÑ D
pnq
dR pΩ

1q � Kn

1
rKn:Ks

TrKn{K
ÝÝÝÝÝÝÝÝÝÑ K

using that Dpnq
dR pΩ

1q � Kn via t�1
LT e ÞÑ 1, where e corresponds to 1 in Ω1 � RKpδq. We further

de�ne x�,�ydR via the composite

D
pnq
dR pMq �D

pnq
dR pM̃q Ñ D

pnq
dR pM b M̃q

ev
ÝÑ D

pnq
dR pΩ

1q � Kn

1
rKn:Ks

TrKn{K
ÝÝÝÝÝÝÝÝÝÑ K.

Remark 5.12. The pairing x�,�ydR :� x�,�ydR,M

D
pnq
dR pMq �D

pnq
dR pM̃q Ñ K

is perfect if M is de Rham and induces a perfect pairing

D
pnq
dR pMq{Fil0D

pnq
dR pMq � Fil0D

pnq
dR pM̃q Ñ K.
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Proof. Let us abbreviate V :� D
pnq
dR pMq, G � Γn and B � KnpptLT qq. For a suitable rn we

have that V � pB bιn M
pnqqG � pB bKn V q

G by de�nition. We will �rst show that the
pairing on the level of Kn is perfect. Observe that base change to B provides us with an
injection HomKnpV,Knq ãÑ HomBpB bKn V,Bq. The target can be endowed with a G action
by pgλqpxq � gλpg�1xq and, because the action on V is trivial, we see that the image of the
above map is precisely the set of G-invariant elements. Indeed, since BG � Kn, a linear form
λ which is �xed by g has to map elements of the form 1b v into BG � Kn and hence restricts
to an element of HomKnpV,Knq. The perfectness now follows from HomBpB bKn V,Bq �
HomBpB bιn M,Bq � HomBpB bιn M,BpχLT qq � B bιn M̃ by taking G-invariants, using
that the evaluation pairing commutes with base change. Note that we used that B � BpχLT q
as ΓL-modules (since B� contains tLT ) and that DdifpMpχLT qq � DdifpMpχqq as they have
�the same� ΓL-action. To conclude perfectness of the K-valued pairing, it su�ces to show that
the pairing is non-degenerate on one side. Set W � HomKnpV,Knq. Let V 1 :� HomKpV,Kq
which we view as a Kn-module in the obvious way; we endow W and V 1 with a ΓL{Γn-action
via γfp�q � γfpγ�1�q. By the above perfectness at the level of Kn it thus su�ces to show
that the map W Ñ V 1 given by w ÞÑ TrKn{Kpwp�qq is injective. One easily checks that it
is compatible with the Kn- and ΓL{Γn-structure on V 1. We thus have constructed a ΓL{Γn-
semilinear map between freeKn-modules of the same rank. By Galois descent it su�ces to show
that it is injective on ΓL{Γn-invariant elements. Suppose w PWΓL satis�es TrKn{Kpwpvqq � 0
for all v P V. This means that the image of the map w : V Ñ Kn is contained in the kernel of
the trace map. For any x P V ΓL , we obtain wpxq P K X kerpTrq � 0 by the ΓL-equivariance
of w. Thus w is trivial on ΓL-invariants and by Galois descent trivial, because V is generated
by ΓL-invariant elements, which implies w � 0.

For the second statement observe �rst that Fil0pDpnq
dR pΩ

1qq � 0 and Fil�1pD
pnq
dR pΩ

1qqq � Kn.

Hence Fil0pDpnq
dR pMqq is contained in the subspace orthogonal to Fil0D

pnq
dR pM̃q. In order to see

that this inclusion is an equality, it su�ces to show that the canonical bijective morphism of
�ltered vectorspaces D

pnq
dR pMq b D

pnq
dR pM̃q � D

pnq
dR pM b M̃q is in fact an isomorphism. This

is not entirely trivial and can be achieved by an analogue of [BC, Proposition 6.3.3]. As in
their case one reduces to the corresponding statement about graded objects and �nally to the
corresponding statement of rank one objects (which is clear in our case as well).

Lemma 5.13. The diagram

(52) D
pnq
dR pΩ

1q

g
pnq

Ω1

��

Kn
eχ
tLT

a
tLT

eχ ÞÑa
// Kn

1
rKn:Ks

TrKn{K

��
H1

Zn
pDdifpΩ

1qq
�δ2 // H2

φ,Zn
pΩ1q

Tr�CTrpZnqRes// K

is commutative.

Proof. Given any a P Kn (in the right upper corner of the diagram) we �rst have to calculate
δ2p1b

a
tLT

eχq as x :� 1b a
tLT

eχ P KnrrtLT ssr
1
tLT

seχ � Ddif,npΩ
1q represents - up to a constant

- the image of a
tLT

eχ P D
pnq
dR pΩ

1q under gpnq
Ω1 . In order to calculate the transition map δ2 we use

an analogue of [Na14a, Lem. 2.12(2)], which is an easy snake-lemma application to 5.7: Assume
that x belongs to Ddif,kpΩ

1q for some k ¥ 0. For any element x̃ P 1
tLT

Ω1,pkq � 1
tLT

Rpχqpkq such
that

ιmpx̃q � cank,mpxq P D�
dif,mpΩ

1q
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(using the notation of De�nition 3.15) for all m ¥ k, we then have δ2prxsq � rpφ � 1qx̃s P
H2
φ,Zn

pΩ1q.
We construct x̃ as follows. Consider the isomorphism

R�
K{ptLT q

�
ÝÑ

¹
µ¥0

Kµ, a ÞÝÑ pιµpaqqµ¥0(53)

analogous to (42) and let f be an element in R�
F , whose class in the left hand side corresponds

to the tuple paµqµ¥0 with

aµ :�

$&%
a

qµ�kπkL
, if µ ¥ k;

TrKk{Kµ paq

πkL
, if k ¥ µ ¥ 0;

on the right hand side. Note that the operator Ψ on R�
K induces the map

Ψ :
¹
µ¥0

Kµ Ñ
¹
µ¥0

Kµ,

pxµq ÞÑ pq�1x0 � q�1TrK1{K0
px1q, q

�1TrK2{K1
px2q, . . . , q

�1TrKµ�1{Kµpxµ�1q, . . .q.

Moreover, pxµqµ satis�es qΨppxµqµq � pxµqµ if and only TrK1{K0
px1q � 0 and TrKm�1{Kmpxm�1q �

xm for all m ¥ 1. In particular, qΨppaµqµq � paµqµ if and only if TrKk{K0
paq � 0. We now set

x̃ � f
tLT

eχ P
1
tLT

Rpχqpkq and check that, for m ¥ k,

ιmpx̃q �
πmL fpumq

tLT
eχ mod D�

dif,mpRpχqq

�
πmL am
tLT

eχ

�
πm�kL a

qm�ktLT
eχ

� cank,mpxq

as required, i.e., δ2p1b a
tLT

eχq � rpφ� 1qp f
tLT

eχqs � r
�
φpfq
q � f

	
1
tLT

eχs. Since�
φpfq

q
� f



pumq �

fpum�1q

q
� fpumq �

am�1

q
� am � 0

for all m ¡ k, we conclude from (53) that φpfq
q � f P

�±8
m¡k

Qm
πL

	
R�
K , whence

(54)

�
φpfq

q
� f



1

tLT
P

�±8
m¡k

Qm
πL

	
tLT

R�
K �

1

Z
±k
µ¥1

Qµ
πL

R�
K

using tLT � Z
±
µ¥1

Qµ
πL
. Since all involved maps are K-linear and Kn � K ` kerpTrKn{Kq it

su�ces to check the commutativity in the two cases a P K, i.e., k � 0, or TrKn{Kpaq � 0, i.e.,
qΨppaµqµ¥0q � paµqµ¥0.
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If k � 0, the element a
tLT

eχ is sent via the lower composite to

CTrpZnqRes � p�δ2q � gΩ1p
a

tLT
eχq � �CgpZnqCTrpZnqRes � δ2p1b

a

tLT
eχq

� �
q

q � 1
Resp

�
φpfq

q
� f



1

tLT
dtLT q

� �
q

q � 1

�
φpfq

q
� f



|Z�0

� �
q

q � 1

�
fp0q

q
� fp0q



� a

where we use for the second equality the de�nition (17) and for the third equality (54). Thus

the claim follows on the subspace Dpnq
dR pΩ

1qΓL , because 1
rKn:Ks

TrKn{Kpaq � a.
If qΨppaµqµ¥0q � paµqµ¥0, i.e., qΨpf mod tLT q � f mod tLT , it follows from the sur-

jectivity of 1
πL

Ψ � 1
q on R� by [BF, Cor. 2.3.4] and the commutative diagram with exact

rows

0 // R�
K

1
πK

Ψ� 1
q ����

tLT // R�
K

Ψ� 1
q
��

// R�
K{tLTR

�
K

Ψ� 1
q
��

// 0

0 // R�
K

tLT // R�
K

// R�
K{tLTR

�
K

// 0

that we may assume without loss of generality that f also satis�es qΨpfq � f, whence we
obtain Ψpφpfqq � fq � 0. Using the identity RespΨpfqdtLT q � χpπLqRespfdtLT q from [Co2,

Prop. 1.5] we conclude that Resp
�
φpfq
q � f

	
1
tLT

dtLT q vanishes, from which the commutativity

follows also in this case by a similar calculation as above.

Lemma 5.14. Let z P H0
Zn
pDdifpMqq, rx, ys P H1

φ,Zn
pM̃q, a P H0

φ,Zn
pMq and rbs P H2

φ,Zn
pM̃q.

Using x�,�y :� x�,�yM as before to denote the pairing

H i
φ,ZpMq �H2�i

φ,Z pM̃q Ñ K

obtained from 4.13 we have

xexp
pnq
M pzq, rx, ysy � xz, rιnpyqsydif

and
xa, δ2,M prbsqy � xιnpaq, rbsydif .

Proof. Let z be in D
pnq
dR pMq and rx, ys P H1

φ,Zn
pM̃q with x P M̃ pnq, y P M̃ pn�1q. Then we have

xz, rιnpyqsydif �
1

rKn : Ks
TrKn{K � g�1

Ω �ev
�
rz b ιnpyqs

	
� �Tr � δ2

�
rz b ιnpyqs

	
by (52) and, by the same snake-lemma application in order to calculate the transition map δ2
induced by Proposition 5.7(cp. [Na14a, Lem. 2.12(2)]),

�Tr
�
δ2prz b ιnpyqsq

	
� �CTrpZnqRes

�
rpφ� 1qpz̃ b yqs

	
� �CTrpZnqRes

�
rpφ� 1qpz̃q b φpyq � z̃ b Znxs

	
� �CTrpZnqRes

�
φpyq

�
pφ� 1qpz̃q

�
�
�
Znx
�
pz̃q
	
,
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where in the second equality we have used the co-boundary condition pφ � 1qpyq � Znx.

Moreover, z̃ PM pnq
tLT

is an element with the property that ιmpz̃q�z belongs toD
�
dif,mpMq for all

m ¥ n, the existence of which is granted by the exactness of (40), whence ιmpz̃byq�zbιmpyq P
D�

dif,mpM b M̃q for all m ¥ n.
On the other hand we have by a straightforward analogue of [Na14a, Lem. 2.12 (1)] for

the �rst, the formula in Theorem 4.13 for the second equality and (19) for the third equality

xexp
pnq
M pzq, rx, ysy � xrpφ� 1qpz̃q,Znz̃s, rx, ysy

� �CTrpZnqRes
�
φpyq

�
pφ� 1qpz̃q

�
� pλιxqpZnz̃q

	
� �CTrpZnqRes

�
φpyq

�
pφ� 1qpz̃q

�
�
�
Znx
�
pz̃q
	
,

which agrees with the above formula. We leave the easy proof of the second identity to the
reader.

Proposition 5.15. LetM be pnq-de Rham. Let x P D
pnq
dR pMq{Fil0D

pnq
dR pMq and y P H1

φ,Zn
pM̃q.

We have
xexp

pnq
M pxq, yyM � xx, exp

�,pnq
M pyqydR,

i.e., exppnqM is adjoint to exp
�,pnq
M .

Proof. This is a formal consequence of Lemma 5.14 after plugging in the de�nition 5.10 of
exp

�,pnq
M .

Only for the purpose of the next lemma (needed in the proof of the subsequent proposition)

we introduce the notation H i
mixpNq as the i-th cohomology of the complex K

pφq
Zn
pNtLT q `

KZnpDdifpNqq of the bottom right in Proposition 5.7. We de�ne a pairing

Ymix : H
0
mixpM1q �H1

mixpM2q Ñ H1
mixpM1 bRK

M2q

given by px, yq ÞÑ rxb ys. Furthermore, we set

x�,�ymix : H0
mixpMq �H1

mixpM̃q Ñ H1
mixpM bRK

M̃qq
ev
ÝÑ H1

mixpΩq.

Finally, by

G : H1
φ,ZnpM̃q Ñ H1pK

pφq
Zn
pM̃tLT q `KZnpD

�
difpM̃qqq Ñ H1

mixpM̃q

we denote the compositeH1pd7q�H
1pd3q, where d7 : K

pφq
Zn
pM̃tLT q`KZnpD

�
difpM̃qq Ñ K

pφq
Zn
pM̃tLT q`

KZnpDdifpM̃qq sends px, yq to itself using the natural inclusionD�
difpM̃q ãÑ DdifpM̃q. Then the

next Lemma is formally analogous to Lemma 5.14, thus we leave the details to the interested
reader.

Lemma 5.16. The following diagram is commutative

H0
mixpMq

exp
pnq
f,M� exp

pnq
M

��

� H1
mixpM̃q

x�,�ymix // H1
mixpΩ

1q

B2
��

H1
φ,Zn

pMq �H1
φ,Zn

pM̃q

�G

OO

x�,�y // H2
φ,Zn

pΩ1q.
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Proposition 5.17. Let M be a trianguline L-analytic pφL,ΓLq-module over RK which is de
Rham. Then H1

φ,Zn
pMqΓLf is the orthogonal complement of H1

φ,Zn
pM̃qΓLf with respect to the

duality pairing x�,�yM .

Proof. Analogous to [Na17a, Prop. 2.24]: Replacing the sequence (13) in (loc. cit.) by (46),
using the Euler-Poincaré formula 4.4 as well as duality 4.13 and the de Rham property of
M one shows that dimK H

1
φ,Zn

pMqΓLf � dimK H
1
φ,Zn

pM̃qΓLf � dimK H
1
φ,Zn

pMqΓL . Therefore

it su�ces to show that xx, yy � 0 for all x P H1
φ,Zn

pMqΓLf and y P H1
φ,Zn

pM̃qΓLf . This is

accomplished by Lemma 5.16, because Gpyq � 0 since y P kerH1pd3q by assumption.

6 ϵ-constants

Let E be a �eld of characteristic zero containing µp8 , ψ0 :� ψξ : Qp Ñ E� the character
(with kernel Zp) attached to a �xed compatible system ξ � pξnqn¥1 of p-power roots of unity
via ψ0p

1
pn q � ξn.

Similarly, we may de�ne for the compatible system u � punqnPN P Tπ (and a choice of
generator t10 of T

1
π) the character ψu :� ψu,t10 : LÑ E�, x

πnL
ÞÑ ηt10px, unq.

But there is another (canonical) choice: ψL :� ψ0 � TrL{Qp : LÑ E� is a locally constant
character (with kernel the inverse of the di�erent ideal DL{Qp).

Remark 6.1. The character ψL factorizes over oL. Hence, by (4) there exists a � apt10, uq P oL
such that the following diagram commutes

L{oL

x ÞÑubx �

��

TrL{Qp // Qp{Zp
ψη
t10
p1,uq

// µppq

Tπ boL L{oL
a� // Tπ boL L{oL.

ηt10

OO

Here ηt10p1, uq :� pηt10p1, unqqn is a generator of Zpp1q, again by (4). In particular, for the
choice ξ � ηt10p1, uq we obtain

(55) ψLpxq � ψupaxq

for all x P L. It is clear that a is a generator of the di�erent ideal DL{Qp .

Let dx be the Haar measure on L such that
³
oL
dx � 1. Let ψ : L Ñ E� be a non-trivial

character which kills an open subgroup of L.
For a �nite-dimensional E-linear representationD of the Weil-groupWL :�W pL̄{Lq which

is locally constant (i.e., the image of the inertia group is �nite) we have local constants

ϵpD, ξq :� ϵEpL,D,ψ, dxq P E
�,

see [Del] or [Ta77] and [DF, �2.2].
If dimE D � 1 corresponding to a locally constant homomorphism δ : L� Ñ E� via local

class �eld theory (see section 7.4 for the normalisation we choose), i.e., D � Epδq, then

ϵEpL,D,ψL, dxq � δpπLq
apδqqnpψLq

¸
iPpoL{π

apδq
L q�

δpiq�1ψLp
i

π
apδq
L

q,(56)

ϵEpL,D,ψu, dxq � δpπLq
apδqqnpψuq

¸
iPpoL{π

apδq
L q�

δpiq�1ηpi, uapδqq.(57)
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Here npψq denotes the largest integer n such that π�nL oL � kerψ, apδq denotes the con-
ductor of δ, (0 if δ is unrami�ed, the smallest positive integer m such that 1� πmL oL � ker δ,
if δ is rami�ed). If W � pD,Nq is a Weil Deligne representation of WL with monodromy
operator N and underlying Weil group representation D we modify, following Nakamura, its
ϵ-constant by the factor

(58) ϵpW q :� ϵpDqdetp�Frob | pD{DN�0qILq,

where IL denotes the inertia subgroup. Both de�nitions agree if N acts as 0 on D.

Remark 6.2. ψupyq is independent of the choice of n such that y � x{πnL and npψuq � 0.

Proof. The independence follows inductively from ηpπLx, unq � ηpx, φLpunqq � ηpx, un�1q.
On the one hand, by de�nition oL � kerψu. On the other hand by �1, Fact 2 in [Box], using
that u1 is a non-zero πL-torsion point we may �nd a P oL such that ψupa{πLq � ηpa, u1q is a
primitive p-th root of unity. This proves that π�1

L oL is not contained in kerpψuq. We conclude
npψuq � 0.

How do the epsilon-constants for the two choices ψL and ψu compare? The �rst choice
behaves well under induction: there is a constant λ P E depending on L{Qp, the choices of
Haar measures dxQp , dxL and the choice of ψ0, such that25

ϵEpQp, Ind
L
Qpδ, ψ0, dxQpq � λϵEpL, δ, ψL, dxLq

for all locally constant characters δ : L� Ñ E� (see [BB08] or [Del, (5.6)]).
The second choice is obviously better adapted to the Lubin-Tate situation. By (55) there
exists a P L� such that ψLpxq � ψupaxq. Moreover, one knows that ϵEpL, δ, ψLpbxq, dxLq �
δpbq
|b| ϵEpL, δ, ψL, dxLq by [Ta77, (3.2.3) or (3.4.4)] for all b P L�. Combining the above we get
the following:

Remark 6.3. There exists λ P E depending on L{Qp, the choices of Haar measures dxQp , dxL
and the choice of ψ0, as well as a P L� depending on ψ0 and u such that

(59) ϵEpQp, Ind
L
Qpδ, ψ0, dxQpq � λ

δpaq

|a|
ϵEpL, δ, ψu, dxLq

for all δ.

If we start with a Haar measure dx of L, then the dual Haar measure d̂x with respect to
the duality induced by ψ, i.e.,

L� LÑ µp8 � E�, px, yq ÞÑ ψpxyq,

is the unique Haar measure such that fpxq � ˆ̂
fp�xq �

³
L f̂pyqψp�xyqd̂xpyq holds for all test

functions in L1pLq, where

f̂pyq :�

»
L
fpxqψpxyqdxpxq

25As ϵE is inductive with regard to virtual representations of dimension 0, one concludes that λ �
ϵEpQp,Ind

L
Qp
δtriv,ψ0,dxQp q

ϵEpL,δtriv,ψL,dxLq
for the trivial representation δtriv.
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denotes the Fourier transform of f. Especially for f � 1
π
�npψq
L oL

we obtain:

{1
π
�npψq
L oL

pyq �

�»
π
�npψq
L oL

dx

�
1oLpyq,

whence

{{1
π
�npψq
L oL

p�xq �

�»
π
�npψq
L oL

dx

�»
oL

ψp�xyqd̂xpyq

�

�»
π
�npψq
L oL

dx

��»
oL

d̂xpyq



1
π
�npψq
L

oL

pxq,

i.e.,
³
oL
d̂xpyq � 1

qnpψq
and d̂x � 1

qnpψq
dx.

From [Ta77, (3.4.7)] we obtain

(60) ϵpL, δ, ψ, dxqϵpL, δ�1| � |, ψp�xq, d̂xq � 1

and similarly for higher rank representations D instead of δ. Since by (3.2.2/3) in (loc. cit.) we
have ϵpL, δ, ψ, rdxq � rϵpL, δ, dxq for r ¡ 0 and ϵpL, δ, ψpaxq, dxq � δpaq|a|�1ϵpL, δ, ψpxq, dxq,
we conclude that

(61) ϵpL, δ, ψ, dxqϵpL, δ�1| � |, ψpxq, dxq � δp�1qqnpψq.

Moreover, by (3.4.5) in (loc. cit.) it holds that

(62) ϵpL, δ�1|� |, ψpxq, dxq � q�apδq�npψqϵpL, δ�1, ψpxq, dxq � |π
apδq�npψq
L |ϵpL, δ�1, ψpxq, dxq.

7 Epsilon-isomorphisms - the statement of the conjecture

7.1 Determinant functor

Let R be a commutative ring. A graded invertible R-module is a pair pL, rq, where L is an
invertible R-module and r : SpecpRq Ñ Z is a locally constant function. We de�ne the category
PR of graded invertible R-modules by setting MorppL1, rq, pL2, sqq :� IsomRpL1,L2q if r � s
and empty otherwise. We further de�ne

pL1, rq � pL2, sq :� pL1, rq b pL2, sq :� pL1 b L2, r � sq

for each pair of objects and we identify pL1, rqbpL2, sq with pL2, sqbpL1, rq via the morphism
induced by l1 b l2 ÞÑ p�1qr�sl2 b l1. We denote by 1R the object pR, 0q, which acts as a unit
with respect to the tensor product and we remark that every object pL, rq has an inverse
given by pL�1,�rq, where L�1 denotes the R-dual of L. For a ring morphism R Ñ S and
pL, rq P PR we set pL, rqS :� pLbS, r�q, where r� denotes the pullback of r along RÑ S. An
isomorphism 1R Ñ L is called a trivialisation of L. Let PfgpRq be the category of �nitely
generated projective R-modules and let pPfgpRq, isq be its core, i.e. the subcategory consisting
of the same objects with isomorphisms as morphisms. We have a functor

dR : pPfgpRq, isq Ñ PR
P ÞÑ pdetP, rankRpP qq,
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where detP denotes the highest exterior power of P. Note that dR is compatible with short
exact sequences and base change in the sense that given an exact sequence 0 Ñ P1 Ñ P2 Ñ
P3 Ñ 0 the natural isomorphism

detP1 b detP3 � detP2

induces an isomorphism
dRP1 � dRP3 � dRP2.

Moreover, for a morphism of rings RÑ S we have dRpP qS � dSpP bSq. This functor can be
extended to the category pCppRq, qisq of bounded complexes in PpRq with quasi-isomorphisms
as morphisms. On the level of objects this extension can be described as follows: Let C
 P CppRq
then

dRpC

q :�

â
iPZ

dRpC
iq�1i .

This functor is again compatible with exact sequences and if C
 is acyclic, then the quasi iso-
morphism 0Ñ C
 induces a trivialisation of dRpC
q that we take as an identi�cation. One can
show that dR factorises over pDb

perfpRq, qisq, the image of the category of bounded complexes
of �nitely generated projective modules in the derived category with quasi isomorphisms as
morphisms. If a complex C
 is cohomologically perfect meaning that H ipC
q considered as a
complex concentrated in degree 0 is in Db

perfpRq for all i, then we have a canonical isomorphism

dRpC

q �

â
dRpH

ipC
qqp�1qi ,

that we take as an identi�cation. This extension is further compatible with duality and base
change in the following sense: There exist canonical isomorphisms

dRpRHomRpC

, Rqq � dRpC


q�1

and
dSpS b

L
R pC


qq � dRpC

qS .

7.2 Fundamental lines

Let M be a pφL,ΓLq-module over RA, where A is an a�noid algebra over K. We assume that
M satis�es the following technical condition:

(63) There exist L P PicpAq and δ � δdetM P ΣanpAq such that detRA
M � LbA RApδq,

where detM denotes the highest exterior power of M. Clearly detM is always a module of
rank 1 and the technical condition is asking detM to be of character type up to a twist on
the base. The full subcategory of pφL,ΓLq-modules satisfying the above contains all modules
that arise as a base change from RL by [FX, Proposition 1.9] and furthermore contains all
trianguline modules (even with L � A). If M satis�es the above condition the isomorphism
class of L and the character δ are uniquely determined. Furthermore L can be identi�ed with
the subset

LApMq :� tx P detM | φLpxq � δdetM pπLqx, γx � δdetM pγqxu

by sending l P L to l b eδ P LbA RApδq.
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De�nition 7.1. Let M be an L-analytic pφL,ΓLq-module of rank rM over RA satisfying (63).
Write detpMq � LbRApδdetM q. We de�ne

∆1,ApMq :� dArΓL{UspKφL,DpU,KqpMqq bArΓL{Us A,

using Remark (4.5), and

∆2,ApMq :�

�
tx P detM | φLpxq � δdetM pπLqx, γx � δdetM pγqxu,�χArΓL{UspKφ,DpU,KqpMqq



,

i.e., the underlying line bundle of ∆2,A is L which has a canonical pφL,ΓLq-action given by
δdetM ,. We also write LpδdetM q if we wish to emphasize the action.

Remark 7.2. We have

tx P RKpδq | φLpxq � δpπLqx, γx � δpγqxu � Rφ�1,ΓL
K eδ � Keδ � K

whence ∆2,KpRKpδqq � pKeδ, 1q � pK, 1q using Remark 4.4.

Proposition 7.3. ∆1,ApMq and ∆2,ApMq are well-de�ned graded invertible modules and

∆ApMq :� ∆1,ApMq �∆2,ApMq

satis�es the following properties

(i) For any continuous map of a�noid algebras AÑ B induces a canonical isomorphism

∆ApMq bA B � ∆BpMb̂ABq.

(ii) ∆ApMq is multiplicative in short exact sequences.

(iii) ∆ApMq � ∆ApM̃q� b pApχrM q, 0q.

Proof. Compatibility with base change can be checked for ∆i :� ∆i,A individually. For ∆1 it
follows from Theorem 4.3 and for ∆2 it is clear. The compatibility with short exact sequences
can also be checked individually for ∆i. For i � 2 it follows from the corresponding statement
for determinants and for i � 1 it follows from the fact that a short exact sequence of pφL, Uq-
modules induces a short exact sequence of the complexes Kf,DpU,Kq. The quasi-isomorphism

𭟋pMq : Kφ,ZpMq � Kφ,ZpM̃q�r�2s induced from (21) by identifying ˜̃M � M gives an iso-
morphism ∆?,1pMq � ∆?,1pM̃q� while the isomorphism ∆A,2pMq � ∆A,2pM̃q� b pApχrM q, 0q
arises as follows: First observe that M̃ satis�es (63), if M does, and since M̃ � Apχq bAM

�

one sees that detpM̃q � ApχrkpMqq b detpM�q. Hence we see ∆A,2pM̃q � ∆A,2pM
�q b Apχrq.

A small calculation shows ∆A,2pM
�q � ∆A,2pMq�, hence the claim.

De�nition 7.4. Let X be a rigid analytic space over K. Given a family of pφL,ΓLq-modules
M over OX , i.e., a compatible collection of pφL,ΓLq-modules MA over RA for every a�noid
SppAq � X, we de�ne ∆XpMq as the global sections of the line-bundle DXpMq de�ned by
SppAq ÞÑ ∆ApMAq. If X is quasi-Stein covered by an increasing union Xn of a�noids we also
have ∆XpMqr0s � RΓpX,DXpMqq � Rlimp∆XnpMXnqq � lim∆XnpMXnqr0s by Theorem B
for quasi-Stein spaces. We have analogous de�nitions and statements for ∆i,XpMqand Di,X ,
i � 1, 2 respectively. DX ,Di,X are graded invertible OX-modules by de�nition.
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A word of caution is in order. A priori the ∆i,XpMq are not necessarily graded invertible
OXpXq-modules because the global sections do not have to be �nitely generated over OX . In
our applications (in section 8) we will have ∆2,X � OXpXq and will be in a position to apply
the subsequent remark in order to conclude that ∆1,X is an invertible OXpXq-module.

Remark 7.5. Let X �
�
Xn be a quasi-Stein space. Let C


n be a family of perfect complexes of
OXpXnq-modules together with quasi-isomorphisms OXpXn�1q b

L
OXpXnq C



n � C


n�1. Assume

that there exists a perfect complex C
 of OXpXq-modules (in the ring-theoretic sense 26) such
that OXpXnq b

L
OXpXq C


 � C

n.

Then we have dOXpXnqpC


nq � OXpXnq b dOXpXqpC


q. Furthermore dOXpXqpC

q is coadmis-

sible, i.e., dOXpXqpC

q � limÐÝn dOXpXnqpC



nq.

Proof. The proof is formal using that determinant functors commute with derived tensor
products and OXpXnq Ñ OXpXn�1q is �at together with the fact that dpC
q is a rank one
projective module over OXpXq and hence coadmissible by [ST, Corollary 3.4].

7.3 Statement

We expect that the results in section 4 extend to a�noids (where only stated or proven over
�elds) and to all analytic pφL,ΓLq-modules (where only stated for rank one or trianguline
ones), explicitly this refers to Remark 4.4 and Theorems 4.6, 4.7, 4.13. Hence we state the
conjecture below in this level of generality.

Conjecture 7.6. Choose a compatible system u � punq of rπnLs-torsion points of the Lubin-
Tate group and a generator t10 of T 1π. Let A be an a�noid algebra over K, a complete �eld
extension of L containing Lab. For each L-analytic pφL,ΓLq-module M over RA satisfying
condition (63) there exists a unique trivialisation

εA,upMq : 1A
�
ÝÑ ∆ApMq

satisfying the following axioms:

(i) For any a�noid algebra B over A we have

εA,upMq bA idB � εB,upMb̂ABq

under the canonical isomorphism ∆ApMq bA B � ∆BpMb̂ABq.

(ii) εA,u is multiplicative in short exact sequences.

(iii) For any a P o�L we have
εA,a�upMq � δdetM paqεA,u.

(iv) εA,upMq is compatible with duality in the sense that

εA,upM̃q� b hpχrM q � p�1qdimK H0pMqΩ�rM
t10

εA,�upMq

under the natural isomorphisms 1A � 1Ab1A and ∆pMq � ∆pM̃q�bpAprM q, 0q, where
hpχrM q : AprM q Ñ A maps eχrM to 1.

26Here one has to make a distinction between a perfect complex of OpXq-modules and a perfect complex
of sheaves of OX -modules, i.e., a complex whose restriction to each OXn is perfect. One can show that C is
isomorphic to RlimCn. Hence this remark could be restated to require RlimCn to be perfect.
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(v) For L � Qp, πL � p and u � pζpn�1qn the trivialisation coincides with that of Nakamura,
in the sense of Proposition 8.7.

(vi) Let F {L be a �nite subextension of K, M0 be a de Rham pφL,ΓLq-module over RF and
M � Kb̂FM0. Then

εK,upMq � εdRF,upM0q.

Remark 7.7. (i) The occurrence of the power of Ω in the compatibility with duality (iv) is
a conceptually new phenomenon in our conjecture, see also Proposition 7.14.

(ii) Due to the equivalence of categories stated in [BSX, Thm. 3.16] there is an analogous
conjecture for L-analytic pφL,ΓLq-modules over the character variety, i.e., by replacing
the usual Robba ring RK � RKpBq (attached to the open unit ball B) by the Robba
ring RKpXoLq of the character variety XoL attached to the group oL, see [BSX, �2.4]
or [SV20, �4.3.6]. In this situation, we expect that the conditions concerning K can be
weakened and perhaps the descent to L (or any �nite extension of it) instead of the huge
�eld K should be feasible, compare with Thm. 4.3.23 in (loc. cit.). Moreover, due to
[SV20, Lem. 4.3.25] there should be no occurrence of Ω! We will pursue this in future
work.

(iii) The assumption that K contains yLab can be dropped in the case that L � Qp as the
period ΩQp can be taken to be any element in Z�p . In order to specialise our construction
to Nakamura's one has to make more speci�c choices. Fixing an element γ P Γ, whose
image in Γ{Γp�power-torsion is a topological generator implictly determines the period as
ΩQp � log0pχcycpγqq

�1. But this would not necessarily be compatible with Nakamuras
variant of the de Rham isomorphism, since his variant does not involve any period.
Instead one should choose a γ such that log0pχcycpγqq � 1. This defect is due to the fact
our variant of the exponential map involves the period Ω as part of its de�nition and hence
so does our de Rham isomorphism. This is not a contradiction to the uniqueness of the
ε-isomorphisms in question. Indeed in the rank one case, we can see the ε-isomorphism
is determined by its behaviour at de Rham points. If ΩQp � 1 then our variant asks for
a di�erent behaviour at these de Rham points thus leading to a di�erent result.

7.4 The de Rham case

In this section we explain how to attach a Weil-Deligne Representation to an L-analytic
de Rham pφL,ΓLq-module over RL in order to de�ne the de Rham epsilon-constants. We
denote by B? for ? P tmax, cris, dR, stu Fontaine's usual period rings. Without di�culty this
construction can be generalised to pφL,ΓLq-modules over FbLRL for a �nite extension F with
trivial action. In order to keep notation light we will assume without loss of generality F � L.
We will make use of the equivalence of categories between L-analytic pφL,ΓLq-modules and
L-analytic B-pairs originally suggested in [Be16, Remark 10.3] and detailed in [Poy, Theorem
5.5]. A priori these results are only applicable to E-linear representations of GL, where E
denotes a Galois closure of L{Qp. If we start with an analytic pφL,ΓLq-module M over RL

then by [Poy] we can attach to E bL M a B-pair (called Bid-pair in (loc. cit.)), i.e., a pair
consisting of a �nite free EbLB

�
dR-moduleW�

dR,id,E with aB�
dR-semi-linear (and E-linear) GL-

action and a �nite free BE
e :� E bL R̃r1{tLT sφL�1-module WLT

id,E with semi-linear GL-action
together with an isomorphism after base change to BdR. By Galois descent, taking invariants
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with respect to the GpE{Lq-action (acting via the �rst tensor factor) provides us with a B-
pair W pMq :� pW�

dRpMq,WepMqq over pB�
dR, Beq, where Be � R̃r1{tLT sφL�1. The ring Be

can be viewed as a subring of LbL0 Bcris. Indeed, since φptLT q � πLtLT it su�ces to consider
elements of R̃ satisfying φpxq � πjLx for some j P Z, which by Frobenius regularisation are
already contained in R̃� (cf. [Be01, Proposition 3.2] in the cyclotomic case, and a similar
result holds for rami�ed Witt-vectors as well (cf. [St3, Satz 3.19])). The ring R̃� is even a sub
ring of the smaller period ring LbL0 Bmax.

We call a B-pair pW�
dR,Weq de Rham if W�

dRr1{ts admits a GL-invariant basis. One can
show, that this is equivalent to the corresponding pφL,ΓLq-module being de Rham (cf. [Por,
Section 3.2, Proposition 3.7] for a proof in the étale case). Note that our notion of de Rham
coincides with L-de Rham in loc. cit.). Consider for F {L �nite the vector space

DstpM|F q :� pBst bBe WepMqqGF

over the maximal unrami�ed subextension F 1 of F {L. We de�ne DpstpMq as their colimit
over all F {L �nite. By a standard argument (cf. proof of Theorem 2.13 Part (1) in [FO]),
each F 1-vector space DstpM|F q is of dimension ¤ rkM and DpstpMq is hence an Lnr-vector
space of dimension ¤ rkM. We say that M is potentially semi-stable if this dimension is
precisely rkM or, equivalently, if there exists a �nite extension F {L such that DstpM|F q is
an F 1-vector space of dimension rkM. The p-adic monodromy theorem also holds for B-pairs
in the cyclotomic case and there is an obvious L-analytic analogue providing us with the
following (see [Por, Corollary 3.10] for a treatment in the étale case).

Remark 7.8. M is de Rham if and only if M is potentially semi-stable.

Note thatDpstpMq naturally has a semi-linear GL-action and inherits fromBst,L � BstbL0

L an action of φq and the monodromy operator N satisfying Nφq � qφqN.
We now explain how to modify this action in order to obtain an Lnr-linear representation

of the Weil group WL. By local class �eld theory the maximal abelian extension Lab of L is
given by the composite LnrL8 and Lnr X L8 � L. Consider the reciprocity map

recL : L� Ñ GalpLab{Lq

normed such that recLpπLq acts as the geometric Frobenius on Lnr. This induces an isomor-
phism L� � W ab

L � φZ
L � ΓL. We denote by ¯ : WL ↠ W ab

L the canonical surjection and
de�ne a linearised action of WL on DpstpMq by setting

ρlinpgqpxq :� φvπprec
�1pḡqq

q pρsemi�linpgqpxqq,

where ρsemi�lin denotes the action we considered previously. For a P Lnr, we then have

ρlinpgqpaxq � φvπprec
�1pḡqq

q

�
ρsemi�linpgqpaxq

�
� φvπpprec

�1pḡqq
q

�
ρsemi�linpgqpaqρsemi�linpgqpxq

�
� φvπprec

�1pḡqq
q

�
pφ�1

L qvπprec
�1pḡqqpaq

�
� φvπprec

�1pḡqq
q

�
ρsemi�linpgqpxq

�
� aρlinpgqpxq.

By passing to the base change DpstpMq bL L8 (with trivial action on L8) we are �nally
able to de�ne W pMq :� pDpstpMq bL L8, ρlin, Nq which is an Lab-linear Weil-Deligne repre-
sentation (Note that since DpstpMq can be written as a base extension of some DstpM|F q, the
action of the inertia group IF is discrete and because IF is open in WL the action of WL is
discrete.)

58



Example 7.9. The linearized Weil-Deligne representation W :� W pRKpδqq with δ � δlcx
kis

given by the character δW � δlcδ
un
π�kL

: L� Ñ pLabq� via class �eld theory sending πL to the

geometric Frobenius. In particular,

(64) pδW q|o�L
� δ|o�L

px�kq|o�L
.

Proof. For the convenience of the reader we give a proof using B-pairs. Let eδ be the obvious
basis of RLpδq and write δpπq � δlcpπqπ

k � πlα with α P o�L . We can �nd a P Lnr � R̃ such
that φqpaq � αa and hence y :� 1

atlLT
b eδ P WepRLpδqq � pR̃r1{tLT s bR RLpδqq

φL�1. Note

that GL acts diagonally on WepRLpδqq, where the action on RLpδq is given via the quotient
ΓL. Let F be a �eld extension of L such that δlc is trivial when restricted to the image of GF in
ΓL. Then the action of g P GF is given by gpyq � a{gpaqχLT pgq

k�ly and hence z :� tl�kLT aby is
a basis of pBstbWepRLpδqqq

GF .Write δ � xkδun
πl�kL

δunα ρ where ρ is a locally constant character

with ρpπq � 1 and ρpγq � δlcpγq for γ P ΓL. In this representation it is clear that the residual
(non-linearised) action of GL is given by gz � ρpgqz and hence the linearised action is given
by

ρpgqφvπprec
�1 gq

q pzq � pπl�kαqvπprec
�1 gqρpgqz

� δlcpπq
vπprec�1 gqpπ�kqvπprec

�1 gqρpgq � δlcδ
un
π�kpgqz.

7.4.1 Equivariant de Rham epsilon constants

For a de Rham pφL,ΓLq-module M over RL we would like to de�ne the epsilon constant of
M to be the ε-constant associated to W pMq

εpM,ψ, dxq :� εLabpL,W pMq, ψ, dxq

de�ned in section 6 using the adjustment (58). In the cyclotomic case (take for simplicity
L � K � Qp), these ε-constants can be viewed as elements of Ln � Qppζpnq. In our case the
constants are de�ned using p-power roots of unity which are "built" from the LT-torsion points
using the power series ηp�, T q. The problem we run into is that, contrary to the classical case,
we can not assume that Ln contains the p-power roots of unity.

Suppose K contains Lab. Then it makes sense to view εpM,ψ, dxq as an element of K,
but by our convention that K carries the trivial ΓL-action, we do not have γpεpM,ψu, dxqq �
εpM,ψγpuq, dxq, which we will need for technical reasons below in (67), cp. Remark 7.11.
Roughly speaking we would like to de�ne the ε-constants as elements of Ln bL K with n
large enough, such that the de�nition of the epsilon constants �involves only� the πnL-division
points of the Lubin-Tate group. We make this concept precise via the following equivariant
construction.

De�nition 7.10. Suppose the complete sub�eld K of Cp contains Lab and let W be a Weil-
Deligne representation of WL with coe�cients in K. Building on the ε-constants de�ned in
section 6 with E � K we de�ne the ΓL-equivariant ε-constant

ε̃pW,u, dxq :� pεKpL,W,ψτ̂puq, dxqqτ ,
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for lifts 27 τ̂ of τ to ΓL, viewed as an element of28¹
τ : LnÑK

K � Ln bL K � L8 bL K

via the canonical isomorphism, where n " 0 is large enough such that the ε-constant can be
de�ned in terms of characters of conductor ¤ n according to Deligne's (inductive) construction
principle: In the rank one case, i.e., in the case of a locally constant character δ : L� Ñ K�,
one can take n ¥ apδq. In general, the de�nition of the ε-constant involves multiple such
characters de�ned over �nite extensions of L (cf. [Del, p. 536, Equation 4.2.1]) and one has
to choose n greater than the supremum of all appearing conductors.

Remark 7.11. With respect to the ΓL-action on Ln bL K via the left tensor factor we have

γpε̃pW,u, dxqq � ε̃pW,γpuq, dxq � p1b δdetW pχLT pγqqqε̃pW,u, dxq.

Proof. Without loss of generality we can assume W is of rank one corresponding to a locally
constant character δ : L� Ñ K� due to Deligne's construction principle. First of all we note
that ε̃ is well-de�ned since uapδq P Ln by assumption. Because the natural isomorphism LnbL
K �

±
τ : LnÑK K maps u b 1 to pτpuqqτ , we can see that ε̃ is obtained by replacing in (57)

the elements ηpa, uapδqq by the series ηpa, T q evaluated at the element puapδq b 1q, i.e., by°
iPN0

p1 b aiqpuapδq b 1qi, where ηpa, T q �
°
aiT

i (this expression converges with respect to
the tensor product topology). The formula for the γ-action can be read o� from (57).

De�nition 7.12. For a de Rham pφL,ΓLq-module M over RL we de�ne the epsilon constant
of M to be the ΓL-equivariant ε-constant associated to W pMq

ε̃pM,u, dxq :� ε̃pW pMq, u, dxq.

We usually omit dx from the notation and write

ε̃pM,uq :� ε̃pM,ψu, dxq.

Remark 7.13. Let dx be the self dual Haar measure with respect to ψu, then

ε̃pM,�u, dxqε̃pM̃, u, dxq � 1

Proof. In order to apply (60) we check that we have an isomorphismDpstpM̃q � DpstpMq�p|x|q.
Using the usual functorialities it su�ces to check that DpstpΩ

1q � Lnrp|x|q, which is a special
case of Example 7.9. The proof of the other required equation

detp�φ|DstpMq{DcrispMqq detp�φ|DstpM̃q{DcrispM̃qq � 1

is then also standard, see e.g. [Da, claim 5 in proof of Prop. 2.2.20].

27The independence of the choice of lifts τ̂ follows from the more precise description within the proof of the
following Remark 7.11.

28If δ takes values in a �nite extension F of L and W � W pRF pδqq, then as an element of¹
τ : LnÑK;σ : FÑK

K �
¹

τ : LnÑK

F bL K � F bL Ln bL K � F bL L8 bL K

assuming F � K for the �rst isomorphism. Also the σ should be involved as W pMqσ in the de�ning tuple
then.

60



We now describe how our construction relates to the étale and the cyclotomic case. The
comparison of ε-constants involves a number of choices and we will only give an informal
comparison of the constructions presented here and the ones from [Na17a] - by which we mean
that we give a comparison up to constants that only depend on L{Qp. There are two avenues
to be considered. On the one hand, we can specialise our constructions to the cyclotomic case
L � Qp, taking un � ζpn � 1 and Ω � 1. Because ζpn � 1 � un � ηp1, punqq in this case our
construction specialises to Nakamura's, more precisely, our ε̃ is equal to εNa b 1 viewed as an
element of L8 bQp K, where εNa denotes the constant from [Na17a, Section 3C]. Indeed the
elements ηpa, un b 1q � ζapn b 1 appearing in 7.11 lie inside Ln bQp Qp.

On the other hand, we take the induction of an L-linear GL-representation V and treat
it as an L-linear representation of GQp . For the moment let us assume V P RepLGL is semi-
stable and L-analytic and set X :� IndL{Qp V. Let Qp � L0 � L be the maximal unrami�ed
subextension. We can decompose

pBst bQp V q
GL �

¹
τ : L0ÑQp

pBst bL0,τ V q
GL

and have a similar decomposition for pBst bQp Xq
GQp . The epsilon constants of the induction

(given suitable choices of additive characters) are related by explicit constants independent
of V (see (59)). Ignoring these, the ε-constants de�ned by Nakamura are the product of
the ε-constants of each component in the sense that he attaches to X a tuple pWτ qτ of
WQp-representations to which he attaches a tuple pεpWτ qqτ (cf. [Na17a, p.359] for details) of
constants living over Qppζp8qbQp L. In contrast we attach (informally speaking) to the τ � id
component a constant εpWidq. As we can not assume that L8 contains the p-th roots of unity,
an analogous construction involving L8 does not work in the obvious sense and taking the
base change to Lab with GL acting naturally on Lab does not provide us with the Galois action
needed to make the constructions in 7.11 work. By assuming Lab � K we can make sense of the
elements ηpa, pun b 1qq P Ln bLK, which allow us to de�ne ε̃pWidq with the desired technical
properties now living over Ln bLK �

±
σPHomLpLn,Kq

K for n " 0 (note that the index set of
the product is di�erent in comparison to Nakamura's situation). By projecting to the σ � id
component we can recover Nakamura's εpWidq and our constant ˜εpWidq � pεpWid, ψσ̂puq, dxqqσ
should be informally thought of as pσpεpWidqqqσ, which is not well-de�ned as σ does not act
on K but only on Ln.

The fact that V is semi-stable and L-analytic forces each non-identity component to be
potentially unrami�ed (since they are semi-stable with Hodge-Tate weights 0). If they are
even unrami�ed, all ε-constants at non-identity components would be 1 and both methods
give comparable ε-constants (more precisely, at σ � id they would be the same up to explicit
constants independent of V ). If the action on the non-identity components is only potentially
unrami�ed, we cannot assume that the ε-constants at the non-identity embeddings are 1. In
particular these embeddings contribute to the ε-constant attached to V by Nakamura in a
way that can not be captured by only considering the identity embedding.

7.4.2 The de Rham epsilon-isomorphism

For each de Rham pφ,ΓLq-module M over RK which arises as a base change of a pφL,ΓLq-
module M0 over RF for some �nite extension F {L, and for each generator u of Tπ we are
going to de�ne a trivialization

(65) εdRF,upM0q : 1K
�
ÝÑ ∆KpMq
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as product of three terms

εdRF,upM0q :� ΓpMq �ΘpMq �ΘdR,upM0q

where

ΘpMq : 1
�
ÝÑ ∆K,1pMqdKpDdRpMqq,

ΘdR,upM0q : dKpDdRpMqq
�
ÝÑ ∆K,2pMq,

ΓpMq P K�.

To keep notation light and consistent with the previous subsection we will, without loss of
generality, restrict ourselves to the case L � F. Firstly, we de�ne ΓpMq, which depends only
on the Hodge�Tate weights of M . For r P Z let

nprq � dimK gr�rDdRpMq,

so nprq is the multiplicity of r as a Hodge�Tate weight29 of M . We de�ne

Γ�prq :�

#
pr � 1q! if r ¡ 0,
p�1qr

p�rq! if r ¤ 0,

the leading coe�cient of the Taylor series of Γpsq at s � r. Then we set

ΓpMq :�
¹
rPZ
pΩrΓ�prqq�nprq.30

Secondly, ΘpMq is obtained by applying the determinant functor to the following exact
sequence

0 // H0
φ,Zn

pMqΓL // DcrispMq // DcrispMq ` tM // H1
φ,Zn

pMqΓL //

// DcrispM̃q� `DdRpMq0 // DcrispM̃q� // H2
φ,Zn

pMqΓL // 0,
(66)

which arises from joining the bottom exact sequence of (46) with the dual of the same sequence
applied to M̃ by local duality x�,�yM in 5.17 and using Remark 5.12, upon

(i) using the tautological exact sequence 0 // DdRpMq0 // DdRpMq // tM // 0

as well as de Rham duality in the form

DdRpMq0
�
ÝÑ t�

M̃
, x ÞÑ tȳ ÞÑ ry, xsdR,M̃u,

and

(ii) identifying each time the two instances of DcrispM̃q� and DcrispMq, respectively, by the
identity.

29We adopt the convention in this paper that the Hodge�Tate weight of the cyclotomic character is 1.
30Γ�pkq in [Na17a] has been replaced by ΩkΓ�pkq in our setting.
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Thirdly - here comes the reason why we use a modelM0 - ΘdR,upM0q :� f�1
M0,u

is de�ned by
the analogue of [Na17a, Lem. 3.4] which - using Remark 7.11 and (64) - induces an isomorphism
fM0,u : ∆K,2pMq

�
ÝÑ dKpDdRpMqq from the map (cp. Remark 3.20)

LKpMq Ñ Ddif,npdetRK
Mq �KnpptLT qq bιn,Rpnq

K

pdetRK
Mqpnq(67)

x ÞÑ
�
ε̃pM0, uq

�1 �
1

thMLT

�
b φnpxq

for su�ciently large n such that the equivariant constant ε̃pW pM0q, u, dxq from De�ntion 7.10
lies in Ln bK � KnpptLT qq, where hM denotes the Hodge-Tate weight of detM. One easily
checks independence of the choice of a model M0 - the reason why we use M0 in the notation
is to indicate that we need a model to de�ne these objects. Note that (67) depends on u in
two ways. On the one hand via ε̃ and on the other hand due to the explicit appearance of
tLT which, as pointed out in 3.10, depends on the choice of u. An analogous computation to
[Na17a, Remark 3.5] shows that fM0,au � δdetRK M paq

�1fM0,u for a P o�L .

Proposition 7.14 (Properties (ii) and (iv) for εdRL,upM0q).

(i) For any exact sequence 0 //M1
//M2

//M3
// 0 , we have

εdRL,upM2,0q � εdRL,upM1,0q b εdRL,upM3,0q

under the canonical isomorphism ∆KpM2q � ∆KpM1q b∆KpM3q.

(ii) The following diagram of isomorphisms commutes

∆KpMq
can // ∆KpM̃q� b pKprM q, 0q

εdRL,upM̃0q�bhpχrM q

��
1K

εdRL,�upM0q

OO

p�1qdimK H0pMqΩ�rM can// 1K b 1K ,

where hpχrq : pKpχrq, 0q Ñ 1K sends er to 1.

Proof. Analogous to [Na17a, Lem. 3.7], but with some di�erences. Due to the period Ω in the
de�nition of ΓpMq we now obtain

(68) ΓpMqΓpM̃q � Ω�rM p�1qhM�dimK tM

instead of (27) in (loc. cit.). By de�nition the second part of the long exact sequence (66) for
M̃ is given by the commutativity of the following diagram with exact rows
(69)

0 // H1pM̃q{H1pM̃qf

𭟋1
{f
pM̃q

��

// DcrispMq�
À

DdRpM̃q0

��

// DcrispMq�

��

// H2
φ,Zn

pMq

𭟋2pM̃q

��

// 0

0 // H1pMq�f
pexpf,M

À
expM q�
// DcrispMq�

À
t�M

// DcrispMq� // H0pMq� // 0

where we have identi�ed M � ˜̃M and abbreviated Hiφ,ZnpNq
ΓL by HipNq. Moreover the maps

𭟋1
{f pM̃q, 𭟋2pM̃q and similarly 𭟋1

f pM̃q : H1pM̃qf Ñ pH1pMq{H1pMqf q
� are induced from the
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complex isomorphism Kφ,ZpM̃q � Kφ,ZpMq�r�2s from (21). Taking duals gives the following
commutative diagram with exact rows
(70)

0 // H0pMq

𭟋2pM̃q�

��

// DcrispMq

��

// DcrispMq
À
tM

��

expf,M
À

expM // H1pMqf

𭟋1
{f
pM̃q�

��

// 0

0 // H2pM̃q� // DcrispMq // DcrispMq
À
pDdRpM̃q0q� // pH1pM̃q{H1pM̃qf q

� // 0

Upon noting that 𭟋2pM̃q� � 𭟋0pMq while 𭟋1pM̃q� � �𭟋1pMq, whence also 𭟋1
{f pM̃q� �

�𭟋1
f pMq, we obtain the modi�ed commutative diagram with exact rows

(71)

0 // H0pMq

�𭟋0pMq
��

// DcrispMq

� id

��

// DcrispMq
À
tM

� id
À
�can

��

expf,M
À

expM // H1pMqf

𭟋1
f pMq

��

// 0

0 // H2pM̃q� // DcrispMq // DcrispMq
À
pDdRpM̃q0q� // pH1pM̃q{H1pM̃qf q

� // 0

Combining this diagram with the analogue of diagram (69) for M instead of M̃ we obtain the
commutative diagram

(72) 1K

p�1qdimK tM�dimK H0pMq

��

ΘM // ∆K,1pMq b dKpDdRpMqq

𭟋pMqbcan
��

1K ∆K,1pM̃q� b dKpDdRpM̃qq�.
Θ�

M̃oo

Finally one has the commutative diagram

(73) dKpDdRpMqq

p�1qhM can
��

ΘdR,�upM0q // ∆K,2pMq

can
��

dKpDdRpM̃qq� b 1K ∆K,2pM̃q� b pKpχrM q, 0q,
ΘdR,upM̃0q�bhpχrM q
oo

because of Remark 7.13 and since changing u to �u requires the change tLT to �tLT (cp.
[Na17a, Rem. 3.5] which applies analogously here) in the de�nition of fM0,u above. Then (ii)
follows from (68),(72) and (73) while the proof of (i) is literally the same as in (loc. cit.).

Remark 7.15. As in [Na17a, Rem. 3.5] one shows property (iii) for εdRL,upM0q using Remark
7.11:

εdRL,aupM0q � δdetRK pMqpaqε
dR
L,upM0q

for all a P o�L .

8 Epsilon-isomorphisms for (Lubin-Tate deformations of) rank
one modules

In order to construct the Epsilon-isomorphism for rank one modules M in ManpKq we shall
construct it on the level of the deformation DfmpMq of M (introduced in �4.2) and descend
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the results to M. As this deformation lives over the character variety XΓL (base changed to
K) of the locally L-analytic group ΓL, we can use density arguments to deduce many of its
properties just from its de Rham points.

De�nition 8.1. Using that the complexes C

n :� KΨ,DpΓL,KqpDfmnpMqq are perfect by The-

orem 4.3 (1) we can apply our de�nition

∆1,XnpDfmnpMqq :� dDrn pΓL,KqpKΨ,DpΓL,KqpDfmnpMqqq,

which de�nes a (graded) line-bundle on XΓL by (2) of the same theorem, with global sections

∆1,XΓL
pDfmpMqq � limÐÝ

n

∆1,XnpDfmnpMqq.

From the proof of Theorem 4.7 we know that for the derived limit C
 and for every n,

OXΓL
pXnq b

L
OXΓL

pXΓL
q C


 � C

n

in DpOXΓL
pXnqq. Hence, by De�nition 7.4, Remark 7.5 and again Theorem 4.7 together with

Remark 4.8 we obtain

∆1,XΓL
pDfmpMqq � dDpΓL,KqpRΓΨ,DpΓL,KqpXΓL ,DfmpMqqq � dDpΓL,KqpTΨpMqq.(74)

Furthermore,

∆2,XΓL
pDfmpMqq � limÐÝ

n

∆2,XnpDfmnpMqq � limÐÝ
n

pOXΓL
pXnq, 1q � pDpΓL,Kq, 1q.(75)

We survey some preliminary results that allow us to construct an isomorphism

∆2,XΓL
pDfmpMqq � dDpΓL,KqpTψpMqq�1.

Let δ P Σan. Using pR�
Kpδqq

Ψ�0 � pR�
Kq

Ψ�0pδq combined with Lemma 4.16 and since φpeδq dif-
fers from eδ only by a scalar in K�, we can take ηp1, Zqeδ as a DpΓL,Kq-basis of pR�

Kpδqq
Ψ�0,

which gives rise to the Mellin isomorphism

Mδ :DpΓL,Kq � pR�
Kpδqq

Ψ�0, λ ÞÑ λpηp1, Zqeδq.(76)

It turns out that for technical reasons (more precisely, in order to obtain the commutative
diagram (99) below), we have to renormalize the Mellin isomorphism by inserting the operator
σ�1 P ΓL with χLTpσ�1q � �1 :

(77) Mδ � σ�1 : DpΓL,Kq � pR�
Kpδqq

Ψ�0, λ ÞÑ λpσ�1pηp1, Zqeδqq.

Remark 8.2.

(i) The complexes TΨpLApoLqpχ�1δqq � TΨpRKpδq{RKpδq
�q, TΨpRKpδqq and

TΨpR�
Kpδqq, are all perfect complexes of DpΓL,Kq-modules. Indeed, by Lemma 4.17,

the cohomology groups of TΨpLApoLqpχ�1δqq are �nite-dimensional K-vector spaces,
whence perfect as DpΓL,Kq-modules by [St2, Lem. 3.7] (with r � 0 and using the
Fourier-isomorphism). Then [SP, Tag 066U] implies that TΨpLApoLqpχ�1δqq belongs
to Db

perfpDpΓL,Kqq. Since TΨpRKpδqq is in Db
perfpDpΓL,Kqq by Theorem 4.6, so is

TΨpR�
Kpδqq as the third complex in an obvious exact triangle with the previous ones. The

same holds for TΨpDN pδqq and TΨpR�
L pδq{DN pδqq for similar reasons.
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(ii) Since over a�noids A the analogous conclusion of [St2, Lem. 3.7] - i.e., that a DpΓL, Aq-
module, which is �nitely generated as an A-module, is perfect - is not available, we are
not sure whether the construction below also carries over to families directly. It certainly
does, if RApδq PManpAq satis�es the conditions of Remark 4.20.

Lemma 8.3. Let δ P Σan and let M � RKpδq be the associated pφL,ΓLq-module of rank one.
We denote by M� the submodule R�

Kpδq. We have the following isomorphisms in PDpΓL,Kq :

(i) dDpΓL,KqpTΨpMqq � dDpΓL,KqpTΨpM
�qq induced by the canonical inclusion M� � M

and the trivialisation of dDpΓL,KqpTΨpM{M�qq from Lemma 4.17.

(ii) dDpΓL,KqpTΨpM
�qq

�
ÝÑ dDpΓL,KqprM

� Ψ
ÝÑ M�sq induced by p1� φL, idq and the trivial-

ization of dDpΓL,KqpTΨpDN pδqqq.

(iii) pDpΓL,Kq, 1q � pdDpΓL,KqrM
� Ψ
ÝÑM�sq�1 induced by identifying kerpΨq with DpΓL,Kq

via Mδ � σ�1.

Chaining these together gives an isomorphism dDpΓL,KqpTΨpMqq�1 � pDpΓL,Kqpδq, 1q.

Proof. The �rst statement follows since the short exact sequence 0ÑM� ÑM ÑM{M� Ñ
0 induces a short exact sequence of complexes. For the second statement we use that by [FX,
Lem. 5.1] we have a commutative diagram with exact rows

0 // pR�
Kpδqq

Ψ�1

1�φ �
��

// R�
Kpδq

1�φ �
��

Ψ�1 // R�
Kpδq

// 0

0 // R�
Kpδq

Ψ�0 // R�
Kpδq

Ψ // R�
Kpδq

// 0,

which induces a quasi-isomorphism between the complexes, if δpπLq � π�iL for all i P N.
Otherwise, kernel and cokernel of R�

Kpδq
1�φ
ÝÝÑ R�

Kpδq are isomorphic to KtiLT and can be
trivialized by each other when taking determinants (formally this is achieved by replacing
R�
Kpδq by R�

Kpδq{DN pδq and then trivializing the determinant of TΨpDN pδqq as in [Na17a,

(40),(44) in �4.1]). For the third statement we �rst remark that the complex M� Ψ
ÝÑ M�

(concentrated in degrees 1, 2) is cohomologically perfect by Lemma 4.16 - using pR�
Kpδqq

Ψ�0 �
pR�

Kq
Ψ�0qpδq - because on the one hand Ψ is surjective and on the other hand its kernel is free

over DpΓL,Kq by (77). Therefore the determinant ofM� Ψ
ÝÑM� is equal to pDpΓL,Kq, 1q�1.

From Lemma 8.3 we obtain �nally an isomorphism (cf. [Na17a, Def. 4.1])

Θpδq : dDpΓL,KqpTΨpRKpδqqq
�1 � dDpΓL,KqpDpΓL,Kqq � ∆2,XΓL

pDfmpRKpδqqq

which in turn induces an isomorphism over K

εDpΓL,Kq,upDfmpRKpδqq : 1DpΓL,Kq
can
ÝÝÑ dDpΓL,KqpTΨpRKpδqqqdDpΓL,KqpTΨpRKpδqqq

�1

idbΘpδq
ÝÝÝÝÝÑ dDpΓL,KqpTΨpRKpδqqq∆2,XΓL

pDfmpRKpδqqq(78)
�
ÝÑ ∆XΓL

pDfmpRKpδqqq.
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Note that the map (77) depends implicitly on u. If we consider instead of RL the isomorphic
subring RLpZuq of rRL, as pointed out in Remark 3.10 , then for a � χLT pγaq P o

�
L we have

Zau � raspZuq and thus we get a commutative diagram

(79) DpΓL,Kq

δ
γ�1
a

�

��

Mδ,u // pR�
Kpδqq

Ψ�0

δpaq�1�
��

DpΓL,Kq
Mδ,au// pR�

Kpδqq
Ψ�0.

Indeed, we have

Mδ,aupδγ�1
a
λq � λ

�
δγ�1
a

�
ηp1, Zauq

�
δγ�1
a
eδ



� λ

�
ηpa�1, raspZuqqδpaq

�1eδ



� δpaq�1 �

�
λ
�
ηp1, Zuqeδ

�

.

Concerning the descent, we have to distinguish the following two ways.

Remark 8.4. Let δ : ΓL Ñ K� be an L-analytic character. Mapping a dirac distribution γ
to δpγqeδ induces a surjection of DpΓL,Kq-modules

pδ : DpΓL,Kq Ñ Keδ.

Alternatively we may equip DpΓL,Kq with the ΓL-action γη � rγ�1sη, denoting the resulting
ΓL-module by DpΓL,Kqι, and map γ to δpγ�1qeδ to obtain a surjection of DpΓL,Kq-modules

fδ : DpΓL,Kq
ι Ñ Keδ.

Proof. Since δ is analytic Kpδq � Keδ comes equipped with a DpΓL,Kq-module structure
extending the KrΓLs-module structure. The map pδ is surjective because 1 is mapped to a
K-basis eδ and DpΓL,Kq-linear by construction. The second statement follows analogously
since the inverted action is also L-analytic.

Now, for the descent we observe that, if fδ0 : DpΓL,Kq Ñ K arises from a character
δ0 : o

�
L � L� Ñ K� interpreted as character of ΓL, we have the following:

Lemma 8.5. The isomorphism (74) induces the canonical isomorphism

spδ0 : ∆XΓL
pDfmpRKpδqqq bDpΓL,Kq,fδ0 K � ∆KpRKpδδ0qq

taking the normalisation from Remark 4.8 into account, cp. with [Na17a, (34), p. 370].

Proof. We show this isomorphism for each part of ∆ separately:

∆1,XΓL
pDfmpMqq bDpΓL,Kq,fδ0 K � dKrΓL{UspTψpMpδ0qq b

L
DpΓL,Kq

DpΓL{Uqq bKrΓL{Us K

� dKrΓL{UspTψpMpδ0qq b
L
DpUq Kq bKrΓL{Us K(80)

� dKrΓL{UspKΨL,ZpMpδ0qqq bKrΓL{Us K

� dKrΓL{UspKφL,ZpMpδ0qqq bKrΓL{Us K � ∆1,KpMpδ0qq

67



and

∆2,XΓL
pDfmpMqq bDpΓL,Kq,fδ0 K � ∆2,KpMq bK DpΓL,Kq bDpΓL,Kq,fδ0 K(81)

� ∆2,KpMpδ0qq � pKeδδ0 , 1q

using Remark 7.2.

With these preparations we are now able to state the main result of this article.

Theorem 8.6 (Local ε-conjecture for Lubin-Tate deformations of rank one modules). Let
F 1{L be a �nite subextension of K and M be a rank one analytic pφL,ΓLq-module over RF 1

and denote by MK the completed base change Mb̂F 1K. Then the isomorphism

εDpΓL,Kq,upDfmpMKqq : 1DpΓL,Kq
�
ÝÑ ∆XΓL

pDfmpMKqq

induces for every L-analytic character ϑ : ΓL Ñ F� with �nite intermediate extension F 1 �
F � K such that MKpϑq is de Rham the following commutative diagram

(82) 1DpΓL,Kq bDpΓL,Kq,fϑ K

εDpΓL,Kq,upDfmpMKqqbidK

��

can // 1K

εdRF,upRF pδϑqq

��
∆XΓL

pDfmpMKqq bDpΓL,Kq,fϑ K
spϑ // ∆KpMKpϑqq,

where the notation fϑ has been de�ned in Remark 8.4 and the specialisation isomorphism spϑ
is explained in Lemma 8.5 above. Moreover, εDpΓL,Kq,upDfmpMKqq is uniquely determined by
this property.

The uniqueness follows from the considerations in Appendix A while the specialisation
property will be proved in subsection 8.4 below.

Note that the isomorphism εDpΓL,KqpDfmpRKpδqq does not literally �t into Conjecture 7.6,
because DpΓL,Kq is not an a�noid algebra over K. But for any morphism of rigid analytic
spaces f : SppAq Ñ XΓ with an a�noid algebra A (e.g. Dn) over K it induces the isomorphism

εApf
�DfmpRKpδqqpSppAqqq :� εDpΓL,KqpDfmpRKpδqq bDpΓL,Kq Aq :

1A
�
ÝÑ ∆Apf

�DfmpRKpδqqpSppAqqq

which provides instances of the conjectured type. Note that for the inclusion f : SppDnq ãÑ XΓ

we obtain
f�DfmpRKpδqqpSppDnqq � DfmnpRKpδqq.

8.1 Property (v)

Specialization to the case considered by Nakamura requires some special care, because we
used a di�erent de�nition of ε-constants. As discussed in 7.7 the assumption that K contains
Lab can be dropped since L8 contains the p-power roots of unity. We can thus even assume
K � Qp in the construction of the de Rham ε-constants. Similarly we can take Ω � 1 and
hence do not need any special assumptions on K in order to make use of p-adic Fourier theory.
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Proposition 8.7. Assume L � Qp, assume πL � p. take un � ζpn�1 for a compatible system
of p-power roots of unity and choose a γ P ΓQp , which is a topological generator of the torsion-
free part, such that log0pχcycpγqq � 1, and take ΩQp � 1. Then, if one assumes K � Qp, our
construction agrees with the one in [Na17a].

Proof. Note that by a density argument and by property (vi) it su�ces to see that the con-
structions in the de Rham case coincide. The condition of L-analyticity is automatic, if L � Qp.
We remark that the complex K


φ,Zp�q considered by us specialises to a variant of the usual
Herr-complex as we can take Z � γ � 1, but there is a small di�erence to [Na17a, De�nition
2.10]. The order of φ � 1 and γ � 1 is exchanged (which poses no problem), Nakamura uses
a topological generator γNa of Γ{∆, with ∆ � Γp�power-torsion while we use a generator of
the free part. In the case p � 2 the terms of Nakamura's complex are M∆. In this case our
choice of γ is a valid choice for the variant in (loc.cit.) while in the case p � 2 we can arrange
that γp�1

Na � γ. In both cases the torsion subgroup ∆1 � Γ is a split subgroup and taking
∆1-invariants is exact in characteristic 0. Let U � xγy � Γ. For p � 2 we have ∆ � ∆1 and
plugging in the isomorphism M∆ �M{∆ and ∆ � Γ{U we see that our Qp bQpr∆s Kφ,ZpMq
is canonically isomorphic to the complex considered in (loc.cit.). For p � 2 we can consider
instead the natural map of complexes

rM
γNa�1
ÝÝÝÝÑM s Ñ rM

γ�1
ÝÝÑM s

given by m ÞÑ 1
p�1

°
gP∆1 gm in both degrees, which induces a quasi-isomorphism onto the

∆1-(co)invariants of the right-hand side and induces a corresponding quasi-isomorphism of
the Herr-complexes by taking φ � 1-cones. We can thus conclude that the fundamental lines
are canonically isomorphic to the ones considered by Nakamura. Similarly the exponential
maps are the same. Because πL � p � q we see that the character χ is just χcyc and the
duality pairing x�,�yM̃ from section 4.3 is the pairing used by Nakamura. In (66) we use
x�,�yM which by the same reasoning corresponds to the pairing used by Nakamura, namely
the duality pairing for M0 � M̃ . The assumptions on γ and Ω avoid the problem discussed
in 7.7 (ii) concerning normalisation factors and the appearance of Ω in the Γ-factor. Finally,
the series ηp1, Zq is just 1 � Z and we can view ηp1, pun b 1qq appearing in the construction
of the equivariant ε-constants as an element of L8, in fact we have ηp1, un b 1q � ζpn under
the isomorphism L8 bQp Qp � L8. Combining all of the above shows that our ε-constants
constructed in the de Rham case agree with those in Nakamura's work.

8.2 Property (i)

For all f : AÑ A1, such that we are able to construct the ε-isomorphism as above for A and
A1, the base change property (i) with respect to f : AÑ A1 obviously holds by construction.

8.3 Property (iii)

We can rephrase the diagram (79) to the following commutative diagram for any a P o�L

DpΓL,Kqpδq

ra�1s

��

Mδ,au // pR�
Kpδqq

Ψ�0

id
��

DpΓL,Kqpδq
Mδ,u // pR�

Kpδqq
Ψ�0

,
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where ras acts on DpΓL,Kqpδq as δ�1
γa � δpaq (here δγa denotes the dirac distribution attached

to γa P ΓL with χLT pγaq � a). Note that the action on N :� DfmpRKpδqq with respect to the
basis 1b eδ is given precisely by the character δ : ΓL Ñ DpΓL,Kq

�; γ ÞÑ pδγq
�1δpχLT pγqq and

hence property (iii) follows from the above diagram by specialising alongDpΓL,Kqpδq Ñ Kpδq.

8.4 Descent

For δ P ΣanpF q with F a �nite extension of L, we consider the decomposition δ � δunδ0 as in
section 3.4 and de�ne on the basis of (78)

εK,upRpδqq : 1K
�
ÝÑ ∆KpRpδqq

as εDpΓL,KqpDfmpRKpδ
unqqbDpΓL,Kq,fδ0 Kq followed by the isomorphism from Lemma 8.5. In

order to make this de�nition more explicit we have to understand the isomorphism Θ̄pδq :�
Θpδunq bDpΓL,Kq,fδ0 L, which we will consider as an isomorphism

Θ̄pδq :
2â
i�0

dKrΓL{UspH
i
ΨL,Z

pRKpδqqq
p�1qi�1

bKrΓL{Us K � pKeδ, 1q

by using (81) and the inverse of the natural isomorphism

dDpΓL,KqpTψpRLpδqqq bDpΓL,Kq,fδ0 K � dKrΓL{UspKΨL,ZpMpδ0qqq bKrΓL{Us K

�
2â
i�0

dKrΓL{UspH
i
ΨL,Z

pRKpδqqq
p�1qi bKrΓL{Us K

induced from (80) using properties of the determinant functor from section 7.1.
From the exact sequences (26), (28), (29) we derive the following exact sequences and

isomorphisms:

0ÑH0
Ψ,ZpR�

Kpδqq Ñ H0
Ψ,ZpRKpδqq Ñ H0

Ψ,ZpLApoLqpχ
�1δqq Ñ(83)

H1
ZpH

0
ΨpR�

Kpδqqq Ñ H1
ZpH

0
ΨpRKpδqqq Ñ H1

ZpH
0
ΨpLApoLqpχ

�1δqqq Ñ 0,

H2
Ψ,ZpR�

Kpδqq � H0
ZpH

1
ΨpR�

Kpδqqq � 0(84)

H1
Ψ,ZpR�

Kpδqq � H1
ZpH

0
ΨpR�

Kpδqqq � R�
Kpδq

Ψ�1{Z,(85)

H0
ZpH

1
ΨpRKpδqqq � H0

ZpH
1
ΨpLApoLqpχ

�1δqqq(86)

H2
Ψ,ZpRKpδqq � H2

Ψ,ZpLApoLqpχ
�1δqq,(87)

(88) 0 // H1
ZpH

0
ΨpRKpδqqq // H1

Ψ,ZpRKpδqq // H0
ZpH

1
ΨpRKpδqqq // 0.

For the descent it is useful to recall that the determinant functor d? commutes with taking
the derived tensor product �bL

DpΓL,Kq,fδ0
K. E.g. the additivity on short exact sequences above

turns into the additivity on the associated long exact sequences of cohomology groups below.
Finally, the determinant functor commutes with attached spectral sequences by [V14].
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8.5 Veri�cation of the conditions (iv), (vi).

In this subsection, we prove the condition (iv) using density arguments in the process of
verifying the condition (vi). Indeed, it su�ces to prove (vi) as the duality statement for de
Rham characters was shown in 7.14 and by Zariski density of the de Rham characters (see
Corollary A.4) the validity of property (iv) holds in general once we establish (vi), i.e., the
interpolation property in the de Rham case. We follow the strategy of Nakamura and consider
�rst a generic L-analytic de Rham character of weight k. The case k ¤ 0 boils down to
Proposition 8.11. The case k ¥ 1 is treated in Proposition 8.14. The remaining so-called
exceptional case is treated in Section 8.5.3.

8.5.1 Twisting

We de�ne the operator B :� B : RK Ñ RK , f ÞÑ 1
log1LT

df
dZ � df

dtLT
, and the residuum map

Res : RK Ñ K, f ÞÑ respfdtLT q with resp
°
iPZ aiZ

idZq � a�1. Extending theses maps
coe�cientwise, i.e., applying it to f in feδ and using [FX, Lem. 2.11, 2.12] we obtain an exact
sequence31

(89) 0 // Kpδq // RKpδq
B // RKpxδq

Res // Kpδ|x|�1q // 0.

It is well-known that the partial operator B : RK Ñ RK is related to twisting, see e.g.
[SV20, �4.3.9]:32

(90) DpΓL,Kq

TwχLT
��

M // pR�
Kq

ψL�0

1
Ω
B�

��
DpΓL,Kq

M // pR�
Kq

ψL�0.

Here, for a locally L-analytic character ρ : ΓL Ñ K� we denote by

Twρ : DpG,Kq
�
ÝÝÑ DpG,Kq ,

the isomorphism which on Dirac distributions satis�es Twρpδgq � ρpgqδg.
Using for dDpΓL,KqTΨpKpδ

1qq, δ1 � δ, δ|x|�1, the trivialization by identity, the operator B
induces via the above exact sequence the isomorphism

B : ∆1,XΓL
pDfmpRKpδqqq

�
ÝÑ ∆1,XΓL

pDfmpRKpxδqqq,

which also descends to an isomorphism

B : ∆1,KpRKpδqq
�
ÝÑ ∆1,KpRKpxδqq.

Moreover, we have isomorphisms

B : ∆2,XΓL
pDfmpRKpδqqq

�
ÝÑ ∆2,XΓL

pDfmpRKpxδqqq,

31This sequence already exists over L instead of K!
32Here Ω is required!
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and
B : ∆2,KpRKpδqq

�
ÝÑ ∆2,KpRKpxδqq.

by sending feδ to
�1
Ω fexδ. Altogether we obtain an isomorphism

B : ∆XΓL
pDfmpRKpδqqq

�
ÝÑ ∆XΓL

pDfmpRKpxδqqq,

which also descends to an isomorphism

B : ∆KpRKpδqq
�
ÝÑ ∆KpRKpxδqq.

Using diagram (90) and the de�nition of ϵDpΓL,KqpDfmpRKpδqq and ϵLpRKpδqq respectively,
we conclude the following

Proposition 8.8. If δ � 1, |x|, then there are canonical equalities

B � ϵDpΓL,KqpDfmpRKpδqq � ϵDpΓL,KqpDfmpRKpxδqq and B � ϵLpRKpδqq � ϵLpRKpxδqq.

Proof. Since the second statement follows by descent from the �rst one, we only have to
consider the case of the deformation following the construction in Lemma 8.3 step by step.
Regarding 8.3(i) we observe that the operator B restricts to an operator R�

Kpδq Ñ R�
Kpxδq

while it induces the operator LApoLqpχ�1δq Ñ LApoLqpχ
�1xδq, ϕeχ�1δ ÞÑ Ωxϕeχ�1xδ, which

can easily be derived from Remark 3.11 (v) combined with the exactness of (89). The compat-
ibility with 1�φL in 8.3(ii) is a consequence of Remark 3.11 (i). Finally, the compatibility of
B with Mδ � σ�1 in 8.3(iii) follows from diagram (90) together with the σ�1 in the de�nition
of (77) using 3.11 (ii). Combining both yields the factor �Ω which cancels against the factor
in the de�nition of B|∆2

. One can check that the twisting construction is compatible with the
various trivializations involved.

Proposition 8.9. Let δ P ΣanpF q with F {L �nite such that RF pδq is a de Rham pφ,ΓLq-
module with Hodge-Tate weight di�erent form zero. Then we have the equality

B � εdRF,upRF pδqq � εdRF,upRF pxδqq.

Proof. The proof is analogous to that of [Na17a, 4.14] upon noting that Γ�pkq has to be
replaced by ΩkΓ�pkq.

Since εdR and ε are compatible with respect to B by the above poropositions, it can be
used to transport the validity of the Conjecture between characters δx and δ.

8.5.2 Generic case

This subsection has been inspired by [Na17a, 4B1] and [V13]. In this subsection U � Γn and
Z � Zn for an appropriate su�ciently large n " 0, which might be adapted to the speci�c
situation.

Lemma 8.10. For δ P ΣgenpF q we have

H i
Ψ,ZpLApoLqpχ

�1δqq � H i
Ψ,ZpPol¤N poLqq� H i

Ψ,ZpDN pδqq � 0,(91)

H1
ZpH

0
ΨpLApoLqpχ

�1δqqq � H0
ZpH

1
ΨpLApoLqpχ

�1δqqq � 0
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for all i and N ¥ 0, and

(92) H i
Ψ,ZpR�

Kpδqq � H i
Ψ,ZpRKpδqq � 0

for i � 1, and

(93) H1
Ψ,ZpR�

Kpδqq � H1
ZpH

0
ΨpR�

Kpδqqq � H1
Ψ,ZpRKpδqq.

Proof. The �rst claim follows from (31),(33) and Lemma 4.17. The second follows from Lemma
4.2 (combined with Remark 4.18) and 4.19 (there for ΓL instead of U , but applying the result
to all twists by characters of the �nite group ΓL{U also implies the statement concerning U)
combined with (83) and (84). The last assertion follows from the previous ones combined with
(88),(86),(85).

By construction according to Lemma 8.3 and using Lemma 8.10 we see that Θ̄pδq arises -
upon taking determinants and descending further by �bL

KrΓL{Us
K - by the composite of

(i) (the inverse of) the isomorphism H1
ZpH

0
ΨpR

�
Kpδqqq � H1

Ψ,ZpRKpδqq together with the
trivialisations of dDpΓL,KqpTΨpLApoLqpχ

�1δqqq and dDpΓL,KqpTΨpPol¤N poLqpχ
�1δqqq,

(ii) H1
ZpH

0
ΨpR

�
Kpδqqq � H1

ZpR
�
Kpδq

Ψ�0q induced by 1�φ, together with the trivialisation of

kernel and cokernel of R�
Kpδq

1�φ
ÝÝÑ R�

Kpδq - each isomorphic to KtiLT - respectively with
the trivialization of dDpΓL,KqpTΨpDN pδqqq and

(iii) H1
ZpR

�
Kpδq

Ψ�0q
CTrpZnq
ÝÝÝÝÝÑ pR�

Kpδq
Ψ�0qU � DpΓL,KqU � KrΓL{U s up to choosing basis

elements and using the Mellin transform Mδ � σ�1.

Altogether - up to the isomorphism H1
ZpH

0
ΨpR

�
Kpδqqq � H1

Ψ,ZpRKpδqq, rxs ÞÑ rp0, xqs - this
amounts to

H1
ZpH

0
ΨpR�

Kpδqqq
1�φ
ÝÝÑ H1

ZpR�
Kpδq

Ψ�0q � DpΓL,KqUeδ � KrΓL{U seδ.(94)

For the remainder of the section we assume in addition that δ is de Rham. We have to compare
(94) with

(95) H1
ZpH

0
ΨpR�

Kpδqqq � H1
Ψ,ZpRKpδqq

exp
�,pnq

RK pδq�

ÝÝÝÝÝÝÝÑ D
pnq
dR pRKpδqq.

By the commutativity of the upper square in the (second) diagram of Lemma 8.12 one im-
mediately sees that a class rAµeδs is mapped under (94) to prΓnpTwδ�1pReso�L

pµqqqeδ while

under (95) to ιnpAµeδq|tLT�0 � θ � ιnpAµeδq by De�nition 5.10 combined with Lemma 5.9.
Recall that θ was de�ned above De�nition 3.12. Consider the KrΓL{Γns-linear map

(96) Σ : KrΓL{Γns � D
pnq
dR pRKpδqq,

whose ρ-component, for ρ running through the characters of Gn :� ΓL{Γn, is given as the
K-linear map

(97) eρΣ : K � Keρ Ñ eρD
pnq
dR pRKpδqq � DdRpRKpδρ

�1qq, 1 ÞÑ Cpδρ�1q
1

tkLT
eδρ�1 ,
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upon noting thatDdRpRKpδ
1qq � pL8bLK

1
tkLT

eδ1q
ΓL . Here eρ :� 1

|Gn|

°
gPGn

ρpg�1qg P KrGns

denotes the idempotent attached to ρ satisfying geρ � ρpgqeρ for all g P Gn, while for an
analytic character δ1 : L� Ñ pF 1q� (of weight k ¤ 0) we set

(98) Cpδ1q :�
p�Ωqk

p�kq!

#
ε̃pRKpδ

1q, uq�1, if apδ1q � 0;
detp1�q�1φ�1|DcrispRKpδ

1qqq
detp1�φ|DcrispRKpδ1qqq

, otherwise

in Ln bLK. Unravelling the de�nition of εdRL,u and using Proposition 5.15 one easily sees that
part (vi) of Conjecture 7.6 is equivalent, for k ¤ 0, to the next

Proposition 8.11 (Explicit reciprocity formula). Let δ � δlcx
k be de Rham. For k ¤ 0, the

following diagram is commutative:33

(99)

pR�
Kpδqq

Ψ�1

x ÞÑrp0,CTrpZnq
�1xqs

��

CTrpZnq
�1ιn

""

q�1
q
θ�ιn

**

1�φ // pR�
Kpδqq

Ψ�0 DpΓL,Kq
Mδ�σ�1

�
oo

prΓn

��
H1

Ψ,Zn
pRKpδqq

exp�,pnq

OO
can // H1

Zn
pDdif q H0

Zn
pDdif q � D

pnq
dR � Ln bL DdR

�

g
pnq
RK pδq

oo KrΓL{U s,
Σoo

i.e., a class rAµeδs P H1
Zn
pH0

ΨpR
�
Kpδqqq

ΓL � H1
Ψ,Zn

pRKpδqq
ΓL , is mapped under exp� to

Cpδqpδ�1pµqq
1

tkLT
eδ � Cpδq

»
o�L

δpxq�1µpxq
1

tkLT
eδ.

The left hand triangle in (99) is induced by the commutative diagrams

(100) R�
Kpδq� _

��

ιn // Ddif pRKpδqq � K8pptLT qqeδ

Rpnq
K pδq

ιn // KnpptLT qqeδ

OO

and

(101) pR�
Kpδqq

Ψ�1{Zn

�

��

ιn // Ddif pRKpδqq{Zn

��
H1

Ψ,Zn
pRKpδqq

can // H1
Zn
pDdif pRKpδqq.

The middle triangle is commutative by Lemma 5.9 upon recalling that

CgpZnqCTrpZnq �
q

q � 1

33The factor CTrpZnq
�1 in the left vertical map takes (18), i.e., (iii) above into account.
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by (17), while the commutativity of the right upper triangle of diagram (99) follows for k �
0 from the (lower rectangle of the) following lemma (applied to each ρ-component) which
explains how ϵ-constants show up naturally in the descent procedure (cf. with [BB08, Lem.
4.9/Cor. 4.10] and [Na17a, Prop. 4.11] in the cyclotomic situation):

Lemma 8.12. Let δ be a locally constant character. Then the following diagram is commuta-
tive: 34

pDpoL,Kqeδq
Ψ�1

Ap�qeδ
��

Res
o�
L
p�qeδ

// DpΓL,Kqeδ

Mp�qeδ �
��

pR�
Kpδqq

Ψ�1

q�1
q

1
rLn:Ls

TrKn{K�θ�ιn
��

p1�φq�Ψ�1�φ // pR�
Kpδqq

Ψ�0 DpΓL,Kq

δp�1qTwδp�qeδ

�

ii

p1p�q

��

Mδ�σ�1

�
oo

H0pΓL, Ln bL Keδq K.
Cpδqeδoo

Proof. The commutativity of the upper rectangle in this diagram is an immediate consequence
of Lemma 4.16, that of the triangle is immediate from the de�nitions, while that for the lower
part is obviously equivalent to the commutativity of the outer diagram

pDpoL,Kqeδq
Ψ�1

q�1
q

1
rLn:Ls

TrKn{K�θ�ιnpAp�qeδq

��

Res
o�
L
p�qeδ

// DpΓL,Kqeδ

pδ�1 p�qeδ
��

Ln bL Keδ Keδ,
δp�1qCpδqoo

where pδpµq :�
³
o�L
δpxqµpxq denotes the evaluation at a character δ. In order to check this,

assume p � 2 (the case p � 2 can be dealt with similarly as in the proof of [Na17a, Pro. 4.11])

34Here, the notation of a map fp�qeδ means that deδ or d is sent to fpdqeδ.
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and �rst assume that n :� apδq ¥ 1. Then we have

TrKn{K � θ � ιnpAµeδq �
¸

iPpoL{π
n
Lq

�

σi pθ � ιnpAµeδqq

�
¸

iPpoL{π
n
Lq

�

σi
�
ιnpAµeδq|tLT�0

�
�

¸
iPpoL{π

n
Lq

�

σi
�
Aµpun b 1qφ�npeδq

�
in Ln bKeδ

�

� ¸
iPpoL{π

n
Lq

�

δpiqAµpσiτpunq b 1q



τ

φ�npeδq in
±
τ Keδ

�

�
1

δpπLqn

¸
iPpoL{π

n
Lq

�

δpiq

»
oL

ηpx, σiτpunqqµpxq



τ

eδ

�

�
1

δpπLqn

¸
iPpoL{π

n
Lq

�

δpiq

�»
oL

ηpxi, τpunqqµpxq



τ

eδ




�

�
1

δpπLqn

¸
iPpoL{π

n
Lq

�

δpiq
¸

jPoL{π
n
L

ηpji, τpunqq

»
j�πnLoL

µpxq



τ

eδ

�

�
1

δpπLqn

¸
jPoL{π

n
L

¸
iPpoL{π

n
Lq

�

δpiqηpji, τpunqq

»
j�πnLoL

µpxq



τ

eδ

p�q
�

�
1

δpπLqn

¸
jPpoL{π

n
Lq

�

¸
iPpoL{π

n
Lq

�

δpiqηpji, τpunqq

»
j�πnLoL

µpxq



τ

eδ

�

�
1

δpπLqn

¸
jPpoL{π

n
Lq

�

¸
i1PpoL{π

n
Lq

�

δpi1j�1qηpi1, τpunqq

»
j�πnLoL

µpxq



τ

eδ

�

�
1

δpπLqn

�� ¸
iPpoL{π

n
Lq

�

δpiqηpi, τpunqq

�
 ¸
jPpoL{π

n
Lq

�

δpj�1q

»
j�πnLoL

µpxq



τ

eδ

�

�
q�npψuqϵKpL,Kpδ

�1q, ψτ̂u, dxq

»
o�L

δpxq�1µpxq



τ

eδ

�

�
q�npψuqϵKpL,Kpδ

�1q, ψτ̂u, dxqpδ�1pReso�L
µq



τ

eδ

�

�
qapδqϵKpL, δ

�1| � |, ψpxqτ̂u, dxqpδ�1pReso�L
µq



τ

eδ

�

�
δp�1qqapδq�npψτ̂uq

ϵKpL, δ, ψτ̂u, dxq
pδ�1pReso�L

µq



τ

eδ.

In the two last equalities we used (61) and (62). Moreover, the equation p�q requires part (i)
of the next lemma. Finally, by Remark 6.2 we have npψuq � 0, whence the result in this case
as rKn : Ks � qn�1pq � 1q upon comparing with (98), Example 7.9 and De�nition 7.10.
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Now we consider the case apδq � 0 and obtain

TrK1{K � θ � ι1pAµeδq �
¸

iPpoL{πLq�

σi pθ � ι1pAµeδqq

�
¸

iPpoL{πLq�

σi
�
ι1pAµeδq|tLT�0

�
�

¸
iPpoL{πLq�

σi
�
Aµpu1 b 1qφ�1peδq

�

�

�� 1

δpπLq

¸
iPpoL{πLq�

»
oL

ηpx, σiτpu1qqµpxq

�

τ

eδ

�

�� 1

δpπLq

¸
iPpoL{πLq�

»
oL

ηpxi, τpu1qqµpxq

�

τ

eδ

�

�� 1

δpπLq

¸
iPpoL{πLq�

¸
jPoL{πL

ηpji, τpu1qq

»
j�πLoL

µpxq

�

τ

eδ

�

�� 1

δpπLq

¸
jPoL{πL

¸
iPpoL{πLq�

ηpji, τpu1qq

»
j�πLoL

µpxq

�

τ

eδ

p�q
�

�
1

δpπLq

�
pq � 1q

»
πLoL

µpxq �

»
o�L

µpxq

��
τ

eδ

�
1

δpπLq

�
pq � 1q

δpπLq

1� δpπLq
� 1


»
o�L

µpxqeδ

� q
1� 1

qδpπLq

1� δpπLq
pδ�1pReso�L

µqeδ,

where the fact that δpiq � 1 for all i P o�L by assumption is used in the fourth and last equality,
while part (ii) from the next Lemma is the justi�cation for the equality p�q . The second last
equality can be derived from the observation that the condition Aµeδ P R�

Kpδq
Ψ�1 implies

that ΨpAµq � δpπLqAµ by the product formula, whence»
πLoL

µpxq �

»
oL

Ψpµqpxq � δpπLq

»
oL

µpxq � δpπLq

�»
o�L

µpxq �

»
πLoL

µpxq

�
.

It follows that
³
πLoL

µpxq � δpπLq
1�δpπLq

³
o�L
µpxq.

Lemma 8.13. Assuming n � apδq ¥ 1 we have for all j P oL{πnL

(i)
°
iPpoL{π

n
Lq

� δpiqηpij, unq � 0 if πL|j,

(ii)
°
iPpoL{πLq�

ηpji, u1q �

"
q � 1, if πL|j;
�1, otherwise.
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Proof. If πL divides j, then ηpji, u1q � 1 for all i and both statements (for n � 1) follow
by a character sum argument (Note that the assumption n ¥ 1 asserts that δ is not trivial).
Otherwise the claim (ii) follows from the character formula

°
oL{πL

ηpi, u1q � 0 while for (i)
we may assume n ¥ 2. We �rst show

(102)
¸

iPpoL{π
n
Lq

�,i�r mod j1

δpiq � 0

for every r P poL{πnLq
� and every proper divisor j1 | πnL. By shifting it su�ces to consider

r � 1. In this case we are looking at ¸
iPH

δpiq,

where H � kerpoL{π
n
Lq

� Ñ poL{pj
1qq�. This character sum can only be di�erent from zero if

δ is trivial on the subgroup H, contradicting the minimality of n. Without loss of generality
assume that vπLpjq ¤ n, whence πnL{j belongs to oL. Now let R be a system of representatives
of poL{pπnL{jqq

� inside poL{πnLq
� and rewrite

¸
iPpoL{π

n
Lq

�

δpiqηpij, unq �
¸
rPR

��ηpjr, unq
�� ¸
i,i�r mod πnL{j

δpiq

�
�
� 0

by (102) applied to j1 � πnL{j, using that ηpji, unq � ηpjr, unq if i � r mod πnL{j.

Proposition 8.11 for k   0 we will be reduced to the case k � 0 by a twisting argument
based on the previous subsection 8.5.1. Similarly the cases k ¡ 1 of the following proposition
will also be reduced to the case k � 1. But �rst we have to slightly modify our notation.
Consider the KrΓL{Γns-linear map

(103) Σ1 : KrΓL{Γns � D
pnq
dR pRKpδqq,

whose ρ-component, for ρ running through the characters of Gn :� ΓL{Γn, is given as the
K-linear map

(104) eρΣ
1 : K � Keρ Ñ eρD

pnq
dR pRKpδqq � DdRpRKpδρ

�1qq, 1 ÞÑ C1pδρ�1q
1

tkLT
eδρ�1

with

(105) C1pδ1q :� Ωkpk � 1q!

#
ε̃pRKpδ

1q, uq�1, if apδ1q � 0;
detp1�q�1φ�1|DcrispRKpδ

1qqq
detp1�φ|DcrispRKpδ1qqq

, otherwise,

in Ln bL K.

Proposition 8.14 (Explicit reciprocity formula). Let δ � δlcx
k be de Rham. For k ¥ 1, the

following diagram is commutative:
(106)

pR�
Kpδqq

Ψ�1

x ÞÑrp0,CTrpZnq
�1xqs

��

1�φ // pR�
Kpδqq

Ψ�0 DpΓL,Kq
Mδ�σ�1

�
oo

prΓn

��
H1

Ψ,Zn
pRKpδqq D

pnq
dR pRKpδqq � Ln bDdRpRKpδqq

exppnqoo KrΓL{U s,
Σ1oo
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i.e., a class rAµeδs P H1
Zn
pH0

ΨpR
�
Kpδqqq

ΓL � H1
Ψ,Zn

pRKpδqq
ΓL , is mapped under exp�1

RKpδq
to

C1pδqpδ�1pµqq
1

tkLT
eδ � C1pδq

»
o�L

δpxq�1µpxq
1

tkLT
eδ.

Proof. As mentioned earlier - by the twisting technique - we only have to show the case k � 1
(i.e. δ � δ̃x). We will show the commutativity of the following diagram

H1
Ψ,Zn

pRKpδ̃qq

B

��

exp
�,pnq

RK pδ̃�1x|x|q// D
pnq
dR pRKpδ̃qq � pL8 bL Keδ̃q

Γn

aeδ̃ ÞÑ
a
tLT

eδ
��

H1
Ψ,Zn

pRKpδqq D
pnq
dR pRKpδqq � pL8 bL Keδq

Γn
expRK pδqoo

on the image of pR�
Kpδ̃qq

Ψ�1 in H1
Ψ,Zn

pRKpδ̃qq, which together with the diagram (90) implies
the desired formula by comparing the cases k � 1 and k � 0. To this end assume

exp
�,pnq

RKpδ̃�1x|x|q
pr0, feδ̃sq � αeδ̃

with feδ̃ P pR
�
Kpδ̃qq

Ψ�1. Then it follows from de�nition 5.10 in combination with Lemma 5.9
that

CgpZnq
�1rιnpfeδ̃qs � rαeδ̃s P H

1
ZnpD

�
difpRKpδ̃qq

for su�ciently large n ¥ 1, i.e., there exists yn P D�
difpRKpδ̃qq such that

(107) CgpZnq
�1ιnpfeδ̃q � αeδ̃ � Znyn.

Now let ∇ P LiepΓnq � L be the element corresponding to 1. By the considerations in
[SV20, �4.4], especially the proof of Remark 4.4.8, ∇ is divisible in DpΓn,Kq by Zn and the
quotient ∇

Zn
P DpΓn,Kq corresponding to Ω

πnL

logLT pZq
Z under the Fourier-LT-isosomorpism with

evaluation CgpZnq�1 � Ω
πnL

at Z � 0 according to de�nition (51).

We wish to apply the analogue (in the LT-setting) of the Ψ-version of the explicit formula
for expRKpδq in [Na17a, Prop. 2.23 (1)] with x̃ � ∇

Zn

�
f
tLT

eδ
�
and x � α

tLT
eδ, which would tell

us that

expRKpδqp
α

tLT
eδq � rpΨ� 1q

∇
Zn

� f
tLT

eδ
�
,Zn

∇
Zn

� f
tLT

eδ
�
s

� r
∇
Zn
pΨ� 1q

� f
tLT

eδ
�
,∇
� f
tLT

eδ
�
s

� r0, Bpfqeδs,

whence the claim. Here, for the last equality we used the formula (iv) of Remark 3.11.

∇
�
f

1

tLT
eδ
�
�
�
p∇� ωχ�1

LT δ
qf
� 1

tLT
eδ � tLT Bpfq

1

tLT
eδ � Bpfqeδ

noting that RKpδ̃q
�
ÝÑ 1

tLT
RKpδq, feδ̃ ÞÑ

f
tLT

eδ, is an isomorphism of pφ,ΓLq-modules and
that the Hodge-Tate weight ωχ�1

LT δ
vanishes.
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Thus it remains to verify the assumption of [Na17a, Prop. 2.23 (1)], i.e., ιmpx̃q � x P
D�

dif,mpRKpδqq � tLTD
�
dif,mpRKpδ̃qq for all m ¥ n.

From (107) we obtain the equality

CgpZnq
�1ιn

� ∇
Zn
pfeδ̃q

�
� CgpZnq

�1αeδ̃ �∇pynq P CgpZnq�1αeδ̃ � tLTD
�
dif,mpRKpδ̃qq,(108)

because ∇ � tLT B by [KR, Lemma 2.1.4.]. Using that p1 � φqpfeδ̃q � Znβ for some β P

RKpδ̃q
Ψ�0 by [SV20, Thm. 4.3.23] we conlcude for any m ¥ n� 1,

ιm
� ∇
Zn
pfeδ̃q

�
� ιm�1

� ∇
Zn
pfeδ̃q

�
� ιm

�
p1� φq

∇
Zn
pfeδ̃q

�
� ιm

� ∇
Zn
pp1� φqfeδ̃q

�
� ιm

� ∇
Zn
pZnβq

�
� ιmp∇pβqq P tLTD�

dif,mpRKpδ̃qq

In particular, we obtain

ιm
� ∇
Zn
pfeδ̃q

�
� ιn

� ∇
Zn
pfeδ̃q

�
P tLTD

�
dif,mpRKpδ̃qq

for any m ¥ n by induction. This �nishes the proof.

By an analogous density argument (using the results from Appendix A) as in [Na17a,
Cor. 4.17] the Propositions 8.11 and 8.14 imply that ϵKpRKpδqq : 1K

�
ÝÑ ∆KpRKpδqq satis�es

conditions (iii), (iv) of Conjecture 7.6 for any analytic character δ, i.e., for any rank one
analytic pφ,ΓLq-module.

8.5.3 Exceptional case

This subsection has been inspired by [Na17a, 4B2] and [V13, �2.5].
By observing that the character x0 is dual to χ � x|x| with respect to the pairing in

Theorem 4.13 and upon applying compatibility with this duality 7.14 as well as with twisting
according to Propositions 8.8 and 8.9 one easily reduces the veri�cation of condition (vi) in
the exceptional case, i.e., δ being of the form x�i or xiχ � xi�1|x| for i P N (recall 0 P N), to
the case of δ � χ � x|x|.

First we are going to describe Θ̄pδq. To this aim note that the natural inclusion Kz0 �
Pol¤0poLq ãÑ LApoLq, which is a splitting of the projection sending ϕ to ϕp0q, induces a
quasi-isomorphism

(109) KΨ,ZpKz
0q ãÑ KΨ,ZpLApoLqq

by Lemma 4.17.
The long exact H i

Ψ,DpΓL,Kq
-sequence attached to (26) together with (84), (109) induces for

dimension reasons (cp. with Lemma 4.19 (v)) an isomorphism

(110) α1 : H
1
Ψ,DpΓL,Kq

pRKpχqq � H1
Ψ,DpΓL,Kq

pLApoLqq � H1
Ψ,DpΓL,Kq

pKz0q � Kz0 `Kz0,
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which - induced by the evaluation at 0 of the Colmez transform given by (27) - sends
rf1eχ, f2eχs to

(111)
�
Respf1pZqgLT pZqdZqz

0, Respf2pZqgLT pZqdZqz
0
�

as well as

(112) α2 : H
2
Ψ,DpΓL,Kq

pRKpχqq � H2
Ψ,DpΓL,Kq

pLApoLqq � H2
Ψ,DpΓL,Kq

pKz0q � Kz0,

which sends rfeχs to

(113) RespfpZqgLT pZqdZqz
0.

Finally, again as part of the long exact H i
Ψ,DpΓL,Kq

-sequence attached to (26), we have an
isomorphism
(114)
α0 : pKz

0 �qH0
Ψ,DpΓL,Kq

pKz0q � H1
Ψ,DpΓL,Kq

pLApoLqq � H1
Ψ,DpΓL,Kq

pR�
Kpχqq � H1

DpΓL,Kq
pH0

ΨpR�
Kpχqqq.

But note that in contrast to the generic case the canonical map
(115)
H1

Ψ,DpΓL,Kq
pR�

Kpδqq � H1
DpΓL,Kq

pH0
ΨpR�

Kpδqqq Ñ H1
DpΓL,Kq

pH0
ΨpR�

Kpδqqq ãÑ H1
Ψ,DpΓL,Kq

pRKpδqq

is the zero map, which can be seen by using (83), (88) and counting dimensions. More-
over, we have H0

Ψ,DpΓL,Kq
pR�

Kpχqq � H0
Ψ,DpΓL,Kq

pRKpχqq � 0 � H1
DpUqpH

1
ΨpR

�
Kpδqqq �

H2
Ψ,DpΓL,Kq

pR�
Kpχqq by Lemma 4.19 (v) and (84) as well asH0

Ψ,DpΓL,Kq
pLApoLqq � H0

Ψ,DpΓL,Kq
pKx0q �

Kx0 (cf. (31).
Altogether it follows that the isomorphism

Θ̄pχq :
2â
i�0

dKrΓL{UspH
i
ΨL,Z

pRKpχqqq
p�1qi�1

bKrΓL{Us K � pKeχ, 1q

coincides with the composite

2â
i�1

dKpH
i
ΨL,DpΓL,Kq

pRKpχqqq
p�1qi�1

α
ÝÑ

2â
i�0

dKpH
i
ΨL,DpΓL,Kq

pKx0qqp�1qi�1
b dKpH

1
DpΓL,Kq

pH0
ΨpR�

Kpχqqqq(116)

βbid
ÝÝÝÑ dKpH

1
DpΓL,Kq

pH0
ΨpR�

Kpχqqqq
γ
ÝÑ pKeχ, 1q,

where α is induced by αi, for i � 0, 1, 2, and β is the canonical isomorphism

2â
i�0

dKpH
i
ΨL,DpΓL,Kq

pKx0qqp�1qi�1
� 1K(117)

which stems from the base change of the trivialisation of dDpΓL,KqpTΨpLApoLqqq from (i) of
Lemma 8.3. Finally, γ is induced from (94), i.e., by

(i) H1
ZpH

0
ΨpR

�
Kpχqqq � H1

ZpR
�
Kpχq

Ψ�0q induced by 1� φ, and
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(ii) H1
ZpR

�
Kpχq

Ψ�0q
CTrpZnq
ÝÝÝÝÝÑ pR�

Kpδq
Ψ�0qU � DpΓL,KqU � KrΓL{U seχ using pMχ�σ�1q

�1.

Consider the basis f̃0 :� z0, pf̃1,1 :� pz0, 0q, f̃1,2 :� p0, z0qq and f̃2 � z0 ofH0
Ψ,DpΓL,Kq

pKx0q,

H1
Ψ,DpΓL,Kq

pKx0q andH2
Ψ,DpΓL,Kq

pKx0q, respectively. Then, analogously to [Na17a, Lem. 4.19]
one easily checks that

(118) βpf̃�0 b pf̃1,1 ^ f̃1,2q b f̃�2 q � 1.

where f̃�i denotes the dual basis of f̃i for i � 0, 2. So it remains to study the e�ect of γ. The
following Lemma should be compared to [Na17a, Lem. 4.20] and [V13, Lem. 2.9].

Lemma 8.15. The isomorphism

H0
Ψ,DpΓL,Kq

pKx0q
α0ÝÑ H1

DpΓL,Kq
pH0

ΨpR�
Kpχqqq

γ
ÝÑ Keχ

sends f̃0 to �Ω q�1
q pZplogpgpT qqqq|T�0 eχ.

Proof. Consider the Coleman power series g :� gιpηq,ηpιLT pηqq
35 in the notation of [SV15,

Theorem 2.2, Lem. 4.1], where we consider ιpηq as an element of limÐÝn L
�
n via the natural

identi�cation limÐÝn L
�
n � E�

L (cf. [KR, Lem. 1.4]). Then Bg
g belongs to R

Ψ�
πL
q

K up to the
identi�cation ιLT pηq � T by the last sentence of section 2 of [SV15]. By the explicit reciprocity
law Prop. 6.3 in (loc. cit.) we obtain

Resp
Bg

g
dtLT q � Resp

dg

g
q � Bφp1qprecELpιpηqqq � 1.(119)

Indeed, under the reciprocity map recEL
36 the uniformiser ιpηq is sent to the Frobenius (lift)

φq of A, whence the cocycle Bφp1q, which is given by sending h P H to ha� a for some a P A
with φqpaq � a � 1, sends recELpιpηqq to 1 tautologically.

In other words we have found an element Bg
g eχ P RKpχq

Ψ�1 which lifts f̃0 under the

Coleman transform (27). Thus α0pf̃0q is represented by

Z

�
Bg

g
eχ



� Z pB logpgqeχq � B pZ log gq eχ

35For L � Qp,πL � p odd and LT � pGm one has gpZq � Z as N pZq � Z in that case. We do not
know whether

±
aPLT1

pa �LT Zq � p�1qv2ppqφpZq holds in general? If so, this would have simpli�ed the
proof of [SV15, Lem. 2.5]. Moreover, it would simplify the argument here considerably as the use of the
reciprocity law is quite a heavy argument. The statement is true in the case that φpZq is a monic polynomial
by the following argument, which was explained to us by Laurent Berger: Observe that the monic degree q
polynomial hpT q :� φpT q � φpZq P QuotpoCpJZKqrT s vanishes precisely at the a �LT Z, a P LT1 and hence
hpT q �

±
pT � pa�LT Zqq. Comparing the constant coe�cients yields the claim.

36Here we are using the normalisation from [NSW, Cor. 7.2.13].
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by (90). It is mapped into H1
DpΓL,Kq

pR�
Kpχq

Ψ�0q to the class of

p1� φqZ

�
Bg

g
eχ



� Zp1� φq pB logpgqeχq P R�

Kpχq
Ψ�0

� Z

�
Bp1�

φ

q
qplogpgqqeχ



�

�
TwχLT pZqBp1�

φ

q
qplogpgqq



eχ

�

�
BZp1�

φ

q
qplogpgqq



eχ

� B

�
p1�

φ

q
qZplogpgqqe|x|




Now we use the commutative diagram

K

�Ω

��

DpΓL,Kq

�Ω

��

p1oo
M|x| // Rr

Kp|x|q
Ψ�0

B
��

K DpΓL,Kq
p1oo Mχ // Rr

Kpχq
Ψ�0

to conclude by observing that the evaluation at 1 corresponds to setting T � 0 and that�
p1� φ

q qZplogpgpT qqq
	
|T�0

� q�1
q pZplogpgpT qqqq|T�0.

Remark 8.16. The map u ÞÑ p1 � φ
q qplogpgu,ηpT qqq generalizes Coleman's map as used in

Kato's proof of the classical rank one case, cf. [V13, (2.5)].

Lemma 8.17. With the notation in the proof of Lemma 8.15 we have

pZnplogpgpT qqqq|T�0 � L1Znp1q � CgpZnq.

Proof. Note that g P ToLrrT ss. Writing g �
°
i¥1 aiT

i we see that for any γ P Γn we have

ppγ � 1q logpgpT qqq|T�0 � logp
gprχLT pγqspT qq

gpT q
q|T�0

� logp

�°
i¥1 ai

prχLT pγqspT qq
i

T°
i¥1 aiT

i�1

�
|T�0

q

� logp
a1χLT pγq

a1
q � logpχLT pγqq.

It follows that for elements λ �
°
i aipγi�1q in the K-span S of γ�1, γ P Γnzt1u, in DpΓn,Kq

we have

pλ logpgpT qqq|T�0 �
¸
i

ai logpχLT pγiqq � λplogpχLT qq � L1λp1q,

because
°
i aipγi�1q �

°
i aiγi�p

°
i aiq1 and logpχLT p1qq � 0. Since Zn belongs to the closure

of S the claim follows by continuity.
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Now we de�ne a basis pf1,1, f1,2q of H1
ΨL,DpΓL,Kq

pRKpχqq and f2 of H2
ΨL,DpΓL,Kq

pRKpχqq

via37

(120) α1pf1,iq � f̃1,i for i � 1, 2 and α2pf2q � f̃2.

Combining (116), (118) and (120) with Lemmata 8.15, 8.17 we obtain

Corollary 8.18. Θ̄pχqppf1,1 ^ f1,2q b f�2 q � �Ω q�1
q CgpZnqCTrpZnqeχ � �Ω eχ.

Now we shall compare this to the de Rham ϵ-isomorphism, i.e., mainly to the map
ΘpRKpχqq, because

(121) ΓpRKpχqq � Ω�1

and ΘF,dR,upRF pχqq : dKpDdRpRpχqqq
�
ÝÑ ∆K,2pRKpχqq corresponds to the isomorphism

(122) LKpRKpχqq � Keχ
�
ÝÑ DdRpRKpχqq � K

1

tLT
eχ, aeχ ÞÑ

a

tLT
eχ

as ε̃pRKpχq, uq � 1 due to χ being crystalline.
By the long exact sequence (66) the map ΘpRKpχqq is induced from the following isomor-

phisms and exact sequences

(123) DcrispRKpχqq
1�φLÝÝÝÑ DcrispRKpχqq, i.e., K

1

tLT
eχ

1� 1
q

ÝÝÝÑ K
1

tLT
eχ,

(124) DdRpRKpχqq
expRK pχq
ÝÝÝÝÝÝÑ H1

φ,ZnpRKpχqq
ΓL
f

Υ1
f

ÝÝÑ
�

H1
Ψ,ZnpRKpχqq

ΓL
f

(with Υ1
f induced by Υ1 in Remark 4.15)

(125)

H1
Ψ,ZnpRKpχqq

ΓL{H1
Ψ,ZnpRKpχqq

ΓL
f

x̄ ÞÑty ÞÑxpΥ1q�1pxq,yyRpχqu
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pH1

φ,ZnpRKq
ΓL
f q�

pexpf,RK q
�

ÝÝÝÝÝÝÝÑ DcrispRKq
�

and

(126) DcrispRKq
� � H2

Ψ,ZnpRKpχqq
ΓL

x̄ÞÑty ÞÑxpΥ1q�1pxq,yyRpχqu
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pH0

φ,ZnpRKq
ΓLq�,

which is dual to the natural isomorphism H0
φ,Zn

pRKq
ΓL � DcrispRKq, 1 ÞÑ d0 :� 1 P K �

DcrispRKq.We de�ne basis e0 and pe1,1, e1,2q of H0
φ,Zn

pRKq
ΓL and H1

φ,Zn
pRKq

ΓL , respectively,
as follows:

e0 :� 1 P RK , e1,1 :� rp1, 0qs, e1,2 :� rp0, 1qs.

38

Lemma 8.19. (i) expf,RK
pd0q � e1,1

37Nakamura adds here the factor � p
pp�1q logpχcycpγqq

in front of the αi!
38In order to normalize e1,2, i.e., to make it independent of the choice of Zn, one would need the factor

CTrpZnq from (17), but for our calculations this is not needed. Since in our choice for the generalized Herr
complex the order of the operators Z and φ � 1 (or Ψ � 1) is the opposite compared to Nakamuras version,
our indexing of the basis elements di�ers from Nakamura's!
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(ii) Υ1
f � expRKpχqpt

�1
LTeχq �

q�1
q f1,1

(iii) Using the pairing

tt�,�uuRKpχq : H
i
Ψ,ZnpRKpχqq �H2�i

φ,Zn
pRKq Ñ K

from Remark 4.15 we have

ttf1,2, e1,1uuRKpχq � 1, ttf1,1, e1,1uuRKpχq � 0,

ttf1,2, e1,2uuRKpχq � 0, ttf1,1, e1,2uuRKpχq � 1,

ttf2, e0uuRKpχq � �1.

(iv) pexpf,RK
q�pxpΥ1q�1pf1,2q,�yRpχqq � d�0 P DcrispRKq

�, where the pairing x�,�yRpχq had
been introduced in Theorem 4.13.

Proof. (i) follows from the analogue of [Na17a, Prop. 2.23 (2)] by taking x̃ � 1. For (ii) we
apply the analogue of Prop. 2.23(1) of (loc. cit.) with x̃ � f

tLT
eχ P RKpχqr

1
tLT

s, where f lies

in R�
K such that fpunq � 1

πnL
for any n ¥ 0. The existence of such f follows from the analogue

of (42) over the Ring R�
K

R�
K{tLT �

¹
n¥0

Lpunq, f̄ ÞÑ pfpunqqn¥0.

Moreover, x̃ satis�es
ιnpx̃q � x̃ P D�

dif,npRKpχqq

for all n ¥ 1, because

ιnp
f

tLT
eχq � πnL

fpunq

tLT
eχ �

1

tLT
eχ mod D�

dif,npRKpχqq

by Remark 3.14. Therefore the conditions of the analogue of Prop. 2.23(1) of (loc. cit.) are
satis�ed and hence we conclude that

expRKpχqpt
�1
LTeχq � rpφ� 1qpx̃q,Znpx̃qs P H

1
φ,ZnpRKpχqq

and
Υ1
f � expRKpχqpt

�1
LTeχq � r�Ψpφ� 1qpx̃q,Znpx̃qs P H

1
Ψ,ZnpRKpχqq.

Hence it su�ces to show that

(127) Res

�
Znf

tLT
d logLT



� 0
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and 39

ResZ

�
pφq � 1qf

tLT
d logLT

�
� RestLT

�
pφq � 1qf

tLT
dtLT

�

� RestLT

�
φ
q pfq

tLT
dtLT

�
�RestLT

�
f

tLT
dtLT



�

�
φpfq

q



|tLT�0

� pfq|tLT�0

�

�
φpfq

q



|Z�0

� pfq|Z�0

�
1� q

q
fp0q � �

q � 1

q
,

because �Ψpφ� 1qp f
tLT

eχq � � q
πL

Ψ

�
pφ
q
�1qf

tLT



eχ and

ResZ

�
Ψ

�
pφq � 1qf

tLT



d logLT

�
�
πL
q
ResZ

�
pφq � 1qf

tLT
d logLT

�
by [SV20, Lem. 4.5.1 (iii)]. For (127) one shows �rst the analogous statement for γ�1, γ P ΓL,
instead of Zn by similar arguments and then concludes by continuity.

(iii) follows by direct computation using the formulae of Remark 4.15:

ttf1,2, e1,1uuRKpχq � �Resppλι1qp
Bg

g
eχqq � �p1pλ

ιqResp
Bg

g
pλd logLtqq � 1

upon noting that f1,2 � rp0, Bgg eχqs by the proof and with notation of Lemma 8.15.
Take f1,1 � rpλ1eχ, λ2eχqs. Then

ttf1,1, e1,1uuRKpχq � �Resppλι1qpλ2eχqq � �p1pλ
ιqRespλ2d logLT q � 0

and, for λ satisfying r�1spZnq � Zιn � λZn ,

ttf1,1, e1,2uuRKpχq � Resp1pλ1eχqq � Respλ1d logLT q � 1

by de�nition of f1,1. Finally, writing f2 � λ3eχ we have

ttf2, e0uuRKpχq �Resp1pλf2qq � Resppλι1qpf2qq � p1pλ
ιqRespλ3d logLT q � �1

(iv) follows from (i) and (iii) using (25), i.e., xpΥ1q�1pf1,2q,�yRpχq � ttf1,2,�uuRKpχq.

Combining the previous lemma with (123), (124), (125), (126) we obtain

Corollary 8.20. ΘpRKpχqqppf1,1 ^ f1,2q b f�2 q � � 1
tLT

eχ P K
1
tLT

eχ � DdRpRKpχqq.

Together with Corollary 8.18 and (121),(122) this proves property (vi) for the exceptional
case.

39Since fp0q � 0 the expression on the left-hand side has a simple pole at Z � 0. The residue formula for

simple poles gives us ResZ

�
pφ
q
�1qf

tLT
gLT dZ



�

�
pφ
q
�1qfpZq

gLT pZq
gLT pZq



|Z�0

� RestLT

�
pφ
q
�1qf

tLT
dtLT



.
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A Density Argument

When verifying that εK,upMq satis�es a given property we frequently require a density argu-
ment. This is formally justi�ed as follows: We reinterpret a given property as a commutative
diagram in the category of graded line bundles (hence involving only isomorphisms). E.g. for
the property (iii) of Conjecture 7.6 one takes the diagram

1K

id

��

εK,upMq
// ∆pMq

δdetM paq
��

1K
εK,a�upMq

// ∆pMq.

The commutativity of this diagram for a given property P can be reinterpreted as the auto-
morphism P pMq of 1K , which is obtained by going around the diagram, taking the constant
value 1. In this section we will construct a (reduced) rigid analytic space Tan over the normal
hull E of L, whose K 1-points parametrise L-analytic pφL,ΓLq-modules attached to characters
δ : LÑ K 1� such that the map M ÞÑ P pMq is a map of rigid analytic spaces

Tan Ñ Gan
m .

This is the same thing as a a global section of O�
Tan . Since Tan is reduced the vanishing

of a global section (in our case M ÞÑ P pMq � 1) can be checked on a Zariski dense subset
(essentially by de�nition as we will see below). LetW (resp. T ) be the rigid spaces representing
the functors

WpXq � Homctspo
�
L ,ΓpX,OXq

�q

resp.
T pXq � HomctspL

�,ΓpX,OXq
�q.

For the representability of the �rst functor see [Bu, Lemma 2]. The representabiltiy of the
second functor can be seen by �xing a uniformiser, which provides us with an isomorphism
T � Gm �W and we denote by Wan the subspace of locally L-analytic characters inside W,
where by convention we call a character locally analytic if the composite with the restriction
map to OpY q is L-analytic for any a�noid Y � X (this makes sense because OpY q is a Banach
space). Similarly we de�ne Tan. Since o�L is open in L�, we conclude that a character δ P T is
L-analytic if and only if its projection to W is L-analytic. Analogously we get an isomorphism
(depending on the choice of uniformiser) Tan � Gm �Wan. The representability of Wan is
shown in [Eme, Proposition 6.4.5]. Recall that a character is locally L-analytic if and only if
its di�erential at 1 is L-linear. A character δ : o�L Ñ ΓpX,O�

Xq (with X a�noid over a galois
closure E of L) can be written (locally around 1) as

δpxq �
¸

nPNΣ

anpx� 1qn,

with some an P ΓpX,OXq, where Σ is the set of Qp-homomorphisms σ : LÑ E and px�1qn is
de�ned as

±
σPΣ σpx� 1qnσ where n � pnσqσ. The partial derivative at x � 1 in the direction

of σ P Σ, i.e., the coe�cient aeσ of the power series at the σ-unit-vector is called the σ-part
of the generalised Hodge-Tate weight of δ.

Remark A.1. A character δ PW is L-analytic if and only if aeσ � 0 for every σ � id .
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Proof. This is essentially [Be16, Remark 2.7]. Note that a character is L-analytic if and only
if 1 is an L-analytic vector for the corresponding representation. (Loc. cit.) uses the logarithm
as a chart around 1 P o�L rather than the map x ÞÑ x � 1. Since logGmpT q � T � . . . the
coe�cients in total degree 1 are una�ected by the change of charts. This means that our aeσ
agrees with ∇σp1q in (loc. cit.).

Recall (cf. [BeCh, Chapter 3]) that a subset Z of a rigid analytic space X is called Zariski-
dense if the only reduced analytic subset contaning Z is Xred. For a reduced Stein space this
is equivalent to requiring that a analytic function vanishing along Z is identically zero. An
illustrating example is the set pN � Br0,1q. It is Zariski dense because a function vanishing on
pN has in�nitely many zeroes inside the a�noids Br0,rs and thus vanishes identically along an
admissible cover. For n " 0 the group U � Γn of n-units is an open subgroup of o�L isomorphic
to oL. Recall that by [ST2] the corresponding character variety X :� XΓn is a smooth one-
dimensional quasi-Stein space. For such spaces it is known (cf. [BSX, Section 1.1]) that the
divisor of an analytic function has �nite support in every a�noid subdomain and a similar
argument as before shows, that a set having in�nite intersection with in�nitely many members
of a given increasing family of a�noids pXmqmPN covering X is automatically Zariski dense.
Note that we have a canonical restriction map

Wan Ñ X,

which is �nite and �at.

Theorem A.2. If e   p � 1 then the set Wint � txd | d P Nu is Zariski dense in Wan. If
e ¥ p� 1 we have that the set tχ PWan | χ|U � xdu is Zariski dense in Wan.

Proof. We �rst consider the restriction of xd to the subgroup Γn as above. Recall that X
is covered by the neighbourhoods Xprq consisting of characters taking values inside the disc
|z � 1| ¤ r Using the fact that for any element of x P o�L we know that xq�1 is a 1-unit

and xpq�1qpN for N " 0 is close to 1 we conclude that xpq�1qpm for m ¥ N are an in�nite
family of distinct points inside Xprq for N " 0. If epL{Qpq   p � 1 we can decompose
o�L � κ� � p1 � πLoLq. This allows us to cover Wan by sets of the form ωjXprq, with ω
the composition of the projection mod π and the Teichmüller character. Since the powers of
x intersect every ωj-component in�nitely many times we can conclude from the preceding
reasoning, that Wint is Zariski-dense. In the general case we consider the �nite �at restriction
map. Passing to a�noids we �rst observe that Zariski density inside an a�noid SppAq in the
sense above is equivalent to Zariski density in the scheme SpecpAq since a�noids are Jacobson.
Furthermore, because a�noids are noetherian, we can conclude that the restriction of the map
ρ : Wan Ñ X to a suitable family of a�noids is �nitely presented and �at (in the ring-theoretic
sense) and hence (universally) open with respect to the Zariski topology. The claim follows
from the preceding density statement because openness implies that the preimage of a dense
subset of X is dense inside Wan. Arguing as in the �rst part, we can show that the image of
Wint inside X is dense and hence also ρ�1pρpWintqq � tχ PWan | χ|U � xdu.

Remark A.3. Let F 1{L be a �nite subextension of K and �x some δ P ΣanpF
1q. The map

M ÞÑ P pMq (for a given property P ) corresponds to a unique section of ΓpWan,OWanq
�,

where we identify Wan with the space of analytic twists of δ.
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Proof. We will explain the argument for property (iii). The other properties are treated simi-
larly. We consider the isomorphism

εDpΓL,Kq,upDfmpMKqq : 1DpΓL,Kq
�
ÝÑ ∆XΓL

pDfmpMKqq

from Theorem 8.6. The validity of property (iii) amounts to the commutativity of the diagram

1DpΓL,Kq

id

��

εDpΓL,Kq,u// ∆XΓL
pDfmpMKqq

δdetDfmpMqpaq

��
1DpΓL,Kq

εDpΓL,Kq,au// ∆XΓL
pDfmpMKqq.

Since all arrows are isomorphisms, going around the diagram clockwise (starting at 1DpΓL,Kq)
amounts to an automorphism of DpΓL,Kq, or in other words, an invertible global section
of XΓL . The isomorphism ΓL � o�L induces an isomorphism XΓL � Wan. Hence we get an
invertible global section P of Wan. This allows us to interpret the validity of property (iii) for
every twist MKpδq with δ PWan as the section P of Wan constructed above specialising to 1
at every such δ.

Corollary A.4. The set

S :� tpλ, δ0q P TanpK 1q � GmpK
1q�WanpK

1q | K 1{K �nite,δλδ0 generic and pδ0q|U de Rham u

is Zariski dense.

Proof. Note that the set of de Rham characters contains the set of characters which restrict
to a power of x on U and is hence dense in Wan. As a conclusion the analogously de�ned set
without the genericity condition is dense. For every d there is precisely one λ such that δλxd

is non-generic. It is not di�cult to see that the set S remains dense.

To restrict some considerations to pφL,ΓLq-modules arising as a base change from a �nite
extension of L we introduce the following notion.

De�nition A.5. A character ρ : o�L Ñ Cp is called classical, if its image is contained in Qp.
Analogously a character L� Ñ Cp is called classical, if it takes values in Qp.

Remark A.6.

(i) The image of a classical character ρ : o�L Ñ Cp is contained in some �nite extension F
of Qp.

(ii) A character is classical if and only if its restriction to some open subgroup U takes values
inside Qp.

Proof. Since o�L is topologically �nitely generated we can see that the image of some set of
topological generators is contained inside F� for a suitable �nite extension F of Qp.Moreover,
by compactness of o�L , its image is contained inside the maximal compact subgroup o�F � F�.

Now suppose ρpUq � F for some open subgroup U � o�L . Let γ P o
�
L , then γ

ro�L :Us P U and
hence ρpγq is algebraic over F. Setting F 1 � F pρpγq, γ P Rq for a system of representatives
R � o�L of o�L{U we can see that the image of ρ is contained in F 1.
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Lemma A.7. Let δ : L� Ñ K� be a de Rham (L-analytic) character, i.e., such that RKpδq
is de Rham in the sense of section 5.4. Then δpo�L q � Qp.

Proof. Let n " 0.Note thatDdif,npRKpδqq embeds ΓL-equivariantly into
±
jPZpLnbLKt

j
LT pδqq

and the latter is Γn-equivariantly isomorphic to
±
jPZp
±rLn:Ls
l�1 KtjLT pδqq. The de Rham con-

dition hence forces that δ agrees with χjLT for some (unique) j when restricted to Γn. As a
consequence the restriction δ|

o�
L

is classical.

Remark A.8. The proof of the previous Lemma shows that any de Rham L-analytic character
δ : L� Ñ K� is of the form

δ � δlcx
k

for some k P Z and some locally constant character δlc : L� Ñ K�. Vice versa any character
of this form is obviously de Rham L-analytic.

Corollary A.9. Using the notation from A.4 the subset S1 of S consisting of classical points
is Zariski dense.

Proof. This follows from the following easy observations: The set of characters whose restric-
tion to U is of the form xd is classical and the subset of Gm de�ned by Qp

�
both are Zariski

dense.
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