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Introduction

When Binz, Neukirch and Wenzel [1] proved the Kurosh subgroup theorem

for free profinite products they had arithmetic applications in mind. For exam-

ple, consider the Galois group G(Q(p)/Q∞) of the maximal p-extension Q(p)

of the cyclotomic Zp-extension Q∞ of Q. It is known that a number theoreti-

cal analogue of Riemann’s Existence Theorem holds (cf. [9]): G(Q(p)/Q∞) is

the free pro-p-product of certain decomposition groups. Therefore, in order to

determine the structure of open subgroups of G(Q(p)/Q∞) one can apply the

pro-p version of Kurosh subgroup theorem.

But also the more general amalgamated free pro-C-product occurs in al-

gebraic number theory or arithmetic geometry, for example in the classical

Seifert-van-Kampen theorem concerning topological fundamental groups or in

the theorem about Galois groups of real function fields in one variable with

restricted ramification, which we will consider below. Therefore the natural

question arises, whether an analogous subgroup theorem for such amalgama-

tions exists.

With regard to abstract groups Hanna Neumann showed in the 50th that

in general subgroups of amalgamated products are not amalgamated products
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any more, but“generalized free products”. At the end of the 60th A. Kar-

rass and D. Solitar described such subgroups by means of tree products and

HNN-constructions (“HNN” stands for Highmann-Neumann-Neumann). But

a satisfactory description was only given by the Bass-Serre theory, in which

groups are acting on graphs in order to utilize geometric intuition: The fun-

damental group of a graph of groups generalizes both amalgamated products,

HNN-constructions and tree products. From the structure theorem of this the-

ory a subgroup theorem for such fundamental groups can be deduced, which

contains H. Neumann, A. Karrass and D. Solitar’ s results as well as the classical

Kurosh subgroup theorem.

Various group theorists as Gildenhuys, Mel’nikov, Ribes or Zalesskii devel-

oped an analogous profinite Bass-Serre theory admitting only certain profinite

topological spaces as graphs. Thereby they could derive important results con-

cerning pro-C-groups. Unfortunately, such a strong and general structure the-

orem does not exist within the profinite theory (but compare the introduction

and §4 of [16]).

Therefore for the aim of this article it’s more convenient to pursue Neukirch’s

method in order to obtain results on profinite groups by “carrying over” asser-

tions about abstract groups to the profinite case by taking completions and

projective limits.

In this article abstract graphs of pro-C-groups (G, Γ) and their formal fun-

damental pro-C-group π1(G, Γ, T ) are defined in such a way that we can transfer

those results of the classical Bass-Serre theory which concern our question. The

basic result of this paper is the following subgroup theorem for fundamental

pro-C-groups of graphs of groups:

Theorem 1 If the canonical maps of the fundamental pro-Cgroup π1(G, Γ, T )

are injective, then each open subgroup H ⊆ π1(G, Γ, T ) is again the fundamental

group of an appropriate graph of groups:

H = π1(H, Λ, T ′)

Applying this result to amalgamated pro-C-products in two special cases

2



one gets the following corollaries:

Theorem 2 If the amalgamated product G = *
iεI
M Gi of pro-C-groups Gi with

common subgroup M exists, then each open subgroup H, whose conjugates do

not meet the amalgamation, is the free product of a free group F with subgroups

of the form Gi
g ∩ H :

H = *
iεI,gεRi

(Gg
i ∩H) * F .

Theorem 3 If the amalgamated product G = *
iεI
N Gi of pro-C-groups Gi with

common normal subgroup N exists, then each open subgroup H has got the form

H = *
iεI,gεRi

M (Gg
i ∩H) *M FM,

where FM means the semi-direct product of M = H ∩ N by a free pro-C-group

F (for details see section 1.4).

We conclude with an illustration of theorem 2: The Riemann existence and

uniqueness theorem makes it possible to deduce field theoretic and arithmetic

conclusions about a function field K of transcendence degree 1 over C from the

analytic, geometric properties of the compact Riemann surface associated to

K.

If S denotes a finite set of primes of R(t) and S̄ the set of places of C(t) lying

above S, the Galois group GS of the maximal extension C(t)S of C(t) which is

unramified outside S is isomorphic to the profinite completion of the topological

fundamental group of P1(C) \ S̄. By this principle, Krull and Neukirch were

able not only to show that

GS = *
pεS̄\{p0}

Gp

is the free product of decomposition groups of suitable extensions of p ε S̄\{p0},
p0 ε S̄ a fixed place, but also to represent the Galois group GS of the maximal

extension R(t)S of R(t) unramified outside S by generators and relations. As

the group extensions

1 −→ GS −→ GS −→ G(C/R) −→ 1
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splits, it’s sufficient to determine the action of the complex conjugation on the

decomposition groups Gp.

By a slight modification, Wingberg found a representation of GS as profinite

product with amalgamated subgroup Γ - the image of G(C/R) with respect to

the section:

GS = *
iε{1,...,r}

Γ Gr,i *Γ *
jε{1,...,c}

Γ Gc,j

(cf. section 2.1 where the groups Gr,i, Gc,j are defined). The application of

theorem 2 yields:

Theorem 4 Let K be a normal extension of R(t) unramified outside S that

is not contained in the fixed field (R(t)S)Γ of R(t)S under Γ. Then the Galois

group H = G(R(t)S/K) is the free product of certain subgroups Gg
r,i∩H, Gg

c,j∩H
and a free group F :

H = *
iε{1,...,r},gεRr,i

(Gg
r,i ∩H) * *

jε{1,...,c},gεRc,j

(Gg
c,j ∩H) * F

For an extension which is not Galois the theorem is true, if all conjugates

gK are not contained in (R(t)S)Γ.

¨ ¨ ¨

The author would like to express his thanks to L. Ribes for some discussions

on this subject.

1 Fundamental pro-C-groups of graphs of groups

During the whole paper let C be a class of finite groups, closed under the

formation of subgroups, homomorphic images and group extensions. Then PC
denotes the category of pro-C-groups, i.e. projective limits of groups in C, and

all homomorphisms of pro-C-groups are assumed to be continuous as well as

subgroups to be closed.

1.1 Graphs of pro-C-groups

A graph Γ consists of a non-empty set V = V (Γ) of vertices, a set E = E(Γ)

of oriented edges, two maps o, τ : E −→ V that determine the origin o(e) and
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the terminus τ(e) of the edge e, as well as of an inversion ¯ : E −→ E with

o(ē) = τ(e) and ē 6= e, e ε E, which maps the edge e to that of opposite

orientation ē. A subset O(Γ) is called orientation of Γ, if E(Γ) = O(Γ) ∪̇ O(Γ)

is the disjoint union of O(Γ) and its inverse. A graph is uniquely determined up

to isomorphism by the sets V (Γ) and O(Γ). It is well known that each graph

possesses a geometric realization (e.g. as quotient space of the topological

sum V (Γ)
∐

(O(Γ) × [0, 1]) with respect to the smallest relation that implies

(e, 0) ∼ o(e) and (e, 1) ∼ τ(e)). Γ is called a tree, if this geometric realization

is simply connected.

Using Zorn’ s lemma it can be shown that each connected graph Γ possesses

a - in general not unique - maximal tree T as a subgraph, which fulfills V (Γ) =

V (T ) (cf. [2], Chapter I.1, or [13] I.2.3).

Since in this article graphs are only used for combinatorial purposes and

as a formal device in order to carry over results from the classical Bass-Serre

theory, neither Boolean [4] nor profinite [15] graphs need to be considered. So

the abstract graph of groups is defined as in the classical theory ( cf. [2] and

for finite graphs [15] §3):

Definition 1 (i) An abstract graph of pro-C-groups (G, Γ) is a functor

G : Γ −→ PC

that assigns to

(a) P ε V (Γ) a pro-C-group GP ,

(b) e ε E(Γ) a pro-C-group Ge with Ge = Gē as well as an injective

homomorphism −e : Ge −→ Gτ(e).

(ii) A morphism ψ : (G,Γ) −→ (G′,Γ) of graphs of groups consists of two

homomorphisms

(a) ψP : GP −→ G′P , P ε V (Γ),

(b) ψe : Ge −→ G′e with ψe = ψē, e ε E(Γ),

such that ψe(g)e = ψτ(e)(ge), g ε Ge, e ε E(Γ).
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The idea of a fundamental group of an object X in an arbitrary category

is to classify certain coverings over a fixed basis X - provided that all these

concepts make sense at all. But in our context, in which we don’t consider

topological versions of graphs of groups, we cannot expect such a characteri-

zation. Nevertheless we know define the fundamental group of graphs just as

formal analogue:

Definition 2 Let Γ be a connected graph and let (G, Γ) be an abstract graph of

pro-C-groups with maximal tree T ⊆ Γ.

(i) A convergent T -specialization (H, ψ, t) of (G, Γ) into a pro-C-group H with

respect to T consists of a system of

(a) homomorphisms ψP : GP −→ H, P ε V (Γ),

(b) elements te ε H, e ε O(Γ),

with the following properties:

(1) te = 1 for e ε O(T ),

(2) ψo(e)(gē) = teψτ(e)(ge)t−1
e , e ε O(Γ), g ε Ge,

(3) for all open subgroups U ⊆ H is valid: te ε U and ψP (GP ) ⊆ U for

almost all e ε O(Γ) and P ε V (Γ).

(ii) The restricted formal fundamental pro-C-group of the graph of groups

(G,Γ) with respect to T is the uniquely determined convergent T -

specialization (π1(G, Γ, T ), ψ, t) with the following universal property:

For every convergent T -specialization (H, ϕ, x) there is exactly one homo-

morphism ω : π1(G,Γ, T ) −→ H, such that

(a) ω(te) = xe, e ε O(Γ),

(b) ω ◦ ψP = ϕP , P ε V (Γ).

The uniqueness is clear by the universal property and the existence is

established by the following
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Construction: (1) (cf. [15] (3.3)) Let (πd
1(G,Γ, T ), ψd, td) denote the discrete

fundamental group with the injective maps ψd
P ([2], cor. 2.7, p. 43). On

πd
1 := πd

1(G, Γ, T ) we can define a topology by the system B of normal subgroups

N E πd
1 with

(i) πd
1/N ε C,

(ii) N ∩ GP
⊆ GP open, P ε V (Γ), and

(iii) GP
⊆ N (tde ε N) for almost all P ε V (Γ) (e ε O(Γ)).

The completion π1(G, Γ, T ) of πd
1 with respect to this topology results in the

desired fundamental group together with the maps ψP := λ ◦ ψd
P and the ele-

ments te := λ(tde). Here λ : πd
1(G,Γ, T ) −→ π1(G, Γ, T ) denotes the canonical

map of the completion.

(2)(cf. [16] (2.2)) Alternatively we can build the restricted free product

W = *
V (Γ)

GP*FO(Γ)\T of the groups GP and the freely on O(Γ) \ T generated

pro-C-group FO(Γ)\T . Its factor group W/N by the smallest normal subgroup

N containing all relations of the form ge = teg
ēt−1

e , e ε O(Γ) has the desired

properties.

Example 1 (cf. [13] I.4.4, Example (c)) The restricted pro-C-push-out of

a family (Gi)i ε I of pro-C-groups over a common subgroup M is an impor-

tant example for such a fundamental group: Define via V (Γ) := I ∪ {?},
E(Γ) := {(?, i) | i ε I} ∪ {(i, ?) | i ε I} with o(?, i) = ?, τ(?, i) = i, (?, i) = (i, ?)

the tree Γ with vertex groups Gi, i ε I, G? := M, and edge groups Ge := M,

e ε E(Γ), and choose as maps −(?,i) the canonical embeddings M −→ Gi and

for −(i,?) the identity M−→M respectively:
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The fundamental group of this graph of groups is a generalized push-out in

the category PC [11]. If the canonical maps ji : Gi −→ π1(G, Γ,Γ) are injective,

this group is called free pro-C-product

*
iεI
M Gi

of the Gi with amalgamated subgroup M. For the trivial subgroup M = {1} it

is exactly the free pro-C-product

*
I
Gi

in Neukirch’s sense [8]. While the free product always exists, i.e. the canonical

maps ji are automatically injective, this is not true in the case of the amalga-

mation as was shown by Ribes in [11]. We should point out that for non-trivial

M the free amalgamated product only exists for finite families Gi as can be seen

easily using the “restriction-condition” (i) (3) in definition 2 and taking into

consideration that the above graph is connected. Some criteria for its existence

are listed below.

The adjective “restricted” should serve to tell our definition from other ones

in the literature that do not demand the convergence of an T -specialization. But

we are omitting this attribute in the following. Anyhow, for finite graphs or

finite index sets it does not make any difference.

1.2 Classical Bass-Serre theory

As we are going to deduce the results in the next section from the classical

Bass-Serre theory by completion, we recall some notations and the structure

theorem at this place. All groups are discrete in this section!
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Let G be a group that acts without inversion on an non-empty connected

graph X, i.e. G acts on an orientation O(X). Then we get a graph of groups

(G,Γ) with quotient graph Γ = G\X in the following way: Choose a lifting

j : T −→ X of a maximal tree T of Γ to X and an orientation O(Γ) of

Γ. Further we assign to each e ε E(Γ) \ T an edge je ε E(X) above e

with o(je) ε V (jT ) and xe ε G, such that τ(je) = xejτ(e) holds. Setting

GP = GjP , P ε V (Γ), and Ge = Gje, e ε O(Γ), which are the isotropy groups

of jP and je, respectively, and taking the homomorphisms −e : Ge −→ Gτ(e),

g 7→ x−1
e gxe and the inclusions Ge −→ Go(e), e ε O(Γ), for the maps −ē, we

get a graph of groups as well as a canonical map φ : πd
1(G,Γ, T ) −→ G.

Structure theorem (Bass-Serre) In this context the following assertions

are equivalent:

(i) X is a tree.

(ii) φ : πd
1(G,Γ, T ) −→ G is a isomorphism.

Proof: [13] I.5.4, theorem 13 or [2] I, theorems 6.1, 6.2 and 5.3. ¤

In addition, it is known that the fundamental group πd
1 = πd

1(G,Γ, T ) of a

graph of groups (G,Γ) with a non-empty connected graph Γ always acts without

inversion on the standard tree S = S(G,Γ, T ). S consists of the vertices V (S) =
∐

P ε V (Γ) πd
1/GP (disjoint union) and the orientation O(S) =

∐
e ε O(Γ) πd

1/Ge

together with maps o(gGe) = gGo(e) and τ(gGe) = gteGτ(e). Here GP and Ge

are identified with its images with respect to ϕP , P ε V (Γ), and ϕo(e)(−ē),

e ε O(Γ), respectively.

1.3 A subgroup theorem

As before let Γ be a non-empty connected graph with maximal tree T such that

rΓ := #(O(Γ) \ T ) < ∞.
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Theorem 1 Let (π1(G,Γ, T ), ψ, t) be the formal fundamental pro-C-group of a

graph of groups (G,Γ) and let H ⊆ π1(G, Γ, T ) be an open subgroup.

If all the ψP are injective, then H is the fundamental pro-C-group of a graph of

groups (H, Λ)

H ∼= π1(H, Λ, T ′)

with the vertex groups HP,g = H ∩ gGP g−1, g ε RP , P ε V (Γ) and the edge

groups He,g = H∩gGeg
−1, g ε Re, e ε E(Γ), while RP and Re denote suitable

systems of representatives for the double cosets H\π1/GP and H\π1/Ge.

Furthermore, the canonical maps ϕP are injective again.

Remark 1 Before we give the proof of this statement, we would like to mention

that the important invariant rH := #(O(Λ) \ T ′) can be calculated by the

following formula:

(1) rH =
∑

eεO(Γ∩T )

(#Re −#RPe)−#RP0 +
∑

eεO(Γ)\T
#Re + 1.

Here Pe, e ε T, P0 are arbitrary chosen such that they fulfill {Pe | e ε T}∪{P0} =

V (Γ). Observe that #Re = #RPe for almost all e ε O(Γ), since GP
⊆ H for

almost all P ε V (Γ), i.e. the sums are both finite (O(Γ) \ T was required to be

finite). This formula generalizes both that in [1] and that in [13] I.5.5, Exercise

2), p. 57. The simple proof is left to the interested reader.

Proof: (cf. the proofs of the Kurosh subgroup theorem in [1] and [3],

Theorem 3.2). Consider the following diagram

πd
1 = πd

1(G, Γ, T ) λ−→ π1 = π1(G,Γ, T )

6
∪

6
∪

H := λ−1(H)
λ|H−→ H

H acts on the standard tree S = (G, Γ, T ) without inversion, since πd
1 does.

Conferring the structure theorem we conclude that H ∼= πd
1(H, Λ, T ′) with quo-

tient graph Λ = H\S and a maximal tree T ′ of Λ. A section j : T ′ −→ S,
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which can be extended to E(Γ) as in paragraph 1.2, defines modulo GP systems

of representatives Rd
P for the double cosets H\πd

1/GP (respectively modulo Ge

systems Rd
e for H\πd

1/Ge) and it holds:

HHgGP
= H ∩ gGP g−1 for g ε Rd

P , i.e. HgGP ε V (Λ) =
∐

P ε V (Γ)

H\πd
1/GP

and

HHgGe = H ∩ gGeg
−1 for g ε Rd

e , i.e. HgGe ε O(Λ) =
∐

e ε O(Γ)

H\πd
1/Ge.

The embeddings of the vertex groups into the edge groups were defined in sec-

tion 1.2. As the canonical maps ψP are injective by assumption, we can identify

the groups HHgGP
with the groups HP,λ(g) := H ∩ λ(g)GP λ(g)−1 (respectively

HHgGe with He,λ(g) := H ∩ λ(g)Geλ(g)−1). It is easy to verify that λ induces

a bijection between Rd
P and a system of representatives RP for H\π1/GP (re-

spectively between Rd
e and a system Re for H\π1/Ge).

Let TH denote the topology defined by the system BH of normal subgroups

I E H satisfying

(i) H/I ε C,

(ii) I ∩ (H ∩ GP
g) ⊆ H ∩ GP

g open, (P, g) ε J :=
⋃

PεV (Γ) {P} ×Rd
P , and

(iii) H ∩ GP
g ⊆ I for almost all (P, g) ε J .

Looking back to the construction (1) of the fundamental group we see that our

result follows if we can show TH = Tπd
1 |H , i.e. the topology that is induced by

that of πd
1 . But the proof of this fact is completely analogous as in [1].1 ¤

For finite graphs Zalesskii and Mel’nikov prove the same result using the

profinite Bass-Serre theory they defined ([16], Cor. 4.5 of Prop. 4.4).

1It should be taken into account that there H/Ĩ has to be corrected by H̃/Ĩ in line 22 of

page 167 in order to deduce H̃/Ĩ ε C directly.
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1.4 Application to amalgamated products

One consequence of theorem 1 is the following modification of the Kurosh sub-

group theorem including certain amalgamation:

Theorem 2 Let {M ⊆ Gi}i ε I be a family of pro-C-groups Gi with common

subgroup M such that the amalgamated product G = *
iεI
M Gi exists. If H is an

open subgroup of G with the property:

(?) Hg ∩M = {1} for all g ε G,

then there is a free pro-C-group F ⊆ H and suitable systems Ri of representa-

tives for the double cosets H\G/Gi, i ε I, such that H possesses the following

representation:

H = *
iεI,gεRi

(Gg
i ∩H) * F ,

where Gi
g = gGig

−1. Furthermore F has finite rank

rF =
∑

i ε I

(#RM −#Ri)−#RM + 1,

in which RM denotes an arbitrary system of representatives for H\G/M.

Proof: According to example (1) the group G is isomorphic to π1(G, Γ, Γ)

and the canonical maps ψP are injective by assumption. So theorem 1 implies

H ∼= π1(H, Λ, T ′)

with vertex groups Hi,g = H ∩ Gi
g, g ε Ri (H?,g = H ∩Mg = {1}, g ε RM,

because of (?)) and edge groups H(?,i),g = H∩Mg = {1} due to (?). Since the

edge groups are trivial the relations (2) in the fundamental group are also trivial:

tet
−1
e = 1. Therefore the isomorphism π1(H, Λ, T ′) ∼= *

iεI,gεRi

(Gg
i ∩H) * F

results from the universal properties of both objects. At this place F denotes

the free pro-C-group on generators {te | e ε O(Λ) \ T ′}, whence it has rank

rF =
∑

i ε I

(#RM −#Ri)−#RM + 1,

according to the remark to theorem 1 (Observe that O(Γ) \ Γ = ∅). ¤
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The following theorem is the pro-C-analogue of a theorem by Hanna Neu-

mann [10], Theorem 13.4, but which sometimes also is ascribed to H.W. Kuhn

[5]:

Theorem 3 Let {N E Gi}i ε I be a family of pro-C-groups Gi with common

normal subgroup N such that the amalgamated product G =*
iεI
N Gi exists. If H

is an open subgroup of G, then there is

(i) a free pro-C-group F ⊆ H and

(ii) suitable systems Ri of representatives for the double cosets H\G/Gi, i ε I,

such that H possesses the following representation:

H = *
iεI,gεRi

M (Gg
i ∩H) *M FM,

in which M = N ∩H and FM is the semi-direct product of M by F .

Furthermore, F has finite rank

rF =
∑

i ε I

(#RN −#Ri)−#RN + 1,

in which RN denotes an arbitrary system of representatives for H\G/N .

Proof: By means of the universal properties of all objects which are

considered this theorem results similarly as theorem 2 from theorem 1. ¤

Remark 2 L. Ribes has shown several criteria that guarantee the existence of

the amalgamated product *
iεI
M Gi:

(i) Let C be the class of all finite groups and suppose that one of the following

conditions holds:

(a) #I < ∞ and M is finite,
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(b) #I = 2 and G1 = G2,

(c) #I < ∞ and M ⊆ center(Gi) for all but one i ε I or

(d) #I < ∞, M E Gi, i ε I and M is (topologically) finitely generated.

(ii) Let C be the class of p-groups, p a fixed prime number, as well as #I < ∞
and M is procyclic.

(iii) Let P be a set of primes and C the class of finite nilpotent groups, whose

order is divisible only by the primes of P, as well as #I < ∞ and M is

procyclic.

For the proofs and other, more general criteria see [11] and [12]: (i) (a)

Corollary 1.3 in [11], (b) Theorem 2.1 in [11] (c) Theorem 2.3 in [11] respectively

(d) Theorem 2.4 in [11] (ii) Theorem 3.2 in [11] and (iii) Theorem 3.4 in [12].

Ribes proved the existence in each case only for two factors. But as the

push-out with a finite number of factors is built up inductively, the statements

follow for 2 < #I < ∞ - except (i) (b), since generally G *M G 6= G . ¤

1.5 An example: The Galois group G(R(t)S/R(t)) of the max-

imal extension of R(t) unramified outside S and its open

subgroups

In this section we want to illustrate the above result on amalgamated free

products in the context of real function fields in one variable.

Let S be a finite set of places of R(t) inclusive of the infinite place p∞ ( We

make this convention only in order to fix notations). With S̄ we shall mean

the set of places of C(t) lying above S. As these places correspond uniquely to

closed points in P1(C) we can write

S̄ = {a1 < a2 < · · · < ar, ai ε R} ∪ {αj , ᾱj ε C \ R, 1 ≤ j ≤ c} ∪ {∞}
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with real points ai and pairs of complex places αj , ᾱj . After choosing a fixed

base point x0 ε R \ S̄, x0 < a1, it is possible to assign a path within the Gauss

plane to each prime of C(t) (cf. [14]).

For the Galois group GS := G(C(t)S̄/C(t)) of the maximal extension C(t)S

of C(t) which is unramified outside S and the Galois group GS := G(R(t)S/R(t))

the following statements hold:

Theorem (Krull-Neukirch [6, Satz 1])

(i) The exact sequence

1 −→ GS −→ GS

s←−−→ G(C/R) −→ 1

splits “canonically” by extending the complex conjugation to the “Spiegel”-

automorphism γ of R(t)S.2

(ii) The subgroups of GS which are (topologically) generated by the homotopy

classes associated to primes p ε S̄ are free and they are decomposition

groups with respect to this primes:

Gp :=





(%j) %j =̂αj

(%̄j) if %̄j =̂ ᾱj

(τi) τi =̂ ai

(iii) The Galois group GS is the free product of the decomposition groups Gp

of the finite places p in S̄:

GS = *
pεS̄\{∞}

Gp

2The extension R(t)S = C(t)S can be identified with the field of meromorphic functions

K(F̄ ) on the universal covering F̄ of the Riemann surface F = C \ S̄ that emerges from the

Gauss plane by removing the points S̄. If this covering is realized as space of homotopy classes

of continuous paths in F with base xo the complex conjugation acts by reflecting the paths

at the real axis. According to the Schwarz reflecting principle this action can be extended to

the “Spiegel”-automorphism γ of K(F̄ ): fγ(P ) = f(P̄ ) for f ε R(t)S = K(F̄ ).
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(iv) If p ε S is a prime of R(t) and p̄ =̂ a a prime of C(t) lying above it, then

one gets a decomposition group Gp ⊆ GS associated to p by

Gp =





(%j) a = αj

(%̄j) if a = ᾱj

(τi, τi−1 · · · τ1γ) a = ai,

as (closed) subgroup in GS .

Replacing the generators τi by the products τi · · · τ1 one gets new classes of

paths (see [14]). With the convention τγ = γτγ−1 we define

Gr,i := 〈(τi · · · τ1), γ | (τi · · · τ1)γ = (τi · · · τ1)−1, γ2 = 1〉, 1 ≤ i ≤ r,

for the real places,

Gc,i := 〈%j , %̄j , γ | %γ
j = %̄−1

j , γ2 = 1〉 = 〈%j , γ | γ2 = 1〉, 1 ≤ j ≤ c,

for the pairs of complex places and

Γ := 〈γ〉

the subgroup of GS which is generated by the “Spiegel”-automorphism. In this

setting we recall the following theorem

Theorem (Wingberg)

(i) The Galois group GS is the free profinite product of the Gr,i, 1 ≤ i ≤ r,

and Gc,j , 1 ≤ l ≤ c, with amalgamated subgroup Γ:

GS = *
iε{1,...,r}

Γ Gr,i *Γ *
jε{1,...,c}

Γ Gc,j

(ii) Representing GS as quotient of the free product of the decomposition

groups above all primes p ε S̄, one gets the following exact sequence:

1 −→ RS −→ *
pεS̄

Gp −→ GS −→ 1,

in which RS = (σ∞%c · · · τr · · · τ1%̄1 · · · %̄c)NT (productformula) is a free

profinite GS-operator-group of rank 1.3
3()NT means generated as normal subgroup.
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Proof: [14] (2), (3), Theorem 1.1, Theorem 1.3. Since Γ is a finite sub-

group of GS , this amalgamated product exists actually in our sense according

to remark 2 (i)(a), chapter 1. ¤

Now we are able to determine the structure of the Galois group H =

G(R(t)S/K) of R(t)S over an arbitrary finite extension K of R(t) unram-

ified outside S. As open subgroup of the amalgamated product GS =

*
iε{1,...,r}

Γ Gr,i *Γ *
jε{1,...,c}

Γ Gc,j the group H always can be represented as profinite

fundamental group π1(H,Λ, T ) of a graph of groups (H, Λ) with vertex groups

H∩Gg
·,i and edge groups H∩ Γg in accordance with theorem 1. Unfortunately,

this is not a very “easy” description in general. On the other hand we cannot

expect a too simple description, when we look at the explicit generators and

defining relations for H in [7] in the case of a regular real function field K. In

that article the structure of H is determined by means of Krull and Neukirch’s

method (cf. section 2.1), i.e. by making use of the topological fundamental

group of the Klein surface associated to K.

But one may ask in which field theoretic circumstances the condition (?),

Hg ∩ Γ = {1} for all g ε GS , of theorem 2 holds. In this case H is the free

profinite product of the H ∩ Gg
·,i. It turns out that this condition is equivalent

to the following field theoretic one:

Definition 3 A finite outside S unramified field extension K of R(t) fulfills by

definition the property (A), if for all embeddings ϕ : K −→ R(t)S:

ϕ(K) * (R(t)S)Γ.

Theorem 4 Let K be a finite extension of R(t),which is unramified outside

S and satisfies the property (A). Then the Galois group H of the maximal

extension KS = R(t)S above K unramified outside S is a free profinite product:

H = *
iε{1,...,r},gεRr,i

(Gg
r,i ∩H) * *

jε{1,...,c},gεRc,j

(Gg
c,j ∩H) * F .

In this expression
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(i) F is a free profinite group of rank

rF =
∑

iε{1,...,r}
(#RΓ −#Rr,i) +

∑

jε{1,...,c}
(#RΓ −#Rc,j)−#RΓ + 1,

(ii) R·,i and RΓ are suitable systems of representatives for the double cosets

H\GS/G·,i and H\GS/Γ, respectively.

Proof: The property (?), Hg ∩ Γ = {1} for all g ε GS , is equivalent

to the assertion that (R(t)S)ΓgK = R(t)S holds for all g ε GS . Since

the extension R(t)S/(R(t)S)Γ has degree two the latter is valid exactly if

gK * (R(t)S)Γ holds for all g ε GS . Therefore the statement results from

theorem 2. ¤
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