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On descent theory and main conjectures

in non-commutative Iwasawa theory

David Burns and Otmar Venjakob

Abstract. We develop an explicit descent theory in the context of Whitehead
groups of non-commutative Iwasawa algebras. We apply this theory to describe
the precise connection between main conjectures of non-commutative Iwasawa
theory (in the spirit of Coates, Fukaya, Kato, Sujatha and Venjakob) and the
equivariant Tamagawa number conjecture. The latter result is a converse to
a theorem of Fukaya and Kato and also provides an important means of both
deriving explicit consequences of the main conjecture and proving special cases
of the equivariant Tamagawa number conjecture.
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Introduction

There has been much interest in the study of non-commutative Iwasawa theory over
the last few years. Nevertheless, there is still no satisfactory understanding of the ex-
plicit consequences for Hasse-Weil L-functions that are implied by a ‘main conjecture’
of the kind formulated by Coates, Fukaya, Kato, Sujatha and the second named au-
thor in [13]. Indeed, whilst explicit consequences of such a conjecture for the values
(at s = 1) of twisted Hasse-Weil L-functions have been studied by Coates et al in [13],
by Kato in [20] and by Dokchister and Dokchister in [16], all of these consequences be-
come trivial whenever the L-functions vanish at s = 1. Further, the conjecture of Birch
and Swinnerton-Dyer implies that these L-functions should vanish whenever the relevant
component of the Mordell-Weil group has strictly positive rank and by a recent result
of Mazur and Rubin [22], which is itself equivalent to a special case of an earlier result
of Nekovář [24, Th. 10.7.17], this should often be the case. It is therefore of interest to
understand what a main conjecture of the kind formulated in [13] predicts concerning
the values of derivatives of Hasse-Weil L-functions at s = 1. In this article we take the
first step towards developing such a theory by describing a general formalism of descent
in non-commutative Iwasawa theory. In a subsequent article it will be shown that the
results proved here can be combined with techniques developed by the first named author
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in [7] to derive from the main conjecture of non-commutative Iwasawa theory a variety
of explicit (and highly non-trivial) congruence relations between values of derivatives of
twisted Hasse-Weil L-functions. In another direction, in [8] the results of this article play
a key role in the first verification of the equivariant Tamagawa number conjecture (for
certain Tate motives) for a wide class of non-abelian extensions of number fields and in
the proof of a long-standing conjecture of Chinburg.
However, as preparation for the above applications, we must first develop several aspects
of the theory that appear themselves to be of some independent interest. These include
proving a natural Weierstrass Preparation Theorem for Whitehead groups of Iwasawa
algebras , defining a canonical ‘characteristic series’ for torsion modules over (localised)
Iwasawa algebras, satisfactorily resolving the descent problem in non-commutative Iwa-
sawa theory and formulating a main conjecture in the spirit of Coates et al that deals
with interpolation properties of the ‘leading terms at Artin representations’ (in the sense
introduced in [11]) of analytic p-adic L-functions.
In a little more detail, the main contents of this article is as follows. In §1 we recall
some useful preliminaries concerning localisation of Iwasawa algebras, K-theory, virtual
objects and derived categories. In §2 we state the main K-theoretical results that are
proved in this article. In §3 we define a suitable notion of µ-invariant and in §4 we
combine this notion with a result of Schneider and the second named author from [26]
and the formalism developed by Fukaya and Kato in [17] to define canonical ‘character-
istic series’ in non-commutative Iwasawa theory (this construction extends the notion of
‘algebraic p-adic L-functions’ introduced by the first named author in [6] and hence also
refines the notion of ‘Akashi series’ introduced by Coates, Schneider and Sujatha in [12]).
As a first application of these characteristic series we use them in §5 to prove an explicit
formula for the ‘leading terms at Artin representations ’ of elements of Whitehead groups
of non-commutative Iwasawa algebras: this result provides a suitable ‘descent formalism’
in non-commutative Iwasawa theory and in particular plays a crucial role in proving the
arithmetic results discussed in the remainder of the article. In §6 we present a result of
Kato that allows reduction to a convenient special class of extensions when formulating
main conjectures and, in particular, shows that the main result of §5 is indeed a sat-
isfactory resolution of the descent problem in the context of non-commutative Iwasawa
theory. In §7 we formulate explicit main conjectures of non-commutative Iwasawa theory
for both Tate motives and (certain) critical motives. The approach here is finer than that
of [13] since we consider interpolation properties for leading terms of analytic p-adic L-
functions. In §8 we combine the descent formalism described in §5 with the main results
of our earlier article [11] to prove that, under suitable hypotheses, the main conjectures
formulated in §7 imply the relevant special cases of the equivariant Tamagawa number
conjecture formulated by Flach and the first named author in [9, Conj. 4(iv)]. These
results are both a converse to the result of Fukaya and Kato in [17] which asserts that,
under suitable hypotheses, the ‘non-commutative Tamagawa number conjecture’ of loc.
cit. implies the main conjecture of Coates et al [13] and can also be used to derive explicit
consequences of the main conjecture. Finally, in several appendices, we review relevant
aspects of the algebraic formalism of localized K1-groups and Bockstein homomorphisms
and clarify certain normalizations used in [11].
We are very grateful indeed to Kazuya Kato for his generous help and encouragement, to
Manuel Breuning for advice regarding determinant functors, to Peter Schneider for valu-
able comments on an earlier draft and to Jan Nekovář for many stimulating discussions.
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Much of this article was written when the first named author was a Visiting Professor at
the Institute of Mathematics of the University of Paris 6 and he is extremely grateful to
the Institute for this opportunity.

Part I: K-theory

1. Preliminaries

1.1. Iwasawa algebras. We fix a prime p. For any compact p-adic Lie group G we
write Λ(G) and Ω(G) for the ‘Iwasawa algebras’ lim←−U Zp[G/U ] and lim←−U Fp[G/U ] where
U runs over all open normal subgroups of G and the limits are taken with respect to the
natural projection maps Zp[G/U ] → Zp[G/U ′] and Fp[G/U ] → Fp[G/U ′] for U ⊆ U ′.
The rings Λ(G) and Ω(G) are both noetherian and, if G has no element of order p, they
are also regular in the sense that their (left and right) global dimensions are finite. We
write Q(G) for the total quotient ring of Λ(G). If O is any subring of Qc

p that contains
Zp, then we set ΛO(G) := O ⊗Zp

Λ(G) and write QO(G) for its total quotient ring.
We assume throughout that the following condition is satisfied

• G has a closed normal subgroup H for which the quotient group Γ := G/H is
isomorphic (topologically) to the additive group of Zp.

We write πΓ : G → Γ for the natural projection and fix a topological generator γ of Γ.
We use γ to identify Λ(Γ) with the power series ring Zp[[T ]] in an indeterminate T (via
the identification T = γ − 1).
We recall from [13, §2-§3] that there are canonical left and right denominator sets SG,H
and S∗G,H of Λ(G) where

SG,H := {λ ∈ Λ(G) : Λ(G)/(Λ(G) · λ) is a finitely generated Λ(H)-module}

and S∗G,H :=
⋃
i≥0 p

iSG,H . When G and H are clear from context we usually abbreviate
SG,H to S. We also write MS(G) and MS∗(G) for the categories of finitely generated
Λ(G)-modules M with Λ(G)S ⊗Λ(G) M = 0 and Λ(G)S∗ ⊗Λ(G) M = 0 respectively.
For any Zp-moduleM we writeMtor for its Zp-torsion submodule and setMtf := M/Mtor.
We recall from [13, Prop. 2.3] that a finitely generated Λ(G)-module M belongs to
MS(G), resp. MS∗(G), if and only if it is a finitely generated Λ(H)-module (by re-
striction), resp. when Mtf belongs to MS(G). This means in particular that MS∗(G)
coincides with the category MH(G) introduced in loc. cit.

1.2. K-groups. For any ring homomorphism R → R′ we write K0(R,R′) for the asso-
ciated relative algebraic K0-group. We recall that this group is generated by symbols
of the form (P, λ,Q) where P and Q are finitely generated projective (left) R-modules
and λ is an isomorphism of R′-modules R′ ⊗R P → R′ ⊗R Q (for more details see [29,
p. 215]). For any ring homomorphisms R → R′ → R′′ there is a natural commutative
diagram of long exact sequences

(1)

K1(R) −−−−→ K1(R′)
∂R,R′−−−−→ K0(R,R′) −−−−→ K0(R)∥∥∥ y y ∥∥∥

K1(R) −−−−→ K1(R′′)
∂R,R′′−−−−→ K0(R,R′′) −−−−→ K0(R).
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If G has no element of order p and Σ denotes either S or S∗, then Λ(G) is a noether-
ian regular ring and K0(Λ(G),Λ(G)Σ) can be identified with the Grothendieck group
K0(MΣ(G)) of the category MΣ(G). To be precise we normalise this isomorphism as
follows: if g = s−1h with s ∈ Σ and h ∈ Λ(G)∩Λ(G)×Σ , then the element (Λ(G), rg,Λ(G))
of K0(Λ(G),Λ(G)Σ) corresponds to [cok(rh)]− [cok(rs)] in K0(MΣ(G)) where [X] is the
element of K0(MΣ(G)) associated to an object X of MΣ(G) and rg, rh and rs denote
the automorphisms of Λ(G)Σ that are induced by right multiplication by g, h and s re-
spectively. In particular, with respect to this isomorphism, the upper row of (1) with
R = Λ(G) and R′ = Λ(G)S∗ identifies with the exact sequence of [13, (24)].
If R = Λ(G) and R′ = Λ(G)S∗ , resp. R = Zp[G] and R′ = Qc

p[G] for a finite group G,
then we usually abbreviate the connecting homomorphism ∂R,R′ in diagram (1) to ∂G,
resp. ∂G.

1.3. Virtual objects. We let P0 denote the Picard category with unique object 1P0

and AutP0(1P0) = 0. For any associative unital ring R we also write V (R) for the Picard
category of virtual objects associated to the category of finitely generated projective R-
modules and we fix a unit object 1R in V (R). For any homomorphism of such rings
R→ R′ we then define V (R,R′) to be the fibre product category in the diagram

V (R,R′) −−−−→ P0y yF2

V (R) F1−−−−→ V (R′)

where F2 is the (monoidal) functor sending 1P0 to 1R′ and F1(L) = R′ ⊗R L for each
object L of V (R). We regard the canonical isomorphism

(2) π0(V (R,R′)) ∼= K0(R,R′)

of [3, Lem. 5.1] (and [9, Prop. 2.5]) as an identification. In particular, for each object L
of V (R) and each morphism µ : F1(L)→ 1R′ in V (R′) we write [L, µ] for the associated
element of K0(R,R′).

1.4. Euler characteristics. For any ring R we write D(R) for the derived category
of R-modules. If R is noetherian, then we also write Dfg,−(R), resp. Dfg(R) for the
full triangulated subcategory of D(R) comprising complexes that are isomorphic to a
bounded above, resp. bounded, complex of finitely generated R-modules and we let
Dp(R) denote the full subcategory of Dfg(R) comprising complexes that are isomorphic
to an object of the category Cp(R) of bounded complexes of finitely generated projective
R-modules.
If Σ denotes either S or S∗, then we write Dp

Σ(Λ(G)) for the full triangulated subcat-
egory of Dp(Λ(G)) comprising those complexes C such that Λ(G)Σ ⊗Λ(G) C is acyclic.
For each such C we write χ(C) for the inverse of the element of K0(Λ(G),Λ(G)S∗)
that corresponds under (2) (with R = Λ(G) and R′ = Λ(G)S∗) to the pair ([P •], ιP•)
with [P •] the object of V(Λ(G)) associated to any P • in Cp(Λ(G)) isomorphic to
C in Dp(Λ(G)) and ιP• the morphism in V(Λ(G)S∗) associated to the isomorphism
Λ(G)S∗⊗Λ(G)P

• ∼= Λ(G)S∗⊗̂Λ(G)C ∼= 0 in Dp(Λ(G)S∗). This element χ(C) is the inverse
of the Euler characteristic χΛ(G),Λ(G)S∗ (C, t) that is defined in [3, Def. 5.5] with t equal
to the isomorphism

⊕
i∈Z H

2i(Λ(G)S∗ ⊗Λ(G) C) ∼= 0 ∼=
⊕

i∈Z H
2i+1(Λ(G)S∗ ⊗Λ(G) C).

(We define χ(C) in terms of the inverse in order to ensure that if G has no element of
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order p, then the isomorphism K0(Λ(G),Λ(G)S∗) ∼= K0(MS∗(G)) discussed in §1.2 sends
χ(C) to

∑
i∈Z(−1)i[Hi(C)].)

1.5. Wedderburn decompositions. We fix an algebraic closure Qc
p of Qp. For any

finite group G we write Irr(G) for the set of irreducible finite-dimensional Qc
p-valued char-

acters of G. Then the Wedderburn decomposition of the (finite dimensional semisimple)
Qc
p-algebra Qc

p[G] induces a decomposition of its centre

(3) ζ(Qc
p[G]) ∼=

∏
Irr(G)

Qc
p.

The natural reduced norm map NrdQc
p[G] : K1(Qc

p[G]) → ζ(Qc
p[G])× is bijective and we

often (and without explicit comment) combine this map with (3) to regard elements of∏
Irr(G) Qc,×

p as elements of the Whitehead group K1(Qc
p[G]). In particular, we write

∂G :
∏

Irr(G) Qc,×
p → K0(Zp[G],Qc

p[G]) for the connecting homomorphism of relative K-
theory (normalized as in (1)).
For each ρ ∈ Irr(G) we fix a minimal idempotent eρ in Qc

p[G] such that the left action of
G on Qc

p[G] given by x 7→ xg−1 for g ∈ G induces an isomorphism of (left) Qc
p[G]-modules

eρQc
p[G] ∼= Vρ∗ where Vρ∗ ∼= (Qc

p)
nρ is the representation space of the contragredient ρ∗

of ρ over Qc
p. Then for each complex C in Dp(Zp[G]) the theory of Morita equivalence

induces an identification of morphism groups

(4) MorV (Qc
p[G])(dQc

p[G](Qc
p[G]⊗L

Zp[G] C),1Qc
p[G])

∼=
∏

Irr(G)

MorV (Qc)(dQc
p
(eρQc

p[G]⊗L
Zp[G] C),1Qc

p
).

Details of the ‘non-commutative determinants’ dQc
p[G](−) and dQc

p
(−) that are used here

are recalled in Appendix A.

2. Statement of the main results in Part I

The first main result we prove in Part I is the following decomposition theorem for
Whitehead groups.

Theorem 2.1. If G has no element of order p, then there is a natural isomorphism of
abelian groups

K0(Ω(G))⊕K0(MS(G))⊕ im(K1(Λ(G))→ K1(Λ(G)S∗)) ∼= K1(Λ(G)S∗).

Our proof of Theorem 2.1 will show that if G = Γ, then the above isomorphism reduces
to the assertion that every element of Q(Γ)× can be written uniquely in the from pmdu
where m is an integer, d is a quotient of distinguished polynomials and u a unit in Λ(Γ)
(see Remark 4.2 and §4.3). Theorem 2.1 is therefore a natural generalisation of the
classical Weierstrass Preparation Theorem. (For an alternative approach to generalising
the latter result see [32]).
In the remainder of Part I we apply the decomposition in Theorem 2.1 to help resolve
the ‘descent problem’ in non-commutative Iwasawa theory. Before stating our main
result in this regard we recall that for each Artin representation ρ : G → GLn(O) the
ring homomorphism Λ(G)S∗ → Mn(Q(Γ)) that sends each element g of G to ρ(g)πΓ(g)
induces a homomorphism of groups

(5) Φρ : K1(Λ(G)S∗)→ K1(Mn(QO(Γ))) ∼= K1(QO(Γ)) ∼= QO(Γ)× ∼= Q(O[[T ]])×
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where the first isomorphism is induced by the theory of Morita equivalence, the second
by taking determinants (over QO(Γ)) and the third by the identification γ− 1 = T . The
‘leading term’ ξ∗(ρ) at ρ of an element ξ of K1(Λ(G)S∗) is then defined to be the leading
term at T = 0 of the power series Φρ(ξ) (this definition can also be interpreted as a
leading term at zero of a p-adic meromorphic function - see [11, Lem. 3.17]).
The problem of descent in (non-commutative) Iwasawa theory is then the following: given
an element ξ of K1(Λ(G)S∗) and a finite quotient G of G, can one use knowledge of the
image of ξ under the connecting homomorphism ∂G to give an explicit formula for the
image of (ξ∗(ρ))ρ∈Irr(G) under the connecting homomorphism ∂G? This has been known
for some time to be an important and delicate problem. To state our result we set

(6) S̃ :=

{
S, if G has an element of order p,
S∗, otherwise.

Theorem 2.2. Let G be a finite quotient of G. Let ξ be an element of K1(Λ(G)S∗) with
∂G(ξ) = χ(C) where C is a complex that belongs to Dp

S̃
(Λ(G)) and is ‘semisimple at ρ’ for

each representation ρ ∈ Irr(G) in the sense of [11, Def. 3.11]. Then in K0(Zp[G],Qc
p[G])

one has
∂G((ξ∗(ρ))ρ∈Irr(G)) = −[dZp[G](Zp[G]⊗L

Λ(G) C), t(C)G]

with t(C)G the morphism dQc
p[G](Qc

p[G] ⊗L
Λ(G) C) → 1Qc

p[G] that corresponds via (4) to

((−1)rG(C)(ρ)t(Cρ))ρ∈Irr(G) where rG(C)(ρ) is the integer defined in [11, Def. 3.11] and
t(Cρ) the morphism dQc

p
(eρQc

p[G]⊗L
Λ(G) C)→ 1Qc

p
defined in [11, Lem. 3.13(iv)].

Remark 2.3. The hypothesis of ‘semisimplicity at ρ’ and the definitions of rG(C)(ρ)
and t(Cρ) are recalled explicitly in §5.2.4. However, in the special case that the complex
eρQc

p[G] ⊗L
Λ(G) C is acyclic one knows that C is automatically semisimple at ρ, that

rG(C)(ρ) = 0 and that t(Cρ) is simply the canonical morphism induced by property A.e)
of the determinant functor described in Appendix A. In particular, if G = Γ, C = M [0]
for a finitely generated torsion Λ(Γ)-module M for which both MΓ and MΓ are finite and
ρ is the trivial character, then the equality of Theorem 2.2 is equivalent to the classical
descent formula discussed in [34, p. 318, Ex. 13.12]. Upon appropriate specialisation,
Theorem 2.2 also recovers the descent formalism proved (in certain commutative cases)
by Greither and the first named author in [10, §8] and is therefore related to the earlier
(commutative) work of Nekovář in [24, §11].

In §6 we will prove that it suffices to consider main conjectures of non-commutative
Iwasawa theory in the case that G has no element of order p. Theorem 2.2 therefore
represents a satisfactory resolution of the descent problem in this context. Indeed, in
Part II (§6 - §8) of this article we shall combine Theorem 2.2 with the main results of
[11] to describe the precise connection between main conjectures of non-commutative
Iwasawa theory (in the spirit of Coates et al [13]) and the appropriate case of the equi-
variant Tamagawa number conjecture. Other important applications of Theorem 2.2 are
described in [8].

3. Generalized µ-invariants

The key ingredient in our proof of Theorem 2.1 is the construction of canonical ‘charac-
teristic series’ in non-commutative Iwasawa theory. In this section we prepare for this
construction by generalising the classical notion of µ-invariant.
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3.1. The definition. In the sequel we write µΓ(M) for the ‘µ-invariant’ of a finitely
generated Λ(Γ)-module M. For each complex C in Dp(Λ(Γ)) we also set

µΓ(C) :=
∑
i∈Z

(−1)iµΓ(Hi(C)).

Let ρ : G → GLn(O) be a continuous representation of G and write Eρ ∼= On for the
associated representation module, where O = OL denotes the ring of integers of a finite
extension L of Qp. We denote the corresponding L-linear representation L⊗O Eρ by Vρ.
We fix a uniformising parameter π of O and denote the residue class field of O by κ. We
write ρ̄ for the reduction of ρ modulo π and denote the associated representation space
by Eρ.
For each C in Dp(Λ(G)) we set C(ρ∗) := On⊗Zp

C, regarded as an object of Dp(ΛO(G))
via the action g(x⊗Zp

ci) = ρ∗(g)(x)⊗Zp
g(ci) for each g in G, x in On and ci in Ci. We

then set

(7) Cρ := (ΛO(Γ)⊗O On)⊗L
Λ(G) C

∼= ΛO(Γ)⊗L
ΛO(G) C(ρ∗)

and also

(8) µ(C, ρ) := µΓ(Cρ) ∈ Z.

3.2. Basic properties.

Lemma 3.1. Fix a continuous representation ρ : G→ GLn(O).
(i) If C1 → C2 → C3 → C1[1] is an exact triangle in Dp

S∗(Λ(G)), then

µ(C2, ρ) = µ(C1, ρ) + µ(C3, ρ).

(ii) If C ∈ Dp
S∗(Λ(G)) is cohomologically perfect, then

µ(C, ρ) = µ(H(C), ρ)

where H(C) denotes the complex with zero differentials and H(C)i = Hi(C) for
all i.

(iii) If C ∈ Dp
S(Λ(G)) is cohomologically perfect, then µ(C, ρ) = 0.

(iv) If U is any closed normal subgroup of G such that U ⊆ H ∩ ker(ρ), then for any
C in Dp(Λ(G)) we have

µ(C, ρ) = µ(Λ(G/U)⊗L
Λ(G) C, ρ).

Here the first µ-invariant is formed with respect to the group G and the second
with respect to G/U.

(v) If U is any open subgroup of G, then for any continuous representation ψ : U →
GLn(O) and any C ∈ Dp(Λ(G)) one has

µ(C, IndGUψ) = µ(ResGUC,ψ)

where the first µ-invariant is formed with respect to G and the second with respect
to U. Here ResGU denotes the restriction functor from Λ(G)- to Λ(U)-modules.

Proof. For each D in Dp
S∗(Λ(G)) all of the Λ(Γ)-modules Hi(Dρ) are both finitely gener-

ated and torsion. Since µΓ(−) is additive on exact sequences of finitely generated torsion
Λ(Γ)-modules, claim (i) therefore follows from the long exact sequence of cohomology of
the exact triangle C1,ρ → C2,ρ → C3,ρ → C1,ρ[1] in Dp(Λ(Γ)) that is induced by the
given triangle.
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If C ∼= Hi(C)[i] for some i, then claim (ii) is clear. The general case can then be proved
by induction with respect to the cohomological length: indeed, one need only combine
claim (i) together with the exact triangles given by (good) truncation.
In order to prove claim (iii) it is sufficient by claim (ii) to consider the case C = M [0]
with M a Λ(G)-module that is finitely generated over Λ(H). But then Hi(Cρ) is a finitely
generated Zp-module for all i ∈ Z and so it is clear that µ(C, ρ) = 0.
In the situation of claim (iv) there is a canonical isomorphism of ΛO(G/U)-modules

ΛO(G/U)⊗L
ΛO(G) C(ρ∗) ∼= C(ρ∗)U ∼= CU (ρ∗) ∼=

(
Λ(G/U)⊗L

Λ(G) C
)
(ρ∗),

from which the claim follows immediately. Similarly, in the situation of claim (v) we
have a canonical isomorphism IndGU

(
(ResGUC)(ψ∗)

) ∼= C(IndGUψ
∗) which corresponds to

ΛO(G)⊗ΛO(U)

(
On ⊗Zp

ResGUC
) ∼= (Λ(G)⊗Λ(U) On)⊗Zp

C,

g ⊗ (a⊗ c) 7→ (g ⊗ a)⊗ g(c).
Now we write ΓU for the image of U in Γ under the natural projection and obtain

µ(C, IndGUψ) = µΓ(ΛO(Γ)⊗L
ΛO(G) C(IndGUψ

∗))

= µΓ(ΛO(Γ)⊗L
ΛO(G) IndGU

(
(ResGUC)(ψ∗)

)
)

= µΓ(ΛO(Γ)⊗ΛO(ΓU )

(
ΛO(ΓU )⊗L

ΛO(U) (ResGUC)(ψ∗)
)
)

= µΓU
(ΛO(ΓU )⊗L

ΛO(U) (ResGUC)(ψ∗))

= µ(ResGUC,ψ)

as had to be shown. �

3.3. Module theory. In order to make a closer examination of the µ-invariant defined
in (8) we recall some standard module theory.
We write Jac(Λ(G)) for the Jacobson radical of Λ(G) and

∏
i∈I Ai for the Wedder-

burn decomposition of the finite dimensional semisimple Fp-algebra A := A(G) :=
Λ(G)/Jac(Λ(G)) (so I is finite). Let Ri = Aai be a representative for the unique iso-
morphism class of simple Ai-modules with ai some orthogonal primitive idempotent of
A(G), always assuming that A1 = Fp = R1; the corresponding representations we denote
by ψi : G → GL(Ri) for i in I. For each index i we fix an idempotent ei of Λ(G) which
is a pre-image of ai under the projection Λ(G) � Λ(G)/Jac(Λ(G)).
We consider the projective Λ(G)-modules Xi := Λ(G)ei and projective Ω(G)-modules
Yi := Xi/pXi. They are projective hulls of Ri since A(G)⊗Λ(G)Xi = A(G)⊗Ω(G)Yi = Ri.
Every finitely generated projective Λ(G)-module X, resp. Ω(G)-module Y , decomposes
in a unique way as a direct sum

X =
⊕
i∈I

X
〈X,Xi〉
i , resp. Y =

⊕
i∈I

Y
〈Y,Yi〉
i ,

for suitable natural numbers 〈X,Xi〉, resp. 〈Y, Yi〉. We write lRi(ψ) for the multiplicity
of the occurrence of Ri in a Fp-linear representation ψ and

χ(G,M) :=
∏
i

|Hi(G,M)|(−1)i

,

if this is finite, for the Euler-Poincaré-characteristic of a Λ(G)-module M.

Lemma 3.2. Let Y be a finitely generated projective Ω(G)-module.
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(i) Λ(Γ) ⊗Λ(G) Y is naturally isomorphic to Ω(Γ) ⊗Ω(G) Y = Ω(Γ)<Y,Y1> and thus
χ(G, Y ) = p〈Y,Y1〉.

(ii) 〈Y (ψ∗), Y1〉 =
∑
i∈I lRi

(ψ) dimFp
(EndΩ(G)(Ri))〈Y, Yi〉.

Proof. For each index i the module Ω(Γ) ⊗Ω(G) Yi is isomorphic to Ω(Γ)ni for some
natural number ni. Since then Fni

p
∼= Fp ⊗Ω(G) Yi ∼= A1 ⊗Ω(G) Yi = a1Ri is isomorphic to

R1 if i = 1 and is zero if i 6= 1, the first claim follows.
Claim (ii) is true because dimFp

(EndΩ(G)(Ri))〈Y, Yi〉 = dimFp
(HomΩ(G)(Y,Ri)) and

HomΩ(G)(Y (ψ∗i ), R1) is isomorphic to HomΩ(G)(Y,Ri) (cf. [1, Prop. 4.1, Lem. 4.4]). �

3.4. The regular case. In this section we study the µ-invariants of §3.1 in the case
that G has no element of order p.

3.4.1. Pairings. For a fieldK we write RK(G) for the Grothendieck group of the category
of finite-dimensional continuous K-linear representations of G which have finite image.
The tensor product induces a structure of rings on both RL(G) and Rκ(G) and there
exists a canonical surjective homomorphisms of rings RL(G) � Rκ(G) that is induced
by reducing modulo π any G-stable O-lattice E of an representation V of the above type
(cf. [28]).

Proposition 3.3. Assume that G has no element of order p.
(i) If C ∈ Dp

S∗(Λ(G)), then for each continuous representation ρ : G → GLn(O)
one has

µ(C, ρ) =
∑
i∈Z

(−1)iµΓ

(
Λ(Γ)⊗L

Λ(G) (Eρ
∗ ⊗Fp

gr(Hi(C)tor)[0])
)

where Eρ
∗

denotes the contragredient module Homκ(Eρ, κ) while for a Zp-module
M endowed with the p-adic filtration we denote by gr(M) the associated graded
Fp-module.

(ii) The µ-invariant induces a Z-bilinear pairing

µ(−,−) : K0(D
p
S∗(Λ(G)))×RL(G)→ Z.

This pairing induces a Z-bilinear pairing of the form

µ(−,−) : K0(D
p
S∗(Λ(G)))×Rκ(G)→ Z.

(iii) If C ∈ Dp
S∗(Λ(G)) and i ∈ I, then the integer µ(C,ψi) defined by claim (ii) is

divisible by dimFp
(EndΩ(G)(Ri)).

(iv) If C ∈ Dp
S(Λ(G)), then µ(C,ψi) = 0 for all i ∈ I.

Proof. To prove claim (i), we write µ′(C, ρ̄) for the term on the right hand side of the
claimed equality. Since µ′(C, ρ̄) = µ′(H(C), ρ̄) by definition and µ(C, ρ) = µ(H(C), ρ)
by Lemma 3.1 (ii) we need only consider the case where C ∼= M [0] with M in MS∗(G).
Further, since both µ-invariants are additive on exact triangles (cf. Lemma 3.1(i)), it is
actually sufficient to prove the following two special cases (note that M/Mtor belongs to
MS(G) for all M in MS∗(G)):
1.) If M is in MS(G), then both Hi(Λ(Γ) ⊗L

Λ(G) (Eρ ⊗Fp
gr(Mtor)[0])) and Hi(Aρ) are

finitely generated Zp-modules and thus µ(C, ρ) = 0 = µ′(C, ρ̄).
2.) If pnM = 0 for some n, we argue by induction on n. For n = 1 the isomorphism
Eρ

∗ ⊗Fp gr(Mtor) ∼= Eρ
∗ ⊗Fp M

∼= Eρ
∗ ⊗Zp M implies the equality of the µ-invariants.

For n > 1 one uses dévissage and again the additivity of both µ-invariants.
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To prove the existence of the first pairing in claim (ii) it suffices to show that µ(C, ρ)
depends only on the space Vρ. To this end we assume that Eρ′ is another G-stable lattice
in Vρ and we have to show that µ(C, ρ) = µ(C, ρ′). By Proposition 3.1(ii) and dévissage
we may assume that C ∼= M [0] with pM = 0 and similarly that E∗ρ′ ⊆ E∗ρ with πT = 0
for T := E∗ρ/E

∗
ρ′ . In this situation there is an exact sequence

0→M ⊗Fp
T →M ⊗Fp

E∗ρ′ →M ⊗Fp
E∗ρ →M ⊗Fp

T → 0

of Λ(G)-modules. The required claim now follows from the known additivity of µ-
invariants and the fact that the Λ(G)-modules M ⊗Fp

E∗ρ and M ⊗Fp
E∗ρ′ are isomorphic

to M(ρ∗) and M((ρ′)∗) respectively. The second assertion of claim (ii) then follows from
claim (i).
To prove claim (iii) we may assume that C ∼= M [0] with M a finitely generated Ω(G)-
module. After choosing a finite resolution P of M by finitely generated projective
Ω(G)-modules and using the additivity of µ(−, ψi) on short exact sequences the proof
is immediately reduced to the case of a projective Ω(G)-module because µ(P,ψi) =∑
j∈Z(−1)jµ(P j , ψi). But for every projective Ω(G)-module Y, considered also as a Λ(G)-

module, and for each i ∈ I we have µ(Y, ψi) = 〈Y (ψ∗i ), Y1〉 = dimFp(EndΩ(G)(Ri))〈Y, Yi〉
by Lemma 3.2(ii).
Claim (iv) follows from Lemma 3.1(iii). �

If G has no element of order p, then Proposition 3.3(iii) allows us to define an integer
µiΛ(G)(C) for each complex C in Dp

S∗(Λ(G)) and each index i in I by setting

µiΛ(G)(C) := µ(C,ψi) · dimFp(EndΩ(G)(Ri))−1.

3.4.2. K-groups. We continue to assume that G has no element of order p and write D(G)
for the category of finitely generated Λ(G)-modules that are annihilated by a power of p.
Then, by dévissage and lifting of idempotents, one obtains the following isomorphisms

(9) K0(D(G)) ∼= K0(Ω(G)) ∼= K0(A(G)) ∼= ZI

where the i-th basis vector of the free Z-module on the right corresponds to the classes of
Yi in K0(D(G)) and K0(Ω(G)). Lemma 3.2(ii) implies that if M belongs to D(G), then
the map in (9) sends the class of M to the vector

(10) µ(M) := (µiΛ(G)(M [0]))i∈I .

The proof of the following result is a natural generalization of that given by Kato in [20,
Prop. 8.6].

Proposition 3.4. If G has no element of order p, then there are natural isomorphisms

K0(MS∗(G)) ∼= K0(MS(G))⊕K0(Ω(G)),
K1(Λ(G)S∗) ∼= K1(Λ(G)S)⊕K0(Ω(G)).

The first of these isomorphisms is induced by the embeddings of categories MS(G) ⊂
MS∗(G) and D(G) ⊂ MS∗(G) combined with the first isomorphism in (9). The second
isomorphism depends on the choice of a splitting of K1(Λ(G)S∗) � K0(D(G)) ∼= ZI ;
once we have fixed an idempotent ei for each i ∈ I a natural choice is induced by sending
the i-th basis vector of ZI to the class of fi := 1 + (p− 1)ei in K1(Λ(G)S∗).
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Proof. We first prove the surjectivity of the homomorphism ∂2 in the long exact locali-
sation sequence of K-theory

K2(Λ(G)S∗)
∂2−→ K1(Ω(G)S)→ K1(Λ(G)S)→ K1(Λ(G)S∗)

∂1−→ K0(Ω(G)S).

But, since Ω(G)S is semi-local, the natural homomorphism Ω(G)∗S � K1(Ω(G)S) is
surjective and hence K1(Ω(G)S) is generated by the image of S. The surjectivity of ∂2

thus follows from the fact that for each f ∈ S one has ∂2({f, p}) = [f ] ∈ K1(Ω(G)S),
where {f, p} denotes the symbol of f and p in K2(Λ(G)S∗) (indeed, the latter equality is
proved by the argument of [18, Prop. 5]). From the above exact sequence we therefore
obtain an exact sequence

(11) 0→ K1(Λ(G)S)→ K1(Λ(G)S∗)
∂1−→ K0(Ω(G)S).

We next consider the composite map

(12) ZI → K1(Λ(G)S∗)
∂1−→ K0(Ω(G)S) α−→ K0(B(G)) ∼= ZJ .

Here the first map is given by sending the i-th basis vector of ZI to the class of fi =
1 + (p − 1)ei (note that Λ(G)/Λ(G)fi ∼= Yi), we set B(G) := Ω(G)S/Jac(Ω(G)S), the
canonical map α is injective by [2, Chap. IX, Prop. 1.3] and the index set J parametrizes
the isomorphism classes of simple modules over the semisimple Artinian ring B(G). Let
N be any closed normal subgroup of G which is both pro-p and open in H. Then it is
straightforward to check that (12) factorizes through the composite

(13) ZI ∼= K0(Ω(G/N))
β−→ K0(Ω(G/N)S)

γ−→ K0(B(G)).

Here the surjective map β comes from the exact localisation sequence and the isomor-
phism γ is induced from the fact that Ω(G)S � B(G) factors through the compos-
ite Ω(G)S � Ω(G/N)S � B(G) by the proof of [13, Lem. 4.3] and the fact that
Jac(Ω(G/N)S) is a nilpotent ideal. It follows that the map in (12) is surjective and
hence that ∂1 is surjective and α is bijective.
If DS(G) denotes the category of finitely generated Λ(G)S-modules which are Zp-torsion,
then we have shown that the composite map

(14) K0(DS(G)) ∼= K0(Ω(G)S) ∼= K0(B(G)) = ZJ

is bijective and that |J | ≤ |I|.
By combining (11) with the surjectivity of ∂1, the bijectivity of (14) and the assertion of
Lemma 3.5(i) below we obtain an exact sequence

(15) 0→ K1(Λ(G)S)→ K1(Λ(G)S∗)
∂′1−→ K0(D(G))→ 0.

Further, it is straightforward to show that, with respect to the isomorphism K0(D(G)) ∼=
ZI of (9), this sequence is split by the map which sends the i-th basis vector of ZI to the
class of fi in K1(Λ(G)S∗). This proves the final assertion of Proposition 3.4.
We next consider the following diagram with exact rows

(16)

0 −−−−→ im(ιS∗) −−−−→ K1(Λ(G)S) −−−−→ K0(MS(G)) −−−−→ 0∥∥∥ y yδ
0 −−−−→ im(ιS∗) −−−−→ K1(Λ(G)S∗) −−−−→ K0(MS∗(G)) −−−−→ 0,

where ιS∗ is the natural map K1(Λ(G))→ K1(Λ(G)S∗), δ is induced by the embedding
of categories MS(G) ⊂MS∗(G) and [13, Prop. 3.4] implies that each row is indeed exact.
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By applying the snake lemma to this diagram and comparing with the sequence (15) we
obtain an exact sequence of the form

0→ K0(MS(G)) δ−→ K0(MS∗(G))→ K0(D(G))→ 0.

The first assertion of Proposition 3.4 now follows because this sequence is split by the ho-
momorphism K0(D(G))→ K0(MS∗(G)) that is induced by the embedding of categories
D(G) ⊂MS∗(G). �

Lemma 3.5.
(i) The exact scalar extension functor from Λ(G)-mod to Λ(G)S-mod identifies D(G)

with a full subcategory of DS(G) and induces an isomorphism K0(D(G)) ∼=
K0(DS(G)).

(ii) The natural map ι : K0(D(G))→ K0(MS∗(G)) is injective.
(iii) The natural map K0(Ω(G/N))→ K0(Ω(G/N)S) is bijective.

Proof. The assignment M 7→ (µiΛ(G)(M [0]))i∈I induces a homomorphism

µ : K0(MS∗(G))→ ZI .
Now from (9) and (10) we know that µ◦ι is bijective whilst from Lemma 3.1(iii) we know
δ(K0(MS(G))) ⊆ ker(µ) where δ is the homomorphism in diagram (16). This implies
that ι is injective (so proving claim (ii)), that µ is surjective and that |I| ≤ |J |. But
|J | ≤ |I| (see just after (14)) and so |I| = |J |.
Since |I| = |J | the isomorphisms of (9) and (13) combine to imply that the natural map
K0(D(G))→ K0(DS(G)) is bijective (proving claim (i)).
In a similar way, claim (iii) follows by combining the equality |I| = |J | together with the
surjectivity of the map β in (13) and the definition of the index set J (in (12)). �

4. Characteristic series

In this section we associate a canonical ‘characteristic series’ to each complex in
Dp

S̃
(Λ(G)). This construction extends the notion of ‘algebraic p-adic L-functions’ in-

troduced in [6] and hence refines the ‘Akashi series’ introduced by Coates, Schneider and
Sujatha in [12]. It will also play a key role in our proof of Theorem 2.1 (see in particular
the proof of Lemma 5.7).

4.1. The definition. If M is any compact (left) Λ(G)-module, then the completed
tensor product

IGH(M) := Λ(G)⊗̂Λ(H)ResGH(M)
has a natural structure as a compact Λ(G)-module via multiplication on the left. With
respect to this action, one obtains a (well-defined) endomorphism ∆γ of IGH(M) by setting

∆γ(x⊗Λ(H) y) := xγ̃−1 ⊗Λ(H) γ̃(y)

for each x ∈ Λ(G) and y ∈ M , where γ̃ is any lift of γ through the natural projection
G → Γ. It is easily checked that ∆γ is independent of the precise choice of γ̃. Further,
if M belongs to MS∗(G), then [6, Lem. 2.1] implies that

δγ := idIG
H(M) −∆γ

induces an automorphism of the (finitely generated) Λ(G)S∗ -module IGH(M)S∗ .
Now the ring Λ(G)S∗ is both noetherian and regular [17, Prop. 4.3.4] and so K1(Λ(G)S∗)
is naturally isomorphic to the group G1(Λ(G)S∗) that is generated (multiplicatively) by
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symbols 〈α | M〉 where α is an automorphism of a finitely generated Λ(G)S∗ -module
M (cf. [29, Th. 16.11]). For each complex C in Dp

S∗(Λ(G)) we may therefore define an
element of K1(Λ(G)S∗) by setting

char∗G,γ(C) :=
∏
i∈Z
〈δγ | IGH(Hi(C))S∗〉(−1)i

.

For each C in Dp

S̃
(Λ(G)) we also define an ‘equivariant multiplicative µ-invariant’ in

im(K1(Λ(G)[ 1p ])→ K1(Λ(G)S∗)) by setting

χµG(C) :=

{
〈
∑
i∈I p

µi
Λ(G)(C)ei|Λ(G)S∗〉, if C belongs to Dp

S̃
(Λ(G)) \Dp

S(Λ(G)),
1, if C belongs to Dp

S(Λ(G))

where the integer µiΛ(G)(C) is as defined at the end of §3.4.1 (this definition makes sense
because if C belongs to Dp

S̃
(Λ(G)) \Dp

S(Λ(G)), then G has no element of order p).

Definition 4.1. For each C in Dp

S̃
(Λ(G)) the characteristic series of C is the element

charG,γ(C) := χµG(C) · char∗G,γ(C)

of K1(Λ(G)S∗).

Remark 4.2. If G = Γ, then Λ(G)S∗ = Q(Γ) and so there is a natural isomorphism
ι : K1(Λ(G)S∗) ∼= Q(Γ)×. Further, if M is any finitely generated torsion Λ(Γ)-module,
then ι(charG,γ(M [0])) = (1 + T )−λ(M)charT (M) where λ(M) is the Iwasawa λ-invariant
of M and charT (M) is the characteristic polynomial of M with respect to the variable
T = γ − 1. (For a proof of this fact see [6, Lem. 2.3]).

Remark 4.3. In Proposition 4.7(i) we will prove that if G has no element of order p,
then charG,γ(C) is a ‘characteristic element for C’ in the sense of [13, (33)] (and see also
Remark 6.2 in this regard). In [6, Th. 4.1] it is proved that this is also true if G has rank
one as a p-adic Lie group. In these cases at least, we may therefore regard charG,γ(C) as
the canonical ‘algebraic p-adic L-function’ associated to C.

4.2. Basic properties.

Lemma 4.4. If C1 → C2 → C3 → C1[1] is an exact triangle in Dp

S̃
(Λ(G)), then

charG,γ(C2) = charG,γ(C1)charG,γ(C3).

Proof. If G has an element of order p, then each complex Cj belongs to Dp
S(Λ(G)) and so

χµG(Cj) = 1. If G has no element of order p, then the equality χµG(C2) = χµG(C1)χ
µ
G(C3)

follows from Lemma 3.1(i) and Proposition 3.3(iv). The equality char∗G,γ(C2) =
char∗G,γ(C1)char∗G,γ(C3) is equivalent to that of [6, Prop. 3.1]. �

Let U be a closed subgroup of H that is normal in G and set G1 := G/U,H1 := H/U and
S1 := SG1,H1 . Then there exists a natural ring homomorphism πG1 : Λ(G)S∗ → Λ(G1)S∗1
and hence an induced homomorphism of groups

πG1,∗ : K1(Λ(G)S∗)→ K1(Λ(G1)S∗1 ).

Lemma 4.5. Let G1,H1 and S1 be as above. Fix C in Dp

S̃
(Λ(G)) and assume that either

C belongs to Dp
S(Λ(G)) or that G1 has no element of order p. Then C1 := Λ(G1)⊗̂

L
Λ(G)C

belongs to Dp

S̃1
(Λ(G1)) and πG1,∗(charG,γ(C)) = charG1,γ(C1).
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Proof. If C belongs to Dp
S(Λ(G)), then C1 belongs to Dp

S1
(Λ(G1)) and so πG1,∗(χ

µ
G(C))

= πG1,∗(1) = 1 = χµG1
(C1). If C does not belong to Dp

S(Λ(G)), then neither G or
G1 has an element of order p and the equality πG1,∗(χ

µ
G(C)) = χµG1

(C1) follows from
Lemma 3.1(iv) and Proposition 3.3(iv). The equality πG1,∗(char∗G,γ(C)) = char∗G1,γ(C1)
is equivalent to that of [6, Prop. 3.2]. �

In the next result we fix an open subgroup U of G and set HU := H∩U and ΓU := U/HU .
We use the natural isomorphism ΓU ∼= HU/H to regard ΓU as an open subgroup of Γ,
we set dU := [Γ : ΓU ] and write γU for the topological generator γdU of ΓU . We set
SU := SU,HU

and note that Λ(G), resp. Λ(G)S , resp. Λ(G)S∗ is a free Λ(U)-, resp.
Λ(U)SU

-, resp. Λ(U)S∗U -module, of rank [G : U ]. In particular, restriction of scalars gives
natural functors Dp

S(Λ(G))→ Dp
SU

(Λ(U)) and Dp
S∗(Λ(G))→ Dp

S∗U
(Λ(U)) and a natural

homomorphism
resU,∗ : K1(Λ(G)S∗)→ K1(Λ(U)S∗U ).

Lemma 4.6. Let G and U be as above and fix C in Dp

S̃
(Λ(G)). Then C1 := resGUC belongs

to Dp

S̃
(Λ(G)) and resU,∗(charG,γ(C)) = charU,γU

(C1).

Proof. We prove first that resU,∗(χ
µ
G(C)) = χµU (C1). The complex C belongs toDp

S(Λ(G))
if and only if C1 belongs to Dp

SU
(Λ(U)) and in this case resU,∗(χ

µ
G(C)) = 1 = χµU (C1).

We may therefore assume that C belongs to Dp
S∗(Λ(G)) \Dp

S(Λ(G)) and hence that G
(and also U) has no element of order p. By the same argument as used in the proof of
Proposition 3.3(iii), we can also assume that C = Ya[0] for some index a in I. Then for
each i ∈ I one has µiΛ(G)(C) = 〈Ya, Yi〉 = δai and so

resU,∗(χ
µ
G(C)) = resU,∗(〈pea|Λ(G)S∗〉) = resU,∗(〈p|Λ(G)S∗ea〉).

We write {fj : j ∈ J} for the idempotents of Λ(U) that are analogous to the idempotents
ei of Λ(G) defined in §3.3 and {X(U)j : j ∈ J}, resp. {Y (U)j : j ∈ J}, for the
submodules of Λ(U), resp. Ω(U), analogous to the modules Xi, resp. Yi, in §3.3. For
each j in J we set mj := 〈Λ(G)ea, X(U)j〉 = 〈Ya, Y (U)j〉. Then the Λ(U)S∗U -module
Λ(G)S∗ea is isomorphic to

⊕
j∈J(Λ(U)S∗U fj)

mj and hence the last displayed expression
is equal to 〈

∑
j∈J p

mjfj |Λ(U)S∗U 〉 = χµU (resGUYa[0]), as required.
It remains to prove that resU,∗(char∗G,γ(C)) = char∗U,γU

(C1). To do this we may
assume that C = M [0] for a module M in MS∗(G) so that char∗G,γ(C) is equal
to 〈δγ | IGH(M)S∗〉. Now the Λ(U)S∗U -module IGH(M)S∗ is equal to the direct sum⊕i=dU−1

i=0 ∆γi(IUHU
(M)S∗U ) ∼=

⊕i=dU−1
i=0 IUHU

(M)S∗U where the isomorphism identifies each
translate ∆γi(IUHU

(M)S∗U ) with IUHU
(M)S∗U in the natural way. With respect to this de-

composition δγ is the automorphism given by the dU × dU matrix
id −id 0 . . . . . . . . . 0
0 id −id 0 . . . . . 0
0 0 id −id 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . 0 id −id

−∆γdU 0 . . . . . . . . . 0 id

 .

Elementary row and column operations show that this automorphism represents the same
element of K1(Λ(U)S∗U ) as does the automorphism α of

⊕i=dU−1
i=0 IUHU

(M)S∗U that acts as
id−∆γdU on the last direct summand and as the identity on all other summands. The
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required result thus follows because, since δγU
:= id−∆γdU , the class of α in K1(Λ(U)S∗U )

is equal to 〈δγU
| IUHU

(M)S∗U 〉 =: char∗U,γU
(C1). �

4.3. The proof of Theorem 2.1. We deduce Theorem 2.1 as a consequence of the
following result.

Proposition 4.7. Assume that G has no element of order p.

(i) For each C in Dp
S∗(Λ(G)) one has ∂G(charG,γ(C)) =

∑
i∈Z(−1)i+1[Hi(C)].

(ii) There exists a (unique) homomorphism χG,γ from K0(MS∗(G)) to K1(Λ(G)S∗)
that simultaneously satisfies the following conditions:-
(a) for each M in MS∗(G) one has χG,γ([M ]) = charG,γ(M [1]);
(b) χG,γ is right inverse to ∂G;
(c) χG,γ respects the isomorphisms of Proposition 3.4;
(d) Let U be a closed subgroup of H that is normal in G and such that G := G/U

has no element of order p. Set H := H/U and S := SG,H . Then there is a
commutative diagram

K0(MS∗(G))
χG,γ−−−−→ K1(Λ(G)S∗)y y

K0(MS
∗(G))

χG,γ−−−−→ K1(Λ(G)S∗)

where the vertical arrows are the natural homomorphisms.

Remark 4.8. Proposition 4.7(i) shows that charG,γ(C) is a ‘characteristic element for C’
in the sense of [13, (33)]. The surjectivity of ∂G (which follows directly from Proposition
4.7(ii)(b)) was first proved in [13, Prop. 3.4].

The proof of Proposition 4.7 will be the subject of §4.4. However, we now show that it
implies Theorem 2.1. To do this we consider the map

ιG : K0(Ω(G))⊕K0(MS(G))⊕ im(K1(Λ(G))→ K1(Λ(G)S∗))→ K1(Λ(G)S∗)

which for each M in Ω(G), N in MS(G) and u in im(K1(Λ(G))→ K1(Λ(G)S∗)) satisfies
ιG(([M ], [N ], u)) = charG,γ(M [1])charG,γ(N [1])u. Then Proposition 4.7(ii) implies that
ιG is a well-defined homomorphism which, upon restriction to the summand K0(Ω(G))⊕
K0(MS(G)), gives a right inverse to the composite K1(Λ(G)S∗) → K0(MS∗(G)) →
K0(Ω(G))⊕K0(MS(G)) where the first arrow is ∂G and the second is the isomorphism
of Proposition 3.4. The exactness of the lower row of (16) thus implies that ιG is bijective.
This completes the proof of Theorem 2.1.

Remark 4.9. The characteristic series for M in MS∗(G) and hence also the splitting
χG,γ of ∂G can of course be defined just in terms of modules instead of derived categories.
Thus for the proof of Theorem 2.1 one can probably avoid the use of derived categories.
However, since our applications involve complexes we prefer to use this language from
the outset.

4.4. The proof of Proposition 4.7. In addition to proving Proposition 4.7 we shall
also translate Definition 4.1 into the language of localized K1-groups introduced by
Fukaya and Kato in [17]. We therefore use the notation of Appendix A.
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4.4.1. S-acyclic complexes. In [26, Prop. 2.2, Rem. 2.3] Schneider and the second named
author have proved that for each bounded complex P of projective Λ(G)-modules in
Dp
S(Λ(G)) there exists an exact sequence of complexes in Dp(Λ(G))

(17) 0→ IGH(P ) δ−→ IGH(P ) π−→ P → 0

where in each degree i the morphism δ, respectively π, is equal to the homomorphism
δγ : IGH(P i) → IGH(P i), respectively to the natural projection IGH(P i) → P i . We may
therefore define a trivialization

tS(P ) : 1Λ(G) → dΛ(G)(IGH(P ))dΛ(G)(IGH(P ))−1 → dΛ(G)(P )

where the first arrow is induced by the identity map on IGH(P ) and the second by applying
property A.d) to the exact sequence (17). By using property A.g) of the functor dΛ(G) we
then extend this definition to obtain for any object C of Dp

S(Λ(G)) a canonical morphism

tS(C) : 1Λ(G) → dΛ(G)(C).

We remark that this morphism is analogous to those that arise naturally in the context
of varieties over finite fields (cf. [19, Lem. 3.5.8], [5, §3.2]).
In the following result we use the homomorphism chΛ(G),ΣC

defined in Appendix A.

Lemma 4.10. For each C in Dp
S(Λ(G)) one has chΛ(G),ΣC

([C, tS(C)]) = char∗G,γ(C).

Proof. One has chΛ(G),ΣC
([C, tS(C)]) = θC,tS(C) where the latter element is as defined

in Appendix A. To compute θC,tS(C) explicitly we set Q := Λ(G)S∗ , CQ := Q ⊗Λ(G) C,
H(C)Q := Q⊗Λ(G) H(C) and H(C)H,Q := Q⊗Λ(H) H(C) and consider the diagram

1Q
α1−−→ dQ(H(C)H,Q)dQ(H(C)H,Q)−1 α2−−→ dQ(H(C)Q) α3−−→ dQ(CQ)

α5

y ∥∥∥ ∥∥∥
1Q

α4−−→ dQ(H(C)H,Q)dQ(H(C)H,Q)−1 α2−−→ dQ(H(C)Q) α3−−→ dQ(CQ).

In this diagram α1 is induced by the identity map on H(C)H,Q, α2 results from applying
property A.d) to (17) with C = H(C), α3 is property A.h), α4 is induced by dQ(H(δγ))
and α5 is defined so that the first square commutes. The upper row of the diagram is
equal to the morphism 1Q → dQ(CQ) induced by tS(C) whilst the lower row agrees with
the morphism 1Q → dQ(CQ) induced by the acyclicity of CQ. From the commutativity
of the diagram we thus deduce that the element θC,tS(C) of K1(Q) is represented by α5.
On the other hand, a comparison of the maps α1 and α4 shows that α5 represents the
same element of K1(Q) as does the morphism

dQ(H(C)H,Q) ∼=
∏
i∈Z

dQ(Hi(C)H,Q)(−1)i

→
∏
i∈Z

dQ(Hi(C)H,Q)(−1)i ∼= dQ(H(C)H,Q)

where the first and third maps use property A.h) and the second map is∏
i∈Z dQ(Hi(δγ))(−1)i

. From here we deduce the required equality

θH(C),tS(H(C)) =
∏
i∈Z
〈δγ | Hi(C)H,Q〉(−1)i

∈ K1(Q).

�
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4.4.2. p-torsion complexes. In this subsection we assume that G has no element of order
p (so that Dp(Λ(G)) identifies with Dfg(Λ(G))).
If T is a bounded complex of finitely generated Ω(G)-modules, then there is a bounded
complex of finitely generated projective Ω(G)-modules P̄ that is isomorphic in D(Ω(G))
(and hence also in Dp(Λ(G))) to T . Also, following the discussion of §3.3, in each degree
i there is a finitely generated projective Λ(G)-module P i and an exact sequence of Λ(G)-
modules

(18) 0→ P i
p−→ P i → P̄ i → 0.

We may therefore define a morphism

t(T ) : 1Λ(G) →
∏
i∈Z

(dΛ(G)(P i)dΛ(G)(P i)−1)(−1)i

→∏
i∈Z

dΛ(G)(P̄ i)(−1)i

= dΛ(G)(P̄ )→ dΛ(G)(T )

where the first arrow is induced by the identity map on each module P i, the second by
applying property A.d) to each of the sequences (18) and the last by the given quasi-
isomorphism P̄ ∼= T . If now C is any bounded complex of modules in D(G), then there
exists a finite length filtration of C by complexes

(19) 0 = Cd ⊂ Cd−1 ⊂ · · ·C1 ⊂ C0 = C

so that each quotient complex Ti := Ci/Ci+1 belongs to Dp(Ω(G)) (and hence to
Dp(Λ(G))). This gives an identification dΛ(G)(C) =

∏
0≤i<d dΛ(G)(Ti) and, with re-

spect to this identification, we set

t(C) :=
∏

0≤i<d

t(Ti).

This definition is easily checked to be independent of the choice of filtration (19) and,
for each i, of isomorphism P̄ ∼= Ti and resolution (18) used to define t(Ti).

Lemma 4.11. If G has no element of order p and C is any bounded complex of modules
in D(G), then in K1(Λ(G)S∗) one has chΛ(G),ΣS∗ ([C, t(C)]) = χµG(C).

Proof. This follows from the definition of chΛ(G),ΣS∗ and the fact that there is a resolution

(18) of the form 0 → Λ(G)n dj

−→ Λ(G)n → P̄ j → 0 where n =
∑i=c
i=1〈P̄ j , X̄i〉 and dj is

given with respect to the canonical basis by the diagonal matrix with entries f 〈P̄
j ,X̄i〉

i ,
1 ≤ i ≤ n, where the natural numbers 〈P̄ j , X̄i〉 are defined via the decomposition P̄ j ∼=⊕i=c

i=1 X̄
〈P̄ j ,X̄i〉
i . The fact that the µ-invariants give the correct multiplicities is the same

as for [1, Prop. 4.8]. �

4.4.3. The proof of Proposition 4.7. For each complex C in ΣS∗ we write H(C)tor and
H(C)tf for the complexes with H(C)itor = Hi(C)tor and H(C)itf = Hi(C)tf in each
degree i and in which all differentials are zero. There is a tautological exact se-
quence of complexes 0 → H(C)tor → H(C) → H(C)tf → 0 and hence an equality
χ(C) = χ(H(C)) = χ(H(C)tor) + χ(H(C)tf) in K0(MS∗(G)). From Definition 4.1 it
is also clear that χµG(C) = χµG(H(C)tor) and char∗G,γ(C) = char∗G,γ(H(C)tf). Claim (i)
therefore follows upon combining Lemmas 4.10 and 4.11 (with C replaced by H(C)tf
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and H(C)tor respectively) with the following fact: there is a commutative diagram of
homomorphisms of abelian groups

K1(Λ(G),ΣS∗)
∂′−−−−→ K0(ΣS∗)

chΛ(G),ΣS∗

y ι

y
K1(Λ(G)S∗)

∂G−−−−→ K0(MS∗(G))
where ∂′ sends each class [C, a] to −[[C]] (cf. [17, Th. 1.3.15]) and ι sends each class
[[C]] to χ(C) =

∑
i∈Z(−1)i[Hi(C)] (cf. [17, §4.3.3]).

Regarding claim (ii) we note first that if a homomorphism χG,γ exists satisfying property
(a), then it is automatically unique. Next we note that Lemma 4.4 implies the assignment
M 7→ charG,γ(M [1]) for each M in MS∗(G) induces a well-defined homomorphism χG,γ :
K0(MS∗(G)) → K1(Λ(G)S∗) and claim (i) implies that this homomorphism is a right
inverse to ∂G. Further, for each M in D(G) and N in MS(G) one has charG,γ(M [1]) =
χµG,γ(M [1]) ∈ ι(K0(Ω(G))) and charG,γ(N [1]) = char∗G,γ(N [1]) ∈ ι(K0(MS(G))) (where
the latter equality follows from Lemma 3.1(iii)) and so property (c) is satisfied. Finally,
the commutativity of the diagram in (d) is a direct consequence of Lemma 4.5.

5. Descent theory

In this section we shall consider leading terms of elements ofK1(Λ(G)S∗) and in particular
prove Theorem 2.2. The approach of this section was initially developed by the first
named author in an unpublished early version of the article [6].
We deal first with the case that C is acyclic. In this case the complex Zp[G] ⊗L

Λ(G) C

is acyclic so [dZp[G](Zp[G]⊗L
Λ(G) C), t(C)G] is the zero element of K0(Zp[G],Qc

p[G]) and
also ξ belongs to the image of the natural map K1(Λ(G))→ K1(Λ(G)S∗). The equality
of Theorem 2.2 is therefore a consequence of the following result.

Lemma 5.1. If u belongs to the image of the natural map λ : K1(Λ(G))→ K1(Λ(G)S∗),
then for each finite quotient G of G the element (u∗(ρ))ρ∈Irr(G) belongs to ker(∂G).

Proof. Let O be the valuation ring of a finite extension L of Qp such that all rep-
resentations can be realised over O. If v ∈ K1(Λ(G)) with u = λ(v), then u∗(ρ) =
u(ρ) = λ(v)(ρ) ∈ O× for all ρ ∈ Irr(G). Thus by functoriality of K-theory and the
fact that the canonical map K1(ΛO(Γ)) → K1(O) is equal to the ‘evaluation at 0’ map
ΛO(Γ)× → O×, the image of v in K1(Zp[G]) under the natural projection is mapped to
(u∗(ρ))ρ∈Irr(G) ∈ K1(L[G]). �

5.1. Reduction to S-acyclicity. We now reduce the general case of Theorem 2.2 to
the case that C belongs to Dp

S(Λ(G)). In this subsection we therefore assume that G has
no element of order p.

Lemma 5.2. If G has no element of order p, then it is enough to prove Theorem 2.2 in
the case that C is acyclic outside at most one degree.

Proof. We assume that the result of Theorem 2.2 is true for all complexes that are acyclic
outside at most one degree. To deduce Theorem 2.2 in the general case we use induction
on the number of non-zero cohomology groups of C (which we assume to be at least
two). We let n denote the largest integer m for which Hm(C) is non-zero. We set
C1 := Hn(C)[−n] and write C2 for the truncation of C in degrees less than n (which
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has fewer non-zero cohomology group than does C). Then there is an exact triangle in
Dp
S∗(Λ(G)) of the form

(20) C1 → C → C2 → C1[1]

and the assumption that C is semisimple at ρ implies that C1 and C2 are also semisimple
at ρ (for any ρ in Irr(G)). Let ξ be an element such that ∂G(ξ) = χ(C). If ξ1 is such that
∂G(ξ1) = χ(C1), then ξ2 := ξξ−1

1 satisfies ∂G(ξ2) = ∂G(ξ) − ∂G(ξ1) = χ(C) − χ(C1) =
χ(C2), where the last equality follows from (20). Hence, by the inductive hypothesis, one
has

(21) ∂G((ξ∗(ρ))ρ = ∂G((ξ∗1(ρ))ρ) + ∂G((ξ∗2(ρ))ρ)

= −[dZp[G](C1,G), t(C1)G]− [dZp[G](C2,G), t(C2)G].

where Ci,G := Zp[G]⊗L
Λ(G)Ci for i = 1, 2. Now if we set CG := Zp[G]⊗L

Λ(G)C, then (20)
induces an exact triangle in Dp(Zp[G])

(22) C1,G → CG → C2,G → C1,G[1]

and, with respect to this triangle, the trivialisations t(C1)G, t(C)G and t(C2)G satisfy the
‘additivity criterion’ of [3, Cor. 6.6]. Indeed, for each ρ in Irr(G) the exact triangle (20)
combines with the definition (7) of each of the complexes C1,ρ, Cρ and C2,ρ to induce an
exact triangle

Qc
p ⊗L

ΛO(Γ) C1,ρ → Qc
p ⊗L

ΛO(Γ) Cρ → Qc
p ⊗L

ΛO(Γ) C2,ρ → Qc
p ⊗L

ΛO(Γ) C1,ρ[1]

and the cohomology sequence of this triangle gives an equality rG(C)(ρ) = rG(C1)(ρ) +
rG(C2)(ρ) and a short exact sequence of complexes

0→ Hbock(4(C1,ρ, γ))→ Hbock(4(Cρ, γ))→ Hbock(4(C2,ρ, γ))→ 0.

Here we use the notation of Appendix B and write 4(Cρ, γ) for the triangle

(23) Qc
p ⊗L

O Cρ
θγ,ρ−−→ Qc

p ⊗L
O Cρ → Qc

p ⊗L
ΛO(Γ) Cρ → Qc

p ⊗L
O Cρ[1]

where θγ,ρ is induced by multiplication by γ − 1, and we use similar notation for C1

and C2. This means that the criterion of [3, Cor. 6.6] is satisfied if one takes (in the
notation of loc. cit.) Σ to be Qc

p[G], P a−→ Q
b−→ R

c−→ P [1] to be the exact triangle
(22) (so ker(HevaΣ) = ker(HodaΣ) = 0) and the trivialisations tP , tQ and tR to be
induced by (−1)rG(C1)(ρ)t(C1,ρ), (−1)rG(C)(ρ)t(Cρ) and (−1)rG(C2)(ρ)t(C2,ρ) respectively.
From [3, Cor. 6.6] we therefore deduce that the last element in (21) is indeed equal to
−[dZp[G](CG), t(C)G], as required. �

Taking account of Lemmas 5.1 and 5.2 we now assume that C is acyclic outside precisely
one degree. To be specific, we assume that C = M [0] with M in MS∗(Λ(G)). Then there
is an exact triangle of the form

(24) Mtor[0]→M [0]→Mtf [0]→Mtor[1]

where Mtor belongs to D(G) and Mtf to MS(Λ(G)). In this case one has t(M [0])G =
t(Mtf [0])G and so (by another application of [3, Cor. 6.6])

(25) [dZp[G](Zp[G]⊗L
Λ(G) M [0]), t(M [0])G] =

[dZp[G](Zp[G]⊗L
Λ(G) Mtor[0]), can] + [dZp[G](Zp[G]⊗L

Λ(G) Mtf [0]), t(M [0])G]
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with can the canonical morphism dQp[G](Qp[G]⊗L
Λ(G) Mtor[0]) = dQp[G](0)→ 1Qp[G].

Lemma 5.3. Let N be an object of D(G). If ξ is any element of K1(Λ(G)S∗) with
∂G(ξ) = χ(N [0]), then for any finite quotient G of G one has

∂G((ξ∗(ρ))ρ) = −[dZp[G](Zp[G]⊗L
Λ(G) N [0]), can].

Proof. An easy reduction (using dévissage and the additivity of Euler characteristics on
exact sequences in D(G)) allows us to assume that N is an object of D(G) which lies in
an exact sequence of Λ(G)-modules of the form

(26) 0→ Q
d−→ P → N → 0

where Q and P are both finitely generated and projective. (Indeed, it is actually enough
to consider the case that Q = P = Λ(G)ei for an idempotent ei as in §3.3 and with d
equal to multiplication by p.)
To proceed we identify the subgroup K0(D(G)) of K0(MS∗(G)) with the group
K0(Λ(G),Λ(G)[ 1p ]). To be compatible with the normalisations used in §1.2 we must
fix this isomorphism so that for every exact sequence (26) the element [N ] of K0(D(G))
corresponds to the element (Q, d′, P ) of K0(Λ(G),Λ(G)[ 1p ]) with d′ := Λ(G)[ 1p ]⊗Λ(G) d.
Now since Λ(G)[ 1p ] ⊗Λ(G) N = 0 the localisation sequence of K-theory implies that any
element ξ as above belongs to the image of K1(Λ(G)[ 1p ]) in K1(Λ(G)S∗). This implies
in particular that ξ∗(ρ) = ξ(ρ) for all ρ in Irr(G). The natural commutative diagram of
connecting homomorphisms

K1(Λ(G)[ 1p ]) −−−−→ K0(Λ(G),Λ(G)[ 1p ])y y
K1(Qp[G])

∂G−−−−→ K0(Zp[G],Qp[G])

also then implies that ∂G((ξ∗(ρ))ρ) = (QG, d
′
G
, PG) with QG := Zp[G] ⊗Λ(G) Q,PG :=

Zp[G] ⊗Λ(G) P and d′
G

:= Qp[G] ⊗Λ(G) d. Hence, with respect to the isomorphism (2)
(with R = Zp[G] and R′ = Qp[G]), one has

(27) ∂G((ξ∗(ρ))ρ) = [dZp[G](QG)dZp[G](PG)−1, τ ]

with τ equal to the composite morphism

dQp[G](Qp ⊗Zp
QG)dQp[G](Qp ⊗Zp

PG)−1 →

dQp[G](Qp ⊗Zp
PG)dQp[G](Qp ⊗Zp

PG)−1 = 1Qp[G]

where the first arrow is induced by dQp[G](d
′
G

). Finally we note that the (image under
Zp[G] ⊗Λ(G) − of the) sequence (26) induces an isomorphism in Dp(Zp[G]) between

Zp[G] ⊗L
Λ(G) N [0] and the complex QG

dG−−→ PG where the first term is placed in degree
−1 and dG := Zp[G]⊗Λ(G) d and this implies that the element on the right hand side of
(27) is the inverse of [dZp[G](Zp[G]⊗L

Λ(G) N [0]), can], as required. �

Lemmas 5.1, 5.2 and 5.3 combine with (24) and (25) to reduce the proof of Theorem 2.2
to consideration of complexes in Dp

S(Λ(G)). In the remainder of §5 we shall therefore
assume that C belongs to Dp

S(Λ(G)).
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5.2. Equivariant twists. In this subsection we introduce the algebraic formalism that
is key to a proper understanding of descent.

5.2.1. The definition. We fix an open normal subgroup U of G and set G := G/U . We
write

∆G : Λ(G)→ Λ(G×G) ∼= Zp[G]⊗Zp
Λ(G)

for the (flat) ring homomorphism which sends each element σ of G to σ ⊗ σ where σ
is the image of σ in G. Then for each Λ(G)-module M the induced Λ(G × G)-module
Λ(G×G)⊗Λ(G),∆G

M can be identified with the module

twG(M) := Zp[G]⊗Zp
M

upon which G acts via left multiplication and each σ ∈ G acts by sending x ⊗ y to
xσ−1 ⊗ σ(y). This construction extends to give an exact functor C 7→ twG(C) from
Dp(Λ(G)) to Dp(Λ(G×G)) and for each such C we set

twG(C)H := Λ(G× Γ)⊗L
Λ(G×G)

twG(C) ∈ Dp(Λ(G× Γ)).

5.2.2. Base change. For each s ∈ Λ(G) we write rs and r∆G(s) for the endomorphisms
of Λ(G) and Λ(G×G) given by right multiplication by s and ∆G(s) respectively. Then
cok(r∆G(s)) is isomorphic as a Λ(G × G)-module to twG(cok(rs)) and so is finitely gen-
erated over Λ(G × H) if cok(rs) is finitely generated over Λ(H). This implies that
∆G(S∗) ⊆ S∗1 where S := SG,H and S1 := SG×G,G×H and so ∆G induces a ring homo-
morphism

(28) Λ(G)S∗ → Λ(G×G)S∗1 → Λ(G× Γ)S∗2 = Q(G× Γ)

where S2 := SG×Γ,G, the second arrow is the natural projection and the equality is
because G× Γ has rank one (as a p-adic Lie group). These maps induce a group homo-
morphism

πG×Γ : K1(Λ(G)S∗)→ K1(Q(G× Γ))

which forms the upper row of a natural commutative diagram of connecting homomor-
phisms

(29)

K1(Λ(G)S∗) −−−−→ K1(Λ(G×G)S∗1 ) −−−−→ K1(Λ(G× Γ)S∗2 )y y y
K0(Λ(G),Λ(G)S∗) −−−−→ K0(Λ(G×G), S∗1 ) −−−−→ K0(Λ(G× Γ), S∗2 )

where we write K0(Λ(G×G), S∗1 ) and K0(Λ(G× Γ), S∗2 ) for K0(Λ(G×G),Λ(G×G)S∗1 )
and K0(Λ(G× Γ),Λ(G× Γ)S∗2 ) respectively.

5.2.3. Reduced norms. We set R := Λ(G × Γ). Then the algebra Q(R) identifies with
the group ring Q(Γ)[G] and, with respect to this identification, one has

(30) ζ(Q(R)) ⊂ ζ(Qc(R)) =
∏

ρ∈Irr(G)

Qc(Γ)

where Qc(R) := Qc
p ⊗Qp Q(R) and Qc(Γ) := Qc

p ⊗Qp Q(Γ). We write x = (xρ)ρ for the
corresponding decomposition of each element x of ζ(Qc(R)).
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In the next result we write NrdQ(R) : K1(Q(R))→ ζ(Qc(R))× for the reduced norm map
of the semisimple algebra Q(R) and use the homomorphism Φρ and Ore set S̃ defined in
(5) and (6) respectively.

Lemma 5.4. For each ξ in K1(Λ(G)S̃) one has NrdQ(R)(πG×Γ(ξ)) = (Φρ(ξ))ρ∈Irr(G).

Proof. It suffices to prove that, with respect to the decomposition (30), one has Φρ(ξ) =
NrdQ(R)(πG×Γ(ξ))ρ for each fixed ρ in Irr(G). Further, since [13, Prop. 4.2, Th. 4.4]
implies that the natural map Λ(G)×

S̃
→ K1(Λ(G)S̃) is surjective, it is enough to verify

this for all elements ξ of the form 〈rs | Λ(G)S̃〉 with s ∈ Λ(G) ∩ Λ(G)×
S̃

.
To do this we fix a finite dimensional Qc

p-space Vρ that corresponds to ρ and write Vρ∗
for the space HomQc

p
(Vρ,Qc

p) that corresponds to ρ∗. Then for each x =
∑
δ∈G cδδ in

Q(Γ)[G]× = Q(R)× the argument of Ritter and Weiss in [25, §3] shows that

(31) NrdQ(R)(〈rx | Q(R)〉)ρ = detQc(Γ)(αx)

where αx is the automorphism of Vρ∗ ⊗Qc
p
Qc(Γ) given by

∑
δ∈G δ

−1 ⊗ µ(cδ) with µ(cδ)
denoting multiplication by cδ. Now the matrix of the action of δ−1 on Vρ∗ (with respect
to a fixed Qc

p-basis) is the transpose of the matrix of the action of δ on Vρ (with respect to
the dual Qc

p-basis). Using this fact, and an explication of the role of Morita equivalence
in (5), one finds that Φρ(s) = detQc(Γ)(α∆G(s)) for each s ∈ Λ(G) ∩ Λ(G)×

S̃
. Since

πG×Γ(〈rs | Λ(G)S̃〉) = 〈r∆G(s) | Q(R)〉 the claimed result is therefore a consequence of
the description (31). �

5.2.4. Semisimplicity. There are natural isomorphisms in Dp(Zp[G]) of the form

Zp ⊗L
Λ(Γ) twG(C)H ∼= Zp ⊗L

Λ(G) twG(C) ∼= Zp[G]⊗L
Λ(G) C

and hence an exact triangle in D(Λ(G× Γ)) of the form

4(twG(C), γ) : twG(C)H
θγ−→ twG(C)H → Zp[G] ⊗L

Λ(G) C → twG(C)H [1]

where θγ is induced by multiplication by γ − id ∈ Λ(Γ) on Λ(G× Γ).
In the next result we use the terminology and notation of Appendix B. For each Qp[G]-
module M we also define a Qc

p-module Mρ := HomQc
p[G](Vρ,Qc

p ⊗Zp M).

Lemma 5.5.
(i) The image of 4(twG(C), γ) under the (exact) functor eρQc

p[G]⊗Zp[G] − is natu-
rally isomorphic to the exact triangle 4(Cρ, γ) defined in (23).

(ii) For each ρ in Irr(G) one has

rG(C)(ρ) =
∑
i∈Z

(−1)i+1dimQc
p
(Hi(twG(C)H)Γ,ρ).

(iii) The morphism θγ is semisimple if and only if C is semisimple at ρ (in the sense
of [11, Def. 3.11]) for every ρ in Irr(G).

(iv) If θγ is semisimple, then

rG(C)(ρ) =
∑
i∈Z

(−1)i+1i · dimQc
p
(Hi(Zp[G]⊗L

Λ(G) C)ρ)
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for every ρ in Irr(G) and, with respect to the decomposition (4), one has

βQp⊗4(twG(C),γ) = (t(Cρ))ρ∈Irr(G)

where Qp⊗4(twG(C), γ) is the exact triangle in Dp(Λ(G×Γ)[ 1p ]) that is obtained
from 4(twG(C), γ) by scalar extension.

Proof. For every Λ(G)-module P there is a natural isomorphism of Λ(G × Γ)-modules
Λ(G × Γ) ⊗Λ(G×G) (Zp[G] ⊗Zp

P ) ∼= Λ(Γ) ⊗Λ(G) (Zp[G] ⊗Zp
P ) where the action of G

on the second module is just on Zp[G] (from the left). This fact gives rise to natural
isomorphisms in D(ΛQc

p
(Γ)) of the form

eρQc
p[G]⊗Zp[G] twG(C)H ∼= ΛQc

p
(Γ)⊗L

ΛQc
p
(G) (eρQc

p[G]⊗Zp C)(32)

∼= ΛQc
p
(Γ)⊗L

ΛQc
p
(G) (Vρ∗ ⊗Zp C)

∼= Qc
p ⊗O Cρ.

We now set CG := Zp[G]⊗L
Λ(G)C. Then claim (i) follows upon combining the isomorphism

(32) together with the natural isomorphism in D(ΛQc
p
(Γ))

eρQc
p[G]⊗Zp[G] CG

∼= Vρ∗ ⊗L
Λ(G) C

∼= Qc
p ⊗L

ΛO(Γ) Cρ

that is induced by [7, Lem. 3.13(i)].
Claim (ii) follows by combining the equality

rG(C)(ρ) =
∑
i∈Z

(−1)i+1 dimQc
p
(Hi(Qc

p ⊗O Cρ)Γ)

of [11, Lem. 3.13(ii)] with the isomorphisms of ΛQc
p
(Γ)-modules

Hi(Qc
p ⊗O Cρ) ∼= Hi(eρQc

p[G]⊗Zp[G] twG(C)H) ∼= Hi(twG(C)H)ρ

that are induced by (32).
Next we note that claim (i) implies θγ is semisimple if and only if θγ,ρ is semisimple for ev-
ery ρ in Irr(G). Claim (iii) thus follows immediately from the definition of ‘semisimplicity
at ρ’ (in terms of θγ,ρ).
In each degree i the exact triangle 4(twG(C), γ) induces a short exact sequence

0→ Hi(twG(C)H)Γ → Hi(CG)→ Hi+1(twG(C)H)Γ → 0.

In particular, if θγ is semisimple, then θγ,ρ is semisimple and so by applying the exact
functor M 7→Mρ to this sequence one finds that

dimQc
p
(Hi(CG)ρ) = dimQc

p
(Hi(twG(C)H)Γ,ρ) + dimQc

p
(Hi+1(twG(C)H)Γ,ρ)

for each integer i and hence that
∑
i∈Z(−1)i+1i · dimQc

p
(Hi(CG)ρ) is equal to∑

i∈Z
(−1)i+1i(dimQc

p
(Hi(twG(C)H)Γ,ρ) + dimQc

p
(Hi+1(twG(C)H)Γ,ρ))

=
∑
i∈Z

(−1)i+1 dimQc
p
(Hi(twG(C)H)Γ,ρ).

This proves the explicit formula for rG(C)(ρ) in claim (iv). The explicit description of
βQp⊗4(twG(C),γ) in claim (iv) follows from the identification in claim (i) and the fact that
t(Cρ) is, by definition, equal to β4(Cρ,γ). �
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5.3. Leading terms. We now fix an element ξ and a complex C as in Theorem 2.2.
Then Lemma 5.5(iii) implies that the morphism θγ : twG(C)H → twG(C)H is semisimple
and so in each degree i there is a direct sum decomposition of Λ(G× Γ)[ 1p ]-modules

(33) Qp ⊗Zp
Hi(twG(C)H) = Di

0 ⊕Di
1

where Di
0 := Qp⊗Zp ker(Hi(θγ)) = Qp⊗ZpH

i(twG(C)H)Γ and Di
1 := Qp⊗Zp im(Hi(θγ)).

By assumption, both Di
0 and Di

1 are finitely generated (projective) Qp[G]-modules and
Hi(θγ) induces an automorphism of Di

1.
The proof of the following result will occupy the rest of this section.

Proposition 5.6. ∂G(((−1)rG(C)(ρ)ξ∗(ρ))ρ∈Irr(G)) =
∑
i∈Z(−1)i∂G(〈Hi(θγ) | Di

1〉).

5.3.1. The descent to Q(R). We write Σ for the subset of R consisting of those elements
of Λ(Γ) with non-zero image under the projection Λ(Γ)→ Zp. This is a multiplicatively
closed Ore set in R which consists of central regular elements.

Lemma 5.7. For each integer i we set M i := (IG×Γ

G
(Hi(twG(C)H)Γ))S∗ . Then the

element
yξ := NrdQ(R)(πG×Γ(ξ)

∏
i∈Z
〈δγ |M i〉(−1)i+1

)

belongs to ζ(RΣ)× ⊆ ζ(Q(R))×.

Proof. We set X := twG(C)H . Then the commutative diagram (29) implies that
∂G×Γ(πG×Γ(ξ)) = χ(X) in K0(R,Q(R)). But X belongs to Dp

S(R) and so [6, Th.
4.1(ii)] also implies that ∂G×Γ(charG×Γ,γ(X)) = χ(X). Hence the upper row of (1) with
R′ = Q(R) implies that there exists an element u of K1(R) with

(34) πG×Γ(ξ) = ι1(u)charG×Γ,γ(X)

where ι1 is the natural homomorphism K1(R)→ K1(RΣ)→ K1(Q(R)).
For each integer i we set N i := (IG×Γ

G
(Hi(twG(C)H)))S∗ . Then the term 〈δγ | N i〉 occurs

in the definition of charG×Γ,γ(X) = char∗
G×Γ,γ

(X). Also, from Lemma 5.8 below, the ac-
tion of δγ on N i = Q(R)⊗Qp[G] (Qp⊗Zp

Hi(twG(C)H)) restricts to give an automorphism
of RΣ ⊗Qp[G] D

i
1 and so (33) implies that 〈δγ | N i〉 is equal to

〈δγ | Q(R)⊗Qp[G] D
i
0〉〈δγ | Q(R)⊗Qp[G] D

i
1〉

= 〈δγ | Q(R)⊗Qp[G] D
i
0〉ιΣ(〈δγ | RΣ ⊗Qp[G] D

i
1〉)

where ιΣ is the natural homomorphism K1(RΣ)→ K1(Q(R)). Hence by combining (34)
with the definition of charG×Γ,γ(X) one finds that

(35) πG×Γ(ξ)
∏
i∈Z
〈δγ |M i〉(−1)i+1

= πG×Γ(ξ)
∏
i∈Z
〈δγ | Q(R)⊗Qp[G] D

i
0〉(−1)i+1

= ι1(u)ιΣ(
∏
i∈Z
〈δγ | RΣ ⊗Qp[G] D

i
1〉(−1)i

) ∈ im(ιΣ).

Now RΣ is finitely generated as a module over the commutative local ring Λ(Γ)Σ and so
is itself a semi-local ring (cf. [15, Prop. (5.28)(ii)]). The natural homomorphism R×Σ →
K1(RΣ) is thus surjective (by [15, Th. (40.31)]) and so (35) implies that the element
πG×Γ(ξ)

∏
i∈Z〈δγ | M i〉(−1)i+1

is represented by a pair of the form 〈ry | Q(R)〉 with y ∈
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R×Σ . Now both y and y−1 are of the form zσ−1 for suitable elements z ∈ R∩Q(R)× and
σ ∈ Σ. Thus, to complete the proof of the lemma, it suffices to prove that for all such z
and σ both NrdQ(R)(〈rz | Q(R)〉) and NrdQ(R)(〈rσ−1 | Q(R)〉) belong to ζ(RΣ). But (31)
implies NrdQ(R)(〈rσ−1 | Q(R)〉) = (σ−dρ)ρ ∈ ζ(RΣ) with dρ := dimQc

p
(Vρ). Also, if Zcp is

the integral closure of Zp in Qc
p and Tρ is any full Zcp-sublattice of Vρ, then the action of

G on Tρ induces a homomorphism % : R = Λ(Γ)[G]→ Mdρ
(Zcp⊗Zp

Λ(Γ)) and (31) implies
NrdQ(R)(〈rx | Q(R)〉) = (det(%(z)))ρ ∈ (Qc

p⊗Zp
ζ(R))∩ζ(Q(R)) = Qp⊗Zp

ζ(R) ⊆ ζ(RΣ),
as required. �

Lemma 5.8. δγ induces an automorphism of RΣ ⊗Qp[G] D
i
1.

Proof. The argument of [26, Prop. 2.2, Rem. 2.3] gives a short exact sequence

0→ R⊗Zp[G] D
i
1

δγ−→ R⊗Zp[G] D
i
1 → Di

1 → 0

and so it suffices to show that (Di
1)Σ = 0. But Di

1 := Qp ⊗Zp im(Hi(θγ)) and, regarding
im(Hi(θγ)) as a (finitely generated) module over Λ(Γ) ⊆ R, the decomposition (33)
implies that im(Hi(θγ))Γ is finite. This implies that im(Hi(θγ)) is a finitely generated
torsion Λ(Γ)-module whose characteristic polynomial f(T ) is coprime to T . It follows
that f(T ) is invertible in RΣ and so (Di

1)Σ = im(Hi(θγ))Σ = 0, as required. �

5.3.2. The proof of Proposition 5.6. From Lemmas 5.4 and 5.7 we know that

(36) (ξ∗(ρ)
∏
i∈Z

(NrdQ(R)(〈δγ |M i〉))∗ρ(0)(−1)i+1
)ρ∈Irr(G) = π(yξ)

where π is the natural projection ζ(RΣ)× → ζ(Qp[G])×. But if x is in R×Σ , then
NrdQ(R)(〈rx | Q(R)〉) belongs to ζ(RΣ)× (see the proof of Lemma 5.7) and (31) implies
π(NrdQ(R)(〈rx | Q(R)〉)) = (NrdQp[G](〈rx | Qp[G]〉)ρ with x the image of x in Qp[G]×.

Hence (35) implies π(yξ) = NrdQp[G](u)
∏
i∈Z NrdQp[G](〈Hi(θγ) | Di

1〉)(−1)i

where u is
the image of u under the natural composite homomorphism K1(R) → K1(Zp[G]) →
K1(Qp[G]). Since ∂G(u) = 0 one therefore has

(37) ∂G(π(yξ)) =
∑
i∈Z

(−1)i∂G(〈Hi(θγ) | Di
1〉).

The equality of Proposition 5.6 now follows upon substituting (36) into (37) and then
using both the explicit formula for rG(C)(ρ) given in Lemma 5.5(ii) and the following
result (with M = Hi(twG(C)H) for each i).

Lemma 5.9. If M is any finitely generated R-module, then for every ρ in Irr(G) one has
(NrdQ(R)(δγ | IG×Γ

G
(MΓ)S∗))∗ρ(0) = (−1)dimQc

p
(MΓ,ρ)

.

Proof. There are natural isomorphisms of Qc(Γ)-modules of the form

HomQc
p[G](Vρ, I

G×Γ

G
(MΓ)S∗) ∼= HomQc

p[G](Vρ, Q
c(Γ) ⊗Zp M

Γ) ∼= MΓ,ρ ⊗Qc
p
Qc(Γ)

under which the induced action of δγ on the first module corresponds to the endomor-
phism δ̃γ of the third module that sends m ⊗ x to m ⊗ (γ−1 − 1)x. It follows that
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NrdQ(R)(δγ | IG×Γ

G
(MΓ)S∗)ρ is equal to

detQc(Γ)(δ̃γ |MΓ,ρ ⊗Qc
p
Qc(Γ)) = detQc(Γ)(γ−1 − 1 | Qc(Γ))dimQc

p
(MΓ,ρ)

= (−T/(1 + T ))dimQc
p
(MΓ,ρ)

where the last equality follows from the fact that γ−1 − 1 = (1 − γ)/γ = −T/(1 + T ).
From this explicit formula it is clear that the first non-zero coefficient of T in the series
NrdQ(R)(δγ | IG×Γ

G
(MΓ)S∗)ρ is equal to (−1)dimQc

p
(MΓ,ρ). �

5.4. Completion of the proof of Theorem 2.2. We set N := U ∩H. Then in each
degree i there is a natural isomorphism of Zp[G]-modules

Hi(twG(C)H) ∼= Zp[G]⊗Λ(H/N) H
i(Λ(G/N)⊗L

Λ(G) C).

But Λ(G/N)⊗L
Λ(G)C belongs to Dp

SG/N,H/N
(Λ(G/N)) and so each module Hi(twG(C)H)

is finitely generated over Zp[G]. This implies that ∆(twG(C), γ) is an exact triangle
in Dp(Zp[G]). In view of Lemma 5.5(iv) and Proposition 5.6 we may therefore deduce
Theorem 2.2 by applying the following result with G = G,R = Zp and ∆ = ∆(twG(C), γ).

Proposition 5.10. Let G be a finite group, R an integral domain and F the field of
fractions of R. Let ∆ : C θ−→ C → D → C[1] be an exact triangle in Dp(R[G]). Assume
that θ is semisimple and in each degree i fix an F [G][Hi(θ)]-equivariant direct complement
W i to F ⊗R ker(Hi(θ)) in F ⊗R Hi(C). Then Hi(θ) induces an automorphism of the
(finitely generated projective) F [G]-module W i, the element 〈Hi(θ)〉∗ := 〈Hi(θ) | W i〉 of
K1(F [G]) is independent of the choice of W i and in K0(R[G], F [G]) one has

(38)
∑
i∈Z

(−1)i∂G(〈Hi(θ)〉∗) = −[dR[G](D), β∆]

where ∂G is the connecting homomorphism K1(F [G]) → K0(R[G], F [G]) and β∆ is as
defined in (55).

Proof. It is clear thatHi(θ) induces an automorphism ofW i and straightforward to verify
that 〈Hi(θ)〉∗ is independent of the choice of W i. However to prove (38) we replace C by
a complex P in Cp(R[G]) for which there exists an isomorphism q : P → C in Dp(R[G])
and we shall argue by induction on |P | := max{i : P i 6= 0} − min{j : P j 6= 0}. To do
this we fix a morphism of complexes φ : P → P such that q ◦ φ = θ ◦ q in Dp(R[G]).
If |P | = 0, then P = Pm[−m] = Hm(P ) (and φ = φm = Hm(φ)) for some integer

m. In this case D identifies with the mapping cone Pm
φm

−−→ Pm of φ (so the first
term of this complex is placed in degree m − 1) in such a way that the homomorphism
Hm−1(D) → ker(Hm(θ)) → cok(Hm(θ)) → Hm(D) induced by ∆ corresponds to the
tautological map τ : ker(φm) → cok(φm). Further, if W is a direct complement to
F⊗Rker(φm) in F⊗RPm, then φm(W ) = W (since φ is semisimple) and [dR[G](D), β∆] =
(Pm, ι(−1)m−1

, Pm) with ι the composite isomorphism

F ⊗R Pm = (F ⊗R ker(φm))⊕W (F⊗Rτ,H
m(φ))−−−−−−−−−−→ (F ⊗R cok(φm))⊕W ∼= F ⊗R Pm

where the isomorphism is induced by a choice of splitting of the tautological exact se-
quence 0 → W → F ⊗R Pm → F ⊗R cok(φm) → 0 (this description of [dR[G](D), β∆]
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follows, for example, from [3, Th. 6.2]). The equality (38) is therefore valid because
−(Pm, ι(−1)m−1

, Pm) = (−1)m∂G(〈ι | F ⊗R Pm〉) = (−1)m∂G(〈Hm(φ) |W 〉).
We now assume that |P | = n > 0 and, to fix notation, that min{j : P j 6= 0} = 0. We
set C2 := P and φ2 = φ, write C3 for the naive truncation in degree n− 1 of P and set
C1 := Pn[−n]. Then one has a tautological short exact sequence of complexes

(39) 0→ C1 → C2 → C3 → 0.

From the associated long exact cohomology sequence we deduce that Hi(C3) = Hi(C2)
if i < n− 1 and that there are commutative diagrams of exact sequences

(40)

0 −−−−→ Hn−1(C2) −−−−→ Hn−1(C3) −−−−→ Bn(C2) −−−−→ 0

Hn−1(φ2)

y Hn−1(φ3)

y φn

y
0 −−−−→ Hn−1(C2) −−−−→ Hn−1(C3) −−−−→ Bn(C2) −−−−→ 0

(41)

0 −−−−→ Bn(C2) −−−−→ Hn(C1) −−−−→ Hn(C2) −−−−→ 0

φn

y Hn(φ1)

y Hn(φ2)

y
0 −−−−→ Bn(C2) −−−−→ Hn(C1) −−−−→ Hn(C2) −−−−→ 0,

where Bn(C2) denotes the coboundaries of C2 in degree n. By mimicking the argument
of [6, Lem. 4.4] we may change φ by a homotopy in order to assume that, in each degree
i, the restriction of φi induces an automorphism of F ⊗R Bi(C2). This assumption has
two important consequences. Firstly, the above diagrams imply that the morphisms φ1

and φ3 of C1 and C3 that are induced by φ are semisimple. Secondly, if we write Di

for the mapping cone of φi for i = 1, 2, 3, then (39) induces short exact sequences of the
form

0→ D1 −→ D2 −→ D3 → 0

0→Z(D1) −→ Z(D2) −→ Z(D3)→ 0

0→B(D1) −→ B(D2) −→ B(D3)→ 0

0→H(D1) −→ H(D2) −→ H(D3)→ 0

0→ Hbock(∆1) −→ Hbock(∆2) −→ Hbock(∆3)→ 0.

Here we write B(Di) and Z(Di) for the complexes of coboundaries and cocycles of Di

(each with zero differentials) and ∆i for the tautological exact triangle Ci
φi−→ Ci →

Di → Ci[1]. Now from the displayed exact sequences (and the definition of each term
[Di, β∆i

] in Appendix B) one has an equality

[dR[G](D2), β∆2 ] = [dR[G](D1), β∆1 ] + [dR[G](D3), β∆3 ].

But the inductive hypothesis implies

−[dR[G](D3), β∆3 ] =
i=n−1∑
i=0

(−1)i∂G(〈Hi(φ3)〉∗)

and, since |C1| = 0, our earlier argument proves

−[dR[G](D1), β∆1 ] = (−1)n∂G(〈Hn(φ1)〉∗).
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It is also clear that 〈Hi(φ3)〉∗ = 〈Hi(φ2)〉∗ for i < n − 1 whilst (40) and (41) imply
〈Hn−1(φ2)〉∗ = 〈Hn−1(φ3)〉∗〈φn | F ⊗R Bn(C2)〉 and 〈Hn(φ1)〉∗ = 〈φn | F ⊗R Bn(C2)〉
〈Hn(φ2)〉∗ respectively. The claimed description of −[D2, β∆2 ] thus follows upon com-
bining the last three displayed equations. �

Remark 5.11. If G is abelian, then Proposition 5.10 can be reinterpreted in terms of
graded determinants and in this case has been proved to within a ‘sign ambiguity’ by Kato
in [19, Lem. 3.5.8]. (This ambiguity arises because Kato uses ungraded determinants -
for more details in this regard see [19, Rem. 3.2.3(3) and 3.2.6(3),(5)] and [9, Rem. 9]).

Part II: Arithmetic

For any Galois extension of fields F/E we set GF/E := Gal(F/E). For any field E we
also fix an algebraic closure Ec and abbreviate GEc/E to GE .

6. Field-theoretic preliminaries

We first introduce the class of fields for which the techniques of [13] allow one to formulate
a main conjecture of non-commutative Iwasawa theory.
We fix an odd prime p and for each number field k we write Fk for the set of Galois
extensions L of k inside Qc which satisfy the following conditions

(i) L contains the cyclotomic Zp-extension kcyc of k;
(ii) L/k is unramified outside a finite set of places;
(iii) GL/k is a compact p-adic Lie group.

If k is totally real, then we also let F+
k denote the subset of Fk comprising those fields

that are totally real.
The following result was explained to us by Kazuya Kato. It provides an important gen-
eral reduction step and also shows that Theorem 2.2 constitutes a satisfactory resolution
of the descent problem in the setting of non-commutative Iwasawa theory.

Lemma 6.1. For any number field k and any F in Fk there exists a field F ′ in Fk with
F ⊆ F ′ and such that GF ′/k has no element of order p. If k is totally real and F belongs
to F+

k , then one can also choose F ′ in F+
k .

Proof. For any extension E of k we write E(ζp∞) for the extension of E generated by all
p-power roots of unity (in Qc).
We set F̃ := F (ζp∞) and choose a p-torsion free open normal subgroup U of V :=
GF̃ /k(ζp∞ ). We let L be the extension of k in F̃ that corresponds to U and for each non-
trivial p-torsion element σi of V/U we write Li for the fixed subfield of L by σi. Then
L = Li(a

1/pn

i ) for some ai ∈ L×i . Let aij , 1 ≤ j ≤ s(i), be all conjugates of ai over F and
set L′i denote the field generated over Li by the set {a1/pn

ij : 1 ≤ j ≤ s(i), n ≥ 1}. Then
F̃L′i is a Galois extension of F that contains L. Furthermore GL′i/Li

is isomorphic to a

subgroup of Zs(i)p by τ 7→ (r(j))j with τ(a1/pn

j )/a1/pn

j = ζ
r(j)
pn . Let F ′ be the composite

field of F̃ and L′i for all i.
The group GF ′/k is a compact p-adic Lie group and we now prove that it has no element
of order p. We note first that Gk(ζp∞ )/k is isomorphic to a subgroup of Z×p and hence is
p-torsion free by the assumption p 6= 2. Thus if σ ∈ GF ′/k has order p, then the image of
σ in GF̃ /k is contained in V and so the image of σ in V/U coincides with σi for some i.
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Thus σ fixes all elements of Li. But then the image of σ in GL′i/Li
is both p-torsion and

also non-trivial (for its restriction to GL/Li
is non-trivial). This contradicts the fact that

GL′i/Li
has no element of order p. Hence GF ′/k has no element of order p, as claimed.

Lastly we assume that F (and hence k) is totally real. Then F̃ is a CM field with maximal
real subfield F̃+ equal to the compositum of F and the maximal totally real subfield of
k(ζp∞). Also, by the above construction, the extension F ′/F̃ is pro-p. Since p is odd, the
group GF ′/F̃+ therefore contains a unique element of order 2 and the fixed field (F ′)+

of F ′ by this element is totally real, contains F , is Galois over k and such that G(F ′)+/k

has no element of order p. �

In the remainder of this article we set Γk := Gkcyc/k , HL/k := GL/kcyc , Λ(L/k) :=
Λ(GL/k) and Ω(L/k) := Ω(GL/k) for each L in Fk. We also fix a topological generator
γQ of ΓQ, set dk := [k ∩Qcyc : Q] and write γk for the topological generator γdk

Q of Γk.

Remark 6.2. If C denotes either Fk or F+
k , then it is an ordered set (by inclusion).

Lemma 6.1 implies that the subset C′ of C comprising those fields F for which GF/k
has no element of order p is cofinal. Taking account of the functorial properties of the
isomorphism in Theorem 2.1 and of the results in Proposition 4.7(ii) we may therefore
deduce the following extensions of these results.

• There is a natural isomorphism of abelian groups

lim←−
F∈C

K1(Λ(F/k)S∗) ∼= lim←−
F∈C

K0(Ω(F/k))⊕ lim←−
F∈C

K0(Λ(F/k),Λ(F/k)S)⊕ lim←−
F∈C

im(λF/k)

where λF/k is the natural homomorphism K1(Λ(F/k)) → K1(Λ(F/k)S∗) and
in each inverse limit the transition maps are induced by the homomorphism
Λ(F/k)→ Λ(F ′/k) for each F ′ ⊆ F .
• Let (xF )F be an element of lim←−F∈CK0(Λ(F/k),Λ(F/k)S∗). Then for each F in
C we may define an element charGF/k,γk

(xF ) of K1(Λ(F/k)S∗) in the following
way: we choose F ′ in C′ with F ⊆ F ′ and let charGF/k,γk

(xF ) denote the image of
charGF ′/k,γk

(xF ′) under the natural projectionK1(Λ(F ′/k)S∗)→ K1(Λ(F/k)S∗).
Then Lemma 4.5 implies charGF/k,γk

(xF ) is independent of the precise choice of
F ′ and Proposition 4.7 implies ∂GF/k

(charGF/k,γk
(xF )) = xF .

7. Non-commutative main conjectures

In this section we formulate explicit ‘main conjectures of non-commutative Iwasawa the-
ory’ for both Tate motives and (certain) critical motives. In particular, in the setting of
elliptic curves, the conjecture we formulate here is finer than that formulated by Coates
et al in [13] in that we consider interpolation formulas for the leading terms (rather than
values) of p-adic L-functions at Artin representations.
Henceforth we will fix an isomorphism of fields j : C ∼= Cp and often simply omit it from
the notation.

7.1. Tate motives. In this subsection we fix a totally real number field k and formulate
a main conjecture for class groups associated to fields in F+

k . We therefore fix a field
K in F+

k and a finite set of places Σ of k that contains the archimedean places and all
places that ramify in K/k. For each Artin representation ρ of GK/k we write ρj

−1
for the
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complex representation of GK/k induced by j−1 and LΣ(s, ρj
−1

) for the Artin L-function
of ρj

−1
that is truncated by removing the Euler factors attached to places in Σ.

To formulate a main conjecture we must multiply the leading term L∗Σ(1, ρj
−1

) in the
Taylor expansion of LΣ(s, ρj

−1
) at s = 1 by an appropriate period. To define this period

we let E be any finite degree Galois extension of k with E ⊂ K and GK/E ⊆ ker(ρ).
We set E∞ := R ⊗Q E ∼=

∏
Hom(E,C) R and write log∞(O×E) for the inverse image of

O×E ↪→ E×∞ under the (componentwise) exponential map exp∞ : E∞ → E×∞. Then the
Dirichlet Unit Theorem implies that log∞(O×E) is a lattice in the R-space generated by
E0 := {x ∈ E : TrE/Q(x) = 0} and so there is a canonical isomorphism of C[GE/k]-
modules µ∞ : C ⊗Z log∞(O×E) ∼= C ⊗Q E0. In addition, if we write Sp(E) for the set of
p-adic places of E, then the composite homomorphism

Zp ⊗Z log∞(O×E)
exp∞−−−→ Zp ⊗Z O×E

−→
∏

w∈Sp(E)

U1
Ew

(uw)w 7→(logp(uw))w−−−−−−−−−−−−−→
∏

w∈Sp(E)

Ew ∼= Qp ⊗Q E

(where the second arrow is the natural diagonal map) factors through the inclusion
Qp⊗QE0 ⊂ Qp⊗QE and hence induces a homomorphism µp : Cp⊗Zlog∞(O×E) ∼= Cp⊗QE0

of Cp[GE/k]-modules. The resulting period

Ωj(ρ) := detCp
(µp ◦ (Cp ⊗C,j µ∞)−1)ρ ∈ Cp

depends upon j and ρ but is independent of the choice of E.
We write χcyc for the cyclotomic character Gk → Γk → Z×p and for any Artin represen-
tation ρ of GK/k we write 〈ρ, 1〉 for the multiplicity with which the trivial representation
of GK/k occurs in ρ.

Conjecture 7.1. Assume that GK/k has no element of order p. Then the Galois group
XΣ(K) of the maximal pro-p abelian extension of K that is unramified outside Σ belongs
to MS∗(GK/k) and there exists an element ξ of K1(Λ(K/k)S∗) which satisfies both of the
following conditions.

(a) At each Artin representation ρ of GK/k one has

ξ(ρ) = (logp(χcyc(γk))〈ρ,1〉cρ,k)−1Ωj(ρ)L∗Σ(1, ρj
−1

)j

with cρ,k := 1 if either ρ is trivial or HK/k 6⊂ ker(ρ) and cρ,k := 1 − ρ(γ−1
k )

otherwise.
(b) ∂GK/k

(ξ) = [XΣ(K)].

Remark 7.2. For each Artin representation ρ of GK/k the ‘(Σ-truncated) p-adic Artin
L-function’ of ρ is the unique p-adic meromorphic function Lp,Σ(·, ρ) : Zp → Cp with the
property that for each strictly negative integer n and each isomorphism j : C ∼= Cp one
has Lp,Σ(n, ρ) = LΣ(n, (ρ⊗ωn−1)j

−1
)j where ω : GQ → Z×p is the Teichmüller character.

Then the ‘p-adic Stark conjecture at s = 1’, as formulated by Serre in [27] and discussed
by Tate in [30, Chap. VI, §5], asserts that the term Ωj(ρ)L∗Σ(1, ρj

−1
)j in Conjecture

7.1(a) is equal to the leading term of Lp,Σ(s, ρ) at s = 1. See [11, Rem. 5.3] for more
details.

In Conjecture 8.3 we formulate a version of Conjecture 7.1 that does not assume that
GK/k has no element of order p.
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7.2. Critical motives.

7.2.1. Preliminaries. Let M be a critical motive over Q that has good ordinary reduction
at p. Then its p-adic realization V = Mp has a unique Qp-subspace V̂ that is stable under
the action of GQp

and such that D0
dR(V̂ ) = tp(V ) := DdR(V )/D0

dR(V ). Now let ρ be
an Artin representation defined over a number field B and [ρ] the corresponding Artin
motive. We fix a p-adic place λ of B, set L := Bλ and write O for the valuation ring of
L. Then the λ-adic realisation

(42) W := Wρ := Nλ = V ⊗Qp [ρ]∗λ

of the motive N := M(ρ∗) := M ⊗ [ρ]∗ is an L-adic representation and contains the
GQp

-subrepresentation Ŵ = V̂ ⊗Qp
[ρ]∗λ. The algebraic rank of M(ρ∗) is defined as

(43) r(M)(ρ) := dimL(H1
f (Q,Wρ))− dimL(H3

f (Q,Wρ)).

Let Σ be a finite set of places of Q containing p, ∞ and all places at which M has bad
reduction or which ramify in K/Q. We fix a field K in FQ that is unramified outside Σ.
By Υ we denote the set of those primes ` 6= p such that the ramification index of ` in
K/Q is infinite.
For a B-motive N over Q we denote by Ω∞(N) and Ωp(N) the associated complex and
p-adic periods and by Rp(N) and R∞(N) the associated complex and p-adic regulators,
see again [17] or [11, Th. 6.5]. We recall that Ω∞(N) 6= 0 if N is critical and that
R∞(N) 6= 0 if the (complex) height pairing of N is non-degenerate. Furthermore, for
a Qp-linear continuous GQp-representation Z we write Γ(Z) for its Γ-factor (loc. cit.).
Finally, for any L-linear continuous representation V and prime number ` we define an
element of the polynomial ring L[u] by setting

P`(V, u) := PL,`(V, u) :=

{
detL(1− ϕ`u|V I`), if ` 6= p,

detL(1− ϕpu|Dcris(V )), if ` = p,

where ϕ` denotes the geometric Frobenius automorphism of `.
As shown by Fukaya and Kato in [17, Th. 4.2.26], the behaviour of local ε-factors implies
that p-adic L-functions can exist only after a suitable extension of scalars. To describe
this we must assume that

(44)

{
the maximal absolutely abelian subfield Kab,p of K in which
p is unramified is finite.

Under this hypothesis we let A denote the valuation ring of the completion at any p-
adic place of the field Kab,p. We set ΛA(K/Q) := A ⊗Zp

Λ(K/Q) and ΛA(K/Q)S∗ :=
A ⊗Zp Λ(K/Q)S∗ and write ∂A,GK/Q : K1(ΛA(K/Q)S∗) → K0(ΛA(K/Q),ΛA(K/Q)S∗)
for the corresponding connecting homomorphism.

7.2.2. Elliptic curves. We first consider the case of the motiveM = h1(E)(1) of an elliptic
curve E over Q with good ordinary reduction at p with K = Q(E(p)) being the extension
of Q which arises by adjoining the p-power division points and we assume that GK/Q does
not contain any element of order p. In this situation the formulation of a (refined) main
conjecture is very explicit since one can work with the dual X(E/K) of the (p-primary)
Selmer group; later we will give another formulation for general critical motives involving
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Selmer complexes. In the present situation one knows that the condition (44) is satisfied
(cf. [13, just before Conj. 5.7]) and also that, if X(E/Kker(ρ)) is finite, then

r(M)(ρ) = dimCp(eρ∗(Cp ⊗Z E(Kker(ρ)))).

Upon combining the leading term computations of [11, Th. 6.5] with [17, Th. 4.2.22]
and the general approach of [13] we are led to formulate the following conjecture.

Conjecture 7.3. Fix a field K in FQ that is unramified outside a finite set of places Σ
and is such that GK/Q has no element of order p. Then, under the above conditions, the
module X(E/K) belongs to MS∗(GK/Q). Further, there exists an element L = L(E) of
K1(ΛA(K/Q)S∗) which satisfies both of the following conditions:

(a) At each Artin representation ρ of GK/Q, the value at T = 0 of T−r(M)(ρ)Φρ(L)
is equal to

(−1)r(M)(ρ)
L∗B,Υ(M(ρ∗))

Ω∞(M(ρ∗))R∞(M(ρ∗))
· Ωp(M(ρ∗))Rp(M(ρ∗)) ·

PL,p(Ŵ ∗
ρ (1), 1)

PL,p(Ŵρ, 1)
,

where L∗B,Υ(M(ρ∗)) is the leading coefficient at s = 0 of the complex L-function
of M(ρ∗), truncated by removing Euler factors for all primes in Υ.

(b) ∂A,GK/Q(L) = [ΛA(K/Q)⊗Λ(K/Q) X(E/K)].

Remark 7.4. The interpolation formula in Conjecture 7.3(a) can of course also be stated
in terms of the classical Hasse-Weil L-functions and their twists L(E, ρ∗, s) in the sense of
[13, (102)] (which is the same as the L-function attached to the B-motive h1(E)⊗ [ρ]∗);
due to the shift one now has to consider the leading term L∗(E, ρ∗) of L(E, ρ∗, s) at
s = 1. Moreover, one can simplify the above expression and make it more explicit. To
this end we let u in Zp be the unit root of the polynomial 1−apX+pX2 where, as usual,
p + 1 − ap = #Ẽp(Fp) with Ẽp denoting the reduction of E modulo p. Furthermore we
write pfρ for the p-part of the conductor of ρ and εp(ρ) for the local ε-factor of ρ at the
prime p. Moreover, let d+(ρ) and d−(ρ) denote the dimension of the subspace of [ρ]λ on
which complex conjugation acts by +1 and −1, respectively. We denote the periods of
E by

Ω+(E) :=
∫
γ+
ω, Ω−(E) :=

∫
γ−
ω

where ω is the Néron differential and γ+ and γ− denote a generator for the subspace of
H1(E(C),Z) on which complex conjugation acts as +1 and −1 respectively. Finally, we
write R∞(E, ρ∗) and Rp(E, ρ∗) for the complex and p-adic regulators of E twisted by
ρ∗. Then the displayed expression in Conjecture 7.3(a) is equal to

(45) (−1)dimCp (eρ∗ (Cp⊗ZE(Kker(ρ)))) L∗R(E, ρ∗)
Ω+(E)d+(ρ)Ω−(E)d−(ρ)R∞(E, ρ∗)

× εp(ρ)u−fρRp(E, ρ∗)
PL,p([ρ]λ, u−1)
PL,p([ρ]∗λ, up−1)

.

Here L∗R(E, ρ∗) is the leading coefficient at s = 1 of the L-function LR(E, ρ∗, s) obtained
from the Hasse-Weil L-function of E twisted by ρ∗ by removing the Euler factors at p
and at all primes ` at which the j-invariant jE of E in non-integral. See [17, Rem. 4.2.27]
with u = α for the calculation of Ωp(M(ρ∗)).
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Before stating the next result we recall that the explicit interpolation formula given in
the main conjecture of [13, Conj. 5.8] requires minor modification. To be precise, one
must interchange all occurrences of ρ and ρ̂ on the right hand side of the equality of [loc.
cit., (107)] except for the term ‘ep(ρ)’ (for further details see the footnote at the end of
§6.0 in [33]).

Proposition 7.5. Assume the hypotheses of Conjecture 7.3. Assume also that for
all Artin representations ρ of GK/Q the ‘order of vanishing part’ of the Birch and
Swinnerton-Dyer Conjecture for E(ρ∗) holds. Then Conjecture 7.3 implies the ‘main
conjecture of non-commutative Iwasawa theory’ of [13, Conj. 5.8] (modified as above).

Proof. In this case Υ is the set comprising the prime p and all prime numbers q with
ordq(jE) < 0 (see also [17, 4.5.3] or [33, Rem. 6.5]). In view of Remark 7.4 the only
essential difference between the two conjectures is therefore that Conjecture 7.3 involves
an interpolation formula for ((r(M)(ρ)!)−1 times) the value at T = 0 of the r(M)(ρ)-th
derivative of Φρ(L) rather than merely for the value at T = 0 of Φρ(L) itself as in [13,
Conj. 5.8]. (Note that the conjectured value at T = 0 of T−r(M)(ρ)Φρ(L) should be the
leading term at T = 0 of Φρ(L) only if Rp(M(ρ∗)) 6= 0.)
At the outset we note that r(Φρ(L)) ≥ dimCp(eρ∗(E(Kker(ρ)) ⊗Z Cp)) ≥ 0 because the
given interpolation formula has no pole. In particular, L does not have ∞ as its value at
any ρ. We also note that the ‘order of vanishing part’ of the Birch and Swinnerton-Dyer
Conjecture for E(ρ∗) implies that the order of vanishing of LR(E, ρ∗, s) at s = 1 is equal
to dimCp(eρ∗(Cp ⊗Z E(Kker(ρ)))).
We now assume that eρ∗(Cp ⊗Z E(Kker(ρ))) vanishes. Then both Rp(M(ρ∗)) = 1 and
R∞(M(ρ∗)) = 1. Also, the leading term L∗R(E, ρ∗) is in this case equal to the value at
s = 1 of LR(E, ρ∗, s). Hence, the interpolation formula (45) coincides with that given in
[13, Conj. 5.8].
On the other hand, if eρ∗(Cp ⊗Z E(Kker(ρ))) 6= 0, then r(Φρ(L)) > 0 and so the value of
L at ρ is equal to 0. In addition, in this case the function LR(E, ρ∗, s) vanishes at s = 1
and so the interpolation formula of [13, Conj. 5.8] also implies that the value of L at ρ
is equal to 0, as required. �

7.2.3. The general case. We return to the more general case discussed in §7.2.1. We fix
a full Galois stable Zp-sublattice T of V and define a GQp

-stable Zp-sublattice of V̂ by
setting T̂ := T ∩ V̂ . As before we let T denote the Galois representation Λ(K/Q)⊗Zp T

and set T̂ := Λ(K/Q)⊗Zp
T̂ similarly. Then T̂ is a GQp

-stable Λ(K/Q)-submodule of T.
For the definition of the Selmer complex SCU := SCU (T̂,T), which is originally due to
Nekovář [24], we refer the reader to either [17, 4.1.2] or [11, (31)].

Conjecture 7.6 (General formulation for critical motives). Fix a field K in FQ that
is unramified outside a finite set of places Σ. Then, under the above conditions, the
complex SCU belongs to Dp

S∗(Λ(K/Q)). Further, there exists an element ξ = ξ(U,M) of
K1(ΛA(K/Q)S∗) which satisfies both of the following conditions:

(a) At each Artin representation ρ : GK/Q → GLn(O) for which neither PL,p(Ŵρ, 1)
or PL,p(Wρ, 1) is equal to 0 the value at T = 0 of T−r(M)(ρ)Φρ(ξ) is equal to

(−1)r(M)(ρ)
L∗B,Σ(M(ρ∗))

Ω∞(M(ρ∗))R∞(M(ρ∗))
· Ωp(M(ρ∗))Rp(M(ρ∗)) · Γ(V̂ )−1 ·

PL,p(Ŵ ∗
ρ (1), 1)

PL,p(Ŵρ, 1)
,
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where L∗B,Σ(M(ρ∗)) is the leading coefficient of the complex L-function of M(ρ∗),
truncated by removing Euler factors for all primes in Σ \ {∞}.

(b) ∂A,GK/Q(ξ) = χ(ΛA(K/Q)⊗Λ(K/Q) SCU ).

Proposition 7.7. If M = h1(E)(1) and K = Q(E(p)) are as in Conjecture 7.3, then
Conjecture 7.6 is equivalent to Conjecture 7.3.

Proof. We note first that [17, Prop. 4.3.7] implies the complex SCU belongs to
Dp
S∗(Λ(K/Q)) precisely when the module X(E/K) belongs to MHK/Q(GK/Q) =

MS∗(GK/Q). Also, SCU differs from the complex SC(T̂,T) in loc. cit. only by local
terms which belong to MS∗(GK/Q) (by [17, Prop. 4.3.6]) and have characteristic ele-
ments (denoted ζ(`,K/Q) in loc. cit.) that correspond to the Euler-factors PL,`(Wρ, s)
and whose values PL,`(Wρ, 1) at ρ are neither 0 or ∞ (by [17, Lem. 4.2.23]). To deduce
the claimed result from here one need only note that ΓQp(V̂ ) = 1 in this case and recall
(from [17, Prop. 4.3.15-18]) that the class of SC(T̂,T) in K0(MS∗(GK/Q)) is equal to
[X(E/K)]. �

8. Equivariant Tamagawa numbers

Let F/k be a finite Galois extension of number fields. Then for any motive M defined
over k the equivariant Tamagawa number conjecture of [9, Conj. 4.1(iv)] asserts the
vanishing of an element TΩ(MF ,Z[GF/k]) of K0(Z[GF/k],R[GF/k]) that is constructed
from the various realisations and comparison isomorphisms associated to the motive
MF := F ⊗kM . Here MF is regarded as defined over k and endowed with a natural left
action of Q[GF/k] (via the first factor).
Now the product over all primes p and all field isomorphisms j : C ∼= Cp of the composite
homomorphism

j∗ : K0(Z[GF/k],R[GF/k])→ K0(Z[GF/k],C[GF/k])

−→ K0(Z[GF/k],Cp[GF/k])→ K0(Zp[GF/k],Cp[GF/k])

is injective, where the second map is induced by j (cf. [4, Lem. 2.1]). To prove [9,
Conj. 4.1(iv)] it therefore suffices to prove that j∗(TΩ(MF ,Z[GF/k])) = 0 for every such
j. This reduction has the further advantage that the element j∗(TΩ(MF ,Z[GF/k]))
can be directly defined without assuming the ‘Coherence Hypothesis’ of [9, §3.3] that is
necessary to define TΩ(MF ,Z[GF/k]) (cf. [9, Rem. 8]). However, even if one assumes
the standard compatibility conjectures concerning the definition of Euler factors (cf. [9,
Conj. 3]), the definition of j∗(TΩ(MF ,Z[GF/k])) is in general still conditional, being
dependent upon the conjectural existence of a fundamental exact sequence relating the
motivic cohomology spaces of MF and its Kummer dual [9, Conj. 1] and of canonical
p-adic Chern class isomorphisms [9, Conj. 2]. In particular, since we are assuming here
that the element j∗(TΩ(MF ,Z[GF/k])) is well-defined, the results that we prove in this
section will not shed any new light on either of [9, Conj. 1, Conj. 2].

8.1. Tate motives. In this subsection we fix a finite Galois extension F/k of to-
tally real number fields and write Q(1)F for the motive h0(SpecF )(1), regarded
as defined over k and with coefficients Q[GF/k]. We recall that all of the con-
jectures necessary for the definition of TΩ(Q(1)F ,Z[GF/k]) are known to be valid
and hence that j∗(TΩ(Q(1)F ,Z[GF/k])) is defined unconditionally as an element of
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K0(Zp[GF/k],Cp[GF/k]). For a discussion of various explicit consequences of the van-
ishing of TΩ(Q(1)F ,Z[GF/k]) see [4].

Theorem 8.1. Let K be any field which belongs to F+
k , contains F and is such that

GK/k has no element of order p (such a field K exists by virtue of Lemma 6.1). If
K validates Conjecture 7.1 and F validates Leopoldt’s Conjecture (at p), then one has
j∗(TΩ(Q(1)F ,Z[GF/k])) = 0.

Proof. For any quotient G of GK/k we write Λ(G)#(1) for the Λ(G)-module Λ(G) endowed
with the following action of Gk: each σ in Gk acts on Λ(G)#(1) as right multiplication
by the element χcyc(σ)σ̄−1 where σ̄ denotes the image of σ in G. If K ′ is the subfield of
K with GK′/k = G and Ok,Σ is the subring of k comprising elements that are integral
at all places outside Σ then, following Fukaya and Kato [17, §2.1.1] and Nekovář [24],
the compact support cohomology complex CK′ := RΓc,ét(Ok,Σ,Λ(G)#(1)) is an object
of Dp(Λ(G)) that lies in a canonical exact triangle in D(Λ(G)) of the form

(46) CK′ → RΓét(Ok,Σ,Λ(G)#(1))→
⊕
v∈Σ

RΓét(kv,Λ(G)#(1))→ CK′ [1].

In the sequel we use the following facts: there is a natural isomorphism in Dp(Λ(G)) of
the form

(47) Λ(G)⊗L
Λ(K/k) CK

∼= CK′ ;

in each degree i there is a natural isomorphism Hi(CK) ∼= lim←−K′ H
i(CK′) where K ′ runs

over all finite degree Galois extensions K ′/k with K ′ ⊆ K and the limit is taken with
respect to the natural corestriction maps; for each such K ′ there are natural identifi-
cations Hi(CK′) ∼= Hi

c,ét(OK′,Σ,Zp(1)), Hi(RΓét(Ok,Σ,Λ(G)#(1))) ∼= Hi
ét(OK′,Σ,Zp(1))

and Hi(RΓét(kv,Λ(G)#(1))) ∼=
⊕

w|vH
i
ét(K

′
w,Zp(1)). In particular, by a standard com-

putation (involving Kummer theory, class field theory and arithmetic duality) one obtains
canonical identifications

(48) Hi(CK′) ∼=


ker(λK′), i = 1
XΣ(K ′), i = 2
Zp, i = 3
0, otherwise,

where λK′ is the diagonal map from OK′ [ 1p ]
× ⊗ Zp to the direct sum over w ∈ Sp(K ′)

of the pro-p-completion (K ′
w)×⊗̂Zp of (K ′

w)× and XΣ(K ′) is the Galois group of the
maximal abelian pro-p extension of K ′ that is unramified outside Σ. By passing to the
limit over K ′ ⊂ K one finds that Hi(CK) is acyclic outside degrees 2 and 3 and that its
cohomology in degrees 2 and 3 is canonically isomorphic to XΣ(K) and Zp respectively.
The first claim of Conjecture 7.1 is therefore equivalent to asserting that CK belongs
to Dp

S∗(Λ(K/k)). In addition, since χ(CK) =
∑
i∈Z(−1)i[Hi(CK)], Conjecture 7.1(b)

asserts that ∂GK/k
(ξ) = χ(CK) + [Zp] or equivalently, by Proposition 4.7(ii)(a) and (b),

that

(49) ∂GK/k
(ξ′) = χ(CK)

with ξ′ := charGK/k,γk
(Zp[0]) · ξ.

In the next result we set ck := logp(χcyc(γk)).
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Lemma 8.2. Assume Leopoldt’s Conjecture is valid for F (at p) and fix an Artin repre-
sentation ρ : GK/k → GLn(O) such that Vρ is an irreducible representation of GF/k.

(i) Conjecture 7.1(a) implies that (ξ′)∗(ρ) = c
−〈ρ,1〉
k Ωj(ρ)L∗Σ(1, ρj

−1
)j .

(ii) If ρ is non-trivial, then Qp⊗L
Λ(Γk)CK,ρ is acyclic and hence CK is semisimple at

ρ, rGK/k
(CK)(ρ) = 0 and t(CK,ρ) is the canonical morphism.

(iii) If ρ is trivial, then Qp ⊗L
Λ(Γ) CK,ρ is acyclic outside degrees 2 and 3 and its

cohomology in degrees 2 and 3 identifies with Qp⊗Zp cok(λk) and Qp respectively.
Further, CK is semisimple at ρ, rGK/k

(CK)(ρ) = 1 and (−1)×t(CK,ρ) is induced
by the isomorphism β : Qp ⊗Zp cok(λk) → Qp that sends each element (xv)v of∏
v∈Sp(k) k

×
v to c−1

k

∑
v logp(Nv(xv)) with Nv the field-theoretic norm k×v → Q×

p .

Proof. Leopoldt’s Conjecture implies that the determinant Ωj(ρ) and hence also the
product (c〈ρ,1〉k cρ,k)−1Ωj(ρ)L∗Σ(1, ρj

−1
)j in Conjecture 7.1(a) is non-zero. The latter con-

jecture therefore implies that ξ∗(ρ) = ξ(ρ) = (c〈ρ,1〉k cρ,k)−1Ωj(ρ)L∗Σ(1, ρj
−1

)j . Next we
observe that claim (i) is a consequence of the equality

(50) Φρ(charGK/k,γk
(Zp[0])) =

{
1− ρ(γ−1

k )(1 + T )−1, if HK/k ⊆ ker(ρ),
1, otherwise.

Indeed, if (50) is true, then charGK/k,γk
(Zp[0])∗(ρ) = cρ,k and so claim (i) follows from the

obvious equalities (ξ′)∗(ρ) = (charGK/k,γk
(Zp[0]) · ξ)∗(ρ) = charGK/k,γk

(Zp[0])∗(ρ)ξ∗(ρ).
To prove (50) we regard Mρ := Λ(Γk) ⊗Zp

Mn(O) as a (ΛO(Γk),Λ(HK/k))-bimodule,
where the (left) action of ΛO(Γk) is clear and the (right) action of each element h of
HK/k is via x⊗ y 7→ x⊗ yρ(h). Then the definition of charGK/k,γk

(Zp[0]) combines with
the definition of Φρ to imply that

(51) Φρ(charGK/k,γk
(Zp[0]))

= detQ(O[[T ]])(id⊗ id− id⊗ θ | Q(O[[T ]])⊗ΛO(Γ) (Mρ ⊗Λ(HK/k) Zp))

where θ is the endomorphism of Mρ⊗Λ(HK/k) Zp = (Λ(Γk)⊗Zp
Mn(O))⊗Λ(HK/k) Zp that

sends each element (x⊗ y)⊗ z to (xγ−1
k ⊗ yρ(γ̃

−1
k ))⊗ z (this recipe is independent of the

choice of lift γ̃k of γk through GK/k → Γk).
Now Vρ is irreducible and HK/k is normal in GK/k and so Mρ ⊗Λ(HK/k) Qp is either
canonically isomorphic to Mρ ⊗Zp

Qp or vanishes depending on whether HK/k ⊆ ker(ρ)
or not. Thus, if HK/k 6⊂ ker(ρ), then (51) implies Φρ(charGK/k,γk

(Zp[0])) is the deter-
minant of an endomorphism of the zero space and so equal to 1. On the other hand, if
HK/k ⊆ ker(ρ), then n = 1 (since Γk is abelian and Vρ is irreducible) and so (51) implies
Φρ(charGK/k,γk

(Zp[0])) is the determinant of the endomorphism of Q(O[[T ]]) given by
multiplication by 1− ρ(γ−1

k )(1 + T )−1. The required equality (50) is therefore clear.
To prove claims (ii) and (iii) we note that in each degree i the isomorphism (47) induces
an identification Hi(Qp ⊗L

Λ(Γk) CK,ρ) ∼= Hi(CF )ρ. Further, if Leopoldt’s Conjecture is
valid for F , then ker(λF ) vanishes and Qp ⊗Zp XΣ(F ) is a trivial GF/k-module and so
the explicit descriptions of (48) with K ′ = F imply CF is acyclic outside degrees 2 and 3
and moreover that each space Hi(CF )ρ vanishes if ρ is non-trivial. This proves the first
assertion of claim (ii) and then all remaining assertions of claim (ii) follow immediately
from [11, Lem. 3.13]. Also the long exact cohomology sequence of (46) induces an
identification H2

c,ét(Ok,Σ,Qp(1)) ∼= cok(λk) ⊗Zp Qp and, if we use (47) with K ′ = kcyc



non-commutative main conjectures 37

to identify CK,ρ with Ckcyc , then [11, Lem. 3.13] implies that all remaining assertions of
claim (iii) will follow if we can show that the given isomorphism β is equal to −1 times
the Bockstein homomorphism β2

∆k,c
in degree 2 of the canonical exact triangle

∆k,c : Qp ⊗Zp RΓc,ét(Ok,Σ, Tk)
γk−1−−−→ Qp ⊗Zp

RΓc,ét(Ok,Σ, Tk)→ RΓc,ét(Ok,Σ,Qp(1))→

where Tk := Λ(kcyc/k)#(1). Now the argument of [11, §3.2.1] shows that β2
∆k,c

is equal
to the homomorphism H2

c,ét(Ok,Σ,Qp(1)) → H3
c,ét(Ok,Σ,Qp(1)) induced by taking cup-

product with the element ϕk of H1
ét(Ok,Σ,Zp) = Homcts(MΣ(k),Zp) obtained by com-

posing the projection MΣ(k) → Γk with the continuous homomorphism Γk → Zp that
sends γk to 1. Since cup products commute with corestriction we therefore obtain a
commutative diagram

H2
c,ét(Ok,Σ,Qp(1))

β2
∆k,c−−−−→ H3

c,ét(Ok,Σ,Qp(1))

κ2

y κ3

y
H2
c,ét(ZΣ′ ,Qp(1))

d−1
k β2

∆Q,c−−−−−−→ H3
c,ét(ZΣ′ ,Qp(1))

in which Σ′ is the set of rational places lying below those in Σ, ∆Q,c denotes the exact
triangle obtained from ∆k,c by replacing k and Σ by Q and Σ′ respectively, the vertical
arrows are the natural corestriction maps and dk occurs in the lower row because the
restriction of ϕQ ∈ H1

ét(OQ,Σ,Zp) to H1
ét(Ok,Σ,Zp) is equal to ϕdk

k (since γk = γdk

Q ). But,
with respect to the canonical identifications H2

c,ét(Ok,Σ,Qp(1)) ∼= cok(λk) ⊗Zp Qp and
H3
c,ét(Ok,Σ,Qp(1)) ∼= Qp (and similarly with k and Σ replaced by Q and Σ′), the map

κ2 is induced by the norm maps Nv : k×v → Q×
p and κ3 is the identity map. Thus,

since dk × cQ = ck, it is enough for us to prove that (−1) × β2
∆Q,c

is induced by the
homomorphism c−1

Q · logp : Q×
p → Qp. To compute β2

∆Q,c
explicitly we use the morphism

of natural exact triangles

(52)

RΓét(Qp, TQ)
γQ−1−−−→ RΓét(Qp, TQ) −→ RΓét(Qp,Zp(1)) −→y y θ

y
RΓc,ét(ZΣ′ , TQ)[1]

γQ−1−−−→ RΓc,ét(ZΣ′ , TQ)[1] −→ RΓc,ét(ZΣ′ ,Zp(1))[1] −→
in which each vertical morphism is induced by the definition of compact support coho-
mology. Indeed, from the long exact cohomology sequences of the rows in this diagram
we obtain a commutative diagram

H1
ét(Qp,Qp(1))

Qp⊗ZpH
1(θ)

−−−−−−−−→ H2
c,ét(ZΣ′ ,Qp(1))

β1

y y(−1)×β2
∆Q,c

H2
ét(Qp,Qp(1))

Qp⊗ZpH
2(θ)

−−−−−−−−→ H3
c,ét(ZΣ′ ,Qp(1)).

Here Qp⊗Zp
H1(θ) identifies with the natural surjection H1

ét(Qp,Qp(1)) ∼= (Q×
p ⊗̂Zp)⊗Zp

Qp → cok(λQ)⊗Zp
Qp
∼= H2

c,ét(ZΣ′ ,Qp(1)), Qp⊗Zp
H2(θ) is induced by the identifications

H2
ét(Qp,Qp(1)) ∼= Qp and H3

c,ét(ZΣ′ ,Qp(1)) ∼= Qp and the identity map on Qp, β1 is the
Bockstein homomorphism in degree 1 of the image under Qp ⊗Zp − of the upper row of
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(52) and the factor −1 occurs on the right hand vertical arrow because of the 1-shift in
the lower row of (52). To complete the proof of claim (iii) it thus suffices to recall that
the homomorphism β1 is induced by c−1

Q · logp (for a proof of this fact see, for example,
[10, p. 352]). �

Returning to the proof of Theorem 8.1 we now apply Theorem 2.2 to the conjectural
equality (49). By taking into account the canonical isomorphism (47) with K ′ = F and
the explicit descriptions given in Lemma 8.2 we therefore deduce that

(53) ∂GF/k
((c−〈ρ,1〉k Ωj(ρ)L∗Σ(1, ρj

−1
)j)ρ∈Irr(GF/k)) = −[dZp[GF/k](CF ), β∗]

where β∗ is the morphism dCp[GF/k](Cp[GF/k]⊗L
Zp[GF/k] CF )→ 1Cp[GF/k] that is induced

by the isomorphism

Qp ⊗Zp H
2(CF ) ∼= Qp ⊗Zp cok(λk)

β−→ Qp
∼= Qp ⊗Zp H

3(CF )

coming from Lemma 8.2(ii) and (iii). But the proof of [11, Th. 5.5] shows that (53) is
equivalent to an equality of the form [dZp[GF/k](CF ), β′∗] = 0 where β′∗ = (β′ρ)ρ∈Irr(GF/k)

under the identification (4) and each β′ρ is the explicit morphism described in [11, (25)].
The fact that (53) implies the vanishing of the element j∗(TΩ(Q(1)F ,Z[GF/k])) then
follows directly upon explicitly comparing the definition of TΩ(Q(1)F ,Z[GF/k]) with
that of each morphism β′ρ. This therefore completes the proof of Theorem 8.1. �

We end this subsection by noting that the above computations show that the correct
generalisation of Conjecture 7.1 (to groups with an element of order p) is the following.

Conjecture 8.3. Fix a totally real number field k and a field K in F+
k that is unramified

outside a finite set of places Σ. Then CK belongs to Dp
S∗(Λ(K/k)). Further, there exists

an element ξ′ of K1(Λ(K/k)S∗) which satisfies both of the following conditions.
(a) At each Artin representation ρ of GK/k one has

ξ′(ρ) = logp(χcyc(γk))−〈ρ,1〉Ωj(ρ)L∗Σ(1, ρj
−1

)j .

(b) ∂GK/k
(ξ′) = χ(CK).

This conjecture is compatible with that formulated (in the case that GK/k has rank one)
by Ritter and Weiss in [25, §4]. For further details see [8].

8.2. Critical Motives. In this subsection we assume the notation and hypotheses
of Conjecture 7.6 and fix a subfield F of K that is both Galois and of finite degree
over Q. We set T̂F := Λ(F/Q) ⊗Zp

T̂ ∼= Λ(F/Q) ⊗Λ(K/Q) T̂. We write Z = Zρ and
Z̃ = Z̃ρ for the Kummer duals W ∗

ρ (1) and Ŵ ∗
ρ (1) of Wρ and Ŵρ respectively; finally

we set W̃ = W̃ρ := Wρ/Ŵρ. In terms of the notation of [11] we consider the following
assumption on Wρ.

Assumption (W): For each ρ in Irr(GF/Q) the spaceW = Wρ satisfies all of the following
conditions:-

(A1) P`(W, 1)P`(Z, 1) 6= 0 for all primes ` 6= p,
(B1) Pp(W, 1)Pp(Z, 1) 6= 0,
(C1) Pp(W̃ , 1)Pp(Z̃, 1) 6= 0 and
(D2) H0

f (Q,W ) = H0
f (Q, Z) = 0.
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In the following result we write ιA : K0(Zp[GF/Q],Cp[GF/Q])→ K0(A[GF/Q],Cp[GF/Q])
for the canonical homomorphism obtained by regarding A as a subring of Cp. We also
recall that [9, Conj. 4(iii)] (which is a natural equivariant version of the Deligne-Beilinson
Conjecture) for the motiveMF , regarded as defined over Q and with an action of Q[GF/Q],
implies that the element j∗(TΩ(MF ,Z[GF/Q])) belongs to the image of the natural map
K0(Zp[GF/Q],Qp[GF/Q])→ K0(Zp[GF/Q],Cp[GF/Q]).

Theorem 8.4. Assume that

• Assumption (W) is valid;
• the complex SCU is semi-simple at all ρ in Irr(GF/Q);
• an ε-isomorphism

εp,Zp[GF/Q](T̂F ) : 1Zp[GF/Q] → dZp[GF/Q](RΓ(Qp, T̂F ))dZp[GF/Q](T̂F )

in the sense of [17, Conj. 3.4.3] exists;
• Conjecture 7.6 is valid for the motive M and the extension K/Q.

Then ιA(j∗(TΩ(MF ,Z[GF/Q]))) vanishes. Further, if j∗(TΩ(MF ,Z[GF/Q])) belongs to
the image of the natural map K0(Zp[GF/Q],Qp[GF/Q])→ K0(Zp[GF/Q],Cp[GF/Q]), then
j∗(TΩ(MF ,Z[GF/Q])) vanishes.

Proof. We fix an element ξ as in Conjecture 7.6. Since SCU is semisimple at each ρ in
Irr(GF/Q), the obvious analogue of Theorem 2.2 with A in place of Zp combines with
Conjecture 7.6(b) to imply that

∂GF/Q((ξ∗(ρ))ρ∈Irr(GF/Q)) = −ιA([dZp[GF/Q](SCU (T̂F ,TF )), t(SCU (T̂F ,TF ))GF/Q ]).

After unwinding the identification (2), this means that there exists a morphism in
V (A[GF/Q])

ψ : 1A[GF/Q] → dA[GF/Q](A[GF/Q]⊗Zp[GF/Q] SCU (T̂F ,TF ))

such that

(ξ∗(ρ)−1)ρ∈Irr(GF/Q) = t(SCU (T̂F ,TF ))GF/Q ◦ ψCp[GF/Q]

∈ AutV (Cp[GF/Q])(1Cp[GF/Q]) ∼= K1(Cp[GF/Q])

under the identification (4). After recalling the explicit definition of the morphism
t(SCU (T̂F ,TF ))GF/Q given in Theorem 2.2 and then taking inverses we obtain a mor-
phism in V (A[GF/Q])

ψ−1 : 1A[GF/Q] → dA[GF/Q](A[GF/Q]⊗Zp[GF/Q] SCU (T̂F ,TF ))−1

such that

(−1)rG(SCU )(ρ)ξ∗(ρ) = t(SCU (ρ∗))−1 ◦ ψ−1(ρ) ∈ AutV (Cp)(1Cp
) ∼= C×

p

for all ρ in Irr(GF/Q). Here we write ψ−1(ρ) for the ρ-component of the morphism
1Cp[GF/Q] → dCp[GF/Q](Cp[GF/Q]⊗Zp[GF/Q] SCU (T̂F ,TF ))−1 that is induced by ψ−1. This
is equivalent to asserting the existence of a morphism in V (A[GF/Q])

ψ′ : 1A[GF/Q] → dA[GF/Q](A[GF/Q]⊗Zp[GF/Q] RΓc(U,TF ))−1
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such that for all ρ in Irr(GF/Q) the composite morphism

(54) 1Cp

ψ′(ρ)Cp−−−−−→ dL(RΓc(U,Wρ))−1
Cp

β(ρ)ε(T̂)−1(ρ)−−−−−−−−−→ dL(SCU (Ŵρ,Wρ))−1
Cp

t(SCU (ρ∗))−1
Cp−−−−−−−−−→ 1Cp

corresponds to (−1)rG(SCU )(ρ)ξ∗(ρ). In this displayed expression we write ε(T̂)(ρ) for
Vρ∗⊗Zp[GF/Q] εp,Zp[GF/Q](T̂F ) and β(ρ) for Vρ∗⊗Zp[GF/Q] (Zp[GF/Q]⊗Λ(G)β) ∼= Vρ∗⊗Λ(G)β

with β the morphism dΛ(T+)Λ̃ ∼= dΛ(T̂)Λ̃ that is defined in [11, (35)], and all underlying
identifications are as explained in [11, §6].
Now the hypothesis that SCU is semisimple at ρ combines with the assumption (W), the
duality isomorphism H3

f (Q,W ) ∼= H0
f (Q, Z) and the results of [11, Lem. 6.7 and Lem.

3.13(ii)] to imply that the algebraic rank r(M)(ρ) defined in (43) is equal to rG(SCU )(ρ),
that [11, Condition (F)] is satisfied and that the value at T = 0 of T−r(M)(ρ)Φρ(ξ) is
equal to the leading term ξ∗(ρ). Conjecture 7.6(a) therefore gives an explicit formula for
ξ∗(ρ). Taking this formula into account, one can compare the composite morphism (54)
to the first displayed morphism after [11, Lem. 6.8]. After unwinding the proof of [11,
Th. 6.5] (for which we use assumption (W)) this comparison shows that

ψ′(ρ) = ϑλ(M(ρ∗))Cp ◦ ζK(M(ρ∗))Cp

for all ρ in Irr(GF/Q), where ϑλ(M(ρ∗))Cp
and ζK(M(ρ∗))Cp

are the morphisms that occur
in [11, Conj. 4.1]. Finally we note that the validity of the last displayed equality (for
all ρ in Irr(GF/Q)) is equivalent to asserting that the element ιA(j∗(TΩ(MF ,Z[GF/Q])))
vanishes (by the very definition of the latter element). This proves the first claim of the
theorem.
The second claim of Theorem 8.4 will now follow if we can show that the natural com-
posite homomorphism

K0(Zp[GF/Q],Qp[GF/Q])→ K0(Zp[GF/Q],Cp[GF/Q]) ιA−→ K0(A[GF/Q],Cp[GF/Q])

is injective. To do this we write F for the field of fractions of A (so F ⊂ Cp).
Then, since the natural scalar extension map K1(F [GF/Q]) → K1(Cp[GF/Q]) is in-
jective, the exact commutative diagram (1) with R = A[GF/Q], R′ = F [GF/Q] and
R′′ = Cp[GF/Q] implies that the natural homomorphism K0(A[GF/Q], F [GF/Q]) →
K0(A[GF/Q],Cp[GF/Q]) is also injective. It therefore suffices to prove that the nat-
ural homomorphism K0(Zp[GF/Q],Qp[GF/Q]) → K0(A[GF/Q], F [GF/Q]) is injective.
But, since A/Zp is unramified, this is an immediate consequence of a result of M.
Taylor [31, Chap. 8, Th. 1.1]. Indeed, one need only note that the groups
K0(Zp[GF/Q],Qp[GF/Q]) and K0(A[GF/Q], F [GF/Q]) are naturally isomorphic to the
Grothendieck groups K0T (Zp[GF/Q]) and K0T (A[GF/Q]) which occur in loc. cit. �

Remark 8.5. If M = h1(A) for an abelian variety A that has good ordinary reduction
at p and is such that the Tate-Shafarevich group X(A/F ) of A over F is finite, then the
vanishing of j∗(TΩ(MF ,Z[GF/Q])) implies the ‘p-part’ of a Birch and Swinnerton-Dyer
type formula (see, for example, [33, §3.1]). However, Conjecture 7.6 does not itself imply
that X(A/F ) is finite.

Remark 8.6. Explicit consequences of Conjecture 7.6 for the values (at s = 1) of twisted
Hasse-Weil L-functions have been described by Coates et al in [13], by Kato in [20] and
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by Dokchister and Dokchister in [16]. However, all of the consequences described in
[13, 16, 20] become trivial when the L-functions vanish. One of the key advantages of
Theorem 8.4 is that in many of these cases it can be combined with the approach of [7] to
show that Conjecture 7.6 implies a variety of explicit (and highly non-trivial) congruence
relations between values of derivatives of twisted Hasse-Weil L-functions. Such explicit
(conjectural) congruences will be considered elsewhere.

Remark 8.7. Following Theorem 8.4 it is of some interest to study elements in K-theory
of the form TΩ(h1(E/F )(1),Z[GF/Q]) with E an elliptic curve over Q and F/Q a finite
non-abelian Galois extension. The study of such elements is however still very much in
its infancy. Indeed, the only explicit computation that we are currently aware of is the
following. Let E be the elliptic curve y2 + y = x3 − x2 − 10x − 20 (this is the curve
11A1 in the sense of Cremona [14]). Then, with F equal to the splitting field of the
polynomial x3− 4x− 1, the group GF/Q is dihedral of order 6 and Navilarekallu [23] has
proved numerically that if X(E/F ) is trivial, then the element TΩ(h1(E/F )(1),Z[GF/Q])
vanishes.

Appendix A. Determinant functors

In this appendix we recall the formalism of determinant functors introduced by Fukaya
and Kato in [17] and used in [11] (see also [33])
For any ring R we write B(R) for the category of bounded complexes of (left) R-modules,
C(R) for the category of bounded complexes of finitely generated (left) R-modules, P (R)
for the category of finitely generated projective (left) R-modules, Cp(R) for the category
of bounded (cohomological) complexes of finitely generated projective (left) R-modules.
By Dp(R) we denote the category of perfect complexes as full triangulated subcategory
of the derived category Db(R) of B(R). We write (Cp(R), quasi) and (Dp(R), is) for the
subcategory of quasi-isomorphisms of Cp(R) and isomorphisms of Dp(R), respectively.
For each complex C = (C•, d•C) and each integer r we define the r-fold shift C[r] of C
by setting C[r]i = Ci+r and diC[r] = (−1)rdi+rC for each integer i.
We first recall that for any (associative unital) ring R there exists a Picard category CR
and a determinant functor dR : (Cp(R), quasi) → CR with the following properties (for
objects C,C ′ and C ′′ of Cp(R))

A.d) 1 If 0 → C ′ → C → C ′′ → 0 is a short exact sequence of complexes, then
there is a canonical isomorphism dR(C) ∼= dR(C ′)dR(C ′′). which we take as an
identification.

A.e) If C is acyclic, then the quasi-isomorphism 0 → C induces a canonical isomor-
phism 1R → dR(C).

A.f) For any integer r one has dR(C[r]) = dR(C)(−1)r

.
A.g) the functor dR factorizes over the image of Cp(R) in Dp(R) and extends

(uniquely up to unique isomorphisms) to (Dp(R), is).
A.h) For each C in Db(R) we write H(C) for the complex which has H(C)i = Hi(C)

in each degree i and in which all differentials are 0. If H(C) belongs to Dp(R) (in
which case one says that C is cohomologically perfect), then C belongs to Dp(R)

1The listing starts with d) to be compatible with the notation of [33].
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and there are canonical isomorphisms

dR(C) ∼= dR(H(C)) ∼=
∏
i∈Z

dR(Hi(C))(−1)i

.

(For an explicit description of the first isomorphism see [21, §3] or [3, Rem. 3.2].)
A.i) If R′ is any further ring and Y an (R′, R)-bimodule that is both finitely generated

and projective as anR′-module, then the functor Y⊗R− : P (R)→ P (R′) extends
to a commutative diagram

(Dp(R), is) dR−−−−→ CR

Y⊗L
R−

y yY⊗R−

(Dp(R′), is)
dR′−−−−→ CR′ .

In particular, if R → R′ is a ring homomorphism and C is in Dp(R), then we
often write dR(C)R′ in place of R′ ⊗R dR(C).

In [17] a localized K1-group was defined for any full subcategory Σ of Cp(R) which
satisfies the following four conditions:

(i) 0 ∈ Σ,
(ii) if C,C ′ are in Cp(R) and C is quasi-isomorphic to C ′, then C ∈ Σ ⇔ C ′ ∈ Σ,
(iii) if C ∈ Σ, then also C[n] ∈ Σ for all n ∈ Z,
(iv′) if C ′ and C ′′ belong to Σ, then C ′ ⊕ C ′′ belongs to Σ.

Definition A.1. (Fukaya-Kato) Assume that Σ satisfies (i), (ii), (iii) and (iv′). The
localized K1-group K1(R,Σ) is defined to be the (multiplicatively written) abelian group
which has as generators symbols of the form [C, a] for each C ∈ Σ and morphism a :
1R → dR(C) in CR and the following relations:

(0) [0, id1R
] = 1,

(1) [C ′,dR(f) ◦ a] = [C, a] if f : C → C ′ is an quasi-isomorphism with C (and thus
C ′) in Σ,

(2) if 0→ C ′ → C → C ′′ → 0 is an exact sequence in Σ, then

[C, a] = [C ′, a′] · [C ′′, a′′]

where a is the composite of a′ · a′′ with the isomorphism induced by property
A.d),

(3) [C[1], a−1] = [C, a]−1.

We now assume given a left denominator set S of R and let RS := S−1R denote the cor-
responding localization and ΣS the full subcategory of Cp(R) consisting of all complexes
C such that RS ⊗R C is acyclic. For any C in ΣS and any morphism a : 1R → dR(C)
in CR we write θC,a for the element of K1(RS) which corresponds under the canonical
isomorphism K1(RS) ∼= AutCRS

(1RS
) to the composite

1RS
−→ dRS

(RS ⊗R C)→ 1RS

where the first arrow is induced by a and the second by the fact that RS ⊗RC is acyclic.
Then it can be shown that the assignment [C, a] 7→ θC,a induces an isomorphism of
groups

chR,ΣS
: K1(R,ΣS) ∼= K1(RS)
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(cf. [17, Prop. 1.3.7]). Hence, if Σ is any subcategory of ΣS we also obtain a composite
homomorphism

chR,Σ : K1(R,Σ)→ K1(R,ΣS) ∼= K1(RS).
In particular, we often use this construction in the following case: C ∈ ΣS and Σ is
equal to smallest full subcategory ΣC of Cp(R) that contains C and also satisfies the
conditions (i), (ii), (iii) and (iv′) that are described above.

Appendix B. Bockstein homomorphisms

Let A be a noetherian regular ring and assume given an exact triangle in Dp(A)

∆ : C
θ−→ C → D → C[1].

For each integer i we define the Bockstein homomorphism in degree i of ∆ to be the
composite homomorphism

βi∆ : Hi(D)→ ker(Hi+1(θ))→ Hi+1(C)→ cok(Hi+1(θ))→ Hi+1(D)

where the first and fourth maps occur in the long exact sequence of cohomology of ∆
and the second and third are tautological and write

Hbock(∆) : · · ·
βi−1
∆−−−→ Hi(D)

βi
∆−−→ Hi+1(D)

βi+1
∆−−−→ · · ·

for the associated complex (with Hi(D) is placed in degree i). The morphism θ is said
to be ‘semisimple’ if the tautological map ker(Hi(θ)) → cok(Hi(θ)) is bijective in each
degree i. This condition is equivalent to asserting the acyclicity of Hbock(∆). Hence, if
true, there is a composite morphism in V (A) of the form

(55) β∆ : dA(D)→ dA(H(D))→ dA(Hbock(∆))→ 1V (A)

where the first map is as in A.h), the second is the obvious map (induced by the fact that
the complexes H(D) and Hbock(∆) agree termwise) and the third is induced by property
A.e) and the fact that Hbock(∆) is acyclic.

Appendix C. Sign conventions in [11]

Due to a difference of conventions, which unfortunately had not been noticed by the
authors, the following sign conflict has arisen: in [17] for a discrete valuation ring O with
field of fractions L an element c ∈ O \ {0} ⊆ L× corresponds to the class [O c→ O, id]
in K1(L), where the complex is concentrated in degree 0 and 1 (while it is implicitly
concentrated in degrees −1 and 0 in [11, Rem. 2.4]). With this convention, Fukaya and
Kato must define the connecting homomorphism as [C, a] 7→ −[[C]] in order to ensure
that the connecting homomorphism L× = K1(L) → K0(ΣO\{0}) ∼= Z coincides with
the valuation ordL (cf. [17, Rem. 1.3.16]). It follows that in [11, Rem. 2.4] the correct
formula is

ordL(c) = −lengthO(A),
if we identify A with the complex A[0]. For the same reason, the signs in [11, Prop. 3.19]
are incorrect, the correct versions being

χadd(G,C(ρ∗)) = −ordL(L∗(ρ))
and

χmult(G,C(ρ∗)) = |L∗(ρ)|[L:Qp]
p .
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We note also that L := [C, a] ∈ K1(Λ,ΣS∗) is a characteristic element of −[[C]] =
[[C[1]]] (rather than of [[C]]) in K0(ΣS∗) due to the normalisation of the connecting
homomorphism in [17]. For a similar reason we have to add a sign in the formulae of
[loc. cit., (38) and (39)] to obtain the corrected versions

(56) LU,β := LU,β(M) : 1Λ → dΛ(SCU (T̂,T))−1

and

(57) Lβ := Lβ(M) : 1Λ → dΛ(SC(T̂,T))−1

Also in the following convention we need a shift by one: we write LU,β and Lβ for the ele-
ments [SCU [1],LU,β ] and [SC[1],Lβ ] of K1(Λ(G),ΣSCU

) and K1(Λ(G),ΣSC) respectively.
Finally, in the first displayed formula after [11, Lem. 6.8] one has to replace t(SCU (ρ∗))L̃
by t(SCU (ρ∗)[1])L̃ = t(SCU (ρ∗))−1

L̃
.

The authors would like to apologise for these oversights.
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