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Abstract. The aim of this note is to prove certain compatibilities of determinant
functors with spectral sequences and (co)homology thereby extending results of [3]
and refining a description in [9]. It turns out that the determinant behaves as well as
one would have expected in this regard, only that we were not able to find references
for it in the literature. The results are crucial for descent calculations in the context
of Iwasawa theory [12] or Equivariant Tamagawa Number Conjectures [4, 5, 6].

1. Introduction

As a generalisation or rather refinement of Euler-Poincare characteristics determinant
functors have been first studied by Knudsen and Mumford [10] in the context of perfect
complexes of OX -modules on a scheme X. The theory has been generalised by Deligne
[7] and Knudsen [9] to determinants on exact categories with values in commutative
Picard categories. Apart from applications in algebraic geometry determinant functors
are a fundamental technical tool in Burns and Flach’s formulation of Equivariant Tam-
agawa Number Conjectures [4, 5, 6], they have been used in Iwasawa theory by Kato,
Perrin-Riou and Fontaine, Huber and Kings. In particular, for an associative ring R
with unit, Fukaya and Kato present an adhoc construction of determinant functors on
perfect complexes of R-modules in [8]. Witte used yet another approach in his thesis
[15, 14], see also the nice survey article [11]. Determinant functors on triangulated
categories have been constructed by Breuning [2], while the present note is strongly
based on [3], see also [1].

Our motivation for this note stems from descent calculations in Iwasawa theory involv-
ing determinant functors. While from the theoretical point of view it is quite elegant
to work with complexes, e.g. representing Galois cohomology like RΓ(G,T) where G is
the absolute Galois cohomology say of a global or local field and T denotes a big Galois
representation, i.e., a module over some Iwasawa algebra with an additional compati-
ble action by G, it often turns out in praxis that explicit descent calculations involve
cohomology groups Hi(G,T) instead. Thus it seems crucial to the author to clarify
how to compare the descent, i.e., the application of some derived or hyper Tor-functor
to the complex and cohomology groups, respectively. From the technical point of view
it concerns the question how the corresponding Tor-spectral sequence (3.34) behaves
with respect to determinants and to the functor H which associates to a complex its
(co)homology, see (3.35) subsection 3.1. In order to obtain an adequate statement we
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first recall and develop a general description for determinants in spectral sequences in
section 2.

Acknowledgements: The author is grateful to Malte Witte for several helpful suggestions
and over all for pointing out a blunder in an earlier version.

2. Determinants and spectral sequences

2.1. Spectral sequences. Let C = (Cn, ∂n)n∈Z be a filtered cochain complex with
values in some abelian category E , i.e., an object in the category of cochain complexes
together with a decreasing filtration

F : . . . ⊇ F i(C) ⊇ F i+1(C) ⊇ . . .

within this category. We shall assume henceforth that the filtration is bounded, i.e.,
F t(C) = C and F s(C) = 0 for some s, t ∈ Z, as well as that the complex C itself is
bounded - then we shall say for simplicity that C is a bounded filtered complex. We will
now recall some basic facts and notation concerning the associated convergent (weakly
convergent, biregular) cohomological spectral sequence

E·,·r = (Epqr )pq ⇒ Hp+q(C), r ≥ 0

with a specific viewpoint from the perspective of determinants. In particular it is often
useful to consider a spectral sequence as a complex with respect to its total degree

E·r = (Enr , ∂
n), Enr :=

⊕
p

Ep,n−pr , ∂nr :=
⊕

∂p,n−pr .

Recall that we have the canonical identification

Epq0 = F pCp+q/F p+1Cp+q, En0 =
⊕
p

F pCn/F p+1Cn

and that the differentials ∂pqr are induced from ∂n of C. In the sequel we shall need a
couple of different filtrations. To this end we define

Apqr : = ker(F pCp+q → Cp+q+1/F p+rCp+q+1) = F pCp+q ∩ ∂−1(F p+rCp+q+1),

Bpq
r : = ∂Ap−r+1,q+r−2

r−1

and identify

(2.1) Epqr = (Apqr + F p+1Cp+q)/(Bpq
r + F p+1Cp+q) ∼= Apqr /(B

pq
r +Ap+1

r−1).

The differentials of C induce differentials on Ar and Er of degree r such that the
following diagram is commutative

Cp+q
∂ // Cp+q+1

Apqr

����

?�

OO

∂ // Ap+r,q−r+1
r

����

?�

OO

Epqr
∂ // Ep+r,q−r+1

r .
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Consider also the cycle complex Z = Z(C) and boundary complex B = B(C) with
their induces filtration from C as well as the cohomology complex H = H(C) (all with
trivial differentials) with induced filtration via the first of the two canonical complexes

(2.2) 0 // B // Z // H // 0

and

(2.3) 0 // Z // C // B[1] // 0 .

Here, if C is a (cochain) complex, then C[1] denotes the shifted one, i.e., C[1]i = Ci+1

with differential ∂C[1] = −∂C . In other words

F pHn(C) = F pZ +Bn/Bn ∼= F pZn/F pBn

and

(2.4) grpH
n = F pHn/F p+1Hn ∼= F pZn +Bn/F p+1Zn +Bn ∼= Epq∞ , p+ q = n.

As suggested by Knudsen in [9, §3] the derived filtrations F ir(C) = DF ir = DF ir(C),
r ≥ 0, associated to F (C) are probably the most appropriate ones in the context of
determinants and spectral sequences. They are given as follows

∂ // F ir(C
n) := Ap,qr

∂ // F ir(C
n+1) = Ap+r,q−r+1

r
∂ //

where the indices transform always as

p = i+ nr, q = n(1− r)− i, n = p+ q.

Note that F0(C) = F (C). We write grir(C) := griFr
(C) for the associated graded

complexes

∂ // grir(C
n) := F ir(C

n)/F i+1
r (Cn)

∂ // grir(C
n+1) = F ir(C

n+1)/F i+1
r (Cn+1)

∂ //

and set
grr(C) :=

⊕
i

grir(C).

Then according to [9, prop. 3.5] it is easily checked that there is a canonical quasi-
isomorphism

qr : grr(C)→ E·r
of complexes which is induced by the natural projections

Ap,n−pr /Ap+1,n−p−1
r � Ap,n−pr /(Bp,n−p

r +Ap+1,n−p−1
r−1 )

of the summands of the individual objects. In particular, there is a canonical isomor-
phism

H(qr) : H(grr(C)) ∼= (E·r+1, 0)

where both complexes are endowed with trivial differentials.

For later purposes we calculate the kernel of qr or rather its ith component

Ki
r := ker

(
grir(C)→ Ei+·r,·(1−r)−ir

)
such that ker(qr) =

⊕
iK

i
r. Then Ki

r is acyclic and looks like
(2.5)

(Bp−r
r +Ap−r+1

r−1 )/Ap−r+1
r

∂ // (Bp
r +Ap+1

r−1)/Ap+1
r

∂ // (Bp+r
r +Ap+r+1

r−1 )/Ap+r+1
r
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where the middle term is put in degree n and where we omit now and sometimes
later the 2nd superscripts (= n minus the first one) for better readability. We obtain
canonical isomorphisms

(2.6) Ap+1
r−1/A

p+1
r = Ki,n

r /Z(Ki,n
r )

∂
∼=
// B(Ki,n+1

r ) = (Bp+r
r +Ap+r+1

r )/Ap+r+1
r ,

and - on the level of complexes -

(2.7) Ki
r/Z(Ki

r)
∂
∼=

// B(Ki
r)[1].

2.2. Determinants. Recall that a (commutative) Picard category is a groupoid P with
a product ⊗ : P×P → P which satisfies compatible associativity, commutatitivity and
unit constraints, and for which every object in P is invertible, see [9, Appendix A] for
more details. In this note we will in general not explicitly mention the associativity
and commutativity isomorphisms; by the coherence theorem for AC tensor categories
this will not cause any confusion. We fix a unit object 1 = 1P which is unique up to
unique isomorphism. Now we choose a determinant functor [9, 2] d : Eiso → P on E
with values in some (commutative) Picard category and extend it [9, thm. 2.3] to the
category of bounded cochain complexes Cb(E)qis of objects in E where we write ’qis’ for

the quasi-isomorphisms in Cb(E). Roughly speaking we thus have by definition

d(C) =
∏
i

d(Ci)(−1)i

whence we obtain a canonical map

e0 : d(C)
d(F •)∼=

∏
p

d(F pC/F p+1C) = d(E·0, ∂0)

induced from the filtration F • on C. Following [3, prop. 3.1] there is a canonical
isomorphism

ηC : d(C)→ d(H(C))

for each C ∈ Cb(E) which is induced by the sequences (2.2), (2.3) as well as by the
canonical identification µB : d(B)d(B[1]) ∼= 1 as described in [3, lem. 2.3]. Thus we
obtain canonical isomorphisms

ηr : d(E·r, ∂)
ηEr // d(H(E·r))

∼= d(E·r+1, 0) ∼= d(E·r+1, ∂r)

for all r ≥ 0.

On the other hand, associated with the derived filtration F irC of C we have canonical
maps (for each r ≥ 0) which identity the determinant of C with the product over the
determinants of all subquotients grir(C) of FrC. They induce isomorphisms

er : d(C)
∼= //
∏
i d(grir(C))

∼= // d(grr(C))
d(qr) // d((E·r, ∂r))
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and a diagram

(2.8) d(C)

er %%

∼= // d(grr(C))

d(qr)

��

ηgrr(C)// d(H(grr(C)))

d(H(qr))

��
d(E·r)

ηr // d(E·r+1)

which is commutative by [3, prop. 3.1].

Lemma 2.1. For all r ≥ 0 we have

er = ηr−1 ◦ . . . ◦ η0 ◦ e0

upon identifying d((Er, ∂r)) = d((Er, 0)).

We postpone the proof of the Lemma and consider first the case r = ∞: We set
e∞ := er for r big enough such that ∂r = 0, whence E·∞ = E·r.

Although the derived filtration will not stabilize for big r in the literal sense, it stabilizes
if we consider it up to reindexing and up to omitting or inserting trivial filtration steps.
The resulting filtration class is denoted by F∞, for which a representing filtration can
be described as follows. First consider generalized good truncations

τ j≤n : · · · ∂ // Cn−2 ∂ // ∂−1(F j(Cn))
∂ // F jZn

∂ // 0
∂ // · · ·

for t ≤ j ≤ s and m0 := min{n|Cn 6= 0} ≤ n ≤ n0 := max{n|Cn 6= 0} with associated
graded complexes

gr(j,n) : · · · ∂ // 0
∂ // ∂−1(F j(Cn))/∂−1(F j+1(Cn))

∂ // F jZn/F j+1Zn
∂ // 0 .

Then it is easy to check that F∞ can be represented by

F∞ : C = τ t≤n0
⊇ · · · ⊇ τ j≤n0

⊇ · · · ⊇ τ s≤n0
= τ t≤n0−1 ⊇ · · · ⊇ τ

j
≤n ⊇ · · · ⊇ τ

s
≤m0

= 0.

Refining the latter by the filtration

(2.9) 0 ⊆ B ⊆ Z ⊆ C,
or by the slightly finer one

(2.10) 0 ⊆ B ⊆ . . . ⊆ B + F pZ ⊆ . . . ⊆ Z ⊆ C,
we obtain the filtration

G : . . . ⊇ τ j≤n ⊇ Z(τ j≤n) ⊇ B(τ j≤n) ⊇ τ j+1
≤n ⊇ . . .

with the property that

(2.11) Z(τ j≤n)/τ j+1
≤n = Z(gr(j,n))

and

(2.12) B(τ j≤n)/τ j+1
≤n = B(gr(j,n))

as can be easily checked. Then the associated graded complexes grG(C) are given as
follows

(2.13) τ j≤n/Z(τ j≤n) = ∂−1(F j(Cn))/∂−1(F j+1(Cn))[−(n− 1)],
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(2.14) Z(τ j≤n)/B(τ j≤n) = F jZn/(F jBn+F j+1Zn)[−n] ∼= Ei,n−i∞ [−n] ∼= grjHn(C)[−n]

and

(2.15) B(τ j≤n)/τ j+1
≤n = (F jBn + F j+1Zn)/F j+1Zn[−n] ∼= F jBn/F j+1Bn[−n],

where for an object M ∈ E we write M [−n] for the obvious complex concentrated in
degree n (this convention is compatible with shifting in the following sense (M [0])[n] =

M [n]). On the other hand the refinement R of the filtration (2.10) by F∞ = (τ j≤n)
looks like

0 ⊆ B ∩ τ s−1
m0
⊆ . . . ⊆ B ∩ τ jn ⊆ . . . B ⊆ . . . ⊆ B + F p+1Z ⊆

B + F p+1Z + (B + F pZ) ∩ τp≤m0
⊆ B + F p+1Z + (B + F pZ) ∩ τp≤m0+1 ⊆ . . .

B + F p+1Z + (B + F pZ) ∩ τp≤n ⊆ B + F p+1Z + (B + F pZ) ∩ τp≤n ⊆ . . . ⊆ B + F pZ ⊆ . . .

Z ⊆ Z + τ s−1
≤m0+1 ⊆ . . . ⊆ Z + τ j≤n ⊆ . . . ⊆ C

with associated graded complexes gr?
R(C)

(2.16)
F jBn/F j+1Bn[−n], . . . , grpHn(C)[−n], . . . , ∂−1(F jCn)/∂−1(F j+1Cn)[−(n− 1)].

Now we are ready to prove the following

Proposition 2.2. For each bounded filtered complex C there is a canonical commutative
diagram

(2.17) d(C)

ηC

��

e∞ // d(E·∞)

d(ψ)

��
d(H(C))

d(F •H)//
∏
p d(grpH(C))

where ψ : E·∞
∼=
⊕

p grpH(C) is the canonical isomorphism being part of the convergent

spectral sequence associated to C and induced by (2.4).

Proof. Recall first that ηC is induced by the filtration (2.9) above using the exact
sequences (2.3) and (2.2). Recall that

d(grR(C)) =∏
n,j

d(∂−1(F jCn)/∂−1(F j+1Cn)[−n− 1])
∏
p,n

d(grpHn(C)[−n])
∏
n,j

d(F jBn/F j+1Bn[−n])

∼=
∏
j

d(∂−1(F jC)/∂−1(F j+1C))
∏
p

d(grpH(C))
∏
j

d(F jB/F j+1B)

and set

R := d(gr∞/Z(gr∞))d(H(gr∞))d(B(gr∞)) ∼= d(B(gr∞)[1])d(H(gr∞))d(B(gr∞)).
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By the refinement principle [9, prop. 1.9] applied to the filtrations F∞ and (2.10) we
obtain the following diagram

d(C)

can

��

d(F∞) // d(gr∞(C))

��

η // d(H(gr∞(C))) // d(E∞)

d(ψ)

��

d(grG(C)) //

��

R

µB(gr∞)

OO

d(grR(C))

d(C/Z)d(Z/B)d(B)

��

// d(C/Z)d(gr·H(C))d(B)

��

OO

(?)

d(B[1])d(H)d(B)

µB
��

// d(B[1])d(gr·H(C))d(B)

µB
��

d(H)
can // d(gr·H) d(gr·H)

in which all interior rectangles clearly commute except possibly (?). Here we write gr·H
for the complex

⊕
p grpH (with trivial differentials). Note that the left vertical map

is just ηC while the upper horizontal map is e∞ by diagram (2.8), because η∞ is the
identity. After canceling grpH(C) and the part corresponding to the middle part of R
between B and Z, respectively, and taking into account the identification

∂−1(F j(Cn))/∂−1(F j+1(Cn)) ∼= F jBn/F j+1Bn

the commutativity of (?) boils down to the commutativity of the following diagram
(which is upside down in comparison with the previous diagram!)

d(B[1])d(B)

��

µB // 1

∏
i,n d(F iBn/F i+1Bn[−n+ 1])

∏
i,n d(F iBn/F i+1Bn[−n])

��

∏
µFiBn/Fi+1Bn

// 1

d(B(gr∞)[1])d(B(gr∞))
µB(gr∞) // 1

which follows immediately from [3, lem. 2.3]. Here the upper square uses (part of) R,
while the lower one uses the identifications (2.12) and (2.15), i.e.,

B(gr∞) ∼=
⊕
j,n

F iBn/F i+1Bn[−n].

�

Remark 2.3. By similar, but simpler considerations regarding the filtration (2.9) and
the (usual) good truncation filtration τ≤n(= τ t≤n) one sees that ηC can also be described
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using the canonical filtration

. . . ⊇ τ≤n ⊇ Z(τ≤n) ⊇ B(τ≤n) ⊇ τ≤n−1 ⊇ . . .
with

Z(τ≤n) : · · · ∂ // Cn−2 ∂ // Zn−1 ∂ // Zn
∂ // 0 // · · ·

and

B(τ≤n) : · · · ∂ // Cn−2 ∂ // Zn−1 ∂ // Bn ∂ // 0 // · · ·
together with the identifications Cn−1/Zn−1 ∼= Bn induced by ∂.

Now we come back to the

Proof (of Lemma 2.1). Denote by R0 the refinement of the filtration Fr(C) such that
its graded pieces correspond to

grir/Z(grir) : Ap−rr /Ap−rr+1
// Apr/A

p+1
r+1

// Ap+rr /Ap+rr+1 ,

H(grir) : Ep−rr+1
0 // Epr+1

0 // Ep+rr+1 ,

and

B(grir) :

(Bp−r
r+1 +Ap−r+1

r )/Ap−r+1
r

// (Bp
r+1 +Ap+1

r )/Ap+1
r

// (Bp+r
r+1 +Ap+r+1

r )/Ap+r+1
r .

We write R1 for the refinement of Fr+1(C) by R0. Then, by the refinement principle
applied to Fr+1(C) and R0 the left upper square in the following diagram is commu-
tative:

d(C)

��

// d(grr(C)) // d(grR0(C))

��

a // d(H(grr(C)))

��
d(grr+1(C)) // d(grR1(C))

b // d((E·r+1, 0))

d(grr+1(C))
d(qr) // d((E·r+1, ∂r+1))

Note that the composite from the left upper corner to the right lower corner via the
left lower corner is just er+1. The upper horizontal line here is defined such that it
coincides with the upper line of the diagram (2.8), in particular, by the definition of
ηgrr the map a is induced by the identifications

(2.18) Apr/A
p+1
r+1

∂ // (Bp
r+1 +Ap+1

r )/Ap+1
r , i.e., grir/Z(grir)

∂ // B(grir)[1]

plus µB(grir) as above. The map b makes by definition the lower rectangle commu-

tative, i.e., it is induced by the identifications of the canonical map d(ker(qr)) →
d(H(ker(qr))) = 1 as the involved complex is acyclic. Thus b corresponds to the identi-
fications given by (2.6) or (2.7), which are the same as in (2.18) for a whence the whole
diagram is commutative and combined with diagram (2.8) the lemma is proved. Indeed,
upon identifying d((Er, ∂r)) = d((Er, 0)) the composite from the left upper corner to
the right lower corner via the right upper corner is nothing else than ηr ◦ er. �
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Lemma 2.4. Let ∆ : 0 // A // B // C // 0 be a strictly exact sequence

of bounded filtered complexes,i.e., 0 // F pA // F pB // F pC // 0 is exact
for any p. Then the sequence of complexes

E0(∆) : 0 // E·0(A) // E·0(C) // E·0(C) // 0

is also exact and gives rise to the bottom line in the following commutative diagrams

d(B)

ei(B)

��

d(∆) // d(A)d(C)

ei(A)ei(C)

��
d(Ei(B))

d(Ei(∆))// d(Ei(A))d(Ei(C))

for i = 0, 1 with d(E1(∆)) = d(H(E0(∆))).

Proof. The exactness for the E0-terms follows immediately from the strict exactness
while the commutative diagram for i = 0 is another easy consequence of the refinement
principle [9, prop. 1.9] applied to the filtrations

0 ⊆ A ⊆ B

and

F •B,

the details of which we leave to the reader. For i = 1 simply apply the functoriality [3,
thm. 3.3] of η with respect to short exact sequences (see also diagram (3.24)). �

Our treatment of determinants of spectral sequences should be compared to that in [9,
§3] where apart from the derived also the spectral filtration of C is used. As in (loc. cit.)
our description also generalizes immediately to exact categories if the admissibility (loc.
cit., def. 1.6) and compatibility (loc. cit., def. 1.8) of all involved filtrations is granted.
Also note that analogous results hold for homological spectral sequences, of course.

3. (Co)homology and spectral sequences

Let F : E → D be a right exact, additive functor between two abelian categories
with finite homological dimension assuming that E has sufficiently many projectives.
In the following we will not distinguish between chain and cochain complexes as they
can be identified using the usual renumeration. We write Db(E) for the triangulated
derived category of bounded complexes in E . Assume that dE : Db(E)qis → PE and

dD : Db(D)qis → PD are F -compatible determinant functors (for determinant functors
of triangulated categories we refer the reader to [2]), i.e., such that there exists a
commutative diagram of functors (modulo a natural isomorphism q)

Db(E)qis

LF
��

dE // PE

ψED
��

Db(D)qis
dD // PD
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in which ψED is a AC-tensor functor in the language of [9, Appendix A] and such that
we have a morphism of determinants

(ψED ◦ dE)→ (dD ◦ LF )

in the sense of (loc. cit., def. 1.11) or [2, def. 3.2].

Here the derived functor LF has to be calculated by a finite resolution of F -acyclic
objects, if necessary. For simplicity we assume henceforth that E has finite projective
dimension.

Now let

(3.19) ∆ : 0 // A // B // C // 0

be an exact sequence in E (or more generally in Cb(E) using hyper-derived functors LF
below). Applying LF gives a distinguished triangle

(3.20) LF (∆) : LF (A) // LF (B) // LF (C) // LF (A)[1]

which in turn induces the long exact LF -sequence

LiF (A) // LiF (B) // LiF (C)
δ //(3.21)

· · · // F (A) // F (B) // F (C) // 0,

in which LiF (A) = LiF (B) = LiF (C) = 0 for large i by assumption. Then the
additivity relation

(3.22) dE(∆) : dE(B) ∼= dE(A)dE(C)

induces via ψED the additivity relation

(3.23) dD(LF (∆)) : dD(LF (B)) ∼= dD(LF (A))dD(LF (C))

corresponding to (3.20) by the F -compatibility.

Lemma 3.1. There is a commutative diagram

dD(LF (B))

ηLF (B)

��

dD(LF (∆)) // dD(LF (A))dD(LF (C))

ηLF (A)ηLF (C)

��∏
i dD(LiF (B))(−1)i

dD(H(LF (∆))) //
∏
i dD(LiF (A))(−1)i

∏
i dD(LiF (C))(−1)i

where the bottom line is induced by the long exact sequence (3.21).

Proof. [3, thm. 3.3]. �

On the other hand the same reference applied to (3.19) (for complexes) leads to a
commutative diagram

(3.24) dE(B)

ηB
��

dE(∆) // dE(A)dE(C)

ηAηC
��

dE(HB)
dE(H(∆)) // dE(HA)dE(HC)
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where again the bottom line is induced by the long exact homology sequence attached
to (3.19). Now we may apply LF to each homology complex like HA which boils down
to form LiF (HjA) for all i, j. Recall that for a bounded complex A there is a convergent
(homological) spectral sequence

(3.25) E2
pq = LpF (Hq(A))⇒ LFp+q(A)

More precisely, consider a Cartan-Eilenberg resolution of A, i.e., double complexes
DA, DZ , DB and DH consisting of projective objects together with

• short exact sequences of double complexes

0 // DB
// DZ

// DH
// 0(3.26)

0 // DZ
// DA

∂ // DB[1]h // 0(3.27)

where [1]h means shift in the horizontal direction, i.e., in the direction parallel
to B.
• augmentation maps DA → A, DZ → Z etcetera such that tot(DA) → A

etcetera are quasi-isomorphisms. Moreover, in the vertical direction one has

Hv
i (DA) =

{
A, i = 0;
0, otherwise.

and similarly for B,Z and H = H(A).

We set

A = totF (DA) = LF (A) Z = totF (DZ)(3.28)

B = totF (DB) H = totF (DH) = LF (H) =
⊕
j

LF (Hj [−j])(3.29)

and recall that

Hi(A) = LiF (A) Hi(H) = LiF (H) =
⊕
j

Li−jF (Hi))

as the differentials of H and hence the horizontal differentials ∂h of DH are all trivial.
Note also that (3.25) is just the spectral sequences associated to the double complex
F (DA) using the filtration by rows [13, def. 5.6.2]. With (3.26) also

0 // totDB
// totDZ // totDH

// 0

is exact and consists of projectives, whence

(3.30) 0 // B // Z // H // 0

and similarly

(3.31) 0 // Z // A // B[1] // 0

is also exact. The latter two sequences give rise to an isomorphism

(3.32) ϑ : dD(A) ∼= dD(H).
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By the functoriality 3.1 of η we obtain the canonical commutative diagram

(3.33) dD(A)

ηA
��

ϑ // dD(H)

ηH
��

dD(HA)
H(ϑ) // dD(HH).

Now we will use the homological versions of the results of section 2.1.

Theorem 3.2. The following diagram commutes

dD(LF (A))

e∞≈η
��

ϑ // dD(H) =
∏
i dD(LF (Hi(A)))(−1)i

∏
ηe2(H)=e∞(H)≈ηH≈

��

dD(E∞(A))≈
∏
j dD(LjF (A))(−1)i dD(E2(A))≈

∏
i,j dD(LjF (Hi(A)))(−1)i

e2∞
oo

where the top line is induced by (3.32) and (3.29), while the lower line e2∞ := ηr−1 ◦
. . . ◦ η2 is induced from the spectral sequence (3.25) using the notation from section
2.1 and assuming Er = E∞. Moreover the diagram is compatible with (3.33) and the
diagrams arising from Proposition 2.2.

Proof. First note that (E1
· (H), ∂) ∼= (E1

· (A), ∂) as complexes (with E1
pq = DHqp) and

E2
pq(H) ∼= E2

pq(A) ∼= LFp(Hq) on objects (but in general not as complexes!). Applying
Lemma 2.4 to the exact sequences (3.30),(3.31) (taking into account that F applied
to the sequences (3.26) again gives exact sequences which grant the hypothesis of the
lemma) leads to the commutative diagram

d(A)

e1

��

ϑ // d(H)

e1

��
d(E1(A))

η

��

E1(ϑ)

≈
// d(E1(H))

η

��
d(E2(A))

e2∞

��

H(E1(ϑ))

≈
// d(E2(H))

d(E∞(A))

d(F •H)inverse◦d(ψ) ≈
��

d(E∞(H))

d(F •H)inverse◦d(ψ)≈
��

dD(HA)
H(ϑ) // dD(HH)

where according to the above calculation the isomorphisms E1(ϑ) and hence H(E1(ϑ))
may be considered as a natural identification (≈)(only this identification defines the
latter isomorphism). Note that the outer diagram is just diagram (3.33). Taking all
these identifications into account the result follows. �
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3.1. Application to the Tor-Functor. Let R,R′ be two regular rings and Y a
(R,R′)-bimodule, which is finitely generated and projective as R′-module. Taking
for E and D the category of finitely generated R- and R′-modules, respectively, for
dR : Db(E)qis → PR and dR′ : Db(D)qis → PR′ the determinant functor of Fukaya
and Kato [8, §1], setting L(−) = Y ⊗R − and letting ψRR′ := ψED : PR → PR′ be the
canonical functor induced by L we are in the situation of the previous subsection. In
particular there is a convergent (homological) spectral sequence

(3.34) E2
pq = TorRp (Y,Hq(A))⇒ TorRp+q(Y,A)

and the canonical identification

dR(A) ∼= dR(HA) ∼=
∏
i

dR(Hi(A))(−1)i

induces by (3.22), (3.23) and Theorem 3.2 the first line of the following commutative
diagram

(3.35) dR′(Y ⊗L A)

��

//
∏
i dR′(Y ⊗L Hi(A))(−1)i

��∏
j dR′(TorRj (Y,A))(−1)j

∏
i,j dR′(TorRj (Y,Hi(A))(−1)i+j

)oo

where the bottom row is induced by the spectral sequence (3.34).

Remark 3.3. Strictly speaking Fukaya and Kato’s determinant functor goes from
Cb(Pmod(R))qis to PR where Pmod(R) denotes the exact category of finitely generated
projective (say left) R-modules. But due to our regularity assumption on R we may
choose finite projective resolutions for each finitely generated R-module and consider
the functor E → Cb(Pmod(R))qis → PR which then extends also to give a determinant

on Cb(E)qis. Note also that by [10, cor. 2 of thm. 2] in this situation we have canonical
isomorphism for all distinguished triangles (instead of short exact sequences of com-
plexes) whence we obtain the desired determinant functor from Db(E)qis to PR . This
should also be compared with [2, cor. 5.3] applied to the triangulated derived category
Db(E) of bounded complexes in E . In this way more natural examples arise where the
results of this section apply.

3.2. Compatibility of the Snake lemma and Spectral sequences. Finally we
just state a result concerning the comparison of spectral sequences versus long exact
sequences: Consider a short exact sequence

(3.36) 0 // A
f // B

g // C // 0

of bounded cochain complexes concentrated in degree greater or equal to 0. Setting

D0• := A•, d0•
v : = d•A,

D1• := B•, d1•
v : = −d•B,

D2• := C•, d2•
v : = d•C ,

Di• := 0 otherwise,
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we obtain a (cochain) double complex D with horizontal differentials

d0•
h = f•, d1•

h = g• and 0 otherwise.

Lemma 3.4. In the above situation the total complex tot(D) is acyclic and the iso-
morphism e1∞ := ηr−1 ◦ . . . ◦ η1

(3.37)
∏
i

d(Hi(A))(−1)i
∏
i

d(Hi(B))(−1)i+1
∏
i

d(Hi(C))(−1)i ∼= d(tot(D)) ∼= 1

arising from the spectral sequence

Epq1 = Hq
v(Dp•)⇒ Hp+q(tot(D)) = 0

coincides with the isomorphism arising form the long exact cohomology sequence asso-
ciated with (3.36).

The easy proof is left to the reader. In particular, identifications via the Snake Lemma
are compatible with spectral sequences.

Remark 3.5. If one shifts the double complex to different degrees, the differentials may
change their signs, but these changes are compatible with usual sign conventions for
shifting and for the relation between double complexes and cochain complexes over the
category of cochain complexes [13, Sign trick 1.2.5].
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