
K1 OF CERTAIN IWASAWA ALGEBRAS,
AFTER KAKDE

PETER SCHNEIDER AND OTMAR VENJAKOB

This paper contains a detailed exposition of the content of section five in
Kakde’s paper [Kak]. We proceed in a slightly more axiomatic way to pin
down the exact requirements on the p-adic Lie group under consideration.
We also make use of our conceptual theory of the completed localization
of an Iwasawa algebra as developed in [SV1]. This simplifies some of the
arguments. Otherwise, with the exception of the notation at certain places,
we follow Kakde’s paper.

Let G be a one dimensional compact p-adic Lie group and Λ(G) its Iwa-
sawa algebra. The main purpose is to establish a description of the K-group
K1(Λ(G)) in terms of the groups of units Λ(U)× for a suitable system of
abelian subquotients U of G. The strategy for achieving this relies on the
following commutative diagram

1 // µ(O)× Gab

=

��

ι // K ′1(Λ(G))

θ

��

L // O[[Conj(G)]]

β ∼=
��

ω // Gab

=

��

// 1

1 // µ(O)× Gab θ◦ι // Φ
L // Ψ

ω◦β−1

// Gab // 1

which to explain in detail is not necessary at this point. We only mention that
O[[Conj(G)]] is an additive version of K1(Λ(G)), L is the integral logarithm
of Oliver and Taylor, and Φ and Ψ are the description we want to achieve
and its additive version, respectively. The upper row is exact by work of
Oliver (and Fukaya/Kato). In a first step (section 3) the somewhat easier
additive isomorphism β will be established. Then it will be a major point
to define the map L which makes the middle square commutative. Finally
it will be shown that the lower row is exact as well. For both see section
4. Once all of this is done it is a formal consequence that the map θ is an
isomorphism. Some of this will be generalized to the completed localization
B(G) of Λ(G), additively in section 3 and multiplicatively in section 6. The
latter requires an extension of the integral logarithm to the B(G)-setting
(section 5).

1. Skew Laurent series

All Iwasawa algebras under consideration will have coefficients in the ring
of integers O of a finite extension of Qp. We fix a prime element π ∈ O. Let
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G be any compact p-adic Lie group. We assume that G contains a closed
normal subgroup H such that G/H ∼= Zp.

In order to give a description of Λ(G) relative to Λ(H) we choose a closed
subgroup Γ ⊆ G such that Γ

∼=−−→ G/H and we pick a topological generator
γ of Γ (in particular, G = H o Γ). We then have the ring automorphism

σ : Λ(H) −→ Λ(H)

a 7−→ γaγ−1

as well as the left σ-derivation δ := σ− id on Λ(H). We recall that the latter
means that

δ(ab) = δ(a)b+ σ(a)δ(b) for any a, b ∈ Λ(H) .

Proposition 1.1. (Venjakob) We have the isomorphism

Λ(H)[[t;σ, δ]] = {
∑
i≥0

ait
i : ai ∈ Λ(H)}

∼=−−→ Λ(G)

sending t to γ−1 between the (σ, δ)-skew power series ring over Λ(H) and the
Iwasawa algebra Λ(G); the multiplication on the left hand side is determined
by the rule

ta = σ(a)t+ δ(a) for any a ∈ Λ(H)
and by continuity.

According to [CFKSV] the set

S := S(G) := {f ∈ Λ(G) : Λ(G)/Λ(G)f is finitely generated over Λ(H)}

is an Ore set in Λ(G) consisting of regular elements. We then may form the
localization A(G) := Λ(G)S as well as its Jac(Λ(H))-adic completion

B(G) := Λ̂(G)S .

Theorem 1.2. ([SV1] Thm. 4.7 and Prop. 2.26 (i))
i. The isomorphism in Prop. 1.1 extends to an isomorphism between

Λ(H)� t;σ, δ]] := {
∑

i∈Z ait
i : ai ∈ Λ(H), limi→∞ ai = 0 in Λ(H)}

and B(G).
ii. B(G) is noetherian and pseudocompact with

Jac(B(G)) = {
∑
i∈Z

ait
i ∈ B(G) : ai ∈ Jac(Λ(H))} .

iii. B(G) is flat over A(G) and hence over Λ(G).

We point out that the commutation rules in the ring Λ(H)� t;σ, δ]] are
considerably more complicated. For example, one has

at−1 =
∑
i<0

tiσδ−i−1(a) for any a ∈ Λ(H)

involving an infinite Laurent series.
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For later applications we note that, for finite H, the pseudocompact topol-
ogy on B(G) is the π-adic one.

Let U ⊆ G be an open subgroup (equipped with H ∩ U).

Proposition 1.3. ([SV1] Prop. 4.5) We have

A(G) = A(U)⊗Λ(U) Λ(G) and B(G) = B(U)⊗Λ(U) Λ(G)

as bimodules; in particular, A(G), resp. B(G), is free as an A(U)-, resp. a
B(U)-, module of rank equal to [G : U ].

In the special case where H is finite we find an open subgroup Γ0 ⊆ Γ
which centralizes H. Hence Γ0 is open in G and lies in the center of G. It
follows that

– A(G) is an A(Γ0)-algebra which is finitely generated free as a module,
and

– B(G) is a B(Γ0)-algebra which also is finitely generated free as a
module.

It is a special case of Thm. 1.2 that B(Γ0) is a complete discrete valuation
ring with prime element π. Using the Weierstrass preparation theorem one
sees directly that A(Γ0) is the localisation of Λ(Γ0) = O[[t]] in the height one
prime ideal πΛ(Γ0) and hence is a discrete valuation ring with completion
B(Γ0).

2. Additive commutators

For any ring A and any set X we let A[X] denote the free A-module over
the basis X. By [A,A] we denote the additive subgroup of A generated by
all additive commutators [a1, a2] with a1, a2 ∈ A. We note that, if A0 is the
center of A, then [A,A] is an A0-submodule of A. Finally, for any group G
we denote by Conj(G) the set of all conjugacy classes [g]G of elements g ∈ G.

Lemma 2.1. For any finite group G we have

O[G]/
[
O[G],O[G]

] ∼=−−→ O[Conj(G)]

as O-modules.

Proof. We consider the surjective O-module homomorphism

O[G] −→ O[Conj(G)]

g 7−→ [g]G .

Because of gh − hg = gh − h(gh)h−1 it has
[
O[G],O[G]

]
in its kernel. On

the other hand let
∑

g∈G agg be any element in the kernel. It is the sum of
the elements

∑
g∈[h]G

agg in the kernel. In particular,
∑

g∈[h]G
ag = 0. Hence∑

g∈[h]G

agg =
∑
g∈[h]G

ag(g − h) =
∑

g∈G/Gh

aghg−1(ghg−1 − h)

=
∑

g∈G/Gh

aghg−1((gh)g−1 − g−1(gh)) ∈
[
O[G],O[G]

]
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(where Gh denotes the centralizer of h in G). �

For our Lie group G we put

O[[Conj(G)]] := lim←−O[Conj(G/N)]

where N runs over all open normal subgroups of G. We then obtain in the
projective limit an O-module isomorphism

Λ(G)/[Λ(G),Λ(G)]
∼=−−→ O[[Conj(G)]] .

If G0 ⊆ G denotes the center then this, in an obvious way, is a Λ(G0)-module
isomorphism. Suppose that G0 is open in G and put G := G/G0. Then G0

acts by multiplication on Conj(G) with finitely many orbits. In fact,

G0\Conj(G) '−−→ Conj(G)

[g]G 7−→ [gG0]G

is a bijection. Hence, noncanonically,

O[[Conj(G)]] ∼= Λ(G0)[Conj(G)]

as Λ(G0)-modules.

Lemma 2.2. If G0 is open in G then we have:
i. [Λ(G),Λ(G)] is closed in Λ(G);
ii. B(G)/[B(G), B(G)] = B(G0)⊗Λ(G0) O[[Conj(G)]].

Proof. i. With Λ(G) also [Λ(G),Λ(G)] is a finitely generated Λ(G0)-module.
Hence [Λ(G),Λ(G)] is the image of a continuous Λ(G0)-linear map Λ(G)m −→
Λ(G) between compact modules.

ii. By Prop. 1.3 we have B(G) = B(G0) ⊗Λ(G0) Λ(G). It follows that
[B(G), B(G)] = B(G0) · [Λ(G),Λ(G)]. �

3. The additive theory

Let U ⊆ G be any open subgroup. On the one hand we let N(U) denote
the normalizer of U in G, and we put W (U) := N(U)/U . On the other
hand we note that, by [DDMS] Thm. 8.3.2 and Prop. 1.19, the commutator
subgroup [U,U ] is closed in U . Hence

Uab := U/[U,U ]

is a commutative Lie group. We let prU
Uab : O[[Conj(U)]]� O[[Conj(Uab)]] =

Λ(Uab) denote the canonical surjection induced by the obvious projection
U → Uab.

Let U ⊆ V ⊆ G be open subgroups. Any g ∈ V acts by left multiplication
on V/U . We note:

– Any set of representatives for the left cosets of U in V also is a basis
of Λ(V ) as a right Λ(U)-module.

– We have gxU = xU if and only if x−1gx ∈ U .
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Since gx = x(x−1gx) the trace map in this situation therefore is given by

trVU : O[[Conj(V )]] −→ O[[Conj(U)]]

[g]V 7−→
∑

x∈V/U,x−1gx∈U

[x−1gx]U .

It is Λ(G0 ∩ U)-linear. If [V, V ] ⊆ U , we shall also need the two maps

Λ(V ab)

τVU :=trV
ab

U/[V,V ]
��

Λ(Uab)
πVU :=prU

ab

U/[V,V ] // Λ(U/[V, V ]),

where prU
ab

U/[V,V ] is the obvious canonical surjection.

Remark 3.1. i. If U is normal in V we have

trVU ([g]V ) =

{∑
x∈V/U [xgx−1]U if g ∈ U,

0 if g 6∈ U.

ii. If V is abelian we have

trVU (g) =

{
[V : U ]g if g ∈ U,
0 if g 6∈ U.

iii. If [V, V ] ⊆ U then

τVU (g[V, V ]) =

{
[V : U ]g[V, V ] if g ∈ U,
0 if g 6∈ U.

Suppose that U is abelian. Then:
– For any g ∈W (U) we have the well defined ring automorphism

σU,g : Λ(U) −→ Λ(U)

f 7−→ gfg−1

as well as the Λ(G0 ∩ U)-linear endomorphism

σU :=
∑

g∈W (U)

σU,g .

– The image of σU is an ideal in the subring Λ(U)W (U) := {f ∈ Λ(U) :
σU,g(f) = f for any g ∈W (U)}.

In a later section we will need, more generally, for two open subgroups
U ⊆ V ⊆ G such that U is normal in V the Λ(G0 ∩ U)-linear map

σVU : Λ(Uab) −→ Λ(Uab)

f 7−→
∑
g∈V/U

gfg−1 .
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From now on we assume that

(H1) G0 is open in G,

and we fix an open central subgroup Z ⊆ G. Let S(G,Z) denote the set of
all subgroups Z ⊆ U ⊆ G. For U ∈ S(G,Z) we define

βU := prUUab ◦ trGU .

Our main interest in this section lies in the Λ(Z)-linear map

β := βGZ : O[[Conj(G)]] −→
∏

U∈S(G,Z)

Λ(Uab)

f 7−→ (βU (f))U .

We exhibit three conditions any element (aU )U in the image of β has to
satisfy.
1. Let U ⊆ V be in S(G,Z) such that [V, V ] ⊆ U . In particular, U is normal
in V . We claim that the diagram

O[[Conj(G)]]

βU
��

βV // Λ(V ab)

τVU
��

Λ(Uab)
πVU // O[[U/[V, V ]]]

commutes. By the transitivity of traces this reduces to the commutativity
of the diagram

O[[Conj(V )]]

trVU
��

prV
V ab // Λ(V ab)

trV
ab

U/[V,V ]
��

O[[Conj(U)]]
prU

ab

U/[V,V ]
◦prU

Uab // Λ(U/[V, V ]).

It suffices to check this on classes [g]V for g ∈ V . Indeed, using Remark
3.1.i/iii we compute

trV
ab

U/[V,V ] ◦ prVV ab([g]V ) = [V : U ]g[V, V ]

=
∑

x∈V/U

xgx−1[V, V ]

= prU
ab

U/[V,V ] ◦ prUUab(
∑

x∈V/U

[xgx−1]U )

= prU
ab

U/[V,V ] ◦ prUUab ◦ trVU ([g]V )

for g ∈ U ; if g 6∈ U then both sides are equal to zero. Hence:

(A1) τVU (aV ) = πVU (aU ) for any U ⊆ V in S(G,Z) with [V, V ] ⊆ U .
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2) For any open subgroup U ⊆ G and any g ∈ G the diagram

O[[Conj(G)]]
trGU

vvnnnnnnnnnnnn trG
gUg−1

((RRRRRRRRRRRRR

O[[Conj(U)]]
g.g−1

// O[[Conj(gUg−1)]]

is commutative. This, in particular, implies

(A2) agUg−1 = gaUg
−1 for any U ∈ S(G,Z) and g ∈ G.

3) Let U ∈ S(G,Z). By the transitivity of traces we have

βU = prUUab ◦ trGU = prUUab ◦ trN(U)
U ◦ trGN(U)

and hence
im(βU ) ⊆ im(prUUab ◦ trN(U)

U ) .
But Remark 3.1.i implies

prUUab ◦ trN(U)
U ([g]N(U)) =

{
σ
N(U)
U (g[U,U ]) if g ∈ U,

0 if g 6∈ U.

It follows that im(βU ) ⊆ im(σN(U)
U ). We conclude:

(A3) aU ∈ im(σN(U)
U ) for any U ∈ S(G,Z).

Let
Ψ := ΨGZ ⊆

∏
U∈S(G,Z)

Λ(Uab)

denote the subgroup of all elements (aU )U which satisfy (A1), (A2), and
(A3). So far we have shown the following.

Lemma 3.2. im(β) ⊆ Ψ.

Our goal is to show that β induces an isomorphism O[[Conj(G)]] ∼= Ψ. For
this purpose an important technical role is played by the subset C(G,Z) of
all U ∈ S(G,Z) such that U/Z is cyclic. Let U ∈ C(G,Z). Then U can be
generated by Z and at most one additional element, and hence is abelian.
We introduce the Λ(Z)-linear maps

ηU : Λ(U) = ⊕g∈U/ZΛ(Z)g −→ Λ(U)

with

ηU |Λ(Z)g :=

{
id if g generates U/Z,
0 otherwise

and

δU : Λ(U) −→ O[[Conj(G)]]⊗Q

g 7−→ 1
[G : U ]

[g]G .
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Let
prcyc :

∏
U∈S(G,Z)

Λ(Uab) −→
∏

U∈C(G,Z)

Λ(U)

denote the obvious projection map and define the Λ(Z)-linear map

δ :
∏

U∈C(G,Z)

Λ(U) −→ O[[Conj(G)]]⊗Q

(aU )U 7−→
∑
U

δU (ηU (aU )) .

Lemma 3.3. δ ◦ prcyc ◦β = id.

Proof. Let g ∈ G and put Ug :=< g,Z >∈ C(G,Z). We compute

δ ◦ prcyc ◦β([g]G) =
∑

U∈C(G,Z)

δU ◦ ηU ◦ trGU ([g]G)

=
∑
U

∑
x∈G/U,x−1gx∈U

δU ◦ ηU (x−1gx)

=
∑
U

∑
x∈G/U,x−1Ugx=U

1
[G : U ]

[g]G

=
∑

U conjugate to Ug

1
[G : N(Ug)]

[g]G

= [g]G .

�

It follows that the map β is injective.
At this point we need further assumptions:

(H2) G is a pro-p group.

There is a system of representatives R ⊆ G for the cosets

in G/Z which contains 1 and consists of full G-orbits.
(H3)

(In the one dimensional case G = H o γZp with Z = γp
eZp we may take

R := {H × {γj : 0 ≤ j < pe}.) For U ∈ S(G,Z) we put RU := R ∩ U . We
also introduce the subgroup

Ψcyc ⊆
∏

U∈C(G,Z)

Λ(U)

of all elements which satisfy (A1), (A2), and (A3) for all (pairs of) subgroups
in C(G,Z).

Lemma 3.4. δ|Ψcyc is injective with δ(Ψcyc) ⊆ O[[Conj(G)]].



K1 OF CERTAIN IWASAWA ALGEBRAS, AFTER KAKDE 9

Proof. Let (aU )U ∈ Ψcyc. We first assume that

δ((aU )U ) =
∑

U∈C(G,Z)

δU (ηU (aU )) = 0 .

Step 1: We show that δU (ηU (aU )) = 0 for any U ∈ C(G,Z). By definition
δU (ηU (aU )) is supported on

⋃
g∈G gUg

−1. So, if U1, . . . , Um are representa-
tives for the G-orbits in C(G,Z), then we obtain∑

g∈G/N(Ui)

δgUig−1(ηgUig−1(agUig−1)) = 0 for any 1 ≤ i ≤ m.

But (A2) implies that

δgUig−1(ηgUig−1(agUig−1)) = gδUi(ηUi(aUi))g
−1 = δUi(ηUi(aUi))

for any 1 ≤ i ≤ m and g ∈ G.
Step 2: We show that aU = 0 for any U ∈ C(G,Z). Since

Λ(U) = ⊕h∈RUΛ(Z)h

we may write
aU =

∑
h∈RU

ahh with ah ∈ Λ(Z).

For g ∈ N(U) we have

aU = agUg−1 = gaUg
−1 =

∑
h∈RU

ahghg
−1 =

∑
h∈RU

ag−1hgh

by (A2) (the last identity is the point where we need the assumption (H3))
and hence ag−1hg = ah. It follows that

aU =
∑

ξ∈N(U)\RU

aξ(
∑
h∈ξ

h) with aξ ∈ Λ(Z).

Choosing elements hξ ∈ ξ we then have

0 = δU (ηU (aU )) =
∑

ξ∈N(U)\RU , U=<hξ,Z>

aξ
|ξ|

[G : U ]
[hξ]G .

If hξ generates U/Z then ξ is the intersection with RU of a full G-orbit in
R. It follows that aξ = 0 in this case. This shows first of all that aZ = 0.
Secondly, for U 6= Z we obtain

aU =
∑
h∈RU′

ahh

where U ′ ∈ C(G,Z) is such that U ′/Z is the unique subgroup of index p in
the cyclic p-group U/Z. On the other hand we deduce from (A1) that

aU ′ = trUU ′(aU ) = paU .

The claim now follows by induction.
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This establishes the asserted injectivity. For the claim about the image
we note that, by (A3), we have

aU = σU (bU ) with bU ∈ Λ(U)

for any U ∈ C(G,Z). Hence

δU (ηU (aU )) = δU (ηU (
∑

g∈W (U)

gbUg
−1)) = [N(U) : U ]δU (ηU (bU )) .

Using (A2) we further obtain that∑
g∈G/N(U)

δgUg−1(ηgUg−1(agUg−1)) = [G : N(U)]δU (ηU (aU ))

= [G : U ]δU (ηU (bU ))

lies in O[[Conj(G)]]. �

Lemma 3.5. The map prcyc restricts to an injection Ψ ↪→ Ψcyc.

Proof. It is clear that pr restricts to a map Ψ → Ψcyc. To establish its
injectivity we argue by contradiction. We assume that (aU )U ∈ Ψ satisfies
aU = 0 for all U in C(G,Z) and that there exists a V in S(G,Z) \ C(G,Z)
such that aV 6= 0. Moreover, we may and do assume that V has minimal
order |V/Z| with this property. Let R ⊆ V denote a set of representatives
for the cosets in V/Z[V, V ]; we write h̄ ∈ V ab for the image of h ∈ R. We
have

aV =
∑
h∈R

ahh̄ with ah ∈ im(Λ(Z)→ Λ(V ab)).

To achieve the contradiction we will show that all coefficients ah have to
vanish. Fix h0 ∈ R. Since V/Z is not cyclic (but is a p-group) its abelianiza-
tion (V/Z)ab is not cyclic either by [Hup] III.7.1.c. Hence we find a normal
subgroup Z ⊆ U EV of index p such that h0 ∈ U . In particular, [V, V ] ⊆ U .
By the minimality of V we have aU = 0. Then

0 = τVU (aV ) =
∑
h∈R

ahτ
V
U (h̄) = p

∑
h∈R∩U

ahh̄

by (A1) and Remark 3.1.iii. It follows that ah = 0 for any h ∈ R ∩ U and,
in particular, ah0 = 0. �

The last four lemmas together imply the following fact.

Theorem 3.6. All three maps in the commutative diagram

Ψ

prcyc∼=

��

O[[Conj(G)]]

β

∼=

66mmmmmmmmmm

prcyc ◦β

∼=
((QQQQQQQQQ

Ψcyc

are isomorphisms.
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Remark 3.7. Let ΨQp denote the subset of
∏
U∈S(G,Z) Λ(Uab)⊗Zp Qp con-

sisting of those tuples (aU )U which satisfy the natural analogues of (A1) and
(A2). Note that any such tuple automatically satisfies aU ∈ im(σN(U)

U )⊗ZpQp

for all U in S(G,Z), because due to (A2) one has σN(U)
U (aU ) = |W (U)|aU .

Hence ΨQp can be identified with

Ψ⊗Zp Qp ⊆
∏

U∈S(G,Z)

Λ(Uab)⊗Zp Qp .

Therefore, by Lemma 3.5 the projection prcyc⊗ZpQp induces again an injec-
tion

ΨQp ↪→
∏

U∈C(G,Z)

Λ(U)⊗Zp Qp .

Now assume that (aU )U ∈ ΨQp satisfies aU ∈ im(σU ) ⊆ Λ(U) for all U in
C(G,Z). Then (aU )U belongs already to Ψ, in particular all aU are integral!
Indeed, by the above injectivity one has

(aU )U = β(prcyc ◦β)−1(prcyc⊗ZpQp)((aU )U ) ∈ Ψ .

Remark 3.8. For any pair W ⊆ V of subgroups of index p in C(G,Z) we
have:

i. im(σW ) ⊆ p im(σV );
ii. Let (aU )U ∈

∏
U∈C(G,Z) Λ(U) be an element which satisfies (A1);

then:
a. aV = ηV (aV ) + 1

paW ;
b. (aU )U satisfies (A3) if and only if (ηU (aU ))U satisfies (A3).

Proof. i. Using that obviously N(V ) ⊆ N(W ) we compute

σW (f) =
∑

g∈N(W )/W

gfg−1 =
∑

g∈N(V )/W

∑
h∈R

ghfh−1g−1

= p
∑

g∈N(V )/V

g(
∑
h∈R

hfh−1)g−1 = pσV (
∑
h∈R

hfh−1)

for any f ∈ Λ(W ), where R ⊆ N(W ) is a fixed set of representatives for the
right cosets of N(V ) in N(W ).

ii. By assumption we have trVW (aV ) = aW . If we write aV =
∑

h∈RV ahh

with ah ∈ Λ(Z) then, using Remark 3.1.ii, we obtain

aW = trVW (aV ) =
∑
h∈RV

ah trVW (h) = p
∑
h∈RW

ahh = p(aV − ηV (aV )) .

Since ηZ = id the assertion in b. follows by induction from i. and a. �
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Using Prop. 1.3 we may extend B(Z)-linearly all the maps which we have
considered above. In particular, also using Lemma 2.2 we have the B(Z)-
linear map

βB := β
B(G)
B(Z) : B(G)/[B(G), B(G)] −→

∏
U∈S(G,Z)

B(Uab)

f 7−→ ((idB(Z)⊗βU )(f))U .

In the right hand side we have the subgroup ΨB of elements which satisfy
the obvious analogs of the conditions (A1) - (A3). Either by repeating the
above arguments or by simply using that, according to Thm. 1.2.iii, B(Z)
is flat over Λ(Z) we deduce the following consequence.

Theorem 3.9. βB : B(G)/[B(G), B(G)]
∼=−→ ΨB is an isomorphism.

4. The multiplicative theory, part 1

We suppose G to satisfy (H1) and (H2), and we continue to fix an open
central subgroup Z ⊆ G. For any open subgroups U ⊆ V ⊆ G we have the
norm map

NV
U : K1(Λ(V )) −→ K1(Λ(U)) .

We recall that it is induced by the exact functor which sends a finitely
generated projective Λ(V )-module P to P viewed as a finitely generated
projective Λ(U)-module. We introduce the composed homomorphisms

θU : K1(Λ(G))
NGU−−−→ K1(Λ(U)) −→ K1(Λ(Uab)) = Λ(Uab)×

where the right hand arrow is induced by the canonical surjection U �
Uab. If U is abelian then θU = NGU , of course. The central object of the
multiplicative theory is the homomorphism

θ := θGZ : K1(Λ(G)) −→
∏

U∈S(G,Z)

Λ(Uab)×

x 7−→ (θU (x))U .

Similarly as in the previous section we begin by exhibiting four conditions
(M1) – (M4) which any element (xU )U = θ(x) satisfies.
1) Let Z ⊆ U ⊆ V ⊆ G be open subgroups such that [V, V ] ⊆ U . As in the
last section we use the ring homomorphism

πVU : Λ(Uab) −→ Λ(U/[V, V ]) .

Furthermore, corresponding to the inclusion of groups U/[V, V ] ↪→ V ab we
have the norm map

νVU := NV ab

U/[V,V ] : Λ(V ab)× −→ Λ(U/[V, V ])× .
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We claim that the diagram

K1(Λ(G))

θU
��

θV // Λ(V ab)×

νVU
��

Λ(Uab)×
πVU // Λ(U/[V, V ])×

is commutative, which implies that

(M1) νVU (xV ) = πVU (xU ) for any U ⊆ V in S(G,Z) with [V, V ] ⊆ U
holds true. We enlarge the above diagram to

K1(Λ(G))

NGU
��

NGV

**UUUUUUUUUUUUUUUU

K1(Λ(U))

��

K1(Λ(V ))
NV
U

oo

��

K1(Λ(Uab))

��
K1(Λ(U/[V, V ])) K1(Λ(V ab))

NV ab

U/[V,V ]

oo

where the undecorated perpendicular arrows are induced by the obvious ring
homomorphisms. The upper triangle is commutative by the transitivity of
norm maps. The lower square is commutative because of the identity

Λ(U/[V, V ])⊗Λ(U) Λ(V ) = Λ(V ab) .

We point out that if V is abelian then (M1) simplifies to the condition

(M1a) NV
U (xV ) = xU .

2) For any open subgroup U ⊆ G and any g ∈ G the diagram

K1(Λ(G))
θU

xxqqqqqqqqqq θgUg−1

''PPPPPPPPPPPP

Λ(Uab)×
g.g−1

// Λ((gUg−1)ab)×

is commutative. This implies

(M2) xgUg−1 = gxUg
−1 for any U ∈ S(G,Z) and g ∈ G.

3) For the next condition we need the additional assumptions that

(H4) O is absolutely unramified and p 6= 2.

Let φ : O −→ O denote the Frobenius automorphism.
We first recall the construction of the Verlagerung. Let U ⊆ V ⊆ G be

any two open subgroups, and let R ⊆ V be a set of representatives of the
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left cosets in V/U . Then R also is a basis of Λ(V ) as a right Λ(U)-module.
For g ∈ V and h ∈ R we write

gh = hgcg,h with hg ∈ R and cg,h ∈ U.
The matrixMg of left multiplication by g on Λ(V ) with respect to the basisR
is the product of the permutation matrix describing the permutation action
of g on the coset space V/U and the diagonal matrix with diagonal entries
{cg,h}h∈R. The map

verVU : V ab −→ Uab(ver)

g[V, V ] 7−→
∏
h∈R

cg,h[U,U ]

is a well defined group homomorphism called the transfer map or Ver-
lagerung (cf. [Hup] IV.1.4). In the trivial case where U is central in V we
have verVU (g) = g[V :U ] for any g ∈ V .

In our case where V is a pro-p group with p 6= 2 we have:
– NV

U (g) can be computed as the determinant of Mg in K1(Λ(U)) =
Λ(U)×/[Λ(U)×,Λ(U)×].

– The determinant of the permutation matrix factor of Mg is equal to
one.

Hence

(1) NV
U (g) ≡ verVU (g) mod [Λ(U)×,Λ(U)×] .

In other words we have the commutative diagram

V ab

verVU
��

� � // K1(Λ(V ))

NV
U

��
Uab � � // K1(Λ(U)).

In the following we extend verVU to the unique ring homomorphism

verVU : Λ(V ab) −→ Λ(Uab)

such that verVU |O = φ.
We also need to introduce, for any open subgroup U ⊆ G, the unique

Zp-linear continuous map

ϕU : O[[Conj(U)]] −→ O[[Conj(U)]]

such that

ϕU |O = φ and ϕU ([g]U ) = [gp]U for any g ∈ U.
If U is abelian then ϕU is a ring endomorphism of Λ(U) with the property
that modulo p it coincides with the map f 7−→ fp.

We now assert:

(M3) verVU (xV )− xU ∈ im(σVU ) for all U ⊆ V in S(G,Z) such that
[V : U ] = p.
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Note that in this condition U automatically is normal in V . One easily
checks that verUZ(im(σVU )) ⊆ pΛ(Z). Hence (M3) inductively implies that
verUZ(xU ) = xZ mod pΛ(Z) for any U ∈ S(G,Z). But verUZ is just the |U/Z|-
power map on the group elements. We therefore deduce:

(M3a) x
|U/Z|
U ≡ xZ mod pΛ(Z) for all U in S(G,Z).

For the proof of (M3) consider as before the diagram

K1(Λ(G))

NGU
��

NGV

))TTTTTTTTTTTTTTT

K1(Λ(U))

prU
Uab

��

K1(Λ(V ))
NV
U

oo

prV
V ab

��
K1(Λ(Uab)) K1(Λ(V ab))

,

from which we see that it suffices to show for all x ∈ Λ(V )× the relation

verVU (prVV ab x̄)− prUUab N
V
U x̄ ∈ im(σVU )

holds, in which x̄ denotes the image of x in K1(Λ(V )). We choose any g ∈
V \ U and use the decomposition

(2) Λ(V ) ∼=
p−1⊕
i=0

Λ(U)gi

to write x =
∑
xkg

k. In order to calculate NV
U x̄ we denote by σ the endo-

morphism of Λ(U) induced by u 7→ gug−1 and consider the matrix
x0 x1 . . . xp−1

σ(xp−1)gp σ(x0) . . . σ(xp−2)
σ2(xp−2)gp σ2(xp−1)gp . . . σ2(xp−3)
...

...
. . .

...
σp−1(x1)gp σp−1(x2)gp . . . σp−1(x0)


describing the Λ(U)-linear map which arises by multiplication with x from
the right using the basis given in (2) and which thus represents NV

U x̄ in
K1(Λ(U)). The image in Λ(Uab)× therefore is represented by its determi-
nant. Using the Leibniz rule we obtain

prUUab N
V
U x̄ =

∑
δ∈S

sign(δ)gpeδ
∏
c∈C

σc prUUab xκ(δ(c)−c) ;

here S = S(Z/pZ) denotes the symmetric group on (the group) C := Z/pZ,
κ(c) ∈ {0, 1, . . . , p − 1} is the respective representative of c, and eδ is the
number of c ∈ C such that κ(δ(c)) < κ(c). Note that, since gp ∈ U , the
endomorphism σp induces the identity on Λ(Uab).
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The above sum can be decomposed with respect to the following action
of C on S. Let γ ∈ S denote the cycle of order p defined by γ(c) := c + 1.
We put

C × S −→ S

(c, δ) 7−→ δc := γcδγ−c .

Explicitly we have

δc(c′) := δ(c′ − c) + c for all c, c′ ∈ C.

This action obviously respects the signum of elements in S. Moreover, the
function eδ is constant on each C-orbit in S. We see that for every δ0 6∈ SC
the partial sum∑

δ∈Cδ0

sign(δ)gpeδ
∏
c∈C

σc prUUab xκ(δ(c)−c)

= sign(δ0)gpeδ0
∑
a∈C

∏
c∈C

σc prUUab xκ(δa0 (c)−c)

=
∑
a∈C

σa

(
sign(δ0)gpeδ0

∏
b∈C

σb prUUab xκ(δ0(b)−b)

)
belongs to im(σVU ) (the second identity comes from substituting b for c−a).
On the other hand, if δ ∈ SC , one checks immediately that δ(c) − c = δ(0)
is constant for all c ∈ C, i.e., δ = γδ(0) = γκ(δ(0)), whence sign(δ) = 1 (since
p 6= 2). Furthermore eδ = κ(δ(0)). As S decomposes disjointly into SC and
the orbits of order p, we altogether obtain modulo im(σVU )

prUUab N
V
U x̄ ≡

∑
δ∈SC

sign(δ)gpeδ
p−1∏
c∈C

σc prUUab xκ(δ(c)−c)(3)

=
p−1∑
k=0

gpk
p−1∏
i=0

σi prUUab xk .

Using the fact that verVU is a ring homomorphism we are now able to deter-
mine modulo im(σVU ) :

verVU (prVV ab x̄) =
p−1∑
k=0

verVU (prVV ab(xk)) verVU (prVV ab(g)k)

≡
p−1∑
k=0

p−1∏
i=0

σi(prUUab(xk)) prUUab(gp)k

≡ prUUab N
V
U x̄ .

Using the set of representatives R = {1, g, . . . , gp−1} one checks from the def-
inition that verVU (prV

V ab(g)) = prU
Uab(gp). The last congruence is (3) while the
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middle one can be seen as follows. First recall that im(σVU ) is a Λ(Uab)V/U -
ideal and that prU

Uab(gp) belongs to Λ(Uab)V/U . Fix any k and write xk =∑
h∈U/Z ahh with ah ∈ Λ(Z). Using again the fact that verVU is a ring ho-

momorphism combined with formula (ver) (with cu,gi = σ−i(u)) we obtain

verVU (prVV ab(xk)) = prUUab

 ∑
h∈U/Z

ϕZ(ah)
p−1∏
i=0

σi(h)


≡ prUUab

 ∑
h∈U/Z

aph

p−1∏
i=0

σi(h)


as ϕZ(ah) − aph ∈ pΛ(Z), so that its projection to Λ(Uab) lies in im(σVU ),
and

∏p−1
i=0 σ

i(h) belongs to Λ(U)V/U for every h ∈ V/U . Since moreover

p−1∏
i=0

 ∑
h∈U/Z

ahσ
i(h)

− ∑
h∈U/Z

aph

p−1∏
i=0

σi(h)

is a sum of (mixed) terms of the form

p−1∑
i=0

σi

p−1∏
j=0

(ahjσ
j(hj))


with hj ∈ U/Z, such that {hj : 0 ≤ j ≤ p − 1} consists of at least two ele-
ments, and hence belongs to im(σVU ), we can continue our above congruences
by

≡ prUUab

p−1∏
i=0

 ∑
h∈U/Z

ahσ
i(h)


=

p−1∏
i=0

σi(prUUab(xk))

as desired.
4) The last condition requires further preparations. Let U ∈ C(G,Z). If
U = Z we put

αZ : Λ(Z)× −→ 1 + pΛ(Z) ⊆ Λ(Z)×

f 7−→ fp

ϕZ(f)
.

If U 6= Z then we let U ′ ∈ C(G,Z) be the unique subgroup of U such that
[U : U ′] = p. Since U is abelian we may consider the composed homomor-
phism

Λ(U)×
NU
U′−−−→ Λ(U ′)× ⊆−−→ Λ(U)× .
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It is shown in [SV2] Prop. 2.3 (under more general circumstances) that
modulo p this map coincides with the map f 7−→ fp. It follows that

αU : Λ(U)× −→ 1 + pΛ(U) ⊆ Λ(U)×

f 7−→ fp

NU
U ′(f)

is a well defined homomorphism.
We also need, for any open subgroup U ⊆ G, the ring

Λ∞(U) := lim←−K[U/N ]

where N runs over all open normal subgroups of U and where K denotes
the field of fractions of O. We obviously have Λ(U) ⊆ Λ∞(U). The usual
logarithm series induces a homomorphism

log : K1(Λ(U)) = Λ(U)×/[Λ(U)×,Λ(U)×] −→

Λ∞(U)ab := Λ∞(U)/[Λ∞(U),Λ∞(U)] .

Our maps trVU , ηU , and ϕU extend in an obvious way to maps, denoted by
the same symbols, between the Λ∞(U)ab. As a consequence of the first step
in the proof of [OT] Thm. 1.4 we have, for any open subgroups U ⊆ V ⊆ G,
the commutative diagram

(4) K1(Λ(V ))

NV
U

��

log // Λ∞(V )ab

trVU
��

K1(Λ(U))
log // Λ∞(U)ab.

Lemma 4.1. For any U 6= Z in C(G,Z) the diagram

Λ(U)×

αU
��

log // Λ∞(U)

pηU

��
Λ(U)×

log // Λ∞(U)

is commutative.

Proof. Let U ′ ∈ C(G,Z) be the unique subgroup of U of index p. Then

log(αU (f)) = p log(f)− log(NU
U ′(f)) = p log(f)− trUU ′(log(f))

= (p id− trUU ′)(log(f)) .

Hence we have to establish the identity

id−1
p

trUU ′ = ηU .
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But, by definition, we have

ηU (g) =

{
g if g ∈ U \ U ′,
0 if g ∈ U ′.

Remark 3.1.ii says that the same computation holds for the left hand side.
�

For V ∈ S(G,Z) let P (V ) denote the set of all W 6= Z in C(G,Z) such
that the unique subgroup Z ⊆ W ′ ⊆ W with [W : W ′] = p is contained in
V . We now introduce the map

L = (LV )V : [
∏

U∈S(G,Z)

Λ(Uab)×](M3a) −→
∏

V ∈S(G,Z)

Λ(V ab)⊗Zp Qp

defined by

LV ((yU )U ) :=
1

p2|V/Z|
log
( y

p2|V/Z|
V

ϕZ(ypZ)
∏
W∈P (V ) ϕW (αW (yW ))|W/Z|

)
where [. . .](M3a) indicates the subgroup of all those elements which satisfy
(M3a). The individual factors ϕW (αW (yW )) appearing in the above defini-
tion lie in 1+pΛ(W ′), since αW (yW ) ∈ 1+pΛ(W ), and hence can be viewed
in 1 + pΛ(V ab). Moreover using (M3a) we have

ϕZ(ypZ)
∏

W∈P (V )

ϕW (αW (yW ))|W/Z| ≡ ϕZ(ypZ)

≡ yp
2

Z

≡ yp
2|V/Z|
V mod pΛ(V ab) .

Thus the logarithms in the asserted map are defined and lie in pΛ(V ab).

Lemma 4.2. If (yU )U ∈ [
∏
U∈S(G,Z) Λ(Uab)×](M3a) satisfies the condition

(M1), resp. (M2), then L((yU )U ) satisfies (A1), resp. (A2).

Proof. It is straightforward to check that (M2) implies (A2). Let therefore
U ⊆ V be any two subgroups in S(G,Z) such that [V, V ] ⊆ U . We note that

log(
y
p2|V/Z|
V

ϕZ(ypZ)
∏
W∈P (V ) ϕW (αW (yW ))|W/Z|

)

= log(
y
p2|V/Z|
V

ϕZ(ypZ)
)− log(

∏
W∈P (V )

ϕW (αW (yW ))|W/Z|) .
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This will allow us to split the subsequent calculations into two parts. We
begin by computing

τVU

(
1

p2|V/Z| log(
y
p2|V/Z|
V

ϕZ(ypZ)
)

)
= 1

p2|V/Z| log(
νVU (yV )p

2|V/Z|

νVU (ϕZ(ypZ))
)

= 1
p2|V/Z| log(

πVU (yU )p
2|V/Z|

ϕZ(ypZ)|V/U |
)

= πVU

(
1

p2|U/Z| log(
y
p2|U/Z|
U

ϕZ(ypZ)
)

)
where the first, resp. second, identity uses (4), resp. (M1). Next we compute

τVU

 1
p2|V/Z| log(

∏
W∈P (V )

ϕW (αW (yW ))|W/Z|)


= 1

p2|V/Z|

∑
W∈P (V )

τVU (log(ϕW (αW (yW ))|W/Z|))

= 1
p|V/Z|

∑
W∈P (V )

τVU ϕW ηW log(y|W/Z|W )

where the last identity uses Lemma 4.1. Using the definitions and Remark
3.1.iii it is straightforward to check that

τVU ϕW ηW =

{
[V : U ]πVUϕW ηW if W ′ ⊆ U ,
0, otherwise

where, as before, W ′ denotes the unique subgroup of W of index p and
containing Z. We therefore may continue the above computation by

= 1
p|V/Z|

∑
W∈P (U)

[V : U ]πVUϕW ηW log(y|W/Z|W )

= πVU

 1
p2|U/Z|

∑
W∈P (U)

log(ϕW (αW (yW ))|W/Z|)


= πVU

 1
p2|U/Z| log(

∏
W∈P (U)

ϕW (αW (yW ))|W/Z|)


where the second identity again uses Lemma 4.1. This establishes that

τVU (LV ((yU )U )) = πVULU ((yU )U ) ,

i. e., the condition (A1) for LV ((yU )U ). �

Lemma 4.3. For any U ∈ S(G,Z) and any f ∈ Λ∞(G)ab we have:

βU (ϕG(f)) = 1
[U :Z]ϕZ(βZ(f)) +

∑
W∈P (U)

[W :Z]
[U :Z] ϕW (ηW (βW (f))) .
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Proof. It suffices to consider elements of the form f = [g]G for some g ∈ G.
First let g 6∈ Z. We compute

βU (ϕG([g]G)) = prUUab(trGU ([gp]G)) = prUUab(
∑

h∈G/U,h−1gph∈U

[h−1gph]U )

=
∑

h∈G/U,h−1gph∈U

h−1gph[U,U ]

= 1
[U :Z]

∑
h∈G/Z,h−1gph∈U

h−1gph[U,U ]

= 1
[U :Z]

∑
W∈P (U)

∑
h∈G/Z,W=<h−1gh,Z>

h−1gph[U,U ]

= 1
[U :Z]

∑
W∈P (U)

ϕW
( ∑
h∈G/Z,W=<h−1gh,Z>

h−1gh
)

= 1
[U :Z]

∑
W∈P (U)

ϕW
(
[W : Z]

∑
h∈G/W,W=<h−1gh,Z>

h−1gh
)

= [W :Z]
[U :Z]

∑
W∈P (U)

ϕW (ηW (βW ([g]G))) .

We also have ϕZ(βZ([g]G)) = 0 in this case. Now suppose that g ∈ Z. Then
the last term in the above computation vanishes. But we have

βU (ϕG([g]G)) = [G : U ]gp[U,U ] =
1

[U : Z]
ϕZ(βZ([g]G)) .

�

Oliver and Taylor (cf. [Oli] Chap. 6 or [CR] §54) have shown that

L = LG : K1(Λ(G)) −→ O[[Conj(G)]]

x 7−→ log(x)− 1
p
ϕG(log(x))

is a well defined homomorphism which makes the diagram

K1(Λ(G))
log //

L ''OOOOOOOOOOO
Λ∞(G)ab

id− 1
p
ϕG

// Λ∞(G)ab

O[[Conj(G)]]

can

77ppppppppppp

commutative. We observe that, since Λ∞(G)ab also can be viewed as the
projective limit lim←−K[Conj(G/N)], the right oblique arrow is injective.
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Proposition 4.4. The diagram

K1(Λ(G))

θ
��

L // O[[Conj(G)]]

β
��

[
∏
U∈S(G,Z) Λ(Uab)×](M3a)

L //
∏
U∈S(G,Z) Λ(Uab)⊗Zp Qp

is commutative.

Proof. Let x ∈ K1(Λ(G)) and put (xU )U := θ(x). Using (4) we obtain

βV (log(x)) = log(θV (x)) = log(xV )

for any V ∈ S(G,Z). Using this identity together with Lemmas 4.1 and 4.3
we compute

βU (L(x)) = βU (log(x))− 1
pβU (ϕG(log(x)))

= log(xU )− 1
p[U :Z]ϕZ(βZ(log(x)))−

∑
W∈P (U)

[W :Z]
p[U :Z]ϕW (ηW (βW (log(x))))

= log(xU )− 1
p[U :Z]ϕZ(log(xZ))−

∑
W∈P (U)

[W :Z]
p[U :Z]ϕW (ηW (log(xW )))

= log(xU )− 1
p[U :Z]ϕZ(log(xZ))−

∑
W∈P (U)

[W :Z]
p2[U :Z]

ϕW (log(αW (xW )))

= 1
p2[U :Z]

(
log(xp

2[U :Z]
U )− log(ϕZ(xpZ))−

∑
W∈P (U)

log(ϕW (αW (xW ))[W :Z])
)

= L((xU )U ) = L(θ(x)) .

�

For any V ∈ C(G,Z) we let Pc(V ) be the set of all W ∈ C(G,Z) such
that V ⊆W and [W : V ] = p. We claim that

(M4) αV (xV )−
∏

W∈Pc(V )

ϕW (αW (xW )) ∈ p im(σV ) for any V ∈ C(G,Z).

holds true. We repeat that the image of the homomorphism ϕW , by con-
struction, is contained in the subring Λ(V ). Hence the left hand side of (M4)
indeed lies in Λ(V ).

Lemma 4.5. Let (yU )U ∈
∏
U∈C(G,Z) Λ(U)× and V ∈ C(G,Z); then:

i. We have

ηV
(

1
p2|V/Z| log

( y
p2|V/Z|
V

ϕZ(ypZ)
∏
W∈P (V ) ϕW (αW (yW ))|W/Z|

))
=

1
p log

( αV (yV )∏
W∈Pc(V ) ϕW (αW (yW ))

)
;

ii. if (yU )U satisfies (M2) then the following assertions are equivalent:
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a. αV (yV )−
∏
W∈Pc(V ) ϕW (αW (yW )) ∈ p im(σV );

b. αV (yV )∏
W∈Pc(V ) ϕW (αW (yW )) ∈ 1 + p im(σV );

c. log( αV (yV )∏
W∈Pc(V ) ϕW (αW (yW ))) ∈ p im(σV ).

Proof. i. We check that

ηV

(
1

|V/Z| log(
y
p|V/Z|
V

ϕZ(yZ)
)

)
= log(αV (yV ))

and

ηV

 1
p|V/Z| log(

∏
W∈P (V )

ϕW (αW (yW ))|W/Z|)

 =

log(
∏

W∈Pc(V )

ϕW (αW (yW )))

hold true. In case V = Z we have ηZ = idΛ(Z), αZ(yZ) = ypZ
ϕZ(yZ) and

P (Z) = Pc(Z) which makes the two identities obvious. If V 6= Z we may
use Lemma 4.1 and further reduce to the identities

1
p|V/Z| log(

αV (yV )p|V/Z|

αV (ϕZ(yZ))
) = log(αV (yV ))

and ∑
W∈P (V )

|W/Z|
p|V/Z|ηV (ϕW (ηW (log(yW )))) =

∑
W∈Pc(V )

ϕW (ηW (log(yW ))) .

The first one follows from αV ◦ ϕZ = 1 and the second one from

ηV ◦ ϕW ◦ ηW =

{
ϕW ◦ ηW if W ∈ Pc(V ),
0 if W ∈ P (V ) \ Pc(V ).

These latter equations are straightforward from the definitions.
ii. We begin by observing that αV (yV ) and

∏
W∈Pc(V ) ϕW (αW (yW )) both

are units in 1 + pΛ(V ). Hence the fraction in b. lies in 1 + pΛ(V ) so that its
logarithm in c. is defined and contained in pΛ(V ) (recall that we assume p 6=
2). Since p im(σV ) is an ideal in Λ(V )W (V ) it suffices, for the equivalence of
a. and b., to see that

∏
W∈Pc(V ) ϕW (αW (yW )) ∈ Λ(V )W (V ). But this follows

from (M2) since any g ∈W (V ) permutes the elements of the set Pc(V ). For
the equivalence of b. and c. it suffices to show that the isomorphisms

1 + pΛ(V )
log // pΛ(V )
exp

oo

restrict to isomorphisms

1 + p im(σV )
log // p im(σV ) .
exp

oo
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Consider

log(1 + pσV (f)) =
∑
i≥1

(−1)i−1 p
iσV (f)i

i

and

exp(pσV (f)) = 1 +
∑
i≥1

piσV (f)i

i!
.

Since im(σV ) is an ideal in Λ(V )W (V ) we have σV (f)i ∈ im(σV ) for any
i ≥ 1. Moreover, p

i

i! ∈ pZp. Hence each summand in the above two series lies
in p im(σV ). As the latter is closed in Λ(V ) we conclude that

log(1 + pσV (f)) ∈ p im(σV ) and exp(pσV (f)) ∈ 1 + p im(σV ) .

�

Prop. 4.4 implies that (LV ((xU )U ))V satisfies (A1) and that

LV ((xU )U ) ∈ im(σV ) for any V ∈ C(G,Z).

Using Remark 3.8.ii.b and Lemma 4.5.i we deduce that

pηV (LV ((xU )U )) = log(
αV (xV )∏

W∈Pc(V ) ϕW (αW (xW ))
) ∈ p im(σV )

for any V ∈ C(G,Z). Hence Lemma 4.5.ii implies that (M4) holds true for
(xU )U = θ(x).

Let Φ := ΦGZ ⊆
∏
Z⊆U⊆G Λ(Uab)× be the subgroup of all elements (xU )U

which satisfy, for all U ⊆ V in S(G,Z), the conditions

νVU (xV ) = πVU (xU ) if [V, V ] ⊆ U,(M1)

xgUg−1 = gxUg
−1 for any g ∈ G,(M2)

verVU (xV )− xU ∈ im(σVU ) if [V : U ] = p, and(M3)

αU (xU )−
∏

W∈Pc(U)

ϕW (αW (xW )) ∈ p im(σU ) if U ∈ C(G,Z).(M4)

So far we have established that

im(θ) ⊆ Φ .

Lemma 4.6. L(Φ) ⊆ Ψ.

Proof. Let (yU )U ∈ Φ and put (aV )V := L((yU )U ). We already know from
Lemma 4.2 that (aV )V ∈ ΨQp . Lemma 4.5 and (M4) imply that

ηV (aV ) ∈ im(σV ) for any V ∈ C(G,Z).

At this point we have to go back to Remark 3.8.ii.a and observe that the
identity there equally holds for elements in

∏
V ∈C(G,Z) Λ(V )⊗ZpQp satisfying

(A1). We check by induction with respect to the order of V/Z that

aV ∈ im(σV ) for any V ∈ C(G,Z).
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For V = Z we have ηZ = id and the claim is trivial. Let V 6= Z and let
Z ⊆W ⊆ V be the unique subgroup of index p. by the induction hypothesis
we have aW ∈ im(σW ). Remark 3.8.i then implies that 1

paW ∈ im(σV ).
Hence the identity aV = ηV (aV ) + 1

paW shows that aV ∈ im(σV ). We now
may apply Remark 3.7 to see that (aV )V ∈ Ψ. �

It follows that we have the commutative diagram

K1(Λ(G))

θ

��

L // O[[Conj(G)]]

β∼=
��

Φ
L // Ψ

where the right perpendicular arrow, assuming also (H3), is an isomorphism
by Thm. 3.6. We define

SK1(Λ(G)) := ker
(
K1(Λ(G)) −→ K1(Λ∞(G))

)
and

K ′1(Λ(G)) := K1(Λ(G))/SK1(Λ(G)) .

For any open subgroup U ⊆ G we consider the diagram

K1(Λ(G))

NGU
��

// K1(Λ∞(G))

NGU
��

K1(Λ(U))

��

// K1(Λ∞(U))

��
K1(Λ(Uab)) // K1(Λ∞(Uab))

Λ(Uab)×

∼=

OO

// Λ∞(Uab)×.

∼=

OO

The uppermost square commutes since

Λ(G)⊗Λ(U) Λ∞(U) = Λ∞(G) .

The two lower squares commute for trivial reasons. The indicated isomor-
phism on the right hand side is a special case of [SV2] Prop. 3.1. Since the
lowermost horizontal arrow visibly is injective we conclude that

SK1(Λ(G)) ⊆ ker(θU ) for any Z ⊆ U ⊆ G.

Hence θ factorizes through a homomorphism

θ : K ′1(Λ(G)) −→ Φ .

According to [SV2] Cor. 3.2 we have

SK1(Λ(G)) = lim←−SK1(O[G/N ]) .
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It therefore follows from [Oli] Thm. 6.6 and Thm. 7.3 that SK1(Λ(G)) also
lies in the kernel of the integral logarithm L and that, more precisely, we
have the exact sequence

(5) 1→ µ(O)× Gab ι−→ K ′1(Λ(G)) L−−→ O[[Conj(G)]] ω−→ Gab → 1

where µ(O) ⊆ O× denotes the subgroup of all roots of unity, ι is the obvious
map, and ω is given by

ω(a[g]G) := gTrO/Zp (a)[G,G] for any a ∈ O and g ∈ G.

Let us now contemplate the commutative diagram

1 // µ(O)× Gab

=

��

ι // K ′1(Λ(G))

θ

��

L // O[[Conj(G)]]

β ∼=
��

ω // Gab

=

��

// 1

1 // µ(O)× Gab θ◦ι // Φ
L // Ψ

ω◦β−1

// Gab // 1.

Our goal is to show that the lower row is exact as well, which then implies
that θ is an isomorphism. Clearly θG ◦ι : µ(O)×Gab −→ Λ(Gab)× is injective.
Hence θ ◦ ι is injective, and satisfies im(θ ◦ ι) ⊆ ker(L). For trivial reasons
ω ◦ β−1 is surjective with im(L) ⊇ ker(ω ◦ β−1). It therefore remains to
establish the following two facts:

a. ker(L|Φ) ⊆ im(θ ◦ ι);
b. im(L|Φ) ⊆ ker(ω ◦ β−1).

But first of all we observe that, if G is abelian, then θG and consequently by
(M1a), also θ : K1(Λ(G))

∼=−−→ Φ are isomorphisms. In particular, a. and b.
hold in this case.

Lemma 4.7. For (yU )U ∈ Φ we have LG((yU )U ) = 1
p log(

ypG
ϕGab (yG)).

Proof. As a consequence of Lemmas 3.3 and 3.4 any (aU )U ∈ Ψ satisfies

aG =
∑

V ∈C(G,Z)

1
[G:V ]ηV (aV ) in Λ(Gab).

Hence

LG((yU )U ) =
∑

V ∈C(G,Z)

1
[G:V ]ηV (LV ((yU )U )) in Λ(Gab),
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and, inserting the definition and using Lemma 4.5.i, we obtain

LG((yU )U ) =
∑

V ∈C(G,Z)

1
p|G/V | log

( αV (yV )∏
W∈Pc(V )

ϕW (αW (yW ))

)
= 1

p|G/Z| log
( αZ(yZ)∏
|W/Z|=p

ϕW (αW (yW ))

)
+

∑
V ∈C(G,Z),V 6=Z

1
p|G/V | log

( αV (yV )∏
W∈Pc(V )

ϕW (αW (yW ))

)
= 1

p2|G/Z| log
( αZ(yZ)p∏
|W/Z|=p

ϕW (αW (yW ))p ·
∏

V ∈C(G,Z),V 6=Z

αV (yV )p|V/Z|∏
W∈Pc(V )

ϕW (αW (yW ))p|V/Z|

)

= 1
p2|G/Z| log

( ∏
W∈C(G,Z)

αW (yW )p|W/Z|∏
W∈C(G,Z),W 6=Z

ϕW (αW (yW ))|W/Z|

)
emphasizing that the computation takes place in Λ(Gab). Comparing this to
the definition

LG((yU )U ) = 1
p2|G/Z| log

( y
p2|G/Z|
G

ϕZ(ypZ)
∏

W∈C(G,Z),W 6=Z
ϕW (αW (yW ))|W/Z|

)
leads to the identity

log
y
p2|G/Z|
G
ϕZ(ypZ)

= log
∏

W∈C(G,Z)

αW (yW )p|W/Z|

= log
( yp

2

Z
ϕZ(ypZ)

·
∏

W∈C(G,Z),W 6=Z

αW (yW )p|W/Z|
)

and hence to

log yp|G/Z|G = log
(
ypZ ·

∏
W∈C(G,Z),W 6=Z

αW (yW )|W/Z|
)

where, we repeat, all factors in the argument of log are viewed in Λ(Gab).
We therefore may apply the ring homomorphism ϕGab , and we get

logϕGab(yG)p|G/Z| = log
(
ϕZ(ypZ) ·

∏
W∈C(G,Z),W 6=Z

ϕW (αW (yW ))|W/Z|
)
.

By inserting this back into the definition we finally arrive at

LG((yU )U ) = 1
p2|G/Z| log

( y
p2|G/Z|
G

ϕGab (yG)p|G/Z|

)
= 1

p log(
ypG

ϕGab (yG)) .

�

Lemma 4.8. b. is satisfied.
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Proof. Let (yU )U ∈ Φ. Using Lemma 4.7 we compute

(ω ◦ β−1)(L((yU )U )) = ω(LG((yU )U )) =
1
p

log(
ypG

ϕGab(yG)
)

= ω(LGab(yG)) = 1 ,

where the last identity holds by the exact sequence (5) for the group Gab. �

Lemma 4.9. a. is satisfied.

Proof. Let (xU )U be in ker(L|Φ). This in particular means by Lemma 4.5.i
that

log
( αU (xU )∏

V ∈Pc(U) ϕV (αV (xV ))
)

= 0

for any U ∈ C(G,Z). Since the logarithm is taken of an element in 1+pΛ(U)
we deduce that

αU (xU ) =
∏

V ∈Pc(U)

ϕV (αV (xV ))

for any U ∈ C(G,Z). If U maximal in C(G,Z) then Pc(U) is empty and
hence αU (xU ) = 1. By downward induction we obtain

(6) αU (xU ) = 1 for any U ∈ C(G,Z).

In particular, for U = Z we get

xpZ
ϕZ(xZ)

= αZ(xZ) = 1 .

But Z is abelian. In this case the integral logarithm is

LZ : K1(Λ(Z)) −→ Λ(Z)

x 7−→ 1
p

log
( xp

ϕZ(x)
)
.

We see that xZ ∈ ker(LZ) = µ(O) × Z ⊆ K1(Λ(Z) by (5). Next suppose
that [U : Z] = p. Then, using (M1a), we get

xpU = NU
Z (xU ) = xZ ∈ µ(O)×Z ⊆ µ(O)× U ⊆ K1(Λ(U)) .

From (5) for LU we see that Λ(U)×/(µ(O)×U) is torsion free. We conclude
that xU ∈ µ(O)× U . Again by induction it then follows that

xU ∈ µ(O)× U ⊆ K1(Λ(U)) for any U ∈ C(G,Z).

Similarly as above we have the relation

x
p2|U/Z|
U∏

W∈P (U) ϕW (αW (xW ))|W/Z|
= 1
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for all U in S(G,Z). But by (6) the denominator is equal to one, i. e.,
x
p2|U/Z|
U = 1. Again by (5) for LUab we see that the only torsion of Λ(Uab)×

is contained in µ(O)× Uab. Hence xU = 1. We now have established that

(xU )U ∈
∏

U∈S(G,Z)

(
µ(O)× Uab

)
∩ Φ .

At this point we need the condition (M3). We claim that it implies

xU = verGU (xG) for any U ∈ S(G,Z).

Indeed, let first U be of index p in G and assume that for g, h ∈ Uab and
ζ, ξ ∈ µ(O) the element ζg−ξh lies in im(σGU ). Then, under the augmentation
map ε of Λ(Uab) we have that ε(ζg − ξh) = ζ − ξ ∈ ε(im(σGU )) = |G/U |O is
divisible by p. Since ζ and ξ are roots of unity in an unramified extension
of Zp this implies that ζ = ξ. As ζ is a unit in O it follows that g − h lies
in im(σGU ) and therefore is, as any element in im(σGU ), invariant under the
conjugation action of G/U . We choose a set of representatives R ⊆ Uab of
the cosets in U/Z[U,U ] and write

g = zgug , h = zhuh, and g − h = σGU (
∑
u∈R

auu)

with ug, uh ∈ R, zg, zh ∈ Z[U,U ]/[U,U ], and au ∈ Λ(Z). On the one hand
the invariance of g − h implies that ug and uh are both invariant as p 6= 2.
On the other hand any τ ∈ G/U induces a permutation τ of R such that
τuτ−1 = bτ,uτ(u) with bτ,u ∈ Z for any u ∈ R. We compute

zgug − zhuh = g − h = σGU (g − h) =
∑
u∈R

∑
τ∈G/U

auτuτ
−1

=
∑
u∈R

∑
τ∈G/U

aubτ,uτ(u)

=
∑
u∈R

(
∑
τ∈G/U

aτ−1(u)bτ,τ−1(u))u .

Since τ(ug) = ug, τ(uh) = uh, and bτ,ug = bτ,uh = 1 for any τ it follows that

zg = [G : U ]aug = paug and zh = [G : U ]auh = pauh

provided ug 6= uh. Since this is not possible we must have u := ug = uh.
But then zg − zh = pau which implies zg = zh and hence g = h. This proves
our claim for U of index p in G. The general case then follows by induction.
This together with (1) shows that (xU )U ∈ im(θ ◦ ι). �

Theorem 4.10. Assuming (H1) - (H4) the map θ : K ′1(Λ(G))
∼=−−→ ΦGZ is

an isomorphism.
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5. The integral logarithm for B(G)

In this section we will construct an extension of the integral logarithm L
of Oliver and Taylor to K1(B(G)). We assume (H2), (H4), and that H is
finite, which implies (H1). The ring B(G) being local we have the surjection
B(G)× � K1(B(G)). The usual computation for the convergence of the
logarithm series

log(x) = Log(1 + x) =
∑
n≥1

(−1)n+1

n
xn

shows that it induces a homomorphism

log : 1 + Jac(B(G)) −→ (B(G)/[B(G), B(G)])⊗Zp Qp .

The additional point to note is that the ideal Jac(B(G))/pB(G) is nilpotent
in B(G)/pB(G); in particular, the denominators appearing in the image of
this map are bounded.

On the other hand, as ϕZ(S(Z)) ⊆ S(Z) we obtain a unique extension
ϕZ : A(Z) −→ A(Z) of ϕZ . It respects Jac(A(Z)) and therefore further
extends to a homomorphism of rings ϕZ : B(Z) −→ B(Z), which modulo p
induces the endomorphism of B(Z)/pB(Z) ∼= O/(p)[[Z]] which sends f 7→
fp. Furthermore, for any subgroup U ∈ S(G,Z) we may use the identification
B(U)/[B(U), B(U)] = B(Z)⊗Λ(Z)O[[Conj(U)]] from Lemma 2.2.ii to extend
the earlier map ϕU to the map

ϕU : B(U)/[B(U), B(U)] −→ B(U)/[B(U), B(U)]

z ⊗ f 7−→ ϕZ(z)⊗ ϕU (f) .

If U is abelian then ϕU is again a ring endomorphism of B(U) which modulo
p coincides with the map f 7→ fp.

Lemma 5.1. The group B(G)×/[1+pB(G)] ·B(Z ′)×, for any open subgroup
Z ′ ⊆ G0, is annihilated by p` for a sufficiently large ` ∈ N.

Proof. Let IB := ker(B(G) −→ B(Γ)). We also fix a section σ : Γ → G of
the projection map G → Γ. It induces a section B(Γ)

∼=−−→ B(σ(Γ)) ⊆ B(G)
of the ring homomorphism B(G) −→ B(Γ). Hence

(7) B(G)× = [1 + IB] ·B(σ(Γ))× = [1 + Jac(B(G))] ·B(σ(Γ))× .

If Jac(B(G))p
` ⊆ pB(G) then [1 + Jac(B(G))]p

` ⊆ 1 + pB(G). On the other
hand, the subgroup σ(Γ) ∩ Z ′ is open and hence contains σ(Γ)p

`
for some

sufficiently large ` ∈ N. It follows that ϕ`σ(Γ)(σ(Γ)) ⊆ Z ′ and therefore that

ϕ`σ(Γ)(B(σ(Γ))×) ⊆ B(Z ′)× .
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Since ϕ`σ(Γ)(x) ≡ xp
`

mod 1 + pB(σ(Γ)) for any x ∈ B(σ(Γ))× we conclude
that

B(σ(Γ))×p
` ⊆ [1 + pB(σ(Γ))] ·B(Z ′)× ⊆ [1 + pB(G)] ·B(Z ′)× .

�

We now define the homomorphism

[1 + Jac(B(G))]B(G0)× −→ (B(G)/[B(G), B(G)])⊗Zp Qp

x 7−→

{
log(x)− 1

pϕG(log(x)) if x ∈ 1 + Jac(B(G)),
1
p log( xp

ϕG0
(x)) if x ∈ B(G0)×.

This is well defined since:
– xp

ϕG0
(x) ∈ 1 + pB(G0) for x ∈ B(G0)×.

– 1
p log( xp

ϕG0
(x)) = log(x)− 1

pϕG(log(x)) for x ∈ [1+Jac(B(G))]∩B(G0)×.

As a consequence of Lemma 5.1 and the unique divisibility of the target this
map extends uniquely to B(G)× and induces a natural homomorphism

LB := LB(G) : K1(B(G)) −→ (B(G)/[B(G), B(G)])⊗Zp Qp .

Proposition 5.2. LB has image in B(G)/[B(G), B(G)].

Proof. First of all we note that B(G)/[B(G), B(G)] by Lemma 2.2.ii is p-
torsion free so that the statement makes sense.

For x ∈ B(σ(Γ))× we have that LB(x) is the image in B(G)/[B(G), B(G)]
of

1
p log( xp

ϕσ(Γ)(x)) ∈ 1
p log(1 + pB(σ(Γ))) ⊆ B(σ(Γ)) .

Therefore (7) reduces us to proving that

log(x)− 1
pϕG(log(x)) ∈ B(G)/[B(G), B(G)] for any x ∈ 1 + Jac(B(G)).

This is done by arguments completely analogous to the case of the integral
logarithm of Oliver and Taylor (cf. [Oli] Chap. 6 or [CR] §54). �

Lemma 5.3. If i : Λ(G) → B(G) denotes the inclusion map then the dia-
gram

K1(Λ(G))

LG
��

K1(i) // K1(B(G))

LB(G)

��
O[[Conj(G)]] i // B(G)/[B(G), B(G)]

commutes.

Proof. If I := ker(Λ(G) −→ Λ(Γ)) then we have, as in the proof of Lemma
5.1, that Λ(G)×/[1 + I] · Λ(G0)× is annihilated by some p`. But

LB(G)

∣∣[1 + I] = i ◦ LG
∣∣[1 + I]
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by the very definitions and

LB(G0)

∣∣Λ(G0) = LG0

since G0 is commutative. �

Next we define

SK1(A(G)) := image of SK1(Λ(G)) in K1(A(G)),

SK1(B(G)) := image of SK1(Λ(G)) in K1(B(G))

and

K ′1(A(G)) := K1(A(G))/SK1(A(G)),

K ′1(B(G)) := K1(B(G))/SK1(B(G)).

Lemma 5.3 implies that LB(G) induces a homomorphism

LB = LB(G) : K ′1(B(G)) −→ B(G)/[B(G), B(G)] .

6. The multiplicative theory, part 2

Throughout this section we assume (H1) - (H4) and, in fact, that H is
finite. We choose Z small enough so that it is torsion free (i. e., Z ∼= Zp).
We shall study the analogs

θA := (θGZ)A : K1(A(G)) −→
∏

U∈S(G,Z)

A(Uab)×

and

θB := (θGZ)B : K1(B(G)) −→
∏

U∈S(G,Z)

B(Uab)×

of θ, where we abbreviate

A := A(G) := Λ(G)S(G)

and as before

B := B(G) := Λ̂(G)S .

Since by Prop. 1.3 we have

A(·) = A(Z)⊗Λ(Z) Λ(·) and B(·) = B(Z)⊗Λ(Z) Λ(·)

the norm maps NV
U extend naturally and one immediately checks that the

analogs

(θA)U : K1(A(G))
NGU−−−→ K1(A(U)) −→ K1(A(Uab)) = A(Uab)×
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and similarly (θB)U of θU are defined and induce a commutative diagram

K1(Λ(G)

��

θU // Λ(Uab)×� _

��
K1(A(G))

��

(θA)U // A(Uab)×� _

��
K1(B(G))

(θB)U // B(Uab)×

which implies an analogous diagram for θ, θA, and θB.
Let U ⊆ V be subgroups in S(G,Z). As Z ⊆ Uab we have A(Uab) =

A(Z)⊗Λ(Z) Λ(Uab) and similarly for B(Uab). It follows easily that the maps
πVU , νVU , and σVU extend naturally to the rings A(·) and B(·). In particular,
αZ extends to a map αZ : B(Z)× → 1 + pB(Z) ⊆ B(Z)× sending again f

to fp

ϕZ(f) . If U ∈ C(G,Z) differs from Z then the reasoning in the proof of
[SV2] Prop. 2.3 still works and shows that the map

αU : B(U)× −→ B(U)×

f 7−→ fp

NU
U ′(f)

,

which extends the earlier such map, has image in 1 + pB(U).
If [V : U ] = pn then the Verlagerung satisfies

verVU (zḡ) = zp
n

verVU (ḡ) = ϕnZ(z) verVU (ḡ)

for any z ∈ Z and ḡ ∈ Uab. Hence we may extend the earlier ring homomor-
phism verVU : Λ(V ab) −→ Λ(Uab) to the ring homomorphism

B(V ab) = B(Z)⊗Λ(Z) Λ(V ab) −→ B(Uab) = B(Z)⊗Λ(Z) Λ(Uab)

z ⊗ f 7−→ ϕnZ(z)⊗ verVU (f) .

It maps A(V ab) into A(Uab).
We now may define the subsets

ΦA = (ΦGZ)A ⊆
∏

U∈S(G,Z)

A(Uab)×

and
ΦB = (ΦGZ)B ⊆

∏
U∈S(G,Z)

B(Uab)×

by the corresponding conditions (M1) - (M4), and we obtain the obvious
inclusions

Φ ⊆ ΦA ⊆ ΦB .

For the purpose of proving the main conjecture the following result is essen-
tial.
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Theorem 6.1. i. The image of θA is contained in ΦA.
ii. Within

∏
U∈S(G,Z)A(Uab)× we have

ΦA ∩
∏

U∈S(G,Z)

Λ(Uab)× = Φ = im(θ) .

Note that Thm. 6.1.ii follows trivially from the definition of Φ and ΦA as
well as from Thm. 4.10. While one checks that the image of θA satisfies (M1)
- (M3) for the same reasons as im(θ), condition (M4) would again require
an (integral) logarithm, which due to convergence issues is not available for
A(G). This is the only reason to consider also θB and ΦB in the following!
Thus we are going to prove the following variant

Theorem 6.2. i. The image of θB is contained in ΦB.
ii. Within

∏
U∈S(G,Z)B(Uab)× we have

ΦB ∩
∏

U∈S(G,Z)

A(Uab)× = ΦA .

Again, Thm. 6.2.ii holds for trivial reasons. Moreover, Thm. 6.2.i clearly
implies Thm. 6.1.i. It is straightforward to check (by the same arguments
as before) that the image of θB satisfies the conditions (M1) - (M3). In
particular, upon replacing (2) by

B(V ) ∼=
p−1⊕
i=0

B(U)gi

and using also

B(U) ∼=
⊕

h∈U/Z

B(Z)h

the proof for (M3) is literally the same as before.
Before we discuss the condition (M4) we would like to point out the

following conclusion.

Corollary 6.3. For any compact p-adic Lie group G and O the ring of
integers of a finite unramified extension of Qp the canonical maps

K ′1(Λ(G)) ↪→ K ′1(A(G)) and K ′1(Λ(G)) ↪→ K ′1(B(G))

are injective.

Proof. Assuming first that G = G is pro-p of dimension one, the claim follows
from the following commutative diagram

K ′1(Λ(G))� _

θ

��

// K ′1(A(G))

θA
��

Φ � � // ΦA.



K1 OF CERTAIN IWASAWA ALGEBRAS, AFTER KAKDE 35

In the general pro-p case we may express Λ(G) as an inverse limit of Iwasawa
algebras of groups G of dimension one which by [FK] Prop. 1.5.1 and [SV2]
Cor. 3.2 gives rise to a commutative diagram

K ′1(Λ(G))

��

∼= // lim←−K
′
1(Λ(G))

� _

��
K ′1(A(G)) // lim←−K

′
1(A(G))

and to a corresponding one for K ′1(B(G)). The claim follows. For general G
one uses the same reduction steps as discussed in [Su]. �

In order to show that the image of θB satisfies (M4) we need the commu-
tativity of the diagram

(8) K1(B(G))

θB
��

LB // B(G)/[B(G), B(G)]

βB
��

[
∏
U∈S(G,Z)B(Uab)×](M3a)

LB //
∏

U∈S(G,Z)

B(Uab)⊗Zp Qp,

where [. . .](M3a) indicates, as before, the subgroup of elements satisfying
(M3a) and where LB = (LB,V )V ∈S(G,Z) is defined in the same manner as
earlier the map L:

LB,V ((yU )U ) :=
1

p2|V/Z|
log
( y

p2|V/Z|
V

ϕZ(ypZ)
∏
W∈P (V ) ϕW (αW (yW ))|W/Z|

)
.

By Λ(Z)-linearity the map ηU extends to a B(Z)-linear map

ηU : B(U)→ B(U) .

Lemma 6.4. i. For any open subgroups U ⊆ V ⊆ G, we have the
commutative diagram

1+pB(V )
[1+pB(V ),B(V )×]

NV
U

��

log // B(V )/[B(V ), B(V )]⊗Zp Qp

trVU
��

1+pB(U)
[1+pB(U),B(U)×]

log // B(U)/[B(U), B(U)]⊗Zp Qp.

ii. For any U 6= Z in C(G,Z) the diagram

1 + pB(U)

αU

��

log // B(U)⊗Zp Qp

pηU
��

1 + pB(U)
log // B(U)⊗Zp Qp

is commutative.
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Proof. ii. follows formally from i. in the same way as Lemma 4.1 follows
from (4). For i. one has to adapt the first step in the proof of [OT] Thm.
1.4. �

Remark 6.5. By B(Z)-(semi)linearity the identity in Lemma 4.3 remains
valid for any f ∈ B(G)/[B(G), B(G)]⊗Zp Qp and any U ∈ S(G,Z).

To establish the commutativity of (8) we have to show that

LB(θB(x)) = βB(LB(x)) for any x ∈ K1(B(G))

holds true. Because of Lemma 5.1 it suffices to treat the two special cases x ∈
1 + pB(G) and x ∈ B(Z)×. In the first case the computation is formally the
same as the computation in the proof of Prop. 4.4, now using (8), Lemma 6.4,
and Remark 6.5 of course. Let therefore x ∈ B(Z)×. Then NGU (x) = x|G/U |

for any U ∈ S(G,Z) and αW (x) = xp

NW
W ′ (x)

= xp

xp = 1 for any W ∈ P (U).

Hence we obtain θB(x) = (x|G/U |)U and

LB(θB(x)) = ( 1
p2|V/Z| log

( xp
2|G/Z|

ϕZ(xp|G/Z|)
∏
W∈P (V ) ϕW (αW (x))|G/Z|

)
)V

= ( |G/V |p log
( xp

ϕZ(x)
)
)V

= (|G/V |LB(x))V
= βB(LB(x)) .

To see that θB(x) satisfies (M4) we observe that due to Thm. 3.9 and the
commutativity of (8) the element LB(θB(x)) = βB(LB(x)) satisfies (A1)
and (A3). We further note that the obvious analogs of Remark 3.8.ii.b and
Lemma 4.5 remain true in the present setting. Hence we may argue exactly
as we did earlier (before Lemma 4.6) for θ(x).

This finishes the proof of Theorems 6.2 and 6.1.
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