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Abstract

In the Lubin-Tate setting we study pairings for analytic (¢, )-modules and prove
an abstract reciprocity law which then implies a relation between the analogue of Perrin-
Riou’s Big Exponential map as developed by Berger and Fourquaux and a p-adic regulator
map whose construction relies on the theory of Kisin-Ren modules generalising the concept
of Wach modules to the Lubin-Tate situation.
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1 Introduction

Classically explicit reciprocity laws or formulas usually mean an explicit computation of
Hilbert symbols or (local) cup products using e.g. differential forms, (Coleman) power se-
ries etc. and a bunch of manifestations of this idea exists in the literature due to Artin-Hasse,
Iwasawa, Wiles, Kolyvagin, Vostokov, Briickner, Coleman, Sen, de Shalit, Fesenko, Bloch-
Kato, Benois ... In the same spirit Perrin-Riou’s reciprocity law gives an explicit calculation of
the Iwasawa cohomology pairing in terms of big exponential and regulator maps for crystalline
representations of Gg,; more precisely, the latter maps are adjoint to each other when also
involving the crystalline duality paring after base change to the distribution algebra corre-
sponding to the cyclotomic situation.

The motivation for this article is the question what happens if one replaces the cyclotomic
Zy-extension by a Lubin-Tate extension Ly over some finite extension L over Q, with Galois
group I'y, = G(Lw/L) and Lubin-Tate character x 7 : G, — o] which all arise from a Lubin-
Tate formal group attached to a prime m; € op the additive group of the ring of integers
or, of L; by ¢ we denote the cardinality of the residue field or/ormr. We try to extend the
above sketched cyclotomic picture to the Lubin-Tate case at least for L-analytic crystalline
representations of the absolute Galois group Gy, of L. As pointed out in [SV15] already, the
character 7 := Xeye - XZ% plays a crucial role.



To this aim we study (pr,I'r)-modules over different Robba rings with coefficients in
suitable complete intermediate fields L £ K < C,,. The starting point is the theory of Schneider
and Teitelbaum: In [ST2| they introduced the rigid analytic group variety X over L, which
parameterizes the locally L-analytic characters of or, and similarly X* =~ Xp, for the locally
L-analytic groups of = I'z, the isomorphisms being induced by (the inverse of) xrr. Under
the assumption that the period € of the dual of the fixed Lubin-Tate group belongs to K
they establish an isomorphism x : Bx = X of rigid analytic varieties over K, called the
Lubin-Tate isomorphism, where B denotes the rigid analytic open unit disk and the index
K indicates base change to K. In sections we recall or introduce the Robba
rings R () for all the above varieties ). We call Ri(I'r) := Ri(Xr,) also the Robba
group ring as we can consider it as an extension of the locally L-analytic distribution algebra
D(T', K) with coefficients in K as follows: The Fourier isomorphism D(or, K) =~ Og(X)
onto the ring of holomorphic functions on X induces the Mellin-transform, i.e., a topological
isomorphism between D(I'r,, K) = D(o;, K) and the D(o;, K)-submodule (Ok (X))VL=0 of
Ok (X) on which the wf—operator - to be recalled in section - acts as zero. As a special
case of the following theorem we extend the Mellin transform to an isomorphism of Rg(I'z)
and (R (%))¥r=0,

Theorem 1 (Theorem (4.3.23). If M denotes a L-analytic (¢r,T'r)-module over Ry (X) for
any complete intermediate field L = K < Cp, then M¥2=0 js a free Ry (T'L)-module of rank
I'k’RK(:{) M.

For B instead of X an analogous statement holds, if K contains €; technically, this is
the case we prove first (see Theorem and which then, after involving the Lubin-Tate
isomorphism, descends to the Theorem. Under this condition on K we may illustrate that via
Fourier theory and the Lubin-Tate isomorphism the locally L-analytic distribution algebra
D(op, K) becomes isomorphic to the subring Ok (B) € Rg(B) consisting of those functions
which converge on the full open unit disk, while the functions in Rx(B) in general only
converge on some annulus r < |Z| < 1 for some radius 0 < r < 1. This isomorphism induces
the Mellin-transform, i.e., a topological isomorphism between D(o;,K) and the D(o;, K)-
submodule (O (B))¥2=° of Ok (B) on which the 1z-operator - up to a scalar a left inverse
of the Lubin-Tate ¢ -operator - acts as zero.

A second ingredient is Serre duality on the above rigid analytic varieties ), which induces
- as developed in this generality in section - a residue pairing

O, ) X R(Y) = K
in for the differentials Q%QL @) and also a pairing
<, >g) : RK(QJ) X RK(@) —> K,
see , . For 9 = Xr, the latter induces topological isomorphisms
HOH]K@gS(RK(PL), K) = RK(FL) and HOIHK,CtS('RK(FL)/D(FL, K), K) = D(FL, K)

For a L-analytic (¢r,I'r)-module M over R := Rg(2) with Q) either equal to X or B, we
finally use these isomorphisms to define on the one hand the two Iwasawa pairings

{, Wirw: MYL=0 5 M¥1=0 _ Ry(I'1)
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and .
{ badgw : MYP=70 < MYE=Y o DT, K),

where M := Homp (M, 9713) They are linked by the commutative diagram

() Watgw s M7 MY1=! — D(T,, K)
@L_li ?wll [
{, Wrgw: MYE=0 x MYr=0 — = R (T1).
Now assume that M arises as Diig(W) under Berger’s equivalence of categories, if 9 =
B, and as Diig(W)x under the equivalence from [BSX], if 9 = X, (see Thm. 4.5.28) from
an L-analytic, crystalline representation W of G, whence M = Diig(W*(XLT)) and M =~
Diig(W*(XLT))xa respectively. Then, on the other hand we obtain the pairing

[ 1Deis oy RYL=V R Deris.. W*(x11)) X RV ®L Deris.r. (W) — R (T'1,)

by base extension of the usual crystalline duality pairing - if 9) = B assuming 2 € K -, see
(138]). The work of Kisin-Ren and Berger-Schneider-Xie, respectively, provides comparison
isomorphisms

1

?] ®L Dcris,L(W)
2

1
comp,y : M[g] ~R[

and

compyy : V-] = RI, ] @1 Deris (W (x07)).
2 2
Here tg :=tr7r :=log;r(Z) € R denotes the Lubin-Tate period which stems from the Lubin-
Tate logarithm while tx = logy as defined before Remark [£.2.9] The Lubin-Tate character
xrr induces isomorphism I'y, = of as well as Lie(I'y) =, L, and we let V € Lie(I'z) be the
preimage of 1. Then the abstract reciprocity law we prove is the following statement.

Theorem 2 (Theorem Y.5.32). For all x € MYL=0 and y € MYL=0 for which the crystalline
pairing is defined via the comparison isomorphism, it holds

qg—1
T{vx’ y}?\%[w = [x’ y]Dcv*is,L(W)7

if Q9 = X, while the analogous statement for PP = B holds upon assuming Q€ K.

As explained in more detail at the beginning of section the proof of this abstract
reciprocity law is mainly based on the insight, how the residue maps of X and X* and hence
their associated pairings < , >y and <, >y« are related to each other by Theorem [4.5.12]in
subsection 5.3

As an application for ) = B we show in section [5] the adjointness of big exponential and
regulator maps. Recall that already Fourquaux [Foul, who initiated the investigation of Perrin-
Riou’s approach for Lubin-Tate extensions in his thesis in 2005, had achieved a generalization
of Colmez’ construction of the Perrin-Riou logarithm. Moreover, Berger and Fourquaux [BF]
have constructed for V an L-analytic representation of Gy, and an integer h = 1 such that



. FﬂihDC”‘S’L(V) = Dcris,L(V) and

h

L4 Dcm’s,L(V)spL=ﬂ—Z =0

a big exponential map & la Perrin-Riou

—a
QV,h : (OK(B))wLZO ®r Dcris,L(V) - DT (V)wL L,

rig
which up to comparison isomorphism is for h = 1 given by f = (1 — ¢r)x — Va and which
interpolates Bloch-Kato exponential maps ELPLV(x7 ,)-

On the other hand, based on an extension of the work of Kisin and Ren [KR] in the first
section, we construct for a lattice 7 < V, such that V(7~!) is L-analytic and crystalline and
such that V' does not have any quotient isomorphic to L(7), a regulator map a la Loeffler and
Zerbes [LZ]

LY : Hiy(Loo/ L, T) = Dpp(T(r- )71 = (Ok (B)) 2= @1 Deris,n(V (7))

as applying the operator -
I——¢pr
q

up to comparison isomorphism. Then we derive from the abstract version above with W =
V(771 the following reciprocity formula

Theorem 3 (Theorem [5.2.1). Assume that V*(1) is L-analytic. If Fil™' Deys (V*(1)) =
Deris,r.(V*(1)) and DCM'S,L(V”‘(1))‘”:”;1 = Dc,nis’L(V*(l))@DL:1 = 0, then the following dia-
gram commautes:

{}rw
_—

DI, (V*(1)"+==r x D(V(71))vr=t D(T'1,Cp)

TQV*(I),I ﬁ(\)/l/
(O (B))?2=0®L Deris,.(V*(1)) x (O (B))?>= ®L Deris, . (V(771)) 4 D(T'r,Cp).

While the crystalline pairing satisfies an interpolation property (Prop. for trivial
reasons, the statement that the second Iwasawa pairing interpolates Tate’s cup product pairing
is more subtle (Prop. . Eventually the interpolation property of Berger and Fourquaux
for Qy;, combined with the adjointness of the latter with E?/ implies an interpolation formula
for the regulator map, which interpolates dual Bloch-Kato exponential maps, see Thm.

Acknowledgements: We thank Rustam Steingart for discussions about section In
his thesis [Stel] he has generalized Theorem to (pr,'r)-modules over families. Both
authors are grateful to UBC and PIMS at Vancouver for supporting a fruitful stay. The project
was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der SFB 1442, Geometry: Deformations and Rigidity, project-1D 427320536, Germany’s Excel-
lence Strategy EXC 2044 390685587, Mathematics Miinster: Dynamics—Geometry-Structure,
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2 Notation

Let Q, € L c C, be a field of finite degree d over Q,, or, the ring of integers of L, 71, € of, a
fixed prime element, k;, = or/mror, the residue field, g := |kz| and e the absolute ramification
index of L. We always use the absolute value | | on C, which is normalized by |rz| = ¢71.
We warn the reader, though, that we will repeatedly use the references [BSX], [FX], [Laz2],
[Scll, [Sc2], [ST], and [ST2| in which the absolute value is normalized differently from this
paper by |p| = p~!. Our absolute value is the dth power of the one in these references. The
transcription of certain formulas to our convention will usually be done silently.

We fix a Lubin-Tate formal or-module LT = LT}, over oy, corresponding to the prime
element m7,. We always identify LT with the open unit disk around zero, which gives us a global
coordinate Z on LT. The or-action then is given by formal power series [a|(Z) € or[[Z]]. For
simplicity the formal group law will be denoted by +r7.

The power series %KX Y)=(2,0) is a unit in or[[Z]] and we let grr(Z) denote its
inverse. Then grp(Z)dZ is, up to 7sca1ar,s, the unique invariant differential form on LT ([Haz,
§5.8]). We also let

(1) logrr(Z) =2+ ...

denote the unique formal power series in L[[Z]] whose formal derivative is grp. This log;
is the logarithm of LT (|[Lanl 8.6]). In particular, gr7dZ = dlog;p. The invariant derivation
Oinv corresponding to the form dlog; is determined by

fldZ = df = biny(f)dlogrr = Oumv(f)grrdZ

and hence is given by

(2) O (f) = 977" -

For any a € or, we have

(3)  logrr([a](Z)) =a-logry  and hence  agrr(Z) = grr([al(Z)) - [a]'(Z)

(|[Lanl 8.6 Lemma 2|).

Let T be the Tate module of LT. Then T, is a free or-module of rank one, say with
generator 71, and the action of G := Gal(L/L) on T} is given by a continuous character
xrr @ G — of. Let T) denote the Tate module of the p-divisible group Cartier dual to
LT with period Q (depending on the choice of a generator of T), which again is a free or-
module of rank one. The Galois action on T =~ T*(1) is given by the continuous character
T = Xeye XZ%,, where Xy 1s the cyclotomic character.

For n > 0 we let L, /L denote the extension (in C,) generated by the 7}-torsion points of
LT, and we put Ly := | J,, L. The extension Lo /L is Galois. We let I'y, := Gal(Le/L) and
Hj, := Gal(L/Ls). The Lubin-Tate character xzr induces an isomorphism I'j, = of.

Henceforth we use the same notation as in [SV15]. In particular, the ring endomorphisms
induced by sending Z to [r1](Z) are called ¢, where applicable; e.g. for the ring <77, defined
to be the my-adic completion of or[[Z]][Z7!] or By, := o/ [n, '] which denotes the field of

fractions of «77. Recall that we also have introduced the unique additive endomorphism ¥y, of
A1, (and then o77) which satisfies

-1
prLoyr =mp -traceg, j,, (3,) -
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Moreover, projection formula

Yr(er(fi)f2) = fivn(fz)  for any f; € #p

as well as the formula ¢
Yropr =—-id
L

hold. An étale (¢r,'r)-module M comes with a Frobenius operator ¢p; and an induced
operator denoted by ;.

Let Et := lim oc, /poc, with the transition maps being given by the Frobenius ¢(a) = a?.
We may also identify E* with anon/TrLo(cp with the transition maps being given by the
g-Frobenius ¢,4(a) = a?. Recall that E* is a complete valuation ring with residue field F, and
its field of fractions E = lim C,, being algebraically closed of characteristic p. Let mg denote
the maximal ideal in E*.

The g-Frobenius ¢, first extends by functoriality to the rings of the Witt vectors W(]NEJ’) -
W(E) and then oy-linearly to W(ET), := W(E+)®0LO or, € W(E)L := W(E) ®oy, O, Where
L is the maximal unramified subextension of L. The Galois group G obviously acts on E
and W(f}) 1 by automorphisms commuting with ¢,. This G'r-action is continuous for the weak
topology on W (E), (cf. [GAL, Lemma 1.5.3]).

Sometimes we omit the index ¢, L, or M from the Frobenius operator, but we always write
¢p when dealing with the p-Frobenius.



3 Wach-modules a la Kisin-Ren

3.1 Wach-modules

In this section we recall the theory of Wach-modules a la Kisin-Ren [KR] (with the simplifying
assumption that - in their notation - K = L, m = 1 etc.).

By sending Z to wrr € W(E"),, (see directly after [SV15, Lem. 4.1]) we obtain an Gp-
equivariant, Frobenius compatible embedding of rings

or[[Z]] — W(E"),

the image of which we call AT, it is a subring of Ay, (the image of 7, in W(E);). The latter
ring is a complete discrete valuation ring with prime element 7y, and residue field the image Ej,
of kr((Z)) — E sending Z to w := wrp mod 7. We form the maximal integral unramified
extension (= strict Henselization) A"}" of Ay inside W (E)y. Its p-adic completion A still is
contained in W(E) - Note that A is a complete discrete valuation ring with prime element 7y,
and residue field the separable algebraic closure E;” of Ef, in E. By the functoriality properties
of strict Henselizations the g-Frobenius ¢, preserves A. According to [KRl Lemma 1.4| the G-
action on W (E)y, respects A and induces an isomorphism Hy, = ker(x 1) — Aut®(A/Ap).
We set AT := A n W(EY),.

Set Q) := w € AJr which satisfies per definitionem ¢r(wrr) = Q - wrr.

Following [KR] we write O = O (B) for the ring of rigid analytic functions on the open
unit disk B over L, or equivalently the ring of power series in Z over L converging in B. Via
sending wrr to Z we view A7 as a subring of O. We denote by ModéL’FL’an the category
cousisting of finitely generated free O-modules M together with the following data:

(1) an isomorphism 1® pu : (902/\/()[%] ~ M[é]

(ii) a semi-linear I'z-action on M, commuting with ¢ and such that the induced action

on D(M) := M/wrrM is trivial.

We note that, since M/wprM = M[é]/wLTM[é] the map o induces an L-linear endo-
morphism of D(M), which we denote by pp(aq)- As a consequence of (1) it, in fact, is an
automorphism.

The I'r-action on M is differentiable ([BSX| Lemma 3.4.13|) EI, and the corresponding
derived action of Lie(T'z) is L-bilinear ([BSX, Remark 3.4.15])]

Similarly, we denote by Mod% TLA% the category consisting of finitely generated free Aj-

modules N together with the followmg data:
(i) an isomorphism 1 ® @y : (gozN)[%] ~ N[%]H

(ii) a semi-linear I'p-action on N, commuting with ¢ and such that the induced action on
N /wrrN is trivial.

!By % M we understand the module O ®o,,; M.

2Note that the statements in (loc. cit.) are all over the character variety; but by the introduction to §3.4
they are also valid over the open unit ball - with even easier proofs.

*In [KR] being L-analytic is an extra condition in the definition of Mod%*""»**" which by this remark is
automatically satisfied, whence the corresponding categories, with and without the superscript 'an’ in [KR]
coincide!

‘By ¢¥ N we understand the module A} ®at .oy N, and formally ¢y is a map from N to N[é]



The map ¢ induces an L-linear automorphism of D(N) := N[}%]/wLTN[%] denoted by ¢ p(n)-
Obviously we have the base extension functor O ®AZ - ModiL#FLﬂn N ModgLeryan.

. L
It satisfies

(4) D(O®,: N) = D(N) .

We write 1\/[od“(‘;L’FL’0 for the full subcategory of ModéL’FL"m consisting of all M such that
R Qo M is pure of slope 0. Here R denotes the Robba ring.
By ModL’qu we denote the category of finite dimensional L-vector spaces D equipped

with an L-linear automorphism ¢, : D = D and a decreasing, separated, and exhaustive

filtration, indexed by Z, by L-subspaces. In Modf’wq we have the full subcategory Modf’%’m

of weakly admissible objects. For D in Modf’wq’wa let V(D) = FilO(Bm37 1 ®r D)= where,

as usual, Bepis, := Beris ®r1, L. In order to formulate the crystalline comparison theorem

in this context we also consider the category Modf&%’@ p, of finitely generated free Lo ®q, L-
P

modules © equipped with a (¢, ® id)-linear automorphism ¢, : © = ®and a decreasing,
separated, and exhaustive filtration on Dy, := D ®p, L, indexed by Z, by L®q, L-submodules.

. F,
For ® in Mod;’?? . we define, as usual,
Lo®q, L

V(D) := (Beris ®r, )7~ A Fil®(Bgr ®1 D1) .

Let Rep,, ¢(G1) denote the category of finitely generated free or-modules equipped with a

continuous linear G'z-action and RepZTLiz;a"(G 1) the full subcategory of those T which are free
over oy, and such that the representation V' := L®,, T is crystalline and analytic, i.e., satisfying
that, if Dgr(T) := (T' ®gz, Bagr)Cr, the filtration on Dgr(T)y is trivial for each maximal ideal
m of L ®q, L which does not correspond to the identity id : L. - L. Correspondingly we let
Rep§®(GL), resp. RepCLMS"m(G 1), denote the category of continuous Gp-representations in
finite dimensional L-vector spaces which are crystalline, resp. crystalline and analytic. The

base extension functor L ®,, — induces an equivalence of categories Rep?;l‘jé(m(G L) ®z, Qp =,

RepCLm’a”(G 1)- Here applying ®z,Q, to a Z,-linear category means applying this functor
to the Hom-modules. For V in Rep] """ (GL) we set Depis (V) 1= (Beris, ®L V)Gr =
(Beris ®r, V)GL and Devis(V) := (Beris ®q, V)L, The usual crystalline comparison theorem

says that D¢s and V are equivalences of categories between RepCL”S (Gr) and the subcategory

of weakly admissible objects in Modﬁ%’@ Iz
D

Lemma 3.1.1. ([ST4, Lemma 5.3 and subsequent discussion, or [KR|, Cor. 8.3.1]) There is
a fully faithful ®-functor
Y Modf"pq — Modﬂ%@ I
D
Db—)D::L()@QpD,

whose essential tmage consists of all analytic objects, i.e., those for which the filtration on the
non-identity components is trivial. A quasi-inverse functor from the essential image is given
by sending ® to the base extension L ®Lo®q, L D for the multiplication map Lo ®q, L — L.

Lemma [3.1.1] implies that
(5) Deris, (V)™ = Depis(V) for any V in RepCLm’a"(GL).



We denote by M (A1) the category of étale (¢4, I'r)-modules over Ay (cf. [SVI5], Def.
3.7]) and by SITI?(A 1) the full subcategory consisting of those objects, which are finitely
generated free as Ar-module. For M in imjf(AL), resp. for T'in Rep,, ((GL), weput V(M) :=
(A ®a, M)#®u=1 resp. Dpp(T) := (A ®,, T)krxer).

Having defined all of the relevant categories (and most of the functors) we now contemplate
the following diagram of functors:

M (AL)

VHDH

Repcris,an(GL) s RepoL,f(GL)

0L7f

12

wr,I'r,an
MOdAZr

@] — »r,I'L,an _
Bat Mod o ®z, Qp Loy,

~

)

10

VL
oL, I'r,0 Fipqwa —— cris,an
Mody; Mod; ~~ Rep; (Gr)

DCT'iS,L
C C

PrL 7FL ,an F’@Q
Mod/ Mod

3\2

The arrows without decoration are the obvious natural ones. The following pairs of functors
are quasi-inverse ®-equivalences of ®-categories:

— (Drr,V) by [KR, Thm. 1.6];
~ (Deris,1, V1) by the crystalline comparison theorem ([F'1, Rem. 3.6.7]) and Lemma

- (D, M) by [KR] Prop. 2.2.6] (or [BSX| Thm. 3.4.16]) and [KR] Cor. 2.4.4], to which we
also refer for the definition of the functor M.

In particular, all functors in the above diagram are ®-functors. The second arrow in the left
column, resp. the left arrow in the upper horizontal row, is an equivalence of categories by [KRI,
Cor. 2.4.2], resp. by [KR], Cor. 3.3.8]. The lower square and the upper triangle are commutative
for trivial reasons.

We list a few additional properties of these functors.

Remark 3.1.2. 4. For any M in m?(AL) the inclusion V(M) € A ®a, M estends to
an tsomorphism

(6) A Qo V(M)iA@)ALM )
which is compatible with the p4- and I'p-actions on both sides.

it. The functors Dpp, V, and V(Ap ®pt —) respect exact sequences (of abelian groups).
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. ([BSX|, Prop. 3.4.14]) For any M in ModgL’FL"m the projection map M[2LL] —>

(9%

D(M) restricts to an isomorphism M[%]FL =5 D(M) such that the diagram

M[$E]" —= D(M)

LT

‘PMi l@D(M)

MU == D(M)

trr

is commutative; moreover, M[$LL] = O[TEL] @y M[%]FL =~ O[FEL ] @1 D(M).
Now we recall that A..;s is the p-adic completiwon of a divided power envelope of W(E*)
and let Agris 1 := Aeris ®1, L. The inclusion W(ET) € A5 induces an embedding Az c
W(E+)L < Acris,L'
We observe that trr = logpp(wrr) belongs to By ;. Indeed, by [Co3l §IIL.2] we know
that ¢,(Bmaz) S Beris © Bmag, Whence we obtain

SDq(Bmax ®L0 L) - Bcris,L C Bz ®L0 L,

where the definition of B,,q, can be found in (loc. cit.). By [Codl Prop. 9.10, Lem. 9.17,89.7| t 11
and wyr are invertible in Byyae, 1, © Bmar ®rL, L (This reference assumes that the power series
[72](Z) is a polynomial. But, by some additional convergence considerations, the results can
be seen to hold in general (cf. [GALL §2.1| for more details)). Hence, by the above inclusions
and using that ¢,(trr) = mrtrr, we see that trp is a unit By r. In particular, we have
an inclusion Acris,L[%,é] € Byris,.- Moreover, since pg(wrr) = Quwrr is invertible in
©q(Bmaz ®r, L), the elements wyr and @ are units in B 1, as well. In particular, we have
an inclusion
(7) A[;=] S BerisL

Next we shall recall in Lemma below that the above inclusion A}: C Aeris 1, extends
to a (continuous) ring homomorphism

(8) 0 — Acm’s,L[%] < Bcris,L-

For a e E* ~ proj lim,, oc, we denote by o9 as usual its zero-component.

Lemma 3.1.3. The following diagram of or,-modules is commutative

(9) 0 J W(E) 2o, 0

|

0 —>ker(Qr) — W(E")[ ~“—=oc, — 0,

where J := ker(©), @(2n>0[an]pn)) = Zn>0 a%o)p" and similarly @L(Zn>0[an]ﬂ'z)) =
D >0 aglo)wg, while w denotes the canonical map as defined in [FE, Lem. 1.2.3], it sends Te-

ichmiiller lifts [a] with respect to W(E*) to the Teichmiiller lift [o] with respect to W(E1)y.
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Proof. First of all we recall from [GAL, Lem. 1.6.1] that © and ©, are continuous and show
that also u is continuous, each time with respect to the weak topology, of which a fundamental
system of open neighbourhoods consists of

m—1
Uam = {(bo,b1,...) € W(ET)|bo, ..., bm1 € a} = > Vi([a]) + p"W(E")
i=0
and similarly Ua]jm := {(bo, b1,...) € W(E+)L|b0, ...y bm—1 € a} for open ideals a of E* and
m = 0; see §1.5 in (loc. cit.). By or,-linearity, we see that u(p™W (E*)) < p™W (E*). Using

the relation »
u(Vyr) = LVe, (u(F/ )

from [FE], Lem. 1.2.3]E], where V7 denotes the Verschiebung, one easily concludes that
i P \ivri i(f—1)
u(V; ([o]) = (E) Ve, (077D,

whence w(Ugm) S Ucfm and continuity of u follows.
Since the commutativity is clear on Teichmiiller lifts and on p by or,-linearity, which
generate a dense ideal, the result follows by continuity. O

The following lemma generalizes parts from [PRL Prop. 1.5.2.].
Lemma 3.1.4. Sending f = >, ~qanZ" to f(wrr) induces a continuous map

1

L

0 - Acm‘s,L[ ]7

where the source carries the Fréchel-topology while the target is a topological or,-module, of
which the topology is uniquely determined by requiring that A..s1 is open, i.c., the system
P Acris,, with m = 0 forms a basis of open neighbourhoods of 0.

Proof. First of all, the relation JP € pA.s from [PR, §1.4.1, bottom of p. 96| (note that
JP < W,(R) regarding the notation in (loc. cit.) for the last object) implies easily by flat base
change

(10) Jﬁ = pAcris,L

with Jp, := J ®op, 0L- By [GALL Lem. 2.1.12] we know that wrp belongs to ker(©r). Now

we claim that there exists a natural number ' such that wle lies in Wy := Jp + pW(]NEJr)L,
whence for r := pr’ we have wip € Wy with Wy, := W™ for all m > 0. To this aim note that
diagram @ induces the following commutative diagram with exact lines

~ S
(11) 0 Wi W(EY) ®op,, o, — > (o, Qoy,, 0r)/ploc, Qo 0r) —>0

| D

0 ——=ker(0L) + pW(E+), ——= W(E*), oc,/poc, —>=0,

"Note the typos in (loc. cit.) where u(Vyz) = = Vap (Ff~Yu(z)) is stated. Moreover, one has the relation
w(Ffz) = Fu(z).
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where the map p is induced by sending a ® b to ab and a reference for the middle vertical
isomorphism is [GALL Prop. 1.1.26]. By the snake lemma the cokernel of the left vertical map
is isomorphic to

ker(u) < ker ((o(cp ®op, or)/ploc, ®o,, oL) — E’)

= ker (o¢, /poc, ®x or/por, — oc,/mc, @k or/mL0L)
= mc, ® or/por + oc,/poc, @ TLOL/POL

and thus consists of nilpotent elements whence the claim follows. Here mc, denotes the max-
imal ideal of oc,.

Now let f = >, _,anZ" satisty that |a,|p" tends to zero for all p < 1. Writing n = gur+ry
with 0 < r, < r, we have

n T T
anWir = anwip (W)™ € anWyg, S anp™ Acris L,

where the last inclusion follows from (T0). But |a,p®| < |an|pp' " tends to 0 for n — oo.
Thus the series Y - anwi converges in Acris,L[%]-

. 14
Moreover, since one has sup|a,p™ 1+ | < p|

we obtain for any m that

f|, for the usual norms | - |, if 1 > p > p_%,

{F11Fle <™ 'y S {f € Olf(wrr) € p™ Acris 1},
whence the latter set, which is the preimage of p™ A5, 1., is open. This implies continuity. [J

Lemma 3.1.5. The big square in the middle is a commutative square of @-functors (up to a
natural isomorphism of ®-functors).

Proof. We have to establish a natural isomorphism

(12) L®., V(AL Qpt N) = Vi(D(O ®p+ N)) for any N in Modiﬁ’m’a”,

L

In fact, we shall prove the dual statement, i.e., using , that
(13) (L ®o, V(AL ®p+ N))* = VL(D(N))*,
where * indicates the L-dual. From the canonical isomorphisms

HomAL#,q(M, A)x~ HomA7¢q(A ®a, M,A)
=~ Homap ,, (A ®,, V(M),A)
=~ Hom,, (V (M), A=)
~ Hom,, (V(M),oL),

where we used @ for the second isomorphism and write M for Ay ®,+ N, we conclude
L
that the left hand side of (13) is canonically isomorphic to Homa, ,, (AL ®,+ N, A) ®,, L.
L
Let At := A nW(E").. On the one hand, by [KR], Lem. 3.2.1], base extension induces an

isomorphism
Hom,+ (N,AT[-1]) = Homa, o, (AL ® N\ A) .

wLT
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On the other hand, in [KR] Prop. 3.2.3] they construct a natural isomorphism

(14) Hom,+ . (N, A1) ®o, L = Homp g, kil (N/wrrN) (3], Beris.z) -
ﬁTherefore, the left hand side of becomes naturally isomorphic to
(15) HomL,gaq,Fil(D(N)aBcris,L) = VL(D(N)*),

where the last isomorphism is straightforward. Thus the proof of is reduced to the canon-
ical identity

(16) VL(D(N)®) = Vi(D(N))*.

This can be proved in the same way as in [F'1l Rem. 3.4.5 (iii), Rem. 3.6.7|: Since V7, is a rigid
®-functor, it preserves inner Hom-objects, in particular duals.

In order to see that is compatible with tensor products note that base change, taking
L-duals or applying comparison isomorphisms are ®-compatible. Thus the claim is reduced to
the tensor compatibility of the isomorphism the construction of which we therefore recall
from [KR]. It is induced by a natural map

HOH]A+ (N A+[ ]) ®OL L— HomL((N/WLTN)[%], ch‘s,L)

wrLT

which comes about as follows. Let f € Hom A} (N, A+[wLT]). By composing f with the inclu-

sion . we obtain f1 : N — Beris .- By base extension to O via and then localization in
@ the map fi gives rise to a map fa : (O ®A{ N)[é] — Beris,r,- This one we precompose with
the isomorphism 1 & @y to obtain

fs: (O Qa1 )[%] = (0 Qp+ N)[%] — Beris, -

Now we observe the inclusions

(O®ps 0, MBI (O@pr o, MIEL] 2 (0@, Nlipr(2)]
= 0Q0y, (O@4+ N)[42]) .

They only differ by elements which are invertible in B.,;s . Therefore giving the map f3 is
equivalent to giving a map fi : O®0,,; (((’) @AZr N)[wLT]) — Beris - Finally we use Remark

(3%

3.1.2liii which gives the map
= w r = w
& (NJwrrN)[F] < (0 @55 NIFE]) " = (0 @41 NI[FEE].

LT

By precomposing f4 with 1 ® ¢ we at last arrive at a map f5 : (N/wLTN)[%] — Bepis, 1. From
this description the compatibility with tensor products is easily checked. O

Suppose that N is in Modgﬁ’rba" and put 7 := V(AL ®a+ N) in Repgm‘}an(GL). Then,
by Remark iii and Lemma | we have a natural 1somorphlsm of ®-functors

(17) comp : O[MLT] ®A+ N = O[MLT] AL DcriS,L(L ®oy, T)

which is compatible with the diagonal ¢’s on both sides.
In the proof of [KR] Cor. 3.3.8] it is shown that, for any T in RepZMS “"(GL), there exists

an A7 -submodule M € Dy (T) which

6®OLL is missing in the reference!
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(N1) lies in Modiﬁ’rb‘m with ¢on and the T'z-action on 9 being induced by the (¢q,I'r)-

L
structure of Dy (T), and
(N2) satisfies Ay, @t M = Drr(T).

Note that property (N2) implies that 9 is p-saturated in Dy (T), i.e., 93?[%] NDpr(T) =M,
since A7 is obviously p-saturated in Ay
We once and for all pick such an N(T') := 9. This defines a functor

] b 7F K
N : Rep, 7" (G1) — ModiLz L,an
which is quasi-inverse to the upper left horizontal arrow in the above big diagram. Note that
N is in a unique way a ®-functor by [Sal 1.4.4.2.1].

Remark 3.1.6. For T in Repzzij;a"(GL) and N := N(T) in Modiﬁ’r“a" we have:

L

(1) If L®o, T is a positive[] analytic crystalline representation, then N s stable under oy ;

(ii) If the Hodge-Tate weights of L®,, T are all = 0, then we have N € AT - on(N), where
the latter means the A} -span generated by on(N).

Proof. The corresponding assertions for M := O ®AZ N are contained in [BSX| Cor. 3.4.9].
Let ny,...,nq be an AZ—baSis of N.

For (i) we have to show that ¢n(n;) € N for any 1 < j < d. Writing on(n;) = 2?:1 fijni
we know from the definition of the category ModiLL;FL’[m that f;; € A} [%] and from the above
observation that f;; € O. This reduces us to showing that oL[[Z]][é] N O C or||Z]]- Suppose
therefore that Q"h = f for some r > 1, h € O, and f € or[[Z]]. The finitely many zeros of
Q € or|[Z]], which are the nonzero mp-torsion points of the Lubin-Tate formal group, all lie
in the open unit disk. By Weierstrass preparation it follows that @) must divide f already in
or[[Z]]- Hence h € or[[Z]].

For (ii) we have to show that n; = Z?:l fijen(n;), for any 1 < j < d, with f;; € A7 For
the same reasons as in the proof of (1) we have n; = Y% Lon(ni) = P o (n;) with

1 € AZ[%] and f/> € O. Then Z?Zl( 1 — fi-)pn(ni) = 0. But, again by the definition of the

category Modiﬂ’r“a"
L

It follows that Z-’j = l’; € Aj{. O

, the o (n;) are linearly independent over Az[é] and hence over (9[%]

cris,an
or,f

< 0, i.e., which is positive. For this purpose we need the ring AT = A n W(E+)L. One has
the following general fact.

First we further investigate any 7" in Rep (Gr) whose Hodge-Tate weights are all

Lemma 3.1.7. Let F be any nonarchimedean valued field which contains or/mror, and let
or denote its ring of integers; we have:

i. Let « € W(F)r be any element; if the W(op)-submodule of W(F)r generated by
{npé(a)}i>0 is finitely generated then a € W(op)y.

"i.e., the Hodge-Tate weights are non-positive, i.e., gr’ Dgr(T) # 0 implies that j > 0.
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it. Let X be a finitely generated free op-module, and let M be a finitely generated W (op) -
submodule of W(F), ®o, X; if M is ¢4 ® id-invariant then M S W (op)r, ®o, X.

Proof. i. This is a simple explicit calculation as given, for example, in the proof of [Coll Lem.
IIL.5]. ii. This is a straightforward consequence of i. O

Proposition 3.1.8. For positive T in Rep” """ (G1,) we have

or,f
N(T) € D} p(T) := (AT ®,, T)kr0er)
and N(T) is p-saturated in DET(T),

Proof. By Remark [3.1.6li the A -submodule N(T) of W(E)L ®o, T is v, ®id-invariant (and
finitely generated). Hence we may apply Lemma i to M := W(E"), - N(T) and obtain
that N(T) < (W(E"),, ®o, T) N (A®,, T)kxLr) = DF. (T). Since N(T) is even p-saturated
in Dpp(T), the same holds with respect to the smaller D} (T). O

Corollary 3.1.9. For positive T in Repzr;‘j;an(GL) the A} -module D} (T) is free of the same
rank as N(T).

Proof. By the argument in the proof of [Coll, Lem. II1.3] the A} -module D} (T) always is
free of a rank less or equal to the rank of N(T'). The equality of the ranks in the positive case
then is a consequence of Prop.[3.1.8| O

Next we relate N(7T) to the construction in [Be, Prop. I1.1.1].

Proposition 3.1.10. Suppose that T in Repf)rjsjzan(GL) is positive. For N := N(T) we then

have:
i. N is the unique A7 -submodule of Dy (T) which satisfies (N1) and (N2).
i. N is also the unique A} -submodule of D (T) which satisfies:

(a) N is free of rank equal to the rank of Df,(T);
(b) N is T'p-invariant;

(c) the induced I'-action on N/wrrN is trivial;
(d) Wi DI (T) S N for some r = 0.

Proof. Let P = P(AJLF) denote the set of height one prime ideals of AJLF. It contains the prime
ideal po := (wLT).

Step 1: We show the existence of a unique A -submodule N’ of D}(T) which satisfies
(a) - (d), and we show that this N’ is pg-invariant.

Ezistence: We begin by observing that the Af-submodule N := N(T) of D} +(T) has
the properties (a), (b), and (c), but possibly not (d). In particular, the quotient D} (T)/N
is an A7 -torsion module. Hence the localizations N, = D} (T, coincide for all but finitely
many p € P. By [B-CAl VI.4.3 Thm. 3| there exists a unique intermediate A}-module
N € N’ € D;;(T) which is finitely generated and reflexive and such that N = Ny, and
N; = D} ,(T), for any p € P\{po}. Since A7 is a two dimensional regular local ring the finitely
generated reflexive module N’ is actually free, and then, of course, must have the same rank
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as N and D} (T). We also have N’ = (M Ve = Nog 0 (Voo Df(T),. Since pg is preserved
by Ypt.(1) and ', it follows that N’ is Ppi () and ['p-invariant. Next the identities
T T

L ®o, N/wrrN = Ny, /wrr Ny, = Ngo /wLTN;O =L®,, N'JwrrN' 2 N' JwrrN'

show that the induced T'j-action on N’/wppN' is trivial. By using [B-CAl VII.4.4 Thm.
5] we obtain, for some my,...,mg = 0, a homomorphism of A}-modules D} (T)/N' —
(—B;i:lAz /pg”AJLr whose kernel is finite. Any finite AJLr—moduIe is annihilated by a power of the
maximal ideal in AT. We see that D .(T)/N’ is annihilated by a power of po, which proves
(d).

Uniqueness: Observing that y(wrr) = [xz7(7)](wrr) for any v € I'p, (JGALL Lem. 2.1.15))
this is exactly the same computation as in the uniqueness part of the proof of [Be, Prop.
IL1.1].

Step 2: We show that N’ is p-saturated in D (T). By construction we have (N')(, ) =
D} p(T)(x,)- This implies that the p-torsion in the quotient D} ,.(T)/N" is finite. On the other
hand, both modules, N’ and DET(T), are free of the same rank. Hence the finitely generated
Af-module D} (T)/N' has projective dimension < 1 and therefore has no nonzero finite
submodule (cf. [NSW. Prop. 5.5.3(iv)]).

Step 3: We show that N’ = N. Since both, N and N’, are p-saturated in DZT(T) it suffices
to show that the free B} -modules N (V) := N[I%] and N'(V) := N’[%] over the principal ideal
domain B} := AZ[%] coincide. As they are both I'r-invariant, so is the annihilator ideal
I:= annB+( "(V)/N(V)). Hence, by a standard argument as in [Be, Lem. 1.3.2], the ideal T

is generated by an element f of the form w79 [ [}~ go’z*l(Q)o‘” with certain o, = 0,0 < n < s,
for some (minimal) s > 0. Since N (V) ,) = N'(V)(w,,) by the construction of N', it follows
that ap = 0. Assuming that M := N'(V)/N (V) # 0 we conclude that s > 1 (with a5 > 1), i.e.,
that, with p, := (¢7~1(Q)), we have M, # 0 while M,_,, = 0. We claim that (p% M), , # 0.
First note that we have an exact sequence

0— (B} (B> M -0,
with f dividing det(A) € Bf\(B}),, which induces an exact sequence
+yd pL(4) +yd #
0 (B 2D, (B])! - M 0.

Since ¢r(f) = Hf;lQ 7 1(Q)*n 1 divides det(r(A)) we conclude that det(¢y(A)) belongs
to ps+1 which implies the claim.
Now consider the following diagram with exact rows

OH(wEN(f))[ ol — Vf ]HIHO
00— (i N'(V)[5] —= N')[§] —=C —0.

The upper isomorphism comes from the definition of the category Mod“DL’FL"m in which NV

lies. The map (¢ LN’(V))[@] — N/(V)[Q] is injective since ¢ N/ — N’ is the restriction of
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luz

the isomorphism 7 Drp(T)
injection

Dpr(T). By the snake lemma and as @ ¢ ps4+1 we obtain an

0+# ((pI*JM))lwl - Mps+1 =0,
which is a contradiction. Thus M = 0 as had to be shown. O

Remark 3.1.11. (i) N(or(x;7)) = wir A} ®o, 01n® ! and N(or) = A} .

(ii) Let or(x) = opto with x : G — o} unramified. Then there exists an a € W (kr)} with
oa = x Yo)a for all o € G, by Remark Bl in particular,

N(or(x)) = Dip(or(x)) = Afnog for ng = a®to,

where Ty, fizes ng and @N(OL(X))(TLO) = cng with ¢ := wLTw) €o0;.

Proof. Each case belongs to a positive representation 7' in all cases the right hand side of
the equality satisfies the properties characterizing N(7T') in Prop. [3.1.10}ii (cf. [GALL Lem.
2.1.15)). O

Lemma 3.1.12. For any T € Rep®™ """ (GL) we have:

or,f

i. N(T) is the unique A7 -submodule of Dyr(T) which satisfies (N1) and (N2);
. N(T(x;7)) = wipN(T) ®o, orn®".

Proof. First we choose r = 0 such that T'(x ) is positive. Sending N to wj, N(T) ®,,
orn® " < Drr(T) Qo opn® " viewed in Dpp(T) ®,, orn® " = Drr(T(x1)) sets up a
bijection between the A -submodules of Dy (T) and Drr(T(x 7)), respectively. One checks
that NNV satisfies (N1) and (N2) if and only if its image does. Hence i. and ii. (for such r) are
a consequence of Prop. [3.1.10}i. That ii. holds in general follows from the obvious transitivity
property of the above bijections. O

Proposition 3.1.13. Let T be in Repgzi‘?;a”(GL) of or-rank d and such that V =L ®,, T is
positive with Hodge-Tate weights —r = —rg < --- < —r; < 0. Taking as an identification
we then have

(18) (Lo ®p+ N(T) € O @1 Deris, 1 (L ®o, T) € O @4+ N(T)

wLT

with elementary divisors
[O@p+ N(T) : O®L Deris, (L ®op, T)] = [(FEL)™ ¢ -+ (ZEL)"™].
Proof. We abbreviate D := Deyis 1,(V'). By the definition of the functor M in [KR] we have

(19) O®LD<C M(D)c (X2)y"O0®L D .

wLT
On the other hand, the commutativity of the big diagram before Remark says that
M(D) = O ®p+ N(T). This implies the inclusions (18).
Concerning the second part of the assertion we first of all note that, although O is only
a Bezout domain, it does satisfy the elementary divisor theorem ([ST1, proof of Prop. 4.4]).

8Since 7z, has trivial G-action the period a there can be normalized such it becomes a unit in W (kr)r.

18



We may equivalently determine the elementary divisors of the O-module M(D)/(O ®r, D).
The countable set S of zeros of the function % € O coincides with the set of nonzero torsion
points of our Lubin-Tate formal group, each occurring with multiplicity one. The first part
of the assertion implies that the O-module M(D)/(O ®|, D) is supported on S. Let M (D),
resp. O,, denote the stalk in z € S of the coherent sheaf on B defined by M (D), resp. O. The
argument in the proof of [BSX| Prop. 1.1.10| then shows that we have

M(D)/(0®L D) =] [M.(D)/(0:®L D) .

z€S

The ring O, is a discrete valuation ring with maximal ideal m, generated by tLTT We consider
on its field of fractions Fr(O,) the m-adic filtration and then on Fr(O,) ®; D the tensor
product filtration. By [Kis, Lem. 1.2.1(2)] (or [BSX], Lem. 3.4.4]) we have

M. (D) = Fil’(Fr(0.) ®, D) for any z € S,

and this isomorphism preserves O, ®;, D. At this point we let 0 < 81 < ... < 8, < 7 denote
the jumps of the filtration Fil* D, i.e., the r; but without repetition. We write

D=D1®..®D,, suchthat Fil*D=D;,®...® D,

For the following computation let, for notational simplicity, R denote any L-algebra which
is a discrete valuation ring with maximal ideal m. We compute

Fil’(Fr(R)®;, D) = Y m~ @, FiV D = > m™ @, Fi D
jEZ j=0

m m m
dYm U LFYD =) Y m QLD

i—1 i1 =i
m J

:ZZ &D—Zm%&D
=1 e j=1

Hence we obtain
Fil’(Fr(R) ® D)/(R®L D) = @/L,m™* /R®L D; = @], R/m* @ D; .
By combining all of the above we finally arrive at

M(D)/(0®;, D) = [ [Mo(D)/(0: & D) = [ [Fil’(Fx(0.) ®. D)/(0. ®. D)

Z€S z€S
> [ [(@],0./m¥ @1 D) = &L, ([ [(0:-/(22)% 0. @1 D;))
zeS z€S
= &L1(] [ 0:/(£5)70:) @1 D;j = &L, 0/(H)» O @1 D; .
z€S
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For a first application of this result we recall the comparison isomorphism

(20) N(V)
N(V)[§] —= O[] @5+ N(V) —==> O[4E] @1 Deyis, (V)

for any T in Repg”sfan(GL), V= L®, T, and N(V) := N(T)[%] The left horizontal
inclusion comes from the fact that f)LTTT is a multiple of @) in O. In particular, we have the
commutative diagram

comp

N(V) O[tLT] QL Deris L(V)

PN(V)
PN(V) PL®Pcris

NOV) —== N(V)[] % O[42] @, Deris (V)

where @5 denotes the g-Frobenius on Deyis (V') and where
N (V) := the A7 -submodule of N(V)[é] generated by the image of N (V') under ¢ (yy-

We note that, since Q is invertible in Ay, N(¥) (V') can also be viewed as the Az—submodule of
Dir(V)=Ap ®AZ N (V') generated by the image of N (V) under ¢p, ,.(v. from this one easily

deduces (use the projection formula for the t-operator) that the map ¢ p, .y on Drr(V)
restricts to an operator
Uyt NO(V) — N(V) .

Corollary 3.1.14. Assume that the Hodge-Tate weights of V' are all in [0,r]. Then we have

(21) comp(N(V)) € O®r, Deyis,r.(V), comp(N(S")(V)) C O®r Deris,r.(V), and
(22)  comp(N@(V)¥n1=0) € O¥L=0 @} D pis (V) .

Proof. Apply Prop. [3.1.13to T'(x 1), then divide the resulting (left) inclusion in by 1
and tensor with or(x},). This gives the first inclusion by Lemma upon noting that
t" 7 Deris..(L ®o, T) ®L Ln®™" = Depis 1,(L ®o, T(x;71))- The second inclusion easily derives
from the first by using that the map comp is compatible with the ¢’s.

For the third inclusion we consider any element = = > fipnw)(z:) € N@)\(V), with
fi € AT and z; € N(V), such that Yny (@) = 25 ¢L(fi)ri = 0. We choose an L-basis
e1,...,em of Deris 1,(V) and write comp(z;) = Zj fij ®e; with f;; € O. Then

0 = comp(Yn(v)(7) ZwL fi)comp(x;) ZZ Yo (fi)fij ®e;

and it follows that
L(Z fivr(fi;) = Zl/JL(fi)fij =0,
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i.e., that Y, fipr(fi;) € O¥E=9. On the other hand we compute
comp(z Z fienony (i) Z filer ® @eris)(comp(x;))
= 22 filer(fij) ® @eris(e;))
Z Ef#PL i) ® @eris(ej) -

Corollary 3.1.15. In the situation of Prop. we have

Iy

Deris, (V) = (O @p+ N(T))

Proof. We set M := O ®a+ N(T) and identify D(M) and Dpis 1,(V') based on Lemma

and using (18). The proof of [KR| Prop. (2.2.6)] combined with Remark iii. implies the
commutativity of the following diagram

D(M)——= O[ 42| @, D(M) —— M2

incl. trr trr
\ jincl. J\incl.
incl.

M(D(M)) M,

in which the right vertical map is the canonical inclusion while the left vertical map stems from
the definition of the functor M as in (19)) (which also implies the commutativity of the left
triangle). Taking I'p-invariants and using the fact that the upper line induces the isomorphism

D(M) = M[‘;LLTT]FL in Remark [3.1.2] (iii) the result follows. O

Corollary 3.1.16. In the situation of Prop. we have Q"N(V) € N@(V).

Proof. In the present situation oy @ N(V) — N(V) is an semilinear endomorphism of
N(V') by Remark [3.1.6(i). Then PO, N(V) = PLOPN(®V) : (9®Azr N({V)— O®AZ N(V)is
L

an endomorphism as well. The corresponding linearized maps are

PNy T AT ®pt o N(V) = NW(V) = N(V)
f®x— fono(z)
and

0w, ) = ido () O®pt ,, N(V) = 0®,+ (Af @ps ,, N(V))
Since O is flat over AF[2] it follows that
TL
O®xr N(V)/im(eGy . nv) = O@pr (N(V)/NW(1V)) .
L
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But O is even faithfully flat over A+[ ] Hence the natural map
. i
NV)/NOW) — 0@,y N(V)/im(¢8y, , ww)
is injective. This reduces us to proving that
Q(O®; N(V)) € mleG, , n(v)) -
As for any object in the category Mo

QMO ®,4 N(V)) < im(so%%Asz) :

dZ " we do have

for some sufficiently big integer h. On the other hand, says that
(fJLLTT) comp (O ®a+ N(V)) € O®L Deris,.(V) S comp(O ®p+ N(V)) .
Since pqr;s is bijective we can sharpen the right hand inclusion to

O®r Deris,.(V) < Comp(lm(wlé%) +N(V))) :

It follows that (; tLT E) (O O+ N(V)) c im(gplgé +N(V)). Since the greatest common divisor of

Q" and (tLT )" is @in(r) we finally obtain that Q" (O ®at N(V)) c 1m(<plg)% N(V)) O
Corollary 3.1.17. In the situation of Prop. we have, with regard to an AZ—basz’s of
N := N(T') and with s := Zf-lzl i, that

det(on : N(T) = N(T')) = det(poyy : N(V) = N(V)) = Q°
up to an element in of - (o — 1)((A})*).

Proof. Note first that N is ¢y-stable by Remark [3.1.6(1). Moreover, the determinant of ¢x
acting on N(V') equals the determinant of 7 ® ¢y acting on O®,+ N(T'), since we can take
L

for both an A7 -basis of N(T). Since gpL(f)LLTT) = %LLL—TT, by propositionthe latter deter-
minant equals (%)_S multiplied by the determinant of ¢, ® Frob acting on O ®r, Deyis, (V).
The latter is equal to the determinant of Frob on D r(V), which is 7§ up to a unit in
or, since the filtered Frobenius module D5 1,(V') is weakly admissible. This shows the claim
up to an element in o} - (¢ — 1)(O*). But O* = 7% x (AF)* by [Lazll (4.8)]. Hence

(oL = 1)(0) = (oL — D((A])). O

3.2 The determinant of the crystalline comparison isomorphism

Let T be any object in Repszan(GL) of or-rank d and such that V' = L®,, T has Hodge-Tate
weights —r = —rg < -+ < —rq; we set s := 2?21 ri, N := N(T') and M = O ® N. Consider
the integral lattice

D :=D(T) S Deyis,.(V)
which is defined as the image of N/wrrN € D(N) under the natural isomorphisms D(N) =~
D(M) = Depis (V) arising from Lemma and (). Then with N(—) also D(—) is a
®-functor. The aim of this subsection is to prove the following result.
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Proposition 3.2.1. With regard to bases of T and D the determinant of the crystalline
comparison isomorphism

Beris,r ®LV = Beris,r, L Deris,.(V)
belongs to t5,W (kr)} -
We write A V for the highest exterior power of V over L.
Remark 3.2.2. If V is L-analytic (Hodge-Tate, crystalline), then so is /\'V.

Since D¢y, 1, is a tensor functor, we are mainly reduced to consider characters p : G, — L™,
for which we denote by V), its representation space.

Remark 3.2.3. (i) If V, is Hodge-Tate, then p coincides on an open subgroup of the inertia
group Iy, of G, with
-1 -
H g ° XZLLT’

O'EEL

for some integers n,, where X1, denotes the set of embeddings of L into L and X, LT 15
the Lubin-Tate character for oL and o(mr).

(i) If, in addition, V, is L-analytic, then p coincides on an open subgroup of the inertia
group Iy, with X7, for some integer n.

Proof. This follows from [Se0), ITT.A4 Prop. 4 as well as III.A5 Thm. 2 and its corollary]. [

Remark 3.2.4. Let p be a crystalline (hence Hodge-Tate) and L-analytic character. We then
have:

(i) If p factorizes through G(L'/L) for some discretely valued Galois extension L' of L, then
the determinant of the crystalline comparison isomorphism for V), belongs to
(W(kL)L[%])X (with respect to arbitrary bases of V- and Deyis,,(V').)

(ii) If p has Hodge-Tate weight —s, then the determinant of the crystalline comparison iso-
morphism for V, lies in tiT(W(k:L)L[%])X.

(ili) p 4s of the form x},x"" with an integer n and an unramified character X“"ﬂ

Proof. We shall write K for the maximal absolutely unramified subextension of K, any alge-
braic extension of Q,. Taking G/,-invariants of the comparison isomorphism shows that the
latter is already defined over

G , ) —~ _
ch@s,L = (L ®rL, BcriS)GL = L®Lo (BcriS)GL =L ®Lo L6 < W(kL)L[zl)]a

whence (i). Using Remark (ii) and applying (i) to px 1 gives (ii). By the same argument it
suffices to prove (iii) in the case of Hodge-Tate weight 0. Then its period lies in the completion

of the maximal unramified extension of L by (i), whence the claim that p is unramified follows,
as the inertia subgroup of G, must act trivially. 0l

9Also the converse statement is true: Indeed, any unramified character is locally algebraic (by definition,
see [Sel]), whence HT. By [Se(, A3 Prop 3, A5 Thm 2| the Hodge Tate weights are all zero, whence p is
L-analytic. It is crystalline as it is admissible, i.e. there is a period in C;’, which in this case needs to lie in the
fixed field under inertia, which is contained in Beyis.
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By Prop. we have
N(T) < D/ (T)Sc A" ®,, T

if T is positive. Using (N2) and the isomorphism
A®a, Dir(T) 2 A®,, T
we obtain a canonical injection
(23) A~ ®p+ N(T) — AT ®,, T.
Proposition 3.2.5. If T' is positive, then the determinant of with respect to bases of
N(T) and T is contained in wi (A7) - W(kp)].

Proof. Let M € My(A™) be the matrix of a basis of N(T') with respect to a basis of T
and P € My(A7}) the matrix of ¢y, with respect to the same basis of N(T'). Then we have
¢r(M) = MP. By Corollary [3.1.17| we have det(P) = Q*pr(f)f u for some f € (A})* and
ueo;. But Q = LpL(wLT)wa. We deduce that

or(det(M)) = op(wirf)(wirf) tudet(M) | ie., that (wipfa) tdet(M)e AL~ = of

with a € W (kp)} such that ¢ (a)/a = u. It follows that det(M) € w§ oL (AF)> W(l_fL)z But
we also have det(M) € A*. Hence we finally obtain det(M) € wipor(AL)* - W(kp)F nAX =
wip(AT)* - W(k)F.

[ O

Remark 3.2.6. For T = or(x) with unramified x as in Remark|3.1.11| the map maps
the basis ng to a @ ty.

Lemma 3.2.7. If T is positive, then we have:
i. O®,, D(T) =0®. Dcris,L(V) C comp(O ®AZ N(T));

i1. the determinant of the inclusion in i. with respect to bases of D(T) and N(T') belongs to
()" (AD)*.
LT
iii. for T = or(x) with unramified x as in Remark|3.1.11: comp(ng) = ¢r(a)®ty = ca®ty €

Deris,r.(V) with ¢ = “DLT@ € o} ; in particular, the element a @tg is a basis of D(T).

Proof. By construction the comparison isomorphism ([17)) is of the form
comp = ido[u] ®r, compy
tLT

with
compy : (0@, s N[££]) " —> N/wrrN[}] = D(N) = Deris, (V)

tor

the right hand arrow being the natural isomorphism from Lemma [3.1.5] For positive T" we

. .- r r
know in addition from the proof of Lemma [3.1.15| that (O ®at N)*'= (0 ®a+ N[%]) L
We deduce that

comp(O @+ N) 2 0@y, compy((O ®p+ N)FL) = 0QL Deris,n(V) -

10The argument also shows that wi AT ®,, TS AT ®a, N(T) € A" ®,, T. But the left inclusion does
even hold with r instead of s (cf. [Ste|] following [Be] in the cyclotomic case).
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By Prop. mwe know that the determinant in ii. is of the form (fJLL—TT)Sf(wLT) with f(wrr) €
O*. On the other hand, if we base change the inclusion in i. to L = O/wrrO then we obtain
the base change from oy, to L of the isomorphism D = N/wrrN. By our choice of bases the
determinant of the latter lies in o} . Since evaluation in zero maps (ZLT?)S flwrr) to f(0) it

follows that f(0) belongs to o} and hence ([Lazl, (4.8)]) that f(wrr) belongs to (Af)*.
Now we prove iii.: By the above description of comp, we have to show that the image
np € D(N(T)) of ng is mapped to ca ® tg under the natural isomorphism from Lemma
Since under the crystalline comparison isomorphisms these elements are sent to a®(a~'®ng) €
Beris,n. @ VL(D(N)) and ca®to € Beris,r, ®o, T, respectively, it suffices to show that the map
sends a ! ®@ng € L ®,, V(AL ®AZ N) (which corresponds to tp under the canonical

isomorphism T =~ V(A ®p+ N)) to (ca) ' ® ng € V,(D(N)). Dualizing, this is equivalent

to the claim that the map sends the dual basis §,-1g,, € (L ®o, V(M))* of a~! ® ng to
(ca)-1@no € VL(D(IN))*. Note that the isomorphism

(L ®o, V(M))* = L®,, Homy, , (AL ®p+ N,A) = L®,, HomAzﬁoq(N’ A+[$])

sends 0,-1gy,, t0 adn,. Thus it suffices to show that the map sends ady, to cadp, in
HOmL7¢q7Fi]((N/(.ULTN)[%],BCTZ‘S’L)7 since the latter corresponds under to ca ® 0p, €
VL(D(N)*) which in turn corresponds to 0(cq)-1gn, under (L6).

If f = ady,, which is the map which sends ng to a, then - in the notation of the proof of
Lemma— f1 and f share this property, while f3 (and hence f;) sends ¢~'ng to a, because
on(cIng) = ¢ lor(a)a ng = ng. Then f5 sends ¢ 'ng to a, because £(c 'ng) = ¢ ng.
Altogether this means, that ad,, is mapped to ¢r(a)d,, = cads, as claimed. O

Proof of Prop.[3.2.1 The functor Dys(—) on crystalline Galois representations is a ®-
functor and commutes with exterior powers, and the crystalline comparison isomorphism is
compatible with tensor products and exterior powers. The analogous facts hold for the functor
N(—) and hence for the functor D(—) (by base change). The case of the functor N(—) reduces,
by using the properties (N1) and (N2) in Lemma[3.1.12] (i), to the case of the functor Dy (—).
Here the properties can easily be seen by the comparison isomorphism @
Upon replacing T by its highest exterior power we may and do assume that the or-module
T has rank 1. In addition by twisting T if necessary with a power of xrr we may and do
assume that T is positive with s = 0, i.e., unramified by In this case it is clear that -
using the notation of Lemma iii. - the crystalline comparison isomorphism sends g to
a ®to. Since the latter is also a basis of D(T") by the same Lemma, the proposition follows.
O

3.3 Non-negative Hodge-Tate weights

Now assume that for 7" in Rep?jsj}an(G 1) the Hodge-Tate weights are all > 0 and set
N := N(T). By [SV15, Remark 3.2.i.-ii.] the map ¢, preserves A} . It follows that YDy o(T)
maps AT - oy (N) - and hence N by Remark [3.1.6/i(2) - into N. The following lemmata

generalize those of [Bl, Appendix A].

Lemma 3.3.1. For m > 1, there exists Qp, € or[[Z]] such that

o 1 - T+ wrrQm(wrr)
g Wi Wi .
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Proof. According to the paragraph after Remark 2.1 in [SV15] combined with Remark 3.2 ii.
n (loc. cit.) we have that

hMwrr) = WTTwL(wimT) = ¢L([Z%JT )e A

Obviously there exists @, € or[[Z]] such that

h(wrr) — h(0) = wrrQm(wrT).

Thus the claim follows from

[rr]™ _ (a+rrwrr)
h(0) = eL(h(WLr))wprmo0 = 9L O VL(A— ) jwpre0 = T D, + m
“rr aeLT) (a+rrwrr |wrT=0
,1 7TL] (wrr) \™ m—1
Z =T
aeLT a+LrWLT lwrT=0
[rr](wrT) _ _ _ :
because (a+LTwLT ) T = 7, for a = 0 and = 0 otherwise. O

Lemma 3.3.2. We have

Upy () (T Drr(T) + wipN(T)) € 7D (T) + wppnN(T)

and, for k =1
Vo) (L Drr(T) + wL(kH)N(T)) c 1. Drr(T) + wipN(T).

Proof. By Remark (2) we can write any € N(T) in the form =z = > a;on(z;) with
a; € A} and z; € N(T). Therefore ¢p, (Wit Va) = Yvr(wiaMag)z; by the pro-
jection formula. Since 1y, preserves Az and is op-linear we conclude by Lemma that

wL(wL}k 1)al) belongs to mp AL + nglfA}:, whenever £ > 1, from which the second claim

follows as ¥p, . (r) (7L Drr(T)) S 7. Drr(T) by op-linearity of ¢p, (). For k = 0 finally,
Y (wya;) belongs to wy AT, from which the first claim follows. O

Lemma 3.3.3. Ifk>1and x € DLT(T) satisfies Yp, (ry(z) —x € T Dpr(T) + W EN(T),
then x belongs to nr, Drr(T) + w EN(T).

Proof. Since Dpp(T)/mDrr(T) is a finitely generated (free) kr((wrr))-module there exists
an integer m > 0 such that € 71, Dpp(T) +wy " N(T'); let [ denote the smallest among them.
Assume that [ > k. Then Lemma shows that

VYpor(r)(@) € 1L Dpr(T) + ng UN(T).

Hence ¢p, ,.(ry(z) — z would belong to 77 Drr(T) + w;lTN(T) but not to (mpDpr(T) +
wz;l_l)N(T)), a contradiction to our assumption. It follows that | < k, and we are done. [
Lemma 3.3.4. It holds Dy (T)¥Prr™= € w LN(T), i.e.,

Dy (T)PPer® = = (w7 LN(T)) " Prr™ =",
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Proof. By induction on k > 1 we will show that Dpp(T)¢Prr™=! < 7k Dpp(T) + wiN(T),
i.e., writing z = TrEyk +ng € DLT(T)wDLT(T):1 the sequence ny will my-adically converge in
w; N (T) with limit .

In order to show the claim assume z € DLT(T)¢DLT(T):1. As in the previous proof there
exists some minimal integer m > 0 such that x € 7, Dp7p(T) + w ' N(T). Then m = 1 and
we are done since otherwise Lemma [3.3.3| implies that m can be decreased by 1. This proves
the claim for k£ = 1.

By our induction hypothesis we can write & € Dpp(T)"Prr™M=! a5 ¢ = 78y + n with
y€ Dpp(T) and n e wZ%N(T). The equation v¥p, . (r)() = z implies that ¥p, . (r)(n) —n =
Wé(@DDLT(T) (y)—vy). In the proof of Lemma we have seen that 1p, ,.(ry(n)—n € wZ%N(T).
Note that 78 Dpr(T) n wizN(T) = kw7 N(T) because Ap/w;rA} has no 7-torsion.
Therefore ¥p, . (ry(y) —y € wL%N(T), whence y, by Lemma w belongs to 7, Dpp(T) +

wr+N(T) so that we can write z = 7% (ry +n') +n = 75 Yy + (7hn' +n) as desired. O

Set V:=T®o,, L
Lemma 3.3.5. If Dcm's,,,L(V)“’qz1 # 0, then V has the trivial representation L as quotient,
e., the co-invariants Vg, are non-trivial.
Proof. Let W = V* be the L-dual of V. Then, by [SVI5l (51)] we have
(Vap)* = HYL,W) = Deyis . (W)?=! 0 (Bl @ W)9E = Depis (W)97=1 £ 0,

because (B}, @ W)9t = (Byr @ W)L 2 Deyis (W) since the Hodge-Tate weights of W
are < 0. O

Lemma 3.3.6. If V does not have any quotient isomorphic to the trivial representation L,
then Dpp(T)¥PLe™=1 < N(T), i.e.,

Dpr(T)YPerM=t = N(T)¥Prrm=1
Proof. Because of Lemma it suffices to show that (w+.N(T))¥PrrM=! < N(T). Let
e1,...,eq be a basis of N := N(T) over A. Then, by Remark - (ii) there exist 3;; =
D=0 ﬁiﬂwﬁT € A7 such that e; = Z;lzl Bijen(ej). Now assume that wL%n = Z‘Ll e =
Zi,j O‘iﬁijSON(ej) belongs to (wZ%N)d}DLT(T):l with o = Z£>_1 O‘i,fwiT € WZ%AE By the
projection formula this implies, for 1 < j < d,

d d
_ 4
aj = %Z)L(Z a;Bij) = wip Z @i_1Bijo mod Af
i=1 i=1

because 9y, (wy 1) = wr+ mod A} by Lemma , whence

d

or(wrr)er(a;) Z @i —1Bij0 mod wrrAj.
=1
It follows from the definition of 3;; that
on(n Z er(wrr)ern(og)en(e;) Z a;,—1Bi09n(e5) Z a;,—1¢; =n mod wrrN,
J 7,8

ie., that Depis (V) = N/wLTN (by () and Lemma contains an eigenvector for ¢,
with eigenvalue 1, if w LTn does not belong to N. Now the result follows from Lemmam O
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4 (¢r,I'r)-modules over the Robba ring

4.1 Robba rings of character varieties

Throughout our coefficient field K is a complete intermediate extension L € K < C,,. For any
reduced affinoid variety 2) over Q, of L we let | |g) denote the supremum norm on the affinoid
algebra O () of K-valued holomorphic functions on ). It is submultiplicative and defines
the intrinsic Banach topology of this algebra.

4.1.1 The additive character variety and its Robba ring

Let B; denote the rigid Qp-analytic open disk of radius one around the point 1 € Q,. The
rigid analytic group variety
%0 = B1 ®ZP HOHIZP (OL7 Zp)

over Q, (which noncanonically is a d-dimensional open unit polydisk) parameterizes the locally
Qp-analytic characters of the additive group or: the point z ® 8 is sent to the character
Xa@p(a) = 2%(@) Tt is shown in [ST2, §2] that the rigid analytic group variety X over L, which
parameterizes the locally L-analytic characters of or, is the common zero set in Xz, of the
functions

d d
Z 2 ® Bj —> 2(5]’(1%) —t; - Bj(1)) - log(z;)
j=1 J=1
for 1 <1 < d; here tq,...,t;1s a Zy-basis of or, and 1, ..., Bq is the corresponding dual basis.

It is one dimensional, smooth, and connected. As a closed analytic subvariety of the Stein
space Xg the rigid variety X is Stein as well.

For any a € of, the map b —— ab on oy, is locally L-analytic. This induces an action of the
multiplicative monoid oz\{0} first on the Zj,-module Homz, (0, Z,) and then on the varieties
Xo and X. The latter actions further induce actions on the rings of K-valued holomorphic
functions Ox(Xo) - O (X), which we will denote by (a, f) — a«(f).

We also have induced translation actions of or\{0} on the vectors spaces Cgy (oL, K), resp.
C*(or, K), of K-valued locally Q,-analytic, resp. L-analytic, functions on o7, and then by
duality on the spaces Dg,(or, K) — D(or, K) of locally Qp-analytic and locally L-analytic
distributions on oy, respectively; they will be denoted by (a, \) — a.(A). By [ST2, Thm. 2.3|
we have the Fourier isomorphism

(24) D(or, K) = O (%)

A— Fa(x) = Ax) -
One easily checks that this isomorphism is oz \{0}-equivariant. In the following we will denote
the endomorphism (7,), in all situations also by ¢r. The Fourier isomorphism maps the Dirac

distribution d,, for any a € or, to the evaluation function ev,(x) := x(a).

The -operator and the Mellin transform

Lemma 4.1.1. The endomorphism @1, makes Ok (X) into a free module over itself of rank
equal to the cardinality of op/mror; a basis is given by the functions ev, for a running over a
fized system of representatives for the cosets in or/mror.
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Proof. This is most easily seen by using the Fourier isomorphism which reduces the claim
to the corresponding statement about the distribution algebra D(or, K). But here the ring
homomorphism ¢y visibly induces an isomorphism between D(or, K) and the subalgebra
D(rror, K) of D(or, K). Let R € oy, denote a set of representatives for the cosets in oy, /7oy
Then the Dirac distributions {,}.er form a basis of D(or, K) as a D(mwpor, K)-module. [

Lemma 4.1.2. The o] -action on D(or, K) = Ok (X) extends naturally to a (jointly) contin-
uous D(of , K)-module structure.

Proof. In a first step we consider the case K = L, so that K is spherically complete. By [ST1]
Cor. 3.4] it suffices to show that C**(G, K) as an oj -representation is locally analytic. This
means we have to establish that, for any f e C*(G, K), the orbit map a —> a*(f) on o] is
locally analytic. But this map is the image of the locally analytic function (a,g) — f(ag)
under the isomorphism C(of x G, K) = C*(o},C%(G, K)) in [ST3, LemA.1].

Now let K be general. All tensor products in the following are understood to be formed
with the projective tensor product topology. By the universal property of the latter the jointly
continuous bilinear map D(o;, L) x Or(X) — Or(X) extends uniquely to a continuous linear
map D (o}, L)®LOL(X) — OL(X). This further extends to the right hand map in the sequence
of continuous K-linear maps

(K®LD(o}, L))®k (K®LOL(X)) = K& (D(of, L)®LOL(X)) > K&LOL(X) .

The left hand map is the obvious canonical one. We refer to [PGS, §10.6] for the basics on scalar
extensions of locally convex vector spaces. The same reasoning as in the proof of [BSX] Prop.
2.5.ii] shows that K& Op(X) = O (X). It remains to check that K& D(o),L) = D(o}, K)
holds true as well. For any open subgroup U < o] we have D(o],—) = (—BQEOZ/U(SGD(U, —).
Hence it suffices to check that K®; D (U, L) = D(U, K) for one appropriate U. But o] contains
such a subgroup U which is isomorphic to the additive group oy, so that D(U, —) = D(op, —) =
O_(X). In this case we had established our claim already. O

The operator ¢y, has a distinguished K-linear continuous left inverse w]LJ which is defined
to be the dual of the map

C"(or, K) — C(or, K)

f(rpta) ifaempor,

fr—=(mh(f)(a) = {

0 otherwise,

and then, via the Fourier transform, induces an operator 3 on Ok (X). One checks that for
Dirac distributions we have

if a € w071,

(25) WP (0,) = {5”?a

0 otherwise.

Together with Lemma this implies the following.

Lemma 4.1.3. If Ry € oy, is a set of representatives for the nonzero cosets in or/mror, then

ker(¢7) = @aer, eVa pL(OK (X)) -
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We also recall the resulting projection formula
V(oL (F1)Fy) = Fiyg(Fy)  for any Fy, Fy € Ok (X).

Sometimes it will be useful to view ¥F as a normalized trace operator. Since O (X) is a
free module over ¢ (Ok (X)) of rank ¢ we have the corresponding trace map

traceo . (x)/pu(ox(x) Ok (X) — @1(Ok (X)) -
Remark 4.1.4. 77[)% = %(pil o traceok(x)/@L(OK(x))‘

Proof. Since the functions ev, generate a dense subspace in Ok (X) ([STL, Lem. 3.1] the proof
of which remains valid for general K by [PGS| Cor. 4.2.6 and Thm. 11.3.5]) it suffices, by the
continuity of all operators involved, to check the asserted equality on the functions ev,. As
before we choose a set of representatives R € oy, for the cosets o /mror, so that the functions
eve, for c € R, form a basis of O (X) over ¢ (O(X)). Case 1: Let a € of. Then 93 (evy) = 0
by . On the other hand ev,-ev. = evy e € evy @1 (Ok (X)) for some ¢ # ¢’ € R. Hence
the matrix of multiplication by ev, w.r.t. to our choice of basis has only zero entries on
the diagonal. This means that tracep, (x)/p; (0x(x))(€va) = 0. Case 2: Let a € mror. Then
w%(eva) = eV, On the other hand the matrix of multiplication by ev, now is the diagonal

matrix with constant entry ev, = @L(evﬂzla). We see that %gpzl (traceo,(x)/p (Ox (%) (€Va)) =

%@Zl(qg@(evw;la)) = eV 1, O

*

In order to establish a formula for the composition ¢y, o ¥ we let X[r] := ker(X L, X).
Then X[7](C,) is the character group of the finite group or/mror. The points in X[7.](Cp)
are defined over some finite extension K;/K. For any ¢ € X[n1]|(C,) we have the continuous
translation operator

OK1(%) - OK1(%)
Fr— (F)(x) = F(x¢) -

Proposition 4.1.5. i. For any F € Ok, (X) we have

[or, : o] - or o YL(F) = Z k.
¢eX[m](Cp)

. pr(Og(X)) ={F € Og(X) : (F = F for any ¢ € X[r](Cp)}.
Proof. i. Again it suffices to consider any F' = ev,. We compute

S ceva) (0 = Y eva(x) = x(a) Y ¢(a)
¢ ¢ ¢

_Jlor:mpor]-x(a) ifaempor,
0 otherwise

[or : mror] -eva(x) if a€mpor,
otherwise.
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On the other hand

ev 1 ifa€emnpop, )

pL(¥F(eva)) = @L({ e

0 otherwise.

ev, ifa€empor,
0 otherwise

ii. If ¢F = F for any ¢ € X[r1](C,) then ¢ (¢F(F)) = F by i. On the other hand

(cer(F)(X) = e(F)(xQ)) = F(rr()7L(C) = F(rL{x)) = »r(F)(x) -
O

We have observed in the above proof that the functions ev,, for a € oy, generate a dense
subspace of O (X). Considering the topological decomposition

(26) Ox(X) = ¢1.(Ox (X)) ® O (X)¥1 "
F = (F(F)) + (F — or(¥F(F)))

we see, using (25), that the ev, for a € mpor, resp. the ev, for u € o], generate a dense

subspace of o1(Ox (X)), resp. of O (X)¥2=0. In view of Lemma m the obvious formula
ux(evy) = evy, together with the fact, that the Dirac distributions d,, for u € oz, generate a
dense subspace of D(o;, K), then imply that the decomposition is D(o}, K)-invariant.

Lemma 4.1.6. (Mellin transform) The natural inclusion D(o],K) — D(or, K) combined
with the Fourier isomorphism induces the map
M : Do}, K) — D(op, K)PL =0 = O (X)¥t ="
A —> )\(51) /\(evl)

>

which is a topological isomorphism of D(o} , K)-modules.

Proof. The disjoint decomposition into open sets oy, = wror, U oz induces the linear topological
decomposition D(or,, K) = ¢r(D(or,, K))®D(o; , K). The assertion follows by comparing this
with the decomposition 1) O]

The Robba ring

We recall a few facts from [BSX] about the analytic structure of the character variety X.
As a general convention all radii r» which will occur throughout the paper are assumed to
lie in (0,1) n p@. Let By(r), resp. B(r), denote the Q,-affinoid disk of radius r around 1,
resp. around 0, and let BT () be the open disk of radius r around 1. We put

Xo(r) := B1(r) ®z, Homg, (o, Zp) and X(r):=Xn Xo(r)/p, -

These are affinoid subgroups of Xy and X, respectively, which are respected by the action of the
monoid or,\{0}. Since X(r) — Xo(r),, is a closed immersion of affinoid varieties the restriction
map between the affinoid algebras Ok (Xo(r)) - Ok (X(r)) is a strict surjection of Banach
algebras. The families {Xo(r)},, resp. {X(r)},, form an increasing admissible covering of X,

"The map D(o}, K) — D(G, K) sending X to A(41) is the inclusion map since 6,(61) = .
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resp. X, which exhibits the latter as a quasi-Stein space. Hence Ok (Xo(r)), resp. O (X(r)),
is the completion of Ok (Xo), resp. Ok (X), in the supremum norm | |x,(r), T€sp. | |x(y)-
d

The structure of the affinoid variety X(rg) is rather simple for any radius g < p~ »=1. Then
(|IBSX| Lem. 1.16]) the map

(27) B(ro);, — X(ro)
y — xy(a) := exp(ay)

is an isomorphism of L-affinoid groups. Taking, somewhat unconventionally, exp —1 as coordi-
nate function on B(r) we may view Ox (B(r9)) as the Banach algebra of all power series f =
Yiso cilexp —1)" such that ¢; € K and lim; e |¢i|ry = 0; the norm is | f|g(,) := max; |¢;|r.
Since exp —1 corresponds under the above isomorphism to the function evy —1 on X(rg) we
deduce that

(28) Ok (X(ro)) = {f = Z cilevi —1)' : ¢; € K and _lil“g) |ci|ry = 0}

120

is a Banach algebra with the supremum norm |f|x(,) = max; |c;|rj.
Next we need to explain the admissible open subdomains X; of X, where the I < (0,1)
are certain intervals (cf. [BSX], §2.1]). First of all we have the admissible open subdomains

X1 = B\E(r) .

To introduce the relevant affinoid subdomains we also need the open disk By (r) of radius r
around 1. This allows us to first define the admissible open subdomains X (r) := (B (r) ®z,
Homg, (o, Zp));, and X~ (1) := X n Xy (r) of Xo and X, respectively. For r < s we then have
the admissible open subdomains

Xo[r,s] := Xo(s)\Xy (r) € Xo and  Xp = X(s)\X (r) = X n Xo[r,s] =€ X .

We recall that the X, ;) are actually affinoid varieties. There are the obvious inclusions X, 5] S

X(s) and X[, S X(1) provided ' < r. Moreover, X, 1) is the increasing admissible union
of the X, 4 for r’ <7 <'s < 1. Hence

Ok (X )= lim  Or(X[pq) .
r’<r<s<l1
which exhibits the Fréchet algebra structure of the left side.
We point out that these subdomains X7 all are invariant under o; . Their behaviour with

respect to w7 is more complicated. We recall from [BSX| Lem. 2.11| that, for any radius
d
p_PTpl < r <1 we have

(29) (71) " (X)) S Xgarm ) -

It is technically necessary in the following to sometimes only work with a smaller set of
radii. We put

d d d

So:=[p e v 1,p 1) nplCp ri,p p-1)

1
Sp = Sé’T forn = 1, and Sy, = Un>1 Sn. Note that the sets S,, are pairwise disjoint. The
point is ([BSX| Prop. 1.20]) that for s € Sy, we know that X(s) becomes isomorphic to a closed
disk over C,. Let s, for n > 0, denote the left boundary point of the set S,,. Then we have
the following result ([BSX| Prop. 2.1]).
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Proposition 4.1.7. For any n = 0 the rigid variely X, 1y is quasi-Stein with respect lo the
admissible covering {X[.q} where s, <r < s <1,r€S,, and s € |),,~, Sm- In particular,
the affinoid algebra O (X, ) is the completion of Ok (X, 1)) with respect to the supremum
norm | |x,

r,s]”

Obviously, with X each X(,, 1) is one dimensional and smooth. But, in order to be able
to apply later on Serre duality to the spaces X(;, 1), we need to show that they are actually
Stein spaces. This means that we have to check that the admissible covering in Prop. 4.1.7]
has the property that X[ ¢ is relatively compact in X[, g over L ([BGR| §9.6.2]) for any
r <r <5 < s. We simply write U € X for an affinoid subdomain U being relatively
compact over L in an L-affinoid variety X.

Lemma 4.1.8. Let U € X € X' be affinoid subdomains of the affinoid variety X'; we then
have:

i. IfUE X thenU € X';

1. suppose that U = Uy u ... v Uy, is an affinoid covering; if Uy € X for any 1 <i<m
then U € X.

Proof. Let A — B be the homomorphism of affinoid algebras which induces the inclusion
U = Sp(B) € X = Sp(A). It is not difficult to see that the property U € X is equivalent to
the homomorphism A — B being inner w.r.t. L in the sense of [Ber, Def. 2.5.1]. Therefore i.,
resp. ii., is a special case of Cor. 2.5.5, resp. Lemma 2.5.10, in [Ber]. O

Proposition 4.1.9. X, 1), for any n = 0, is a Stein space.

Proof. Since, by Prop.|4.1.7, we already know that the X, 1y are quasi-Stein. Hence it remains
to show that X[/ g1 € X[ 4 for any r < 7' < s’ < s. Looking first at Xo, let B1[r, s] = B
denote the affinoid annulus of inner radius r and outer radius s. Fixing coordinate functions

21,...,24 on Xo we have the admissible open covering
d . .
Xolr.s| = | Jx'[r.s] with X[, s] == {x € Xo(s) : |zi(x)| = ).
i=1

The affinoid varieties of this covering have the direct product structure
%(()i)[r, s] = Bi(s) x ... B1(s) x Bi[r,s] x Bi(s) x ...B1(s)

with the annulus being the ith factor. It immediately follows that %(()i) [, '] € }Z(()i) [r,s] (IBGR,
Lem. 9.6.2.1]). Since relative compactness is preserved by passing to closed subvarieties we

deduce that X %(()i) [, '] € X n %g) [r, s] for any 1 <4 < d. Applying now Lemma we
conclude first that X %8) [/, 8] € Xo[r, s] and then that X[ g1 € X[ - O

We finally recall that the Robba ring of X over K is defined as the locally convex inductive
limit h_n}@ Ok (X\9) where ) runs over all affinoid subdomains of X. Since any such 2) is

contained in some X(r) we have
Ri(X) = lim O (X5, 1)) »
n=0

and we view Rk (X) as the locally convex inductive limit of the Fréchet algebras Ok (X(s,, 1)-
By [BSX] Prop. 1.20 the system X(,, 1)/c, is isomorphic to a decreasing system of one dimen-
sional annuli. This implies:
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— Rk (X) is the increasing union of the rings Ok (X(s, 1)) and contains Ok (X);
— each O (X, 1)) as well as R (X) are integral domains.

The action of the monoid o7, \{0} on Ok (X) extends naturally to a continuous action on R x (X)
(IBSX| Lem. 2.12]). In fact, this action extends further uniquely to a separately continuous
action of D(o;, K)-action on Rg(X). This is a special case of the later Prop. which
implies that we will have such an action on any L-analytic (¢, 'r)-module over R (X). Via
the isomorphism 7 : I'f, = o} we later on will view this as a D(I'z,, K')-action.

In order to extend the y-operator to the Robba ring we need the following fact.

Lemma 4.1.10. The morphism w7 : X — X is finite, faithfully flat, and étale.
Proof. The character variety X’ of the subgroup 707, € oy, is isomorphic to X via
x =
X — X'(rra) = x(a) .
We have the commutative diagram

X

% J/ \X:’X|7FLOL
TL

x—==%.
X=X
The oblique arrow is finite and faithfully flat by the proof of [Emel, Prop. 6.4.5]. For its étaleness
it remains to check that all its fibers are unramified. This can be done after base change to C,.
Then, since this arrow is a homomorphism of rigid groups, all fibers are isomorphic. But the
fiber in the trivial character of o is isomorphic to Sp(Cplor/mror]) = Sp(C}). It follows
that 77 has these properties as well. O

Since the subsequent reasoning will be needed again in the next section in an analogous
situation we proceed in an axiomatic way. Suppose that:

- p: 9 — 3is a finite and faithfully flat morphism of quasi-Stein spaces over K. In
particular, the induced map p* : Og(3) — Ok(9) is injective. Moreover, the finiteness
of p implies that the preimage under p of any affinoid subdomain in 3 is an affinoid
subdomain in ) ([BGRI Prop. 9.4.4.1(i)]) and hence that p* is continuous.

- Ok () is finitely generated free as a p*(Ok(3))-module. Fix a corresponding basis
flw--afhEOK@))~

Proposition 4.1.11. For any admissible open subset 4 € 3 we have
Ok (p™' (&) = Ok (D) Qo (3) Ok (81)
is free with basis fi, ..., frn over O (L).

Proof. Since p is finite, p,Oy is a coherent O3-module by [BGRI Prop. 9.4.4.1(ii)|. Gruson’s
theorem (cf. [BSX], Prop. 1.13]) then tells us that p,Oy is, in fact, a free O3-module with
basis f1,..., fa. O
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We observe that the definition of the Robba ring Rk (X) above was completely formal and
works precisely the same way for any quasi-Stein space. Hence we have available the Robba
rings R () and Rxi(3). Since the morphism p : 9 — 3 is finite the preimage under p of
any affinoid subdomain in 3 is an affinoid subdomain in ) ([BGRJ, Prop. 9.4.4.1(i)]). We note
again that the preimage under p of any affinoid subdomain in 3 is an affinoid subdomain in
). The injective map p* : O (3) € Ox () therefore extends to a natural homomorphism of
rings
(30) p* i Ri(3) — Rx(D) -

Remark 4.1.12. The homomorphism 1§ injective.

Proof. We fix an admissible covering 3 = ;=14 by an increasing sequence of affinoid sub-
domains &; € 3. As p is a finite map, Y = [J;>; p~ () again is an admissible covering by
affinoid subdomains. It follows that Rx () = h_rr)lj Or(D\p 1(4;)), and therefore it suffices
to show the injectivity of the maps p* : Ok (3\tl;) = O (Y\p~1(L;)). But this is clear since
the map p: Y\p 1(&4;) — 3\4; is faithfully flat. O

Corollary 4.1.13. Rg(9) = Ok () Qo (3) Rk (3) is free over p*(Ri(3)) with the basis
fis--os fn. In fact, the map

Ri(3)" — Ri(D)
h
(2’1, ceey Zh) — Z p*(zz)fz
i=1

18 & homeomorphism.

Proof. By passing to locally convex limits this follows from Prop. [4.1.11] which says that the
map

O ()" = O (p~' (1))

h
(21, .., 20) — Z p* (i) fi
i=1

is a continuous bijection between Fréchet spaces and hence a homeomorphism by the open
mapping theorem. O

By the Lemmas [4.1.1| and 4.1.10 the above applies to the morphism 77 : X — X and we
obtain the following result.

Proposition 4.1.14. Let R S o, be a set of representatives for the cosets in or/mpor. Then
the Robba ring R (X) is a free module over pr(Ri (X)) with basis {€Va}acRr-

In particular we have the trace map

tracer  (x)/pn(Ric(x)) * RE(X) — @L(RK (X))

and therefore may introduce the operator
1 _
VI = e O tracer (@) oy (Ric(x) * Ric(X) — Rie(X)

Because of Remark it extends the operator ¢3L€ on Ok (X), which justifies denoting it by
the same symbol. By construction it is a left inverse of ¢ and satisfies the projection formula.
Furthermore, as a consequence of Cor. 4.1.13], Wf is continuous.
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4.1.2 The multiplicative character variety and its Robba ring

In this section we consider the multiplicative group o; as a locally L-analytic group. We
introduce the open subgroups U,, := 1+7}or, for n > 1. Correspondingly we have the inclusion
of distribution algebras D(Uy+1, K) € D(Uy,, K) < D(o;, K). There is an integer ng > 1 such
that, for any n = ng, the logarithm series induces an isomorphism of locally L-analytic groups
log : U, = nfor. We then introduce the isomorphisms ¢, := 7, " log : U, = oy, together
with the algebra isomorphisms

(31) lpx : D(Up, K) => D(op, K) = Ok (%)

which they induce.

As for or, in the previous section we have rigid analytic varieties (over L) of locally L-
analytic characters X* for o] and X for U, as well (cf. [ST2, Thm. 2.3, Lemma 2.4, Cor.
3.7) and |[Eme, Prop.s 6.4.5 and 6.4.6]):

- 0k X = X is, for n = ng, an isomorphism of group varieties.

— The restriction map p, : ¥ — X is a finite faithfully flat covering ([Eme] proof of
Prop. 6.4.5).

— X* and X are one dimensional Stein spaces. (As group varieties they are separated and
equidimensional.)

— For n = ng the variety X is smooth and Or(X)) is an integral domain.
— The Fourier transforms
D(0},K) 5 Og(X*)  and  D(U,, K) = Og (X))

sending a distribution p to the function F,(x) := u(x) are isomorphisms of Fréchet
algebras.

As a consequence of the properties of the morphism p := p, : X* — X the homo-
morphism p* : O (X)) — Or(X*) is injective and extends to an injective homomorphism

p* R (X)) = R (XX) (cf. Remark [4.1.12).
Lemma 4.1.15. 1. OK(%X) = Z[Oz] ®Z[Un] OK(:{;E)

it. Rg(X*) = O (XX) ®OK(3€TXL) Ri (X)) = Z|o; ] ®z[U] Ri(X)).

Proof. i. Let u1,...,u; € o] be a set of representatives for the cosets of Uy, in o] . We then
have the decomposition into open subsets OZ =wU, v ...uu,U,. It follows that

D(o},K) =0, D(Up, K)®...® 0y, D(Uy, K) = Z[o; ] ®z[v,] D(Un, K)

is, in particular, a free D(Uy,, K)-module of rank h = [0} : U,]. Using the Fourier isomorphism

we obtain that Ox (X*) is a free Ox (X} )-module over the basis evy,,...,evy, .
ii. Because of i. the assumptions before Prop. [4.1.11] are satisfied and the present assertion
is a special case of Cor. 4.1.13] O

Lemma 4.1.16. The morphism p is étale.
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Proof. This is the same argument as in the proof of Lemma [4.1.10 O

Corollary 4.1.17. X* is smooth.
Proof. This follows from the lemma since X5 is smooth for n > nyg. O

Remark 4.1.18. If n = m then all the above assertions hold analogously for the finite mor-
phism py, n : X, — X, In particular, all X5 are smooth.

Suppose that n = ng. Then, due to the isomorphism ¢ : X = X), everything which was
defined for and recalled about X in section holds correspondingly for X*. In particular
we have the admissible open subdomains X (r), %:,(7-,1)7 and .’f;’[m]. For n = m = ng we have
the commutative diagram

G

(32) X —=Xx

~

<7rz>"-mi lpm,n

*
d
Lemma 4.1.19. Let n = ng and m = 0; for any p_r—pl < r < 1 the map p} ime :
Ok (X, 1 me) = Ok (X)) extends to an isometric homomorphism of Banach algebras

(OK(%;L<+me(T))7| |x>< ) .

n+me

1

) — (Ok (X5 (r7™)), | |9€X(rp%)

Proof. By the above commutative diagram our assertion amounts to the statement that
1

the map (77¢)* : X — X restricts to a surjection X(r»™) — X(r). In [ST2, Lem. 3.3| this is

shown to be the case for the map (p™)*. But p™ and 7n}’¢ differ by a unit u € o}, and u*

preserves X(r). O

4.1.3 Twisting

Consider any locally L-analytic group G and fix a locally L-analytic character xy : G — L*.
Then multiplication by x is a K-linear topological isomorphism C**(G, K) XT> c"(G, K).

We denote the dual isomorphism by

Tw? : D(G,K) => D(G,K) ,

ie., Tw)?(u) = u(x—), and call it the twist by x. For Dirac distributions we obtain wa(dg) =
x(9)dg-

Suppose now that G is one of the groups o, or U,, € o of the previous subsections, and let
X denote its character variety. Then x is an L-valued point z, € Xg(L). Using the product
structure of the variety Xg we similarly have the twist operator

TwXe : Og(Xg) = Ok(Xa) , fr— f(z—) .

As any rigid automorphism multiplication by a rational point respects the system of affi-
noid subdomains and hence the system of their complements. Hence TwX¢ extends straight-

forwardly to an automorphism TwX¢ : Ry (Xq) — Rx(Xq). The following properties are
straightforward to check:
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1. Under the Fourier isomorphism Twi) and T waG correspond to each other.
2. Twic o Twis = TwiC.,.

3. If a : G = Gy is an isomorphism between two of our groups then, for any z € Xg, (L),

the twist operators Twa,f (lz) and Tw; “? correspond to each other under the isomorphism

(6773 RK(%Gl) i) RK(%GQ)'

4.1.4 The LT-isomorphism, part 1

We write B for the open unit ball over L. The Lubin-Tate formal oy-module gives B an or-
action via (a, z) — [a](2). If Ox(B) is the ring of power series in Z with coefficients in K
which converge on B(C,), then the above or-action on B induces an action of the monoid
or\{0} on Ok (B) by (a, F) — F o [a]. Similarly as before we let ¢, denote the action of 7.
Next we consider the continuous operator

tr: Og(B) — Ok (B)

f(z) — fly+rr2) .
yeker([n])

Coleman has shown (cf. [SV15] §2]) that tr(Z*) € im(py) for any i > 0. Hence, since ¢, is a
homeomorphism onto its image, we have im(¢r) € im(¢r) and hence, since ¢y, is injective, we
may introduce the K-linear operator

Y : Og(B) — Ok (B) such that 77 'tr = @1, 0 Y.

One easily checks that 17, is equivariant for the o -action and satisfies the projection formula

Yr(fren(f2)) = ¢¥r(fi)fz as well as ¢ o pp = ;L.

Furthermore, we fix a generator 7' of T as or-module and denote by Q = Q,, the corre-
sponding period. In the following we assume that Q belongs to K. From [ST2, Thm. 3.6]
we recall the LT-isomorphism

(33) K*: O(X) S Ok (B)

F [z F(ky)],
where £;(a) = 1+ Fy([a](2)) with 1 + F,/(Z) := exp (log;1(Z)) . It is an isomorphism of
topological rings which is equivariant with respect to the action by the monoid or\{0} (as a
consequence of [ST2, Prop. 3.1]). Moreover, Lemma implies that the of-action on O (B)
extends to a jointly continuous D(o; , K)-module structure (by descent even for general K)

and that the LT-isomorphism is an isomorphism of D(o; , K)-modules.
By the construction of the LT-isomorphism we have

K*(evq) = exp(aflog;r(2)) € oc, [[Z]] for any a € of,.
Hence Lemma implies that

r*(ker(vf)) = ) exp(aQlog 1 (2))pr(Ox(B))

a€Rg
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where Ry € o, denotes a set of representatives for the nonzero cosets in or,/mror,. Using that
logrr(Z1 +r1 Z2) = logr(Z1) + log(Z2) we compute

tr(exp(aQlog;r(Z)) = Z exp(aQlogrr(y +r1 Z))
yeker([wL])

( 2 eXp(aQIOgLT(y)))eXp(aQIOgLT(Z))
yeker([7r])

=( > #ya)) exp(alog(2)) .
yeker([7r])

But the x, for y € ker(|nz]) are precisely the characters of the finite abelian group or/mroL.
Hence X cyer(fr,7) fiy(@) = 0 for a € Ro. It follows that x* (ker(¢7)) = ker(tr). We conclude

that under the LT-isomorphism ; corresponds to %w% using the fact that we also have a
decomposition

(34) Ox(B)= ), exp(alogrr(Z))eL(Ok(B)).

aEOL/ﬂ'L

In the following we denote by
My : D(Tp, K) = Ok (B)Vr="
the composite

D(T, K) = D(of, K) = O (X)¥1=0 = Ok (B)¥+=°

where the first isomorphism is induced by the character xp7 : I'g = of , the second one is
the Mellin transform 91 from Lemma while the third one is the LT-isomorphism. By
inserting the definitions we obtain the explicit formula

mLT()\)(Z) = A(Iiz @) XLT) .
The construction of the above map M is related to the pairing

{,}:0x(B) x C"(0or,K) > K
(F,f)— u(f), where ue D(or, K) is such that u(k,) = F(z),

in [ST2, Lem. 4.6] by the following commutative diagram:

MDA

D(I', K) <« CM(IpK) K
DﬁLTl i(XLT)*
O (B)¥r=" x Cc* oy, K)
gl iextensz‘on by 0
Ox(B) x  OM(op K)—

Remark 4.1.20. (Q € K) For any F € Og(B)¥:= and any f € C(or, K) such that
flof =0 we have {F, f} = 0.
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Proof. We have seen above that under the LT-isomorphism 17, corresponds, up to a nonzero

constant, to 1/)% and hence further under the Fourier isomorphism to E . It therefore suffices
to show that for any u € D(oL,KN)wLDZO we have u(f) = 0. For this we define fi= flrp—) €

C(or, K) and note that (7.)/(f) = f. By the definition of PP we therefore obtain, under
our assumption on g, that u(f) = u(f) =7 (1) (f) = p(f = (7p)i(f)) = p(0) = 0. O

Lemma 4.1.21. (Q e K) For any F € Ox(B)¥2=! and n > 0 we have
n+1

My (1 — %mwxm — 01— ”Lq )@y F) | 2=0-

Proof. Note that (1 — “Lop)F belongs to Ok (B)¥2=0% Let inc; € C(or, K) denote the

extension by zero of the inclusion o] < or, and let id : o, — K be the identity function.
Using the above commutative diagram the assertion reduces to the equality

n+1
(1= %L@L)Fa inci'} = Q"(1 - 7TLq

) (i F) 20

By Remark [4.1.20| we may replace on the left hand side the function inc}® by the function id".
Next we observe that  id"(z) = id"™!(x). Hence, by [ST2, Lem. 4.6(8)], i.e., {F,2f(2)} =
{Q 10, F, f} and induction, the left hand side is equal to

(1= 2 Fid") = {278, (1 - “Epp) F),id")
q . q
= {Qin(l — @L)(aﬁlvF),ido} since Oy pr, = TLYLOny DY
n+1
=Q"(1- L) (O F)z=0 since id" is the trivial character of of,

n+1

—Q (1 - ”Lq )@ F) - since [71](0) = 0.

mv

O

In the course of the previous proof we have seen that, for F' in O (B)¥:=? and n > 0,
(35) My (F)(XEr) = Q@ (0 F)jz=0 -
Lemma 4.1.22. (Q e K) For any F € Ox(B)¥2=Y and n = 1 we have
M 1 (log - F)(XEr) = nQ™ M1 (F) (X7 -
Proof. First, using , observe that
Yr(logpy -F) = ¢r(r; er(logy) - F) = np o (logpr)yr(F) =0 .

Secondly note that Oy log;p = 1, i.e., &) log; = 0 for i > 2; also log;(0) = 0. Using
twice we have

My r(logr F)(Xir) = Q7" (00, (log 7 F))1z-0
_O-n n i J
=0Q < 2 ( i > (ainv 1OgLT) (ainvF)>
1+)=n \Z=O
= Qinn(a&;lF)\Z:O

= nQ MY (E) ()
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O

For the rest of this section we assume not only that K contains 2 but also that the action
of G, on C, leaves K invariant.
The LT-isomorphism is a topological ring isomorphism

K®LOL(X) = Og(X) = O (B) = K&LOL(B)

(see [BSX| Prop. 2.1.5 ii.] for the outer identities).
On both sides we have the obvious coefficientwise G -action induced by the Galois-action
on the tensor-factor K. We use the following notation:

e 0 € (G, acting coefficientwise on Ok (B) is denoted by: F' +— 7 F’; the corresponding fixed
ring is O (B)L = OL(B).

e The coefficientwise action on Ok (X) transfers to the twisted action on O (B) by [ST2,
before Cor. 3.8 given as F +— “*F := °F o [r(0~1)]; the corresponding fixed ring is
OK(B)GL’* = Or(X) = D(or, L).

Remark 4.1.23. Note that the or\{0}-action and hence the D(of , L)-module structure com-
mute with both Gp-actions. Moreover, 11, commutes with the Gp-aclions as well.

Recall that using the notation from [ST2, Lem. 4.6, 1./2.] the function 1 + F,(Z) =
exp (af,y log;(Z)) corresponds to the Dirac distribution d, of a € oy, under the Fourier
isomorphism.

Lemma 4.1.24. Let o be in G, t' € T, and a € or,. Then
(1) O'(Qt/) = QT(O’)t’ = QtrT(O') and
(11) UFan/ = Fan’ e} [T(O’)] = FaT(cr)n"

Proof. (i) The Galois equivariance of the pairing (, ) : T» ®,, C, — C,, from (loc. cit. before
Prop. 3.1) with (¢, z) = Qpa implies that

o(Q) = Qo(pry = QLroyw

while the op-invariance of that pairing implies that the latter expression equals Qu7(0).
(ii) This is immediate from (i) and the definition of Fj, taking equation (3| into account. [

Proposition 4.1.25. (i) The isomorphism (LT together with Fourier) ¢ : D(op, K)
Ok (X) = Ok (B) restricts to an isomorphism

114

D(or, K)%1* = Op(X)9 =~ O (B)SE = O1(B)
of D(o; , L)-modules.
(ii) The Mellin transform restricts to an isomorphism of D(o] , L)-modules
D(o}, K)C1* = Ok (X)%41=0 ~ 0 (B)¥£~0.

Here the G-action on the distribution rings on the left hand sides is induced from the coef-
ficientwise action on Ok (B) and O (B)¥2=0 via the LT-isomorphism and Mellin transform,
respectively.
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Proof. (i) and (ii) follow from passing to the fixed vectors with respect to the coefficientwise
G -action and Remark [4.1.23] O

In order to express the D(o},L)-module D(o},K)%* in the above proposition more
explicitly we describe the previous two actions on O (B) now on D(or, K):

e The coefficientwise G'z-action on D(or, K) = K®D(or, L), which corresponds to the
twisted action on Ok (B), will be written as A — 7.

e The Gp-action given by A — 7(0)«(?\) corresponds to the coefficientwise action on

Ox(B).

Note that for A € D(o7, K) we have 7(0)«(\) = d,(,)A, where the right hand side refers to the
product of A and the Dirac distribution d,(,) in the ring D(oy , K). Then we conclude that

D(o},K)9* = {\€ D(0},K)| "X\ = 6,1 A for all 0 € G}
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4.2 Consequences of Serre duality

Recall that in any quasi-separated rigid analytic variety the complement of any affinoid subdo-
main is admissible open (|Schl §3 Prop. 3(ii)|). This applies in particular to quasi-Stein spaces
since they are separated by definition. For a rigid analytic variety ) we will denote by Aff())
the set of all affinoid subdomains of ).

We have seen that X, X*, and X for n > 1 all are 1-(equi)dimensional smooth Stein
spaces.

4.2.1 Cohomology with compact support

We slightly rephrase the definition of cohomology with compact support given in [vdPl §1] in
the case of a Stein space ) over L. For any abelian sheaf F on %) and any i € Aff(2)) we put

H{(9), F) := ker(F () — F(Y\W)) .

This is a left exact functor in F, and we denote by H{(2), F) its right derived functors. Since
quasi-Stein spaces have no coherent cohomology the relative cohomology sequence ([vdP, Lem.
1.3]) gives rise, for a coherent sheaf F, to the exact sequence

(36) 0 — H{(Y, F) = F(V) » FO\Y) - Hy(,F) > 0.
We then define the cohomology with compact support as

SEAR ()

Again, if F is a coherent sheaf we obtain the exact sequence

0> HY(D,F) = FQ) - lim FEO\U) — HI(Y,F)—0.
UeAF(D)

Suppose in the following that j : 99 — ) is an open immersion of Stein spaces (over L)
which, for simplicity we view as an inclusion.

Lemma 4.2.1. For any 4 € Aff(Qo) the covering P = (P\U) U Yo is admissible.
Proof. This follows from [vdPl Lem. 1.1]. O]

Lemma 4.2.2. For any € Aff(Qo) and any sheaf F on Q) the natural map

HE(D, F) ~55 H3 (D), F)
1s biyjective.

Proof. Recall that for an injective sheaf on %) its restriction to g is injective as well. Hence,
by using an injective resolution, it suffices to proof the assertion for = = 0. Injectivity: Let
f e H}(Q,F) such that f|9o = 0. Since f|Y\U = 0 as well it follows from Lemma that
f = 0. Surjectivity: Let g € H)(Yo, F) so that g/Yo\U = 0. Using Lemma again we may
define a preimage f of g by fI9\U := 0 and f|Yo :=g. O
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By passing to inductive limits we obtain the composed map

re

jHRD0.F) =l HE0.F) Sl HED,F)
UeAF (Do) T UeAff(Yo)

- lim H{(Y, F) = HI(D, F) .
UeAfF(D)

For later purposes we have to analyze the following situation. Let

hethe. .. cihc...cY=J

be a Stein covering. We assume that each admissible open subset 2),, := )\iL, also is a Stein
space. Since ... S 9), S ... S Y1 S 2 we then have the projective system

D HE(Yn, F) = ... = HI(D1, F) > HE(D, F)

By Lemma {4.2.2| we may rewrite it as the projective system

37)  ...— lim HIQ,F)—...— lim HiY.F) - lim HID,F).
UEAF(D,) UEAFE(D)1) UeAF(D)

Lemma 4.2.3. In the above situation we assume in addition that F is a coherent sheaf and

that the restriction maps F () — F(D\U) for any U e Aff(Q) are injective. We then have

(38) lim He (Y, F) = (im  lig  F(Y\L))/F(D) -
n n UeAfF(Yn)
Proof. This is immediate from and the relative cohomology sequence. O

For coherent sheaves F all the above cohomology vector spaces carry natural locally convex
topologies, which we briefly recall. The global sections F(Q)) and F(Y\U), for & € Aff(),
are Fréchet spaces. Using the relative cohomology sequence we equip H&@), F) with the
quotient topology from F(P\U) (which might be non-Hausdorff) and then H!(Q), F) with the
locally convex inductive limit topology (w.r.t. varying ).

Remark 4.2.4. Let
MO L>M1

L,

NO L Nl

be a commutative diagram of Fréchet spaces such that the induced map coker(a) — coker(f)
18 bijective; then the latter map is a topological isomorphism for the quotient topologies.

Proof. A more general statement can be found in |[BS, Chap. VII Lem. 1.32]. O

Using this Remark we see that the bijection H(2),F) r—is> H{ (o, F) from Lemma 14.2.2

is a topological isomorphism. It follows that, in degree one at least, the above map j is as
well as the transition maps in the projective system are continuous.

Lemma 4.2.5. The isomorphism 15 topological.
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Proof. The assertion has to be understood, of course, in such a way that forming projective
limits, inductive limits, and quotient spaces on both sides of is meant in the topological
sense. First of all one checks that forming the projective limit on the right hand side commutes
with passing to the quotient space by F(2)) (compare (ii) in the proof of [Prol Thm. 4.3]
for a more general statement). Secondly, as a special case of [B-TVS| I1.28 Cor. 2|, forming
inductive limits commutes with passing to quotient spaces. This reduces us to Hi(9\U, F) =
F(O\U)/F () being a topological isomorphism, but which holds by definition. O

In the following we compute further in two concrete cases.
The open unit disk

Let B = Byg 1) denote the open unit disk over L. We recall our convention that all radii are
assumed to lie in (0,1) N p@. For any radii r < s we introduce the affinoid disk Bjo,] as well
as the open disk By, of radius r around 0 and the affinoid annulus By, ;) := {r < |z] < s}.
We put B;.1) 1= B\B[O’T], which are Stein spaces. By the identity theorem for Laurent series
the assumptions of Lemma are satisfied for the structure sheaf © = Og of B. We first
fix a radius r and compute the cohomology Hcl(B(m), O). By Lemma and the relative
cohomology sequence we have

HY(B(1),0) = I  Hi(B,0)=( lm O(B\Y)/O(B).
UeATE(By,.1)) UeAf(B 1))

Of course, it suffices to take the inductive limit over a cofinal sequence of larger and larger
affinoid annuli in By, ). For this we choose two sequences of radii r < ... < rp < ... <
mlU<si <...<sm<...<1with (ry)mn and (spy)m converging to r and 1, respectively.
Each space B\B[ = Bys,.,1)VBJo,r,,) has two connected components. We see that

T7n75m]

HCI(B(T,1)7O) = ( ]l)n O(B(sm,,l)) C—B h_I)n O(B[O,Tm)))/O(B) °

m—0o0 m—a0

As explained in Lemma this is a topological equality. We observe that Ry = Rp(B) =
lim  O(B,, 1)) is the usual Robba ring (over L) whereas (’)T(B[Om]) =lim OB,
is the ring of overconvergent analytic functions on B ). Hence

H!(B(1),0) = (R ®O'(By,))/O(B) .

Passing now to the projective limit w.r.t. » — 1 of the continuous restriction maps O(B) —
(’)T(B[O,T]) — O(Byg,) we observe that lim (’)T(B[O,T]) = O(B) holds true topologically.
We finally deduce that

(39) lim H! (B, 0) = lim ( lim  O(B\)/O(B) = (R, ®O(B))/O(B) = R,
r—1 r—1 HEAH(B(TJ))

as locally convex vector spaces.
The character variety X

Since X,c, = B¢, by [ST2| the injectivity of the restriction maps O(X) — O(X\U) for
any i € Aff(X) follows from the corresponding fact for B, which we saw already. According to
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Prop. the admissible open subdomains X, 1) of X are Stein spaces. In order to compute
their cohomology with compact support in the structure sheaf O = Oy we fix an n = 0. We
choose a sequence of radii rp41 > rpye > ... > s, in S, converging to s,. Furthermore we
observe that the increasing sequence (S;;)msn i S converges to 1. By Prop. we then

have the Stein covering
%(Snyl) = U %[Tm,sm] :

m>n

Hence, by Lemma the relative cohomology sequence, and the explanation in Lemma
we have the topological equality

He (X(s,,1),0) = ( lim O(X\Xy,,6,,1))/O(X) -

m—0Q0

The obvious set theoretic decomposition
X[y, 5] = N X (smN\XT (rm)) = (B\X(sm)) O X7 (rim) = X(s,,,,1) U X (1)

is in fact the decomposition of the space X\X[,, ,,] into its connected components. This can
be checked after base change to C, where, by [BSX| Prop. 1.20 and proof of Prop. 2.1], the
setting becomes isomorphic to the setting for the open unit disk which we discussed in the
previous section. Entirely similarly as in the previous subsection it follows now that

HY (X5, 1), 0) = (RL(X) ® OT(X(s0)))/O(X)

where O (X(s,,)) := lim X7 (rp), and then

(40) o
lim H(X(,,1),0) = lim (lim OX\Xp,, ..1))/O%) = (Ri(X) @ O(X))/O(X) = Ry (X)

as locally convex vector spaces.

4.2.2 Serre duality for Stein spaces

In the following the continuous dual of a locally convex vector space is always equipped with
the strong topology.

The Serre duality for smooth Stein spaces is established in [Chi] and [Bey97b]. Let ) be
a 1-(equi)dimensional smooth Stein space over L.

Theorem 4.2.6. For any coherent sheaf F on ) we have:
i. HY(,F) is a complete reflevive Hausdorff space.

it. Homg)(F, Qéj) = HO(QJ7HOIDQJ(]:, Q%)), being the global sections of another coherent
sheaf, is a reflexive Fréchel space strictly of countable type ([PGS, Def. 4.2.5]).

154. There 1s a canonical trace map
ty : H(Y, Q) — L
such that the Yoneda pairing

HY(Y,F) x Homy (F, Q) — HL (D, Q)
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composed with the trace map induces isomorphisms of topological vector spaces
Hom§™ (HX(9), F), L) => Homgy(F, Q) and Hom§™ (Homg (F, ), L) = HH(D, F)
which are natural in F.

Proof. See [Bey97b, Thm. 7.1] H and [Chil, Thm. 4.21] (as well as [vdP), Prop. 3.6]). O

If we specialize the above assertion to the case of the structure sheaf 7 = Oy then we
have Homg)(Oy, (21@) = Qéj () for trivial reasons. On the other hand the relative cohomology
sequence implies that

(41) H, (), 09) = R1(9)/09(D) -
Hence we have the following consequence of Serre duality.

Corollary 4.2.7. Serre duality gives rise to an isomorphism of topological vector spaces

Hom§™ (RL()/0y (D), L) = (D) -

Lemma 4.2.8. Let a : Q) —> Q) be a finite étale morphism of 1-dimensional smooth Stein
spaces over L. We then have, for any coherent sheaf F on ), the commutative diagram of
Serre duality pairings

HM9),a*F) x Homy (" F, Q) —— H(2), Q) —2~ L
T | |

HNY', awa* F) X Homgy (s ™ F, Q%,)HH(}(@',Q%,) — =T
T | N

HI(Y' F) x Homay (7, 24 HI,0l) 2 L.

Proof. The vertical arrows in the lower part of the diagram are induced by the adjunction
homomorphism F — a,a*F. It is commutative by the naturality of Serre duality in the
coherent sheaf.

For the upper part we consider more generally a coherent sheaf G on %) and check the
commutativity of the diagram

H:(2,9) x Homg (G, 03)) HY(, ) I
NT lfHa*(f) NT
H&(Q‘jlva*g) X HOHIQJ/(OJ*Q,O[*Q%)) HH&(Q_}’,Q*Q%)
Hcl(gj/,a*g) x Hom@’(a*gagl@/) —>Hcl(2),791@/) LL.

12This references depends on the results in the article [Bey97a], which unfortunately contains the following
gaps. Firstly, in the proof of Lemma 4.2.2. he quotes a result of Bosch concerning the connectedness of formal
fibers without verifying the required assumptions. This is repaired by [Mal, Thm. 22/Cor. 23]. Secondly, Beyer
claims implicitly and without proof, that special affinoid wide-open spaces are affinoid wide-open spaces in the
sense of Definition 4.1.1 and Remark 4.1.2 in (loc. cit.). This crucial ingredient has now been shown explicitly
in [Mall, §2.5].
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Here the second and third lower vertical arrows are induced by the relative trace map t, :
a*ng — le, (see below). The commutativity of the Yoneda pairings (before applying the
horizontal trace maps) is a trivial consequence of functoriality properties. That the first and
third upper vertical arrows are isomorphisms follows from the fact that for a finite morphism
the functor o is exact on quasi-coherent sheaves. This reduces us to showing that the diagram

(42) H (D, Q)
HYQ', 0, 0)) L

HY(2', QL)

is commutative.
For the convenience of the reader we briefly explain the definition of the relative trace
map t,. But first we need to recall that any coherent a,Og-module M can naturally be

viewed ([EGAL Prop. 1.9.2.5]) as a coherent Oy-module M such that oM = M (for any
open affinoid subdomain B < 2)’ one has M(a (W) = M(D)). Since « is étale we have
(IMat, Thm. 25.1]) that

(Oé*OQJ ®02), Q%,)N N 91@ .

Since « is finite flat the natural map
Homy) (0 Oy, Ogy) ®o,, QilD’ =5 Homgy (. Oy, (21@,)

is an isomorphism. Finally, since « is finite étale the usual trace pairing is nondegenerate and
induces an isomorphism [

Hom@/(a*(’)@, Ogy) i OC*OQJ .

The relative trace map is now defined to be the composite map

a*ng > ay (o Oy ®0,, Q%/)N = o, (Homgy (ax Oy, Oyy) @0y, Q%/)N >

a*Hom@/(a*(’)@,Q%,)N = Homgjl(a*(’)@,ﬁlg,) EinsiON Ql@, :

The commutativity of is shown in detail in [Mal| and should also be consequence of
[ALL Prop. 6.5.1 (2)] upon showing that their general construction boils down to the above
description of the relative trace map. O

We make the last lemma more explicit for the structure sheaf. Let p : ) — 3 be a finite,
faithfully flat, and étale morphism of 1-dimensional smooth Stein spaces over L such that
Oy () is finitely generated free as an O3(3)-module. Fix a basis fi,..., fn € Oy(2). Going
through the proof of Lemma [4.2.8 one checks that on global sections the relative trace map is
given by

(43) tp: Qy(2) = On(Y) Ro43) 3(3) — Q3(3)

h h
w = Z fl R w; — Z traceom(@)/03(3)(fi)wi .

i=1 =1

!3Compare https://stacks.math.columbia.edu/tag/0BVH
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Hence we have the commutative diagram of duality pairings

(44) Hom{™ (RL(9)/On (D), L) — 24 ()
iHom@*,L) ltp
Hom§™ (R 1(3)/03(3), L) —— Q4(3).

It remains to explicitly compute the relative trace map in the cases of interest to us. But first
we observe that, by the explanation at the end of section 2.3 in [BSX], the sheaf of differentials
Q% on a smooth 1-dimensional Stein group variety 2) is a free Oy-module. Furthermore, if )
is one of our character varieties, say of the group G, then by the construction before Def. 1.27
in [BSX] we have the embedding

L = Lie(G) — Oy(D)
r— [x = dx(v)]
and the function logy, defined as the image of 1 € L = Lie(G).

Remark 4.2.9. The function logy corresponds under the LT-isomorphism k to the function
Qlog;r by the commutative diagram after [ST2, Lemma 3.4]. In particular, dlogy corresponds
to Qdlogrr and &’ffw to éé‘mv, where df = &’ffwdlog% defines the invariant derivation on O (X)
similarly as for Oy in .

Proposition 4.2.10. 1. For 7} : X - X we have Q}(X) = Ox(X)dlogy and

try (fdlogz) = ~0F(f)dlogy .

n

2. Forn =ng and 0 : X = XX we have Q;X (X)) = O (X))dlogyx and
tex(fdlogy) = mp(£;)«(f)dlogyx

3. Forn>=m =1 and pp,p : X5, = X5 we have Q;X (X)) = Oxx (X7,)d1ogyx and

h
topn (fdlogyx ) = ¢" ™ frdlogyx if f =) eVu, pln(fi) -
=1

where uy = 1l,ug,...,up € Uy, are representatives for the cosets of Uy in Uy, (with
h:=q"™™).

4. Forn>=1 and p, : X* — X we have leex(%x) = Oxx (X*)dlogy~ and
h
by (fdlogy) = (g — 1)g" frdlogys  if = 3 eva, ph(fi)
=1

where wy = 1,up,...,up € Uy, are representatives for the cosets of Uy, in o] (with
h:=(qg—1)¢" ).
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5. For the multiplication ji, : X* = X% by a fized point x € X*(L) we have

tuy (fdlogyx) = piy«(f)dlogxx = pii -1 (f)dlogzx .

Proof. All subsequent computations start, of course, from the formula for the relative
trace map.

1. The assumptions are satisfied by Lemmas [.1.1] and [£.1.10] As explained at the end of
section 2.3 in [BSX], the sheaf of differentials Q% on X is a free Ox-module of rank one with
basis the global differential dlogy. By [BSX| Lem. 1.28.ii] we have ¢ (logy) = 7z logy. The
formula for .+ now follows from Remark .

2. The assumptions are trivially satisfied. The map d¢,, : L = Lie(U,) — L = Lie(or) is
multiplication by 7 ™. It follows that the isomorphism (£7)* : Oxx (X}7) — Ox(X) sends logy~
to ;" logg. This implies the assertions.

3. The assumptions are satisfied by Remark {.1.18] The inclusion U,, < U,, of an open
subgroup induces the identity map on the Lie algebras. It follows that P:mn(l()gxg) = logy .
Since pp,, is étale we first may apply this with some n > ng and, using 2., deduce that
Q;% (X)) = Oxx (X7,)dlogyx for any m > 1. The formula for t,,, , follows by the same
argument as in the proof of Remark

4. The argument is the same as the one for 3.

5. The assumptions are trivially satisfied. Using that dx(1) = %X(exp(t))‘tzo we check
that loggx (x1X2) = logxx (x1) + logx« (x2) holds true. It follows that u}(dlogyx) = dlogyx
and hence the formula for ¢, . O

We briefly remark on the case where our Stein space is the open unit disk B around zero.
Then Rr(B) is the usual Robba ring of all Laurent series f(Z) = > ;. ¢;Z" with coefficients
¢; € L which converge in some annulus near 1. Analogously to we have

H!(B,Qp) = R.(B)dZ/Og(B)dZ
and the trace map sends Y., ¢;Z'dZ to its residue which is the coefficient c_1 ([Bey97b)
§3.1]).
4.2.3 Duality for boundary sections
First we recall another functoriality property of Serre duality.

Proposition 4.2.11. Let j : Yo — 2 be an open immersion of 1-(equi)dimensional smooth
Stein spaces over L, and let F be a coherent sheaf on Q). Then the diagram

HI,F)  x  Homg(F, Q) —— HY(D, Q) —2~ L
j]T ires j!T
ty
H} Do, F) X Homy), (F, Q) ) — H; (Do, ;) —% L

15 commutative.

Proof. The commutativity of the Yoneda pairing (before applying trace maps) is immediate
from the functoriality of the cohomology with compact support in the coefficient sheaf. The
assertion that tg) o ji = tg), holds true is shown in [vdP, Thm. 3.7|. O
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In order to combine the above functoriality property with Lemma in the case of the
structure sheaf 7 = Oy we first recall the setting of that lemma.

1. 9 =, Uy is a Stein covering of the Stein space Q) such that the 9),, = P\Ll, are Stein
spaces as well. In particular, Rp(9)) = lim Og(),) with the locally convex inductive
limit topology.

2. The restriction maps Oy () — Oy (V\Y) are injective for any U € Aff(Q).

3. The inductive system of Fréchet spaces le Q1) —>...— Q%) Dn) — Qéj Dn+y1) > ... 0
regular ([PGS| Def. 11.1.3(ii)]). By [PGS, Thm. 11.2.4(ii)] the locally convex inductive
limit

Ok, @) =M Qy(D,) = lim O (V\Y)
n SeAF(D)

is a locally convex Hausdorff space.

Proposition 4.2.12. In the above setting 1.-8. we have a natural topological isomorphism

HomcLont(Q%zL@)aL) = (llnu i%?@ )(’)gg(i}j\ﬂ))/(’)@@j)
n $le n

(where the left hand side is equipped with the strong topology of bounded convergence).

Proof. The asserted isomorphism is the composite of the isomorphisms

i
n

Hom{"™ (0, oy, L) = Hom ™ (limg Q3 (), L) = lim Hom ™ (0 (n), L)

= (lm  lim  Oy(Y\W)/Oy(D) -
n UeAff(Dn)

The isomorphism in the first line comes from [PGS| Thm. 11.1.13]. The equality in the second,
resp. third, line is a consequence of Thm. [£.2.6] and Prop. [£.2.11] resp. Lemmata [£.2.3] and
O

We now evaluate this latter result in the same concrete cases as in section [4.2.11
The open unit disk

First of all, the sheaf of differentials 9113 on the open unit disk B is a free Og-module of
rank one. Hence, by choosing, for example the global differential dZ for a coordinate function
Z, as a basis we obtain a topological isomorphism R.(B) = Q%QL(B) as Rr(B)-modules.
The regularity assumption in 3. above therefore is reduced to the corresponding property for
R (B), which is established in the proof of [BSX], Prop. 2.6.i]. Hence Prop. .2.12]is available.

By combining its assertion with we obtain a natural topological isomorphism

(45) Hom$" (R (B), L) = Hom{" (0, @), L) = Rr(B) .
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This shows that Rz (B) is topologically selfdual. By going through the definitions and using
the explicit description of the trace map in this case as the usual residue map (end of section
1.2.2)) one checks that this selfduality comes from the pairing

Ri(B) x R(B) —> L
(f1(Z2), f2(Z)) — residue of f1(Z) f2(Z)dZ.

This latter form of the result was known (|CR], [MS]) before Serre duality in rigid analysis
was established. In this paper it is more natural to use the selfduality given by the pairing

<, >B: RL(B> X RL(B) — L
(f1, f2) = residue of fi fodlog .

We will denote by resp : Q%ZL B) L the linear form which corresponds to 1 € Rz (B) under
the second isomorphism in

The character variety X

We recall that the sheaf of differentials Q%e on X is a free Ox-module of rank one with basis
the global differential dlogy. Hence again we have a topological isomorphism R (X) = Q71€L ()

as Rz (X)-modules. The regularity assumption in 3. above therefore holds by [BSX] Prop. 2.6.i].
Hence Prop. 4.2.12| is available. By combining its assertion with we obtain a natural
topological isomorphism

(46) Hom{™™ (R, (X), L) = Hom§™" (k| 4, L) = R (X) .

This shows that Rp(X) is topologically selfdual. Let resy : Q%L(%) — L be the linear form

which corresponds to 1 € Rz (X) under the above isomorphism. Then, as a consequence of the
naturality of the Yoneda pairing, this selfduality comes from the pairing

(47) <, >x: ’R,L(X) X 'RL(:{) — L
(f1, fa) = resx(f1fadlogy) .
19

Next we consider X for some n = ng, where ng > 1 is the integer from section m
We then have the isomorphism of Stein group varieties £* : X = XX. Hence all we have
established for X holds true correspondingly for X,<. In particular, we have a natural topological
isomorphism

(48) Hom ™ (Rp(XX), L) = Hom‘f”t(Q%L oy D) = RLE)

Let resyx : — L be the linear form which corresponds to 1 € Rz (X)) under this

1

R (%)
isomorphism. We obtain that Rz (X)) is topologically selfdual w.r.t. the pairing
<, >x7xL : RL(%:;) X RL(}:X) — L

(f1, f2) = resyx (fifadlogy) .

MYWARNING: If L = Q, then ¥ = B; ~ B with the latter isomorphism given by z — z — 1; but the
selfdualities and do not correspond to each other since in this case dlog, corresponds to dlog(1+2) =
1
dZ.

1+Z

02



It follows from [vdP, Thm. 3.7] that the diagram
1
Q73L(3€)

Re(Xn)

is commutative. But in the proof of Prop. 1.2.10}2 we have seen that (£7)«(logy) = 77 logyx.
Therefore the diagram of pairings

(49) Ru(X) « Ru(X) 5
<e:)*T~ wz<3z>*l~
<, >ax
RL(Xy) X R(X)) —'L

is commutative. Alternatively we could have used the following observation.

Remark 4.2.13. Let p: Q) — 3 be one of the morphisms in Prop.[{.2.10, Then Prop.
applies, and it follows that, for any admissible open subset L S 3 which is Stein, the relative

trace map t, -1y 15 gwen by the same formula as for t,.

In the case of the morphisms 77 and py, , for n = m > ng this immediately leads to the
following equalities of pairings.

Lemma 4.2.14. i <or(fi), o >x = ;& < f1,97(f2) >x for any f1, f € Rp(X).

1. Letn =m = ng and let uy = 1,ug, ..., up € Uy, be representatives for the cosets of Uy, in
Up (with h:= q""™); for any '€ Rp(X) and any [ = 3, evu, pho(fi) € Ri(X),
(cf. Remark we have

< p;kn,n(f,)v f >xTXn = qn—m < flvfl >x§

The multiplicative character variety X*

We fix an n = ng for the moment as well as representatives u; = 1, u, ..., up € o] for the
cosets of U, in of (with h:= (¢ — 1)¢"!). Recalling from Lemma [4.1.15lii that

RL(X*) = Z[o; ] ®zjv,,] Pr(RL(X}))

we may write any f € Rp(X*) as f = Z?Zl evy, pi(fi) with uniquely determined f; € Rp(X)).
We now define

n—1

(50) resyx Q712L(3€X) —> L by resgx(fdlogyx) := (¢ — 1)¢"" resyx (fidlogyx)
and then the pairing

(51) < e RU(XX) x Ru(X) — L
(f1, f2) = resxx (f1f2)
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These definitions are obviously independent of the choice of the representatives u;. Moreover,
due to Lemma [4.2.14lii they are independent of the choice of n as well and we have

(52) < p':(fl)vf Zxx = (q - 1)qn—1 < f/afl >x,'XL

for any f' € R (X)) and any f = Zz(-q:_ll)qnil evy, pr(fi) € Rp(X)” where u; € o] runs through
representatives for the cosets of Uy, in o] . The topological selfduality of Ry (X)) easily implies
that this pairing makes Rz (X*) topological selfdual.

Lemma 4.2.15. The twist morphism i, : X — X*, for any x € X*(L), satisfies

< py(f1), 13 (f2) >xx = < f1, f2 >x~ for any fi, fo € Rp(X™).

Proof. The assertion immediately reduces to checking the equality resyx ouy = resg~. Obvi-
ously there are twist morphisms on X as well. One easily checks that

* % #
Mxopn _pnOAuX|Un

and that
iy (evy) = x(u) evy for any u € oy .

Using Lemma [4.1.15}ii we write an f e Rp(X*) as f = Z?:l evy, pe(fi) and compute

h

Z evuz :ux pn 2 EVa, pn ul qu|Un (fl)) :

This shows that p}(f)1 = ,U,X‘ o (f1). This further reduces us to showing that resyx o,u U, =
resyx. But this follows from [vdP, Thm. 3.7] or, alternatively, from a version of Prop. 4. 2 105

for Rp(X)). O

Of course, everything in this entire section remains valid over any complete exten-
sion field K of L contained in C,. Moreover, our constructions above are compatible under
(complete) base change: Let )k denote the base change of ) over L to K (and similarly for
affinoids). Then we obtain a commutative diagram

(53) RLi@J) X Q71QL(QJ) HI(
RK(@K) X Q%QK(EDK) — K.

Indeed, it is shown in [Mal| that Serre-duality is compatible with base change in the sense
that there is the following commutative diagram for any n, in which the horizontal lines are
the Serre-dualities over L and K, respectively:

H} (Dn, Oy) X Q) (Vs )4%[
Hcl@jn,Kvoﬁ_)K) X (g)n k) —K
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Hence, taking limits as in the proof of Proposition the claim follows upon observing
that also the relative cohomology sequence (36]) is compatible with base change. By inserting
1e R(®) € Rx(Yk) into the pairings of we see that in any example discussed above
the residue maps resy are compatible under base change as well as the pairings <, >y). Since
Rrk(Dk) = K®L,RL(®Q) (and hence Q%QK(QJK) > K®L’LQ712L(2J)) by [BSX, Cor. 2.8] with
respect to the (completed) inductive tensor product, we see that

(54) resy, = K®p, resy
and that we have the commutative diagram
K®¢, Hom”™" (R (D), L) — Hom @ (K®r, R (), K) —> HomP" (Ri (D), K)
giid & ®r, dualityy, L giduahtym[{

K®rL,RL(D) Ri(Dk)-

12
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4.3 (¢r,I'r)-modules

As before we let L € K < C,, be a complete intermediate field, and we denote by ok its ring
of integers.

4.3.1 The usual Robba ring

In sections {4.2.2) m and [4.2.3] -We already had introduced the usual Robba ring R = Rg = R (B)
of the Stein space Bk in connection with Serre duality. We briefly review its construction in
more detail. The ring of K-valued global holomorphic functions O (B [1—_5] on B is the Fréchet
algebra of all power series in the variable Z with coefficients in K which converge on the open
unit disk B(C,). The Fréchet topology on Ok (B) is given by the family of norms

|ZciZi|r := max |¢; |1 forO<r<1.
(2

20

In the commutative integral domain O (B) we have the multiplicative subset ZN = {Z7 : j €
N}, so that we may form the corresponding localization Ok (B),n. Each norm | |, extends to
this localization O (B) v by setting | >, . ¢iZ%|, 1= max; |¢;|r'.

The Robba ring R 2 Ok (B) is constructed as follows. For any s > 0, resp. any 0 < r < s,
in pQ@ let Bjo,s], resp. By, 4, denote the affinoid disk around 0 of radius s, resp. the affinoid
annulus of inner radius r and outer radius s, over K. For I = [0, s| or [r, s| we denote by

Rl .= RL(B) := Ok (Bj)

the affinoid K-algebra of B;. The Fréchet algebra RI™D .= lim_ RI™s] is the algebra of
(infinite) Laurent series in the variable Z with coefficients in K which ¢ converge on the half-open
annulus By, 1) := |, .,-1 B[ys- The Banach algebra RI195] is the completion of Ok (B) with

respect to the norm | |s. The Banach algebra RI™* is the completion of O (B) ;v with respect
to the norm | |, ¢ := max(] |, | |s). It follows that the Fréchet algebra R[™) is the completion
of Ok (B) i in the locally convex topology defined by the family of norms (| | s)r<s<1. Finally,
the Robba ring is R = | Jy-,. -1 R,

Remark 4.3.1. Ok (B) n is dense in Ri(B).

d
Let p @ De <r < s < 1. Then we have a surjective map
(55) Birs) = Bpra,s
z e [m](2)

according to [EX| proof of Lem. 2.6]@] It induces a ring homomorphism
(56) A R Rl

which is isometric with respect to the supremum norms, i.e., |gp[£q’5q] (5] = £ |ppa ) for any
f e RIS In particular, by taking first inverse and then direct limits we obtain a continuous

ring homomorphism ¢y, : R — R. We shall often omit the interval in gog’s] and just write ¢r..

5In the notation from [Co2] §1.2] this is the ring R*.
16The proof there is only written for the special Lubin-Tate group, but generalizes easily to the general case
by using the fact that [r.] = X9 + 7. X f(X) with f(X) € o [[X]]".
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Similarly, we obtain a continuous I'z-action on R: According to (loc. cit.) we have a
bijective map

(57) B[r,s] - B[r,s]
2= Ixer())(z)

for any v € I';,, whence we obtain an isometric isomorphism
(58) ~ RIrsl _, glrs]

with respect to the supremum norms, i.e., [y(f)|p.s] = | fls) for any f € Rl
Finally, we extend the operator ¢, to R : For y € ker([71]) we have the isomorphism

(59) Bps) = Bl

2> Z+rTY

of affinoid varieties, because |z +17 y| = |2z + y| = |2|. The latter equality comes from |z| >
__d 1

r>p e =g o1 = |y| for y # 0. Setting tr(f) = X exer(r,]) f(2 +o1 y) We obtain a

norm decreasing linear map tr : Rl — R[] We claim that the image of tr is contained in

the (closed) image of the isometry gogq’sq], whence there is a norm decreasing map

Voo : RV — RIF,

such that o, o ¢y = tr. Indeed, by continuity it suffices to show that #r(Z%) belongs to
the image for any i € Z. For i > 0, Coleman has shown that tr(Z%) = ¢ (¢¥co(Z?)) with
Yoo (ZY) € op[[Z]] € RIF#Y, see [SVI5] §2]. For i < 0, we calculate

er(Zoal[mL)(2) ' 2%) = or(ZY) d, [ml(2) 2 (Z 11 y)
yeker([wp])

= or(2") Y m(Z +ir ) HZ +1ry)
yeker([71])

—oZy | 22 bur )
yeker([71])

= > (ZH4wry) =tr(ZY,

yeker([m.])

whence the claim follows. We put wg,s] = él/]Col - RIFsl — R which induces the
continuous operator ¢y : R — R by taking first inverse limits and then direct limits. By
definition of ¢r the operators qﬁg’s] and hence vy satisfy the projection formula. We shall
often omit the interval in z/J[LT’S] and just write .

As in section we fix a generator 1’ of the dual Tate module 7). and denote by Q the
corresponding period. For the rest of this subsection we assume in addition that K contains €.

Following Colmez in the notation we introduce the power series n(a, Z) := exp(aQ2log;r(Z)) €
ok [[Z]] for a € or. As noted in section the power series 7(a, Z) is nothing else than the
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image under the LT-isomorphism x* of the holomorphic function ev, € Ox(X). Generalizing
the equality we have the following decompositions of Banach spaces

(60) RU = @ ot (R N(a, 2)
agor [T}

and hence

(61) R= @ ¢L(R)nla,2)
agor,/m}

of LF-spaces using the formula

(62) r= <%>“2wm (n(—a, Z)r) n(a, 2).

This can easily be reduced by induction on n to the case n = 1. Using the definition of ¢r and
the orthogonality relations for the characters x, for y € ker([rr]), the formula follows and,
moreover, defines a continuous inverse to the continuous map

Z[OL] ®Z[7TL0L] R[rq,sq] i) ,R'[T’s]
a® f— apr(f).

Inductively, we obtain canonical isomorphisms

(63) Zlo1] ®zprpo, U1 =5 R
a® fr— ap(f).

Moreover, immediately from the definitions we have

(64) pr(nla, 2)) = nlrra, Z),

(65) o(nla, Z)) = n(xrr(o)a, Z) for o € I'r,

(66) Yr(n(a, 2)) = i77(i, Z) for a € mror, and = 0 otherwise.
T TL

Remark 4.3.2. We have ¥, = %gpzl otracerjy, (R)-

Proof. Both maps tr and traceg,, (r) are easily seen to be ¢ (R)-linear and to be multi-
plication by ¢ on ¢r(R). Hence, by (61)), it suffices to compare their values on the elements

n{a, Z). By we have

-1 .
qer(n(r; a,Z if a € w07,
tr(n(a, Z)) = (e, 2)) .
0 otherwise.

On the other hand a computation as in the proof of Remark shows that tracer/,, (r)

has exactly the same values. But ¢ = %gpil otr. 0l

For uniformity of notation we put 1/JLB = %Lz/;L = %gpzl otracer,, (R)-
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4.3.2 The LT-isomorphism, part 2

We assume throughout this subsection that €2 is contained in K. The map « : B NS being
an isomorphism of rigid varieties it preserves the systems of affinoid subdomains on both sides.
Hence the LT-isomorphism extends to a topological isomorphism

(67) K Ri(X) = Ry (B) .
In order to have a uniform notation, we usually write from now on
Ric(X) := Ok (x(By))
for any closed interval I < (0,1) so that we have the isomorphism of Banach algebras
(68) K RE(X) = RE(B) .

We warn the reader that only for specific closed intervals I there is another closed interval I’
given by a complicated but explicit rule such that x(Bj) = Xp. The precise statement can be
worked out from [BSX], Prop. 1.20].

In the following we list a few compatibilities under this extended LT-isomorphism.

First of all under this isomorphism the I';, = oj-action and the maps ¢, on both sides
correspond to each other (cf. [BSX| §2.2]). Then it follows from Remarks that the
operators 7,/1% (defined at the end of section and wLB (defined in previous section) also
correspond under k*.

Secondly, as a consequence of [vdP, Thm. 3.7] we have the commutative diagram

(69) Q;ZK(%)

resy

™~

k¥ K .

Ql

Ri(B)
This combined with Remark implies the explicit formula

(70) resy(fdlogy) = Qresp(k*(f)grrdZ) .

4.3.3 pr-modules

Let Q) be either X or B and R := Rx(2)). Henceforth we will use the operator ¢y, := %1&?
on R. We also put

{pﬂgzx
ay =

g ifY =B.

Definition 4.3.3. A pr-module M over R is a finitely generated free R-module M equipped
with a semilinear endomorphism @ such that the R-linear map

PR @ppy M > M
f®mv+— foy(m)

1s bijective.
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Technically important is the following fact, which for X is part of the proof of [BSX]|
Prop. 2.24]. The proof for B is entirely analogous. It allows to extend the above maps and
decompositions from the previous sections to ¢r-modules. For r > 0 we introduce the intervals

(r,1) ifY =%,

1) = {[r, 1) if9 =B.

Proposition 4.3.4. Let M be a ¢ -module M over R. There exists a radius

d

P Y =X,

TO > __dq
p @Dhe ifYP =B

and a finitely generated free O (D (r,p))-module My equipped with a semilinear continuous
homomorphism

PMy - My — OK(QJI(TO,Q)UQQJ) ®OK(@I(TO’QJ)) My
such that the induced OK@JI(TO 9)V/22 )-linear map

lin

Pato Ok (V15 my/on) @Ok irg)or. Mo —=> Ok (D 1, gyy1/an) B0 (1. Mo
1s an isomorphism and such that
R ®OK(Q:)I(7‘0,Q_))) Mo = M
with o1, @ par, and @ corresponding to each other.

The continuity condition for the ¢yy,, of course, refers to the product topology on My =

(O (D 1(ro. )™

In the following we fix a ¢-module M over R and a pair (rg, My) as in Prop. For any
ro < r’ < 1 and any closed interval I = [r,s] € I(r',2)) we then have the finitely generated
free modules

M) = Ok (D1 ) Ok (Dr(ry ) Mo oOver RIMD

and
M= 0r(Dr1) ROk (V1 ) M) over Ok(Dr) .

They satisfy

(71) M) = limMT and M = lip MY
— —
s>r r!
We equip M! with the Banach norm | — |1 given by the maximum norm with respect
to any fixed basis (the induced topology does not depend on the choice of basis) which is
submultiplicative with respect to scalar multiplication and the norm | — |5 on Og(D71).

Furthermore, base change with Ok (9 1/4y) over Ok (2, induces isomorphisms

(o0
of Banach spaces

1/ay

Plin = Ok D pian) ®ox@, 110y) Pl : Ok Do) Borcnon M' —> M
7‘07~ T
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and hence injective, continuous maps

1/ag

gpI:MI—>MI

by restriction.
Assuming that 19 < I(1/,9)) we define the additive, K-linear, continuous map ! : M —
MI™ as the composite

99\ 1
Il Plin ) % %
U M= O (1) @0k (9 g o M — MU,
where the last map sends f®m to ¥ (f)m. By construction, it satisfies the projection formulas

(72) LA (Fym) = fol(m)  and  @l(ge" T (m') = ¥l (g)m’

for any f € Ox(Y ), g€ Ox(Yr) and me ML, m' e M!™ as well as the formula

a9 q .
o™ =2 id

Using Prop. 4.1.14] in case ) = X, resp. the decomposition in case P = B (under
the assumption that  is contained in K), combined with (iterates of) ¢, gives rise to

decompositions

(73) MI% _ {@ae(oL/wz) evy SOE(MI) if 9 = X,

@ae(oL/ﬂ}j) 77(@7 Z)@%(MI) if 2) =Band Qe K
of Banach spaces and
M = @ae(oL/TrZ’) €Vq SOE(M) if Q‘j = %,

®QE(OL/WE) 77((17 Z)SO’Z(M) if @ =Band Qe K

of LF-spaces, again given by the formula

m (FE)" 2a emnr (ev_am) evq ifY =X,
(2" Y, eartbns (n(—a, Z)m) n(a, Z) if P =B and Qe K.

(74)

(75)

4.3.4 The Robba ring of a group
Recall that L,, = L(ker([7}])). We set

Ly = G(La/Ly) = ker (T, 25 0} — (or/7)* ).

Also recall from section the notation U, := 1+ 7oy, for n > 1 and the isomorphisms
log : U, = nfor and £, = 7, "log : Uy = or, for n = ng, where ng = 1 is minimal
among n such that log : 1 + 770, — 7oy and exp : 7for, — 1 + w0y, are mutually inverse
isomorphisms.

Obviously x 7 restricts to isomorphisms I';, = U, for any n = 1. Consider the composed
maps

{:=logoxrr:I'y > L and by = anXLTirniOL for n = ng.
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The latter isomorphisms induce isomorphisms of Fréchet algebras D(T'y, K) — D(oz, K).

Because of the isomorphisms I';, =~ oz and I',, = U, the formalism of character varieties and
corresponding Robba rings applies to the groups I';, and I';, as well giving us the corresponding
character varieties Xr, and Xr,,, and the results of section transfer to this setting. To
make a clear distinction we put Rg(I'z) := Rx(Xr,) and Rg(I,) := Rx(Xr,) and call
them the Robba rings of the groups I'f, and IT',,. Clearly the Lubin-Tate character x 7 induces
topological ring isomorphisms

(76) Ri(Tr) = Re(X*)  and  Rp(Tn) = Re(XX) for n > 1.

If T denotes any of these groups then we will very often view, via the Fourier isomorphism,
K[I'l € D(I', K) as subrings of Rg(I"). In particular we consider elements v € I" as elements
of the Robba ring writing them in any of the forms v £ 4, = ev,.

Let n > m > 1. The inclusions ¢, : I, — I'y and ¢, : 'y = TI'y, induce, by the
transfer of the results in section [£.1.2] ring monomorphisms tpy : Ri () — Rg(I'z) and

tnms © Rir(Tp) = Ri(I'y). More precisely we have (Lemma [4.1.15 and Remark |4.1.18))
topological ring isomorphisms

(77) Z[T'1] @z, Ric(Tn) = Ric(T'1)
and
(78) ZIT ] ©zr,.) Ric(Tn) = Ric(Tn) -

Here the left hand sides are viewed as free R (I'y,)-modules endowed with the product topol-

ogy.
We also note that, for n = m = ng, the commutative diagram

‘

Fn*n>0L

Ln,mi lwz_m
L,

m > O0[,

induces the commutative diagrams

(79) DTy, K) "> Do, K) ———> O (%)
S
D(T, K) % D(og, K) 5= Ok ()

and

(80) Ri(Tn T Rk(X)

1R

n—m
L

Ln,m*\[

)
Ric(Th) b R (%).

~
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For the rest of this subsection we assume that Q is contained in K. Let n = ng. We then
have the isomorphisms of rigid varieties
B> X Xr, .
K l?;bk
For any closed interval I € (0,1) we therefore have the affinoid subdomain #* o x(By) in Xr,,

and we may introduce the Banach algebra R.(T,,) := Ok (0% o k(By)).
By its very construction the diagram

n—m é\n* qn—m K* qn—m
(81) Ri (T = Ri (X) =Ry (B)
Ln,m* {\ L\CPE'IIL j(pz"l/
L k¥

for n = m = ng, is commutative. Together with it implies the canonical isomorphism

~

(82) ZIT] @gqr,) R (Tn) = Ric(T).-
We will denote the composite of Fourier and LT-isomorphism by
¢: D(or, K) — O (X) = Ox(B) .

Recall that Ok (B) is a space of certain power series in the variable Z. We put

X:=¢Y2)eD(op,K) and Y, :={(;}(X)e D, K) for n = nyg.

In this way we can express elements in these distribution algebras as power series in these
variables. This will later on be an important technical tool for our proofs.
As an immediate consequence of Remark we have the following.

Remark 4.3.5. i. D(or, K) v is dense in Ri(X).

i. D(Tn, K)yn is dense in Ri(I'yn) for n = ng.

4.3.5 Locally Q,-analytic versus locally L-analytic distribution algebras.

We fix a Z,-basis h1 = 1,...,hq of or, and set b; := h; — 1 and, for any multiindex k =
(k1,...,kq) € N&, b := H‘Ll by € Zylor]. We write Dg, (G, K) for the algebra of K-valued

locally Qp-analytic distributions on a Q,-Lie group G. Any X € Dg,(or, K) has a unique
convergent expansion A = ZkeNg aib¥ with ay € K such that, for any 0 < r < 1, the set

{akr;‘ekl\‘]d} is bounded, where ¢ := 2 if p = 2 and ¢ := 1 otherwise. The completion with
0
respect to the norm
Mgy = sup fenclre
keNd

for 0 < r < 1 is denoted by

Dy, (o0, K) = { ) axb®|ox € K and |ay|r¥ — 0 as [k| — o0}
keNd
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By [Scll, Prop. 2.1] the group oy, satisfies the hypothesis (HY P) of [ST| with p-valuation w
satisfying w(h;) = ¢. Thus by [ST, Thm. 4.5], restricting to the subfamily ¢=¢ < r < 1, r € p@,
the norms | — |q,,» are multiplicative.

If not otherwise specified, we denote by V ®x W the projective tensor product of locally
convex K-vector spaces V, W.

Lemma 4.3.6. Let

be a strict exact sequence of locally convex topological K -vector spaces with W metrizable and
X Haousdorff, then

(i) the sequence of the associated Hausdorff completed spaces

0—V W X—0

15 again strict exact,

(ii) for a complete valued field extension F' of K the associated sequence of completed base
extension

0— FRKV FRxW FRrX —0

1S again strict exact.

(iii) If W is a K-Banach space, V a closed subspace with induced norm and X = W/V
endowed with the quotient norm, then in (i) the quotient norm coincides with the tensor
product norm on FOrX.

Proof. By |[B-TVS| 1.17 §2] with W also V', X and all their completions are metrizable. Hence
the first statement follows from [B-TG, IX.26 Prop. 5|. For the second statement we first
obtain the exact sequence

0— F®gV FRrW FRrX —0

of metrizable locally convex spaces (|[PGS, Thm. 10.3.13|). The first non-trivial map is strict
by Thm. 10.3.8 in (loc. cit.). Regarding the strictness of the second map one easily checks
that FQxW /FRKkV endowed with the quotient topology satisfies the universal property of
the projective tensor product F®gxX. Now apply (i). The third item is contained in |Gl §3,
n° 2, Thm. 1|, see also [vR] Thm. 4.28]. O

The kernel of the surjection of Fréchet spaces Dq,(or, K) — D(or, K) is generated as

a closed ideal by a := ker(L ®q, Lieg,(or) aar, Lier(or)). For K = L this is [Scll

Lemma 5.1|. As seen in the proof of Lemma We have K&)LDQP (or,L) = Dg,(or, K) and
K®pD(or, L) = D(or, K). Hence the assertion for general K follows from Lemma [4.3.6{ii).
We write D, (or, K) for the completion of D(or,, K) with respect to the quotient norm | — ||,
of | —|lg,,r- By the proof of [ST|, Prop. 3.7] we have the exact sequence of K-Banach algebras

(83) 0 — a, — Dg, (oL, K) — D,(or, K) — 0
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where a, denotes the closed ideal generated by a. Moreover, the K-Banach algebras D, (or, K)
realize a Fréchet-Stein structure on D(or, K). For convenience we set vty := ¢~°¢ and t,, :=

_ce
q ?™ for m = 1. We, of course, have

D(or, K) = lim Dy, (o, K) .
Moreover according to [Sc2, Cor. 5.13] one has D, (oL, K) = Z[oL] ®z[pmo,] Dr, (p" 0L, K).
We have corresponding results and will be using analogous notation for groups isomorphic
to or. This applies, in particular, to ', for any n > ng. Note that I'h, = Ty me.

4.3.6 (p,I')-modules

We recall the definition of as well as a few known facts about (¢r,I'r)-modules (cf. [BSX]).
Let Q) be either X or B and R := Rk (). Any (¢, ')-module M over R is, by definition,
in particular an R-module with a semilinear action of the group I'y,. Our aim in this section
is to show that these two structures on M give rise to a module structure on M under the
‘group’ Robba ring R (T'L).

Definition 4.3.7. A (¢r,'p)-module M over R is a @r-module M (see Definition
equipped with a semilinear continuous action of I'r, which commutes with the endomorphism
o We shall write M(R) for the category of (¢r,T'1)-modules over R.

The continuity condition for the I'g-action on M, of course, refers to the product topology
on M =~ R

According to [BSX| Prop. 2.25] the I'z-action on a (¢, 'z )-module M is differentiable so
that the derived action of the Lie algebra Lie(o;) on M is available.

Definition 4.3.8. The (pr,T'r)-module M over R is called L-analytic, if the derived action
Lie(T'z) x M — M s L-bilinear, i.e., if the induced action Lie(I'y) — End(M) of the Lie
algebra Lie(I') of T'p is L-linear (and not just Qp-linear). We shall write M (R) for the
category of L-analytic (¢r,1'r)-modules over R.

In [BSX] a (¢r,I'r)-module M over R is only required to be projective instead of free
as in our definition. Since throughout this paper we are exclusively interested in L-analytic
modules, that makes no difference as by [BSX], Thm. 3.17] any L-analytic (¢r,'z)-module M
is actually a free R-module.

We have the following variant of Prop. (cf. [BSX] Prop. 2.24]).

Proposition 4.3.9. Let M be a (¢r,'r)-module over R. Then there exists a model (My,rq)
as in Prop. equipped with a semilinear continuous action of I'y, such that

R ®pirgny Mo = M
respects the I'p-actions (acting diagonally on the left hand side).

From now on in this subsection we fix a (¢,I')-module M over R and a pair (rg, Mp)
as in Prop. [4.3.9] We then have available the objects introduced after Prop. But
now the finitely generated free modules M’ (") and M are each in addition equipped with a
semilinear continuous I';-action, compatible with the identities . Moreover, the I'f-actions
commutes with the 1)/-operators, and the decompositions and are I'z-equivariant.

Assume henceforth in this subsection that M is an L-analytic (pr,'r)-module over R.
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Proposition 4.3.10. The I'p-action on M extends uniquely to a separately continuous action

of the locally L-analytic distribution algebra D(Up, K) of T', with coefficients in K. If M ER
N is a homomorphism of L-analytic (¢r,,1'1)-modules, then f is D(I'r, K)-equivariant with
regard to this action.

Proof. First of all we observe that the Dirac distributions generate a dense L-subspace in
D(T'r, L) by [STI, Lem. 3.1]. Since I'y, = o] we have seen in the proof of Lemma that
D(I'p,K) = KQD(T'y,L). Hence the Dirac distributions also generate a dense K-linear
subspace of D(I', K). Therefore the extended action is unique provided it exists.

Our assertion is easily reduced to the analogous statement concerning the Banach spaces
MY for a closed interval I = [r, s]. From [BSX], Prop. 2.16 and Prop. 2.17] we know that the
I'z-action on M is locally Qp-analytic. But since we assume M to be L-analytic it is actually
locally L-analytic (cf. Addendum to Prop. 2.25 and the argument at the end of the proof of
Prop. 2.17 in [BSX] ).

For our purpose we show more generally the existence, for any K-Banach space W, of a
continuous K-linear map

I:C"(Tr,W)— Ly(D(T'r,K), W)

satisfying I(f)(d4) = f(g). Note that this map, if it exists is unique by our initial observation.
Recall (cf. [pLG| §12]) that the locally convex vector space C**(I'r,, W) is the locally convex
inductive limit of finite products of Banach spaces of the form By W with a Banach space
B, and that its strong dual D(I'z, K) is the corresponding projective limit of the finite sums
of dual Banach spaces B’. We therefore may construct the map I as the inductive limit of
finite products of maps of the form

B®gW — Ly(B', W)
T @y [~ L(z)y] .

Since B as a Banach space is barrelled this map is easily seen to be continuous (cf. the
argument in the proof of [NFA Lem. 9.9]).

Now suppose that T carries a locally L-analytic I'z-action (e.g., W = MT). For y € W let
py(g) := gy denote the orbit map in C**(I'z,, W). We then define

DT, K)x W —W
(s y) ¥— L(py) (1) -

Due to our initial observation the proof of [ST1l Prop. 3.2|, that the above is a separately con-
tinuous module structure, remains valid even so K is not assumed to be spherically complete.

By [BSX| Rem. 2.20] the homomorphism f is continuous and hence the D(I'z, K)-equi-
variance of f follows from the I'p-invariance by the first paragraph of this proof. O

Recall that M, for each I = [r,s] with r > g, bears a natural T'z-action. Now, for each
n = 1, we will define a different action of I',, on M[™s], which is motivated by Lemma
below and which is crucial for analysing the structure of M¥»=0 in the next subsection. To
this end consider for each v € T'), the operator Hy,(y) on M [s] defined by

OV (epr(n)-1) T it =X,

Hy(y)(m) := {T](TFLn(XLT('Y) —1),Z)ym ifY=Band Qe K.
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Note that, since T', acts on Ok () via xrr and the of -action, we may form the skew group
ring Ox(Y)[In], which due to the semi-linear action of I';, on M maps into the K-Banach
algebra Endg (M') of continuous K-linear endomorphisms of M, endowed with the operator
norm | ||5sz. Hence we obtain the ring homomorphism

H, : K[I';] — Ox(D)[Ts] — Endg(MF)

Y NV L xer(v)-1) v if 9 =X,
n(r7"(xer(y) = 1),Z)y if Y =Band Qe K.

The next lemma holds true in both cases. We spell it out only in the B-case since we
technically need it only there.

Lemma 4.3.11. Suppose that Q) is contained in K, and let n > m > 1.
(i) We have for all o0 €T,

o (n(1, 2)¢L(y) = n(1, Z)eL(Hn(o)(y)),

i.e., the tsomorphisms

are Iy, -equivariant with respect to the natural action on the right hand side and the action
via H,, on the left hand side.

(ii) The map

1 n—m 1 n—m
/a ,st/a ]

Z[T] ®u(r ], Hy Mlrsl 5 pgplr

(XLT(’Y) -1 2)

YRy prh o " (vy)
L

is a homeomorphism of Banach-spaces, where the left hand side is viewed as the direct
sum of Banach-spaces (—Dverm/lﬂn v @ M5l Moreover, the map is Ty -equivariant with
respect to the Hy,-action on the right hand side.

(iii) If the homomorphism H,, : K[I',] — Endx (M?') extends to a continuous homomorphism
RL(T,) — SndK(MI) then Hy, : K[['),] — EndK(Mll/qn m) extends to a continuous

homomorphism RL- e (Fm) — 5ndK(M11/qn_m), If the first extension is unique, o s
the second one.

Proof. (i) Setting b := % we calculate
L

o (n(1, 2)¢i(m)) = o(n(1, 2))¢i(om)
(1 +mLb, Z)pi (om)
= 7(

n(

L, Z)n(="b, Z)pi (om)
1, 2)¢t (n(b, Z)om) .
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where we used the multiplicativity of n in the first variable in the third and in the last
equality.

(ii) By a straight forward computation one first checks that the map is well defined.
The bijectivity follows from using the bijection 1 + 7}’or/1 + 7}or, = or/m; "or,
v XeTOI=L o g that MIms) = yarlms],

m
TL

(iii) Base change induces the Rg/q ) (I'y)-action on

1/ n—m
R (Tw) ®gt (roym, M = Z[T] ®zpr,) Rk (Tn) g1 (0,1, M
(84) =~ 7] ®zyr,), 1, @M'

/g™

~ M :

where we used and (ii). The continuity is easily checked by considering 'matrix entries’
which are built by composites of the original continuous map by other continuous transforma-
tions. Here we use that the identifications and are homeomorphisms when we endow
the left hand side with the maximum norm. Finally, the claim regarding uniqueness follows
from as the action of I'y, is already determined by the original H,,. O

For the rest of this subsection we assume that (2 is contained in K and we will work
exclusively in the B-case, i.e., R = Rg(B) and R! = RL.(B). The consequences for the
X-case will be given in section [4.3.8]

There is a natural ring homomorphism R! — Endy(M') by assigning to f € R’ the
multiplication- with-f-operator, which we denote by the same symbol f. Part (iii) of the
following remark means that this ring homomorphism has operator norm 1.

Remark 4.3.12.
(i) We have sup,e,, [n(z,Z) — 1|1 <1 and |n(z, Z)|f =1 for all v € OLF_TI
(i) n(pz, 2) = 1|1 < max{ln(z, Z) - 1y, geln(@, Z2) = Uil (= |n(x, Z) = 1[}, if [n(z, 2) -
=g 7).
(i) |flr = |flagr for all f € RY.

Proof. Tt is known ([ST2]) that n(x, Z) = n(1,[z](Z)) belongs to 1 + Zoc, [[Z]], whence we
have, for any = € or, that |n(z,Z) — 1| < 1 from the definition of | — |7, and (i) follows
from the fact that the map o — R, x — |n(x,Z) — 1|7 is continuous with compact source.
Affirmation (ii) is a consequence of the expansion

npz, Z) =1 = (n(z,Z) =1+ 1)P -1

p—1
- e 2) =17+ 33 (1) ol 2) 1)
k=1

and | (i) | =q ¢ for k=1,...,p— 1. (iii) follows from the submultiplicativity of | — |; plus
the fact that 1€ R!, which implies the statement on M = (RT)™. O

Yn(z, Z) — 1|1 = |n(1,Z) — 1|1 < 1 for all z € o} because any z € o) induces an isomorphism [z](—) of Bj.
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The above Remark allows us to fix a natural number mg = mq(rg) such that for all m > my
we have that

(85) |n(x, Z) — 1|1 < vy, for all x € of, and |n(z, Z) — 1|1 < vp for all x € p™oy,
(86) ro/? < tm,
for any of the intervals I = [rg,ro], [ro,ré/ ] and [ré/ q,ré/ ]. In the following let I always

denote one of those intervals.

Lemma 4.3.13. Let € > 0 arbitrary. Then there exists ny » 0 such that, for any n = nq, the
operator norm || — ||y, on M7 satisfies

(87) |y = 1| psr < € for all y € T,

Proof. We first prove the statement for the module M = R. For the convenience of the reader
we adopt the proof of [Ked, Lem. 5.2|. First note that for any fixed f € R! by continuity of
the action of I'y, there exists an open normal subgroup H of I'y such that

(88) (v =D flr < elfls

holds for all v € H. So me may assume that the latter inequality holds for Z and Z~!
simultaneously. Using the twisted Leibniz rule

(v=1D(gf) = (v—=D(9)f +v(9)(v = D(f)

and induction we get for all powers Z%. Since the latter form an orthogonal basis, the claim
follows using that |y(g)|; = |g|; for any ye€ H,ge R!. If M = @?:17%61- and m = ) fie;, we
may assume that

(89) (v = Deilar < eleifyr

holds for 1 < 7 < d, and apply the same Leibniz rule to f;e; instead of gf, whence the result
follows, noting that |e;|,;r = 1 by the definition of the maximum norm and that |y(e;)|yr =
|eilpsr =1 for any v € H and 1 < i < d as a consequence of (89). O

WV

We fix n1 = n1(rg) = ng such that the Lemma holds for € = vy. Then, for any n > ny,m
my, the above H,, extends to continuous ring homomorphisms

H,: Dq, ., (Tn, K) = Endg (M?),

d
> w0 Y an [ | Hull 4 (b)),

keNg k20  i=1

and

j—1

~ - . o
Hy = Hy 00y« Dy, e, (01, K) = Dg, x,,, (Tn, K) = Endgc (M),

d
D1 b o > onc [ [ Ha(6, 4 (0:)

keNg k=0 i=1
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Indeed, we have

~ 2;1 h;) —1 gﬁl h;)—1 _
o) = () =1 gy () =Ly — 1)
T T,
and since
lz;l h;)—1 égl h;)—1 A
e R IR I
L L
é;l h;) —1 lﬁ;l h;) —1 A
max{ln( =L 2y I T 2 ) = D)} <
T, T,

by (87),(85) and Remark [£.3.12 (i), the above defining sum converges with respect to the

operator norm. Moreover, we have

(90) [E (A agr < sup el = [N |z,

for all A€ Dg, +,, (oL, K), i.e., the operator norm of H,, is less or equal to 1.
Since M is assumed to be L-analytic, H, factorises over the desired ring homomorphism

H, : (D(Fn, K) c )Dtm (T, K) — Endy (M?)
and ]ﬁln over
H, : (D(OL,K) c )Dtm(oL,K) — Endk (MT)

by (83). As Dx,, (o1, K) carries the quotient norm of Dg, «,, (oL, K) we obtain from (90)

(91) B (M) a7 < inf [ Ml@p.em = 1Al

7pT(>\)_

for all A€ D, (or, K), i.e., the operator norm of H, is again less or equal to 1. By a similar,
but simpler reasoning one shows the following

Lemma 4.3.14. The isomorphism (LT together with Fourier) ¢ : D(or, K) = Og(B),d, —
n(a, Z), induces, for all m = mq, a commutative diagram of continuous maps

Dprtm (OL? K)

prl

Dy, (o, K) ——=RI
with operator norms less or equal to 1. Moreover, the operator norm of the scalar action via ¢
(92) scal : (D(or, K) ©)De, (01, K) 5 R — Endge (M)

is also bounded by 1, see Remark (i)
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Remark 4.3.15. The maps lffn and ]ﬁln, as well as H, and H,, are uniquely determined by
their restriction to K|I'y| and K|or], respectively, because these group algebras are dense in
the sources Dq,,,(I'n, K), Dy, (I'y, K) and Dg,,, (oL, K), D, (o1, K), respectively.

Applying our convention before Remark we usually shall abbreviate scal(u) by ()
for € D(or, K) below when we refer to this scalar action on M. For the proof of Thm.
below it will be crucial to compare the two actions scal and H,, of D(or, K) on M.

Finally, for n > njy, we obtain similar maps for the original (multiplicative) action of
I, on M!:

(93) Dq, e (Tn, K) — Endg (M7),
d
(94) Z axl, % (b)k — Z akl_[fﬁ,i(bi))k"
keNg k=0  i=1

with operator norm bounded by 1.
A special case of the following lemma was pointed out to us by Rustam Steingart.

Lemma 4.3.16. Let m € N be arbitrary. Setting up(a) := exp(rpa)=1 for a € or\{0} and

mta
un(0) = 1 there exist ng = na(m) such that u,(a) € 1+ 7f%or, for all a € of, and n = ny.
Proof. This is easily checked using vp(n!) < ;25 O
In order to distinguish Dirac distributions for elements v in the multiplicative group I'y,
from those for elements a in the additive group or we often shall write 5§ in contrast to 4.

Lemma 4.3.17. Let 0 < € <1 be arbitrary and A =Y, cx(dq, — 1) € D(or, K) a finite sum
with ay, € or,. Then there exists ns = ns(e, A, 1) such that for all n = ng it holds

[€(A) — Hy (A) [ prr < e

" < e such that €¢ < e. Then choose my = mg such that

Proof. Put £ := supy, |cx| and choose €
16 = 1lpr < € and [0 —1]ps <€

for all v € T',y,, (see Lemma.3.13)). Now according to Lemmal4.3.16| we choose ng := na(my) >
m1. Observing that for a € o,

Hy, (0a) = g((SUn(CL)(l) © 55;1(60

we estimate, for n = ngs,

I4(2) = Ea(D)larr = 1Y et {#0a) =1 = (€Guntarar) 0571, = 1)} lars

=1 e {860) = 1= ((Cunanran) © 07y = 1)+ Euntarae) = 1) lasr
{#060) = 1= (F0untanan) © sy ) = D + 02 (0 €0a) = D) Flars

= 1Y e {(1 =67 () ®0a) = 1) = (Hunianrar) © 01, = D)} larr

< sup (Jex| max {101 =7, (00)) €)= Dllse 1€ 0un o) © 0y = Dlasr §)

<¢é sup |cx| = €¢ <e,
k
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where we used for the last line the estimate

(1 =0 (0) € 0ar) = Dllarr = (1 =07, ))(€(0a,) = DIz
< (=67 o) IR 18(0a,) — 111
énlay, Z2) — 1)1 < ¢

(by Remark 4.3.12 m (iii) and due to the choice of m; and ng) for the first term as well as
the estimate

€ wran) © (67r ) = Dlarr < nun(a)an, 2)il6s, | = s

= 670, — U <€

for the second term (again by Remark [4.3.12 m (iii) and due to the choice of m; and ng >
mi). O

Lemma 4.3.18. Let 0 < € < 1 be arbitrary and u € D(or, K) be any element. Then there
exists A = > (0, — 1) € D(or, K) a finite sum with ay € or, such that | — Ally,,, < e
Moreover, for ng = nz(e, A, o) from the previous Lemma and all n = ng we have

HQ(M) - Hn(,uz)”]wl < €.

In particular, if $(p) is invertible in End (M) or equivalently invertible as an element ofR[
then firstly there exists ng = ny(u,ro) such that |£(p)—Hy, (10)] prr < €)™ and |Hy, () ' -
()" Hlpr < |€()7Ls for any n = ny and secondly the operator H,,(u) is invertible, too.

Proof. The existence of such A is clear because such elements form a dense subset of D (o, K)
in the Fréchet topology (as noted at the beginning of the proof of Prop. [4.3.10)). Consider the
estimation for n = ns

[€0r) — B (p)l|agr < max (€0 — A)|[agr; [8(A) = B (A) e, [Hn (= A)[arr) <e,

where we use the estimate

1€ = D)lar = 18 = D)1 < [ = A, <e

by for the first, Lemma {4.3.17] m 7| for the second and (| . ) for the last term.

Now suppose that £(;) as an operator on M7 is invertible. We choose € < HS%( ) 1HX/[11, A
accordingly and put ng = nz(e, A,70). Then, for n > ng4, we have |1 — &(u) " H, (1) pr =
1€() "1 (€ (1) — Hp(w)llpsr < 1, whence >3- o(1 — €(u) 'Hy(1))* converges in Endy (M)
and H,(p)™' = (Dol — €(w) 7 Hy())") 8() ™" is the inverse of Hy(u) = p(l — (1 —
#(p) " HL (1))

Furthermore,

[E (1)~ = €)™ e = | (2(1 - 9(#)_1Hn(u))k> (i)™

k=1

<sup |- €(p) HL () |15 1800) M < 18() M

O

8T being a free R7-module on which (i) acts via the diagonal matrix with all diagonal entries equal to

&(p)-
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Note that the above lemma applies to the variable X and from now on we set ng :=
na(X,ro). In view of Lemma {4.3.11] (iii) the following lemma is crucial for the main result
Thm. of this section.

Lemma 4.3.19. Forn = ny

(1) the map O, : D(I'y, K) An, Endg(MT) extends uniquely to a continuous ring homo-
morphism

REAT)) — Endg(MY).
If M HNisa homomorphism of L-analytic (pr,T'r)-modules, then f1: M! — N is
RLA(T,)-equivariant with regard to this action.

(ii) M is a free RL(T,)-module of rank tkr M. Any basis as Rf-module also is a basis as
REA(T,)-module .

(iii) The natural maps

are isomorphisms.

Proof. (i) Inductively, for n > ny, we obtain from Lemma {4.3.18|- by expressing (H,,(u)*)* —
k _

%) as T, () (B0 = 20 (@)~ - tha

for k=0
95 Hn k:_g k <{ 77 B = U,
(95) [Hr (1) ()" |ars < 8w YTE < gk < |9(w)F|, for k<0

for all k € Z. It follows for u = X that, if >}, ax.Z* € R with a; € K, then >}, axH, (X)*
converges in Endy (M'), because

k
T ko \k k < | lall 217, for k = 0,
laxHy, (X)"[ arr < max{]ag (Hy, (X)" — €(0)") [ arrs [an€() [ arr} < { lagll 271 %, for k <0

goes to zero for k going to +oo. In other words, we have extended the continuous ring homo-
morphism ©,, to a continuous ring homomorphism

Rl - End (M), Z — H,(X).

As by definition k* o én* extends to a continuous ring isomorphism R (T,,) = RL.(B) = R!
we have constructed a continuous ring homomorphism

REAT,) = Endg (MY
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as claimed.

The uniqueness is a consequence of the fact that R%(I‘n) is the completion of the local-
ization D(I'n, K)yn by a certain norm, for which the extended map is continuous.

Concerning functoriality observe that the maps f and f! are automatically continuous
by [BSX| Rem. 2.20| (with respect to the canonical topologies). Without loss of generality
we may assume that the estimates of Lemma hold for M and N simultaneously. By
the invariance under the distribution algebra and R-linearity of f, the map f! is compatible
with respect to the operators H,,(X)* of M and N'. By continuity this extends to arbitrary
elements of RL(T,).

(i) follows similarly as in [KPX]: Recall that (ez) denotes an R!-basis of M' and consider
the maps

k=1

P : ET—)R%(B) =~ M (fr) = D fren,
k=1

and

which in each component is given by (k* o £, ). Then we have from that
&' oY o @ Y(m) —m|; < |m|,

i.e.,
[ o Todt —id|; <1,

whence with ® and Y also ® is an isomorphism because ® oY o ®~! is invertible by the usual
argument using the geometric series.

(iii) The base change property follows from the fact that ®' is compatible with changing
the interval. 0

Theorem 4.3.20. Suppose that 2 is contained in K.

(i) Let J be any of the intervals
[ro,70] """ or [ro, ré/q]l/qn forn = 0.

Then the Ty, -action on M7 wvia H,, extends uniquely to a continuous Ri,(Ty,)-module
structure. Moreover, M’ is a finitely generated free Ri(lﬂm)—module; any R0 pasis
of My is also an Rf((I’M)—basis of M7, If M I Nisa homomorphism of L-analytic
(¢r,Tr)-modules, then f7 : M7 — N7 is Rj-(T'y,)-equivariant with regard to this ac-
tion.

(ii) The T'1-action on M wvia Hy extends uniquely to a separately continuous Ry (T'1)-module
structure. Moreover, M is a finitely generated free Ry (I'1)-module; any R0 _pasis

of My is also an Ry (T1)-basis of M. If M I Nisa homomorphism of L-analytic
(pr,'r)-modules, then f is Ry (I'1)-equivariant with regard to this action.
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Proof. (i) From Lemma we obtain, for any n > ny4, the H,-action of Rg(T,) on
MT for the original three intervals I. Using Lemma (iii) we deduce the H,,-action of
Rﬁ/qn_m (T, )-action on M1 o
same lemmas.

(ii) By the uniqueness part in (i) we may glue the-RJ((Fm)—actions on the M7 to a

. The asserted properties of these actions follow from the

continuous R%O’l)(f’m)—action on Mol By Remark .ii it is uniquely determined by
the I'y,-action. Therefore we may vary ro now and obtain in the inductive limit a separately
continuous H,,-action of Ri(I',,) on M. Using and Lemma[4.3.11f(ii) we deduce the sep-
arately continuous Hi-action of Ry (I'1) on M. Again by Remark this action is uniquely
determined by the I'j-action. The remaining assertions follow from the corresponding ones in
(1). O

4.3.7 The structure of M¥m=0

We still assume that (2 is contained in K and let M be an L-analytic (¢r,[')-module
over R = Ry (B). We want to show that M¥2=0 carries a natural R (I'z)-action extending
the action of D(I'z, K).

From and using formula and we have

(96) M= = @B nla, Z2)em(M) = Z[LL] ®zr,) (n(1, Z)on(M)).

ae(or/mp)*

Theorem 4.3.21. The 'y, action on M extends to a unique separately continuous Ry (I'r)-
action on M¥L=Y (with respect to the LF-topology on Ry (I'r) and the subspace topology on
MY2=0): moreover the latter is a free Ry (I'r)-module of rank tkr M. If eq,. .., e, is a basis
of M over R, an Ry (Tr)-basis of M¥2=0 is given by n(1, Z)¢nrr(e1), ..., n(1, Z2)on(er). If

¥ =0
ML Nisa homomorphism of L-analytic (¢r,T'r)-modules, then M ST N s Ri(Tr)-
equivariant with regard to this action.

Proof. By Lemma[£.3.11] (i) we transfer the R (I'1)-action on M from Thm. [£.3.20{ii) to the
space n(1, Z)pp(M). Note that the resulting action is separately continuous for the subspace
topology of n(1, Z)pa (M), because the map ¢ : M — M is a homeomorphism onto its
image. The latter is a consequence of the existence of the continuous operator ¢y and the
relation vy, o ¢y, = % idps . Finally, because of and the R (I'1)-action extends to
the asserted R (I'z)-action. Similarly as before, since I'y, spans a dense subspace of D(I'z, K),
the uniqueness of the action follows from Remark O

4.3.8 Descent

For the proof of Thm. [£.3.2T] we had to work over a field K containing the period 2 since only
then we were able to write elements in R (I'z) or rather R (I'y,) as certain Laurent series in
one variable Y, by means of the Lubin-Tate isomorphism Ry (X) = Rx(B), which in general
does not exist over L. In this section we are going to explore to which extent the structure
theorem over K descends to L. We shall consider two situations, i.e., we now start with an
L-analytic (¢r,I')-module M over Rp(X) or R (B), respectively. Thus, in what follows let )
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be either X or B and R = R1(2)). Then we consider the functor

M(RL(Y)) = M (RK (D)),
M — Mg :=Rk() Qro ) M = K®L,LM7

where the last isomorphism and the well-definedness of the functor are established in [BSX|
Lem. 2.23]. Moreover, there is a natural action of G, on both Rx(9) =~ K®, 1R.(2) and
M via the first tensor factor (and the identity on the second). We have

(97) Ri (D)% = RL(D)
by [BSX| Prop. 2.7 (iii)|, whence also
(98) (Mp)% = M

because M is finitely generated free over Rz (2)) (by definition or [BSX| Thm. 3.17]) and hence
Mg has a Gp-invariant basis over R ().

Since the yr-operator on Ry () is induced from that on Rr()), it commutes with the
action of G . Similarly, one checks that this action commutes with the operator 11, of R ().
Indeed, by Lemma[4.1.14] there exists a Gr-invariant basis of Rk (2) over ¢1,(Rx(2)), whence
the trace commutes with the Gp-action. From this and the construction of the operator ¥y,
one derives easily that also vy commutes with the Gp-action. As a consequence we obtain
natural isomorphisms

(99) MYm=0 ~ ((MK)GL)¢A4:O ~ ((MK)U’M:O)GL .

Since the Lubin-Tate isomorphism R i (X) = R (B) respects the (¢, I'r)-module structure,
Thm. 4.3.21] applies for both choices of 9), i.e., we obtain a separately continuous action

(100) Ri(Tr) x (Mg)¥=" — (Mg)¥=".

Moreover, if M = @;_; Rr()e;, then the families (n(1, Z)pn(e;)) and (evipar(e;)) form
bases of (My)¥=? as Ry (I'z)-modules in case B and X, respectively. Therefore, we consider
next a natural Gp-action on Rk (T'z) and show that is G-equivariant. To the first aim
we use the canonical isomorphisms and

Ri(TL) < Z[T' L] @z, Ri (Tn) — Z[T'L] @z, Ric(X)

‘gn*

to extend the Gp-action from Ry (X) to Rx(I'L); clearly, we obtain from and the fact
that the isomorphism Ry (I',) &%*> Rk (X) is defined over L, that

(101) RK(FL)GL =~ RL(FL).
To the second aim we proof the following

Lemma 4.3.22. The action (100) is G -equivariant.
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Proof. We fix 0 € G, and define a second separately continuous action
Ric(Tr) x (Mg )= — (M )¥™"

by sending (\,z) to o ! (¢(A)(c(x))) (using that o and v;, commute and that o is a homeo-
morphism). By the uniqueness statement of Thm. it suffices to show that the new and
original action coincide on I' x (My)¥=0. We shall show that these actions coincide even as
actions I'y, x Mg — Mg : Forye T, f € Rx(2) and m € M we calculate

o~ o) (o(f@m))) = 07" (v(a(f) ®@m))

= o (o (f)) @~(m))
= o (o(v(f)) ®~(m)
V(f) ®~(m)

V(f @m).

|
q

Here we used firstly that o acts trivially on v (or rather ev,) as they are already defined over
L (via the Fourier transformation) and secondly, that the G- and I'z-actions commute. Since
this equality holds for all o € G, the claim follows. O

Taking G -invariants of (100]) therefore induces - upon using (99)) and (101)) - the following
separately continuous action

(102) Ri(Lp) x M¥=0 — pv=0
which extends the I'r-action. We thus obtain the following

Theorem 4.3.23. (i) The I'r-action on M (in M (RL(X)) or M™(RL(B))) extends to
a separately continuous R (I'r)-action on MYL=0 (with respect to the LF-topology on

Rr(I'L) and the subspace topology on MY:=0). If M L Nisa homomorphism of L-

Py =0
analytic (pr,Tp)-modules, then M EACIING ' R (T1)-equivariant with regard to this

action.

(i) If 9 = X then MY2=0 is a free Rp(I'r)-module of rank rkrM. More precisely, if
e1,...,eq is a basis of M over Rp(X), then an Rp(I'r)-basis of MYL=0 is given by
evign(er), ..., evionm(e,).

Proof. It is easy to check that also the Ry (I's)-equivariance of f¥2=0 follows by descent.
Therefore only (ii) remains to be shown. But this is an immediate consequence of the fact
noted above, that the family (evipys(e;)) forms a G-invariant basis of (M )¥=% as Ry (T'L)-
module, by just taking G-invariants again. 0

Remark 4.3.24. (i) For each complete intermediate field L € K' < C, we obtain an anal-
ogous structure theorem for (My)¥=" over Ry/(T'r) by replacing L by K' everywhere
wn the above reasoning.

(ii) Since for Y = B the basis (n(1, Z)pnr(e:)) of (Mg)?=C as Ry (I'r)-module is visibly not
Gr-invariant, we cannot conclude the analogue of Thm. |4.8.23(ii) in this case.
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4.3.9 The Mellin transform and twists
Extending the Mellin transform from Lemma we introduce the map

M: Re(Tr) — Rr(X)270, XA Aevy)

which is an isomorphism by Thm.[4.3.23] If Q2 € K, then its composite with the LT-isomorphism
is the isomorphism

Mur: Rie(TL) — Re(B)=0, A A(n(1,2)) .
Recall the twist operators T'w, from section

Lemma 4.3.25. The diagram

(103) Ric(Tr) 2> R (X)¥2=0

TwXLTi ~ia§w

n _
RK(FL) — RK(X)wao
1s commutative; in particular, the right hand vertical map is an isomorphism.

Proof. The commutativity can be checked after base change. Assuming 2 € K the diagram
corresponds by Remark to the diagram

(104) Ri(T1) 2% Ry (B)VE=0
Twxpr l gi & Oinv

RK(FL) % RK(B)wLZO.

Now, the corresponding result for R (I'1) replaced by D(I'p, K) is implicitly given in
sections and [Co2, §1.2.4] establishes, for v € I'z,, the relation diny 0y = xr7r ()70
Oy as operators on Ry (B). It follows by K-linearity and continuity that the relation of
operators Oiny © A = T'wy, ,.(A) 0 diny holds for all A € D(I'z,, K). By continuity of the action of
Rik(L'L) = Z[T'L] ®zr,) Ri([n) on R (B)¥r=0 it suffices to check the compatibility for the
element Y, !, where Y;, € D(I',,, K), for n >> 0, has been defined at the end of section m
Using that T'w,, .. is multiplicative and that dinv(n(1, Z)) = Qn(1, Z) the claim follows from
the relation

~1 Y ~1
Twy,r (Y, In(1,2) = Twy,, (Yn) ﬁainv (YnYn n(1, Z))
_ 1 _
=Twy,, (Yn) 1TwXLT (Y )aainv (Yn 177(17 Z))
1 _
= 0 (Y, 'n(1,2)).
O
Lemma 4.3.26. Assume 2 € K and let ny be as in Lemma [4.5.15 Then, for n = nq, the
map My induces isomorphisms

Ri(Tn) = o} (Rr(B))n(L, Z) (= Rk (B)¥+™")
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of R (Ty)-modules and
D(T, K) = ¢} (Ox(B))n(1,2) (S Ok (B)**~7)
of D(Ty,, K)-modules.

Proof. By taking limits the first isomorphism follows from Lemma (ii) in combination
with Lemma (i), both applied to M = R (By). The isomorphism of the latter restricts
visibly to the isomorphism Ok (Br) = ¢} (Or(Br))n(1,Z) while O (By) is a free Ok (% o
k(Br))-module with basis 1 by an obvious analogue of the former reference. Hence we obtain
the second isomorphism by the same reasoning. O
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4.4 Explicit elements

There are two sources for explicit elements in the distribution algebras D(o, L) and D(U,, L),
where in this section we fix an n = ny, i.e., log : U, = 7oy is an isomorphism. First of all
we have, for any group element u € o}, resp. u € U, the Dirac distribution d,, in D(o], L),
resp. in D(U,, L). As in section the corresponding holomorphic function Fs, = ev, is
the function of evaluation in u.

Lemma 4.4.1. i. Let uw € o] be any element not of finite order; then the zeros of the
function evy, —1 on X* are exactly the characters x of finite order such that x(u) = 1.

1. For any 1 # u e U, the zeros of the function ev, —1 on X all have multiplicity one.

Proof. i. Obviously the zeros of ev,, —1 are the characters y such that x(u) = 1. On the other
hand consider any locally L-analytic character x : of — Cj. Tts kernel H := ker(y) is a
closed locally L-analytic subgroup of o; . Hence its Lie algebra Lie(H) is an L-subspace of
Lie(o;) = L. We see that either Lie(H) = L, in which case H is open in o] and hence x is
a character of finite order, or Lie(H) = 0, in which case H is zero dimensional and hence is
a finite subgroup of oy . If x(u) = 1 then, by our assumption on u, the second case cannot
happen.

ii. (We will recall the concept of multiplicity further below.) Because of the isomorphism
X >~ X it suffices to prove the corresponding assertion in the additive case. Let 0 # a € oy,
and let x € X(Cp) be a character of finite order such that x(a) = 1. By [ST2] we have an
isomorphism between X,c, and the open unit disk B,c,. Let z € B(Cp) denote the image
of x under this isomorphism. By [ST2, Prop. 3.1] and formula (o¢) on p. 458, the function
evy —1 corresponds under this isomorphism to the holomorphic function on B(C,) given by
the formal power series

Fatg(Z) = exp(gQlogr(Z2)) — 1,

where € # 0 is a certain period. By assumption we have Fatg(z) = 0. On the other hand the
formal derivative of this power series is

d

dngtg(Z) = 9Qgrr(Z)(Fy (Z) +1)
Since grr(Z) is a unit in or[[Z]] we see that z is not a zero of this derivative. It follows that
z has multiplicity one as a zero of F,y (Z). O

The other source comes from the Lie algebra Lie(U,,) = Lie(o} ) = L. We have the element
V:=1lelLie(o])=1L.
On the other hand there is the L-linear embedding ([STT, §2|)
Lie(U,) — D(U,, L)
£ [f > f(exp, () ol
which composed with the Fourier isomorphism becomes the map

Lie(U,) — Op(X))
r— [x = dx(v)] -
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On the one hand we therefore may and will view V always as a distribution on U, or o} . On
the other hand, using the formula before [BSX| Lem. 1.28], one checks that the function Fy
(corresponding to V via the Fourier isomorphism) on X is explicitly given by

(105) Fy(x) = 7" log(x(exp(nr))) -

Lemma 4.4.2. The zeros of the function Fy on X5 are precisely the characters of finite order
each with multiplicity one.

Proof. Once again because of the isomorphism X =~ X it suffices to prove the corresponding
assertion in the additive case. This is done in [BSX| Lem. 1.28]. O

To recall from [BSX] §1.1] the concept of multiplicity used above and to explain a divisibil-
ity criterion in these rings of holomorphic functions we let ) be any one dimensional smooth
rigid analytic quasi-Stein space over L such that Op(2)) is an integral domain. Under these
assumptions the local ring in a point y of the structure sheaf Oy is a discrete valuation ring.
Let m, denote its maximal ideal. The divisor div(f) of any nonzero function f € Or(2) is
defined to be the function div(f) : @) — Z=¢ given by div(f)(y) = n if and only if the germ of
fin y lies in mZ\mZH. By Lemma 1.1 in (loc. cit.) for any affinoid subdomain 3 € 2) the set

(106) {z € 3| div(f) > 0} is finite.
Lemma 4.4.3. For any two nonzero functions f1, fo € Or(2)) we have fo € f1OL(Q) if and
only if div(f2) = div(f1).

Proof. We consider the principal ideal f1Or(2). As a consequence of [BSX| Prop. 1.6 and
Prop. 1.4] we have

HOLA) = {f € OLD)\{0} : div(f) = div(f1)} v {0}
O

We now apply these results to exhibit a few more explicit elements in the distribution
algebra D(U,, L), which will be used later on.
Lemma 4.4.4. For any 1 # u € U, the fraction %L_l is a well defined element in the integral
domain D(Uy, L).

Proof. By the Fourier isomorphism we may equivalently establish that the fraction Iy T exists

in Or(X;). But for this we only need to combine the Lemmas 4.4.2] and O

The next elements will only lie in the Robba ring of U,,. Since X =~ X we deduce from Prop.
and the subsequent discussion that there is an admissible covering X = J;~1 Tn,; by
an increasing sequence U, 1 S ... € Y, ; < ... of affinoid subdomains U, ; with the following
properties:

— The system (X;;\U,,;),c, is isomorphic to an increasing system of one dimensional
annuli. This implies:

— R(X)) is the increasing union of the rings O (X;\Yy ;) and contains Or(X));
— each Or(X;\Y,, ;) as well as R (X)) are integral domains.
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— BEach X\, ; is a one dimensional smooth quasi-Stein space.

In particular, the Op(X:\%, ;) are naturally Fréchet algebras, and we may view Rp(X[)
as their locally convex inductive limit. We also conclude that Lemma [4.4.3| applies to each
%’;; \mn"] °

We now fix a basis b = (b1, ..., bq) of Uy, as a Zy-module such that b; # 1 for any 1 < i < d.

Proposition 4.4.5. The fraction
d—1
FV

n?=1 (evbi - 1)

—_

=p =

is well defined in the Robba ring Rr(X)).

Proof. The zeros of the fraction evi Y— € Op(X);) are precisely those finite order characters

which are nontrivial on b;. Hence, if we fix a 1 < j < d, then the product ]_[#j evfiv—l still has

P

a zero in any finite order character which is nontrivial on b; for at least one 7 # j. On the other
hand the zeros of ev;; —1 are those finite order characters which are trivial on b; (and they

have multiplicity one). Since only the trivial character is trivial on all by, ..., b; we see that all
zeros of evy, —1 with the exception of the trivial character occur also as zeros of the product
Fa=1

T, (v D) It follows that the asserted fraction =y exists in Or(X;\U,, ;) provided j is large

enough so that the trivial character is a point in 2, ;. Since (ngl(evbi ~1))Z = F& and
Rp(X[) is an integral domain, we see the independence of j. O]

In fact, the proof of Prop. shows that Z; is a meromorphic function on X with a
single pole at the trivial character, which moreover is a simple pole. We abbreviate £(b) :=

[T7, log(bs)-

Proposition 4.4.6. For any other basis b/ = (b},..., b)) of U, as a Zy-module with b} # 1
we have
Uy — (b)Zp € OL(X) .

Proof. We only have to check that the asserted difference does not any longer have a pole at
the trivial character. Both, E;l and Eb_l, are uniformizers in the local ring O; of X5 in the
trivial character. Hence we have in O; an equality of the form

[11

by
b

za?—i-Eb_l-G

(1]

with some z € L and G € O;. Our assertion amounts to the claim that z = [, %228}; To
compute x we use which leads to the open embedding

B(ro);, = X(ro) S X 25 x

which maps y to the character x,(u) := exp(m, " log(u)y) ( and, in particular, 0 to the trivial
character). Using (105]) we see that Fy pulls back to the function y + 7"y on B(rg). On
the other hand ev,, —1 pulls back to y + exp(n, " log(b;)y) — 1. Hence =, pulls back to the

meromorphic function

7.rz71(d*1)yd—1

[1i(exp(m " log(bi)y) — 1) -

yl—)
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Its germ at zero lies in 1+y0Op), where Oy denotes the local ring of B(ro),, in

e
w2 (LT, og(b:)y

CHRTI log(b;
zero. It follows that the germ of the pull back of 2 lies in ([]; 122%1;’13)(1 + yOo). O

By Lemma the function Fy=, is holomorphic on X and has no zero in the trivial
character.

Lemma 4.4.7. The value of FyZy at the trivial character is £(b) ™1

Proof. We use the same strategy as in the previous proof. The function O pulls back to the
function

7_‘_anyd
[ [;(exp(, ™ log(bi)y) — 1)
on B(rg) /L, and we have to compute its value at 0. But visibly the above right hand side is a
O

yl—)

. . . 1
ower series in y with constant term —4———.
P Y T, 1og(b)

These last two facts suggest to renormalize our functions by setting

[1]|

p = L(b)Zy and O := Fy=y .

Choosing a field K containing 2 we also let fE}; denote the image of =, under the composite
map

(107) RL(X2) 2% R (%) € Ri(X) 25 Ry (B) .

n

Remark 4.4.8. Suppose that K contains Q. We have

o )&l (2)
= T (expllog(by) 2 log 1 (2) — 1)

and it follows from the proof of Prop. m that ZfE\; belongs to O (B) with constant term

(%)*1, whence
~ 77
=y = ﬁ mod Ok (B).

Proof. One checks that the map (107)) sends a distribution u to the map

00(2) = lexp(@E L Togy7(2)

log(a) log;7(2)). Recall that the action

n
TL

of V as distribution sends a locally L-analytic function f to — (%f(exp(—t)))ﬁ=0 , whence V

In particular, a Dirac distribution 4, is sent to exp({2

is sent to

log(—) _ (4 log(exp(—t)) _ 9
v (exp@E D ogr(2) ) = - ( Gexp @B ogr(2)) = Zlor ().
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Remark 4.4.9. Recall that ©y lies in Op(X)) and therefore can be viewed, via the Fourier
transform, as a distribution in D(Up, L) < D(o;, L). If K contains Q and for sufficiently large
n the Mellin transform 9 in Lemma[{.1.6] then satisfies

K* 0 M(Op) = 1 (&)n(1, Z)

with log7(Z)
& = — mod log; +(Z)Ok(B) .
Proof. Consider the element
F(X)= _ X =1+ XQ(X)
exp(X) —1

with Q(X) € Qp[[X]] and let » > 0 be such that Q(X) converges on |X| < r. We shall

proof the claim within the Banach algebra RL-(B) for I = [0,7] (which contains Ok (B) and

using that the actions on both rings are compatible). We assume for the operator norm that
_ 1

|05, — 1|7 < min(p~ =T, ) for all i (otherwise we enlarge n according to Lemma {4.3.13)). From

[BSXL Cor. 2.3.2, proof of Lem. 2.3.1] it follows that V = 2]

algebra A of continuous linear endomorphisms of RL-(B) and

as operators in the Banach

(108) exp(log(b;)V) = exp(log(dy,)) = 6,

in A. Moreover,
1

(109) | log(8y,) |7 < min(p~ 71, 7)

for all ¢, whence |V|; < min(pip%l,rﬂ log(b;)|. Then, as operators in A we have

\Y \Y

(110)  log(b)~" + VQ(log(bi)V) = log(b;) ™" F(log(h;)V) = exp(log(b;)V) — 1 T, -1

Hence

(b))
[ [(exp(log(b;)V) — 1)

for some power series g € RE(B). Tt follows that

O = =1 +£(b)Vg(log(b;)V)

(111) K* o M(Oy) = (14 £(b)Qogrr(Z) f(2))n(1, Z).

for some f(Z) € RL(B) . Indeed, concerning the derived action we have

d
V(0(1,2)) = expl@expl)lonr(2) = Rogir(Z)n(1,2)
1t=0
(cf. also [BSX| end of §2.3] for the fact that
(112) V acts as logr7(Z)0inv on Ox(B) )

and
V(Qlogyr(Z)) = Qlog(Z).
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Furthermore, we obtain inductively that
A i—1
Vin(l,2) = <H(QlOgLT(Z) + k)) n(1, 2)
k=0

for all ¢ > 0. The convergence of f(Z) can be deduced using the operator norm ({L09)).
On the other hand, according to [BE], Lem. 2.4.2] we have

£(b)logr(Z)
e1(2)

for some g(Z) € Ok (B). Since the element On(1, Z) lies in (Ox(B))¥2=Y, we conclude from

Ow(1,2) = 9(Z)

_ 7w or(logrr(Z)) _ ;. logrr(2)
0=1vr( 21(2) (2)) = o7y Yr(9(Z))

that g(Z) belongs to (O (B))¥2=% whence it is of the form 2ac(or jrp) PL(9a(Z))n(a, Z) for
some g, € Ok (B) by the analogue of for Ok (B). From Lemma {4.3.26| we derive that, for
some a(Z) € Ok (B), we have

Oun(1, 2) = L(b)¢L (a(2))n(1, Z).

Since the decomposition in is direct, we conclude that g(Z) = ¢r(g1(Z))n(1,Z) and
%@L(gl(Z)) — ¢"(a(Z)), whence log;(Z) divides ¢"(a(Z)Z). Since ¢? sends the
zeroes of log;(Z), i.e., the points in LT () = |, LT[rk], surjectively onto itself, we con-

clude by Lemma that log;,(Z) divides also a(Z)Z in Ok (B) and that there exists
c(Z) € Ok (B) such that

log ;1 (Z)

(13 < om(©y) = (015 (EL

«2)) (1.2)
Comparing (113]) with the first description (T11)) gives the claim as c¢(0) = £(b) ! because

evaluation at 0 is compatible with the embedding Ox(B) € RL (B) and %(0) =1 by
) .
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4.5 Pairings

In this section we discuss various kinds of pairings. The starting point is Serre duality on X
which induces a (residue) pairing

<, >x: RL(%) X RL(%) - L,
as we have seen in . Similarly, Serre duality on X* induces a pairing
(114) <, >r.: RL(FL) X RL(FL) — L

for the Robba ring of I',, which by definition is the Robba ring of its character variety Xr, =
X* (induced by the isomorphism xrr : T, — 0f) as constructed in (5I)). This pairing, as
defined in subsection is actually already characterized by its restriction to Rp(I',) for

any n = ng and thus is by construction and the functoriality properties of section closely

related to the pairing < , >z using the "logarithm’ R (I',) LU R(X), see diagram (49).

In contrast, the commutative diagram

-dlogxx

Rr(X%) Q;QL(%X)
\Lresxx
(“)ev1 dloga) L
Tresx
_ €V-1°
Q@)™ — %, )

from Thm. in subsection relates the pairing <, >p, to the pairing <, >x in a
highly non-trivial, non-obvious way. The resulting description of <, >p, in forms one
main ingredient in the proof of the abstract reciprocity formula below in subsection
[4.5.5]

Based on the (generalized) residue pairings in subsection {4.5.1]

{,}:MxM— L,

with M := Homg(M,Q%) the pairing (T14) induces for any (analytic) (¢r,'z)-module M
over Rr(X) an Iwasawa pairing (132)

{ Viw: MYE70 % MY2=1 & D(Ty, L)

in subsection which behaves well with twisting (cf. Lemma [4.5.22]).
By construction and the comparison isomorphism (135]) for Kisin-Ren modules - the second
main ingredient - the pairing {, }1, is closely related to a pairing

[, 1:RL(X)Y"=° ®L Depis, . (V*(1)) x Rp(X)"* = ®L Deris, (V(r™")) = Ri(I'L)

induced from the natural pairing for D, . The precise relationship is the content of an
abstract form of a reciprocity formula, see Thm. As a consequence we shall later derive
a concrete reciprocity formula, i.e., the adjointness of Berger’s and Fourquaux’ big exponential
map with our regulator map, see Thm. [5.2.1]
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4.5.1 The residuum pairing for modules

Throughout our coefficient field K is a complete intermediate extension L € K < C,. Let 9
be either X or B and R = Rx(2)). Consider the residuum map resy defined after and
the residuum map

resy : Q%z - K, ZaiZidZ —a_q.

7

Recall that we are using the operator 9, := %¢? on R.

Moreover, we define t, : Rg(I') —» Ri(T'r) to be the map which is induced by sending
v € I'y to its inverse v, i.e., the involution of the group induces an isomorphism on the
multiplicative character variety, which in turn gives rise to t,. The corresponding involution
on Ri(Iy,), also denoted by Ly, satisfies the commutative diagram

eno*

(115) Ric(Tny) 2= Ric (%)

oo s

eno*

R (Tng) —= Ri (X)

where the involution t on R (X) sends ev, to ev_,.
Setting M := Homg (M, QL) =~ Homg (M, R)(xLr), for any finitely generated projective
R-module M, we obtain more generally the pairing

(116) (=0 v MxM—K, (g,[) resy(g(f)),
which satisfies the following properties:
Lemma 4.5.1. For M in M(R) we have
(i) {, ) identifies M and M with the (strong) topological duals of M and M, respectively.
(i) {¢r(9),or(N)} = 2{g, f} for allge M and f e M,
(iii) {o(9),0(f)} = {g, f} forallge M, fe M, and 0 € T',
(iv) {¢r(9), f} = {9, 0L (f)} and {r(9), f} = {9,¢(f)} for all g€ M and f e M.

Proof. (i) follows from the discussion in subsection [4.2.3] (ii) is a purely formal consequence
from (iv). (iii) follows as in (69) with o, instead of k,. For (iv) we refer to Lemma{4.2.14] For
2 = B see also [SV15] Prop. 3.17, Cor. 3.18, Prop. 3.19]. O

Convention: For coherence of our notation we set logg := log; although in general this is
not the standard logarithm!

Proposition 4.5.2. The pairing < , >y R x R — K, (f,g) — resy(fgdlogy), induces
topological isomorphisms

Homp s(R, K) =R and Hompg o1s(R/OK (D), K) = Ok ().

Proof. See subsection O
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Remark 4.5.3. If we assume Q € K, then these pairings can be compared via the LT-iso-
morphism k. By we have

Q< k™ (f), 5" (9) >B=<f,9 >x

fOT fag € RK(x)

Assume henceforth that M is an analytic (¢, 'z)-module over R and recall from Propo-
sition [4.3.10| that the I'r-action on M extends continuously to a D(I'r, K)-module structure.

Corollary 4.5.4. The isomorphism M =~ Homp (M, K) (induced by { , }) is D(Tp, K)-
linear.

Proof. This follows from Lemma [4.5.1](iii) since I';, generates a dense subspace of D(I'z, K).
O

Since %QpL o @y = idy we have a canonical decomposition M = ¢ (M) @ M¥2=9. By
Lemma we see that MY¥2=0 is the exact orthogonal complement of o (M), i.e., we obtain
a canonical isomorphism

(117) MYE=0 =~ Homp s (M¥2=0 K).

Lemma 4.5.5. The isomorphism (117)) is R (I'L)-equivariant, i.e., we have for all mh €
MYr=9 me M¥:=0 and A € Ri(I'r) that

{Mi,m} = {m, L.(A\)m} .

Proof. This is clear for D(I'p, K) by Cor. Without loss of generality we may and do
assume that €2 belongs to K. It then follows for the localization D(I'z, K)yx , where we use
the notation and considerations from subsection [.3.6] especially Lemma and its proof.
Since D(I‘L,K)YTIL\II is dense in R (I'r) by the assertion now is a consequence of the

continuity property in Thm. 4.3.21} O

4.5.2 The duality pairing <,>r, for the group Robba ring

Using the isomorphisms induced by the Lubin-Tate character xrr we now carry over
structures concerning the (multiplicative) character varieties X*, X to those of the groups
I, T'y. In particular, we use analogous notation resr, ,resr,,,logr, ,logp ~for corresponding
objects. In this sense we introduce and recall from the pairing

(118) <, >, Rx(TL) x Rg(l'y) » K

and similarly <, >r, from . This pairing is of the form

(119) <, >r,: Ri(Tr) x Ri(Tr) ™5 R(Ty) % K,
where

res
o =< 1, — >FL: RK(FL) - Q%QK(FL) - K

f = flegFL = reSFL(fdlogFL)
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has also the following description - writing pry, ,, and similarly pry, ,, for the projection maps

induced by , -
0:R(l'r) =Z[I'L] ®zr, ) R(Tny) = K

1 .

(120) o T sl priag ()0

with ng as defined at the beginning of subsection Indeed, using (50)), we obtain
<1,f>r, =resp,(fdlogr,)

qg—1
= ano resrno (pTL7nO (f)d loanO )

—1 R
= %(%)noresx(&m* 0 pri,.ne(f)dlogy)

because (£%)*(1) = 1.
The following properties follow immediately from the definition:

Lemma 4.5.6. We have for all f,\,pn€ Rx(I') that
(1) <A fu>r,=<fA\p>r,
(i) <A p>p,=<p,A>p,.

Remark 4.5.7. For n > ng we have the projection formula prp p(in«(x)y) = xprp,(y) and

translates into

(121) < Ln,*($)7y >r, = (q - 1)qn—1 < m7pTL,n(y) >Th

Jor € R(T'y), y € R(CL) and the canonical inclusion R(T'y) —2> R(L'L). Analogous formulae
hold for Ty, with n = m > nginstead of U'r, by |4.2.14) (ii).

Remark 4.5.8 (Frobenius reciprocity). The projection map prr,r, : Rx(l'r) = Ri(T'y)
induces an 1somorphism

Hom’RK(FL)(Nv RK(FL)) = HomRK(Fn)(Nv RK(Fn))
for any R (T'r)-module N; the inverse sends f to the homomorphism x +— deFL/U Gl ©
flg lz).

The following proposition translates the results at the end of subsection into the
present setting.

Proposition 4.5.9. The pairing < , >r,: Rx(l'r) x Rx(T'r) — K induces topological
isomorphisms

Hoijcts(RK(FL),K) = RK(FL) and HOII]K@gs('RK(PL)/D(PL,K),K) = D(PL,K).
Proposition 4.5.10. Assume Q€ K and M in M(R). Then the map

(122) Homg,(r, (MY~ Ry (1)) — Homp os(M¥+ =0, K) =0
117)

Fr—opoF

is an isomorphism of Rk (I'r)-modules, where the superscript “t” on the left hand side indicates
that R (T'r) acts through the involution .
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Proof. According to Thm. 4.3.21{the Ry (I'r)-module M¥L=0 is finitely generated free. Hence
it suffices to show that the map

Homp , (r,)(Rx(TL), Rk (I'L)) — Homg a5 (R ('), K)
Fr—pokF

is bijective. But this map is nothing else than the duality isomorphism in Prop. 4.5.9 O
The following twist invariance is just Lemma [4.2.19
Proposition 4.5.11. Let U be T'p or Ty, for n = ng. Then, for all \,u € R(U) we have
< Twyr (1), Twyr (A) >u=<p, A >u .
4.5.3 A residuum identity and an alternative description of <, >,
Let 0_1 € 'y, be the element with yyr(o0_1) = —1. Consider the continuous K-linear map
¢:Rg(l'p) — K,
A res (M(o-)M” ()
where M2 : R (Tp) S Q%z(x)zpﬂ) c 9713(%) sends \ to
(123) Aevy dlogy) = (Twy, . (N)(evi))dlogy,
whence we also have
(124) resx(im(a,l)imgl(A)) = resx (M(o_1)M(Twy, . (N))dlogy).
Recall the definition from o from (118]).

Theorem 4.5.12. We have 7

= ﬁQa
1.e., the following identity for the residue map holds

<

(i)”oresx (éno* O PILmg (A)dlogy ) = resy (evl A ( evy dlogy ))

L

for all N € Ri(T'L), i.e., the following diagram commutes

y d1og .y x
R (%) - Q%K(fx)
\Lresxx
(—)(evi dlogy) K
Tresx
_ ev-1-
(e @)™ — e
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Remark 4.5.13. Compare with [Ben, Prop. 2.2.1, 3.2.1] where also residue identities play a
crucial role in the proof of his reciprocity formula.

The proof of this theorem requires some preparation.

Lemma 4.5.14. For all \€ R (1) and j € Z we have

S(Tw; (X)) = <)

XL

Proof. For the proof we may and do assume that ) belongs to K. Since then

res (03, () 108x) = Ores (g ny(5* (1)) 108,7) = resm (ds° (1)) = 0

for any f by Remark and [FX| Prop. 2.12|, the case j = 1 follows directly from the
relation (124) using with g := Tw,, . ()\) that

O (M(o-1)M(9)) = O, (M(0-1))M(g) + M(0-1)355, (M(9))

M(Twy, 1 (0-1)) M (g) + M(0—1)M(Twy, 1 (9)
= —M(o-1)M(g) + M(o—1)M(Twy,(9))-
From this the general case is immediate. O

Lemma 4.5.15. Let A e D(I'y,C,) with ev (A) = 0 for infinitely many j, then X\ = 0.

LT

Proof. On the character variety the characters XiT corresponds to points which converge to
the trivial character. It follows that A corresponds to the trivial function, since otherwise its
divisor of zeroes would have only finitely many zeroes in any disk with fixed radius strictly
smaller than 1 by , which would contradict the assumptions. O

Now fix a Zy-basis b = (b1,...,bq) of Uy,, with all b; # 1 and set £*(b) := (;(b) :=
q "04(b) € of with ' :=T',,. According to section we may define the operator

S =q"xLr(Sp) = £ (O)xLr(Sp)

in Rg(I"). Let aug : D(I', K) — K denote the augmentation map, induced by the trivial map
I — {1}.
Lemma 4.5.16. The element é?, induces - up to the constant ¢—™ - the augmentation map

(125) < Ep,— >r,,= ¢ "aug: DIy, K) — K.

Moreover, we have

(126) S(Ep) =1=——0(5).
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Proof. We may and do assume Q € K by compatibility of res with respect to (complete) base

~ — ~ 0
change (54). Since K*(lnyx(Zp)) = ¢ ™5, ;ﬁﬂ% mod Ok (B) by Remark [4.4.8] one has
for every A € D(I', K)

1 =
ub,)\ >r m < EZp, A >1,

—n qd \no, %) ="
=y Ol"esae((m) K7 (lnox (EpA))d logy)

qfnoresB(Q(%)"%* (Lo s (é;A))QLTdZ)

[E

= q*"OresB (Z

= ¢ "aug(\),

K* (Cugs (V) g17dZ)

where we use for the last equation that grp(Z) has constant term 1 and the fact that the
augmentation map corresponds via Fourier theory and the LT-isomorphism to the ‘evaluation
at Z = 0’ map. Taking A = 1 we see that Q(\_;b) <E,1>p, = qql.

For the other equation of the second claim one has by definition of ¢

<(Z0) B Qe (B)resg (* (M(o—1)M(Twy, ; (X (Z0)) ) dlog )
= Q0 (b)resp My (o0-1)Mpr(Twy, o (Xir(Ep))dlog )

) | dlogy
= (*(b)resp (M (0-1) ogr(2)dun Mer (i (En) 1 p— Z))
dlogyr

logr7(Z)
Mﬁ( )M)

1O (ZL(b)) logrr(2)

= (*(b)mp resp(n(—1, Z) n(1, Z)dlogyr)

= *(b)resg(Mrr(o—1) ML (VX7 (Z0))

= 0*(b)resg(Mrr(o_1)

0 (ZL(b))
1
Wdlogyﬁ

= 0*(b)m} res(p]° (n(O,Z) Z[(b)legLT))

= 0*(b)r} resg(n(1 — 1, 2)

E*(b) no q 0 1
= L — Z
E(b) Tr (7TL) I‘eSB(ZgLTd )

where we use in the third equation the fact that V acts on R as logLT(Z)é’inV (cp. (112))
in the fourth equatlon Remark [1.4.9) for the fifth equation, Lemma[4.5.1| (iv) with ¢ (1) = ;-
for the penultimate equation and ally for the last equation that grr(Z) has constant term

1. O

Proof of Thm. [4.5.19, Since the equality can also be checked after base change by we
may and do assume that  belongs to K. Due to Prop. there exists g € D(I',, K) such
that ¢(A\) =< g, A >r, for all Ae Ri(I'L), because ¢ sends D(I'r,, K) to zero. We claim that

(127) Tw (9) =9

XLT
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for all j € Z : By Prop. {.5.11] and Lemma [4.5.14] we have
<Tw (9),f>r, =<g,Tw ~ (f) >r,
— (Tw ()
LT
=<(f)

:<g>f>FL

for all fe Rrg(I'L).
Now it follows from (127)) combined with Lemma #4.5.15| that ¢ is constant (and equal to
evX%T(g)), Le., ¢(—) =g <1,—>p,= go(—). Finally, it follows from (126] that g = q%’l. O

Corollary 4.5.17. The pairing q%’l <,>r, makes the following diagram commutative

3 _0 mul res
(128) Ric(X)0r=0 x () P+=" 5 Vg — =
07197{0[* Tﬂﬁﬂl
11371 <, >r.: RK(FL) X RK(FL) K’

i.e., we have

1

q

o1 <A = (e (1), MY (D}

(129) = resx (0191 ()M (V)
= resx (M(0—1 1 (1) M(Twy,1- (A))d logy)
= resx (M (e (1)) M(Twy, - (0-17))d logy).
Proof. By Thm. the definition of ¢ and of <, >p, we have
q q

q—il < A>T, = qf <1,pA >r,
(130) = (M(o-1), M (WN)}en
= (M(o-1t(), M (N}
where we use Lemma for the last equation. O

Lemma 4.5.18. We have for all \,p € Rx(I'r) that < A\, >p, = — < (N, () >1, -

Proof. Using (129) for the first and third equation, property 3. in Subsection applied to
t and the fact that Twy,, (0-1) = —o_; for the second equation and Prop. 4.5.11|for the last
one, we see that

4 - p, A >, = resx (M(Twy, (01 )) M (1 (1) )d logy )

q—1
= —resy (Mo 1L (Tw, 1 (1x(N))) M (1 (1) )d logie )

. q
= < Tu (). T (1) >,

= _qi < (N, (i) >r, -
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4.5.4 The Iwasawa pairing for (¢;,I';)-modules over the Robba ring

As before let Q) be either X or B and R = Rx(2) and M be in M (R), where K is any
complete intermediate extension L € K < C,,. Using Prop. we define the pairing

{ ) }?w = { ’ }%/[,Iw P MYE=0 s pvr=0 RK(FL) ’
which is R (I'L)-ts-sesquilinear in the sense that
(131) M, mYp, = {Am,m}p, = {m, w(\)m},

for all A € Ri(T') and m € M¥r=9 m e M¥L=0. This requires the commutativity of the
diagram

Ri(Tr) x MYL=0 x M¥r=0 L K
|
\ <’>FL
Rr(I'r) x Ri(T'r) K,

in which the upper line sends (f, z,y) to {f(x), y}ar, where the latter pairing is (116]). Indeed,
the property

{ii, myp, = {1, L (N)mi,,

follows from the corresponding property for {, }5s by Lemma while with regard to the
second one
Min,my g, = (i, mi,

we have for all fe Rg(T'r)
</ {/\m7m}(l)w >Tp = {f - A, m}
=< Af, {m, m}(}w >TL
=< [, A{m, m}(}w >T

by Lemma Note that the pairing { , }9, induces the isomorphism (122).
We set .
Ci= ("Lypp —1)MYE=! and C = (o, — )M~
q

and we shall need the following

Lemma 4.5.19. For f € D(I'y, K) we have { f-(pr—1)z, (FEpr—1)y} = 0 forallz € MYETAL
and y € M¥YL=1,

Proof. Straightforward calculation using Lemma above, cp. [KPX| Lem. 4.2.7]. O

This Lemma combined with the second statement of Prop. implies that the restriction
of {, }(I)w to C x C, which by abuse of notation we denote by the same symbol, is characterized
by the commutativity of the diagram

C x C xRg(p)/DIL,K)—K
{10,

|
Y < >FL

D(FL,K) XRK FL /D FL,K)HK
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in which the upper line sends (z,y, f) to {f(z),y} . In particular, it takes values in D(I'r, K).
Finally, we obtain a D(I'r, K)-t.-sesquilinear pairing { , }rw := { , }mrw which by
definition fits into the following commutative diagram

{ Yarrw : MY270 M¥=! _ = D(T'y, K)
@Lll Tf@L_ll
{, Wirw: € x C DTy, K).

Altogether we obtain the following

Theorem 4.5.20. There is a D(I'r, K)—t,-sesquilinear pairing
(132) (Ve s MYET70 % MYL= & D(Tp, K).

It is characterized by the following property
(133)
< f Ay myre >r,= {f - (pr — D, (%L@L —1)m} for all f € Ric(Ty), e M, me M.

Remark 4.5.21. For any n = ngy, we obtain similarly as in (132)) D(Ty,, K)-t.-sesquilinear
PAITINgs
~ =9
{, }rwr, : MY"=70 x MYe=1 & D(Ty, K).

It follows immediately from the definitions, the projection formulae (121f) and Frobenius reci-

procity that
{, bor, = (@=1D¢" propo{, }o

If x : T — o] is any continuous character with representation module W, = ort,
then, for any (¢r,'r)-module M over R, we have the twisted (¢, 'r)-module M(x) where
M(x) := M ®,, Wy as R-module, @y;y(m @ w) := @ (m) ® w, and 7| M (x)(m @ w) :=
YIM (m)@y|Wy (w) = x(7)-y|M(m)®w for v € T'r. It follows that ¥y, (m@w) = ¢ (m)@w.
For the character xpr we take W, . =T = orn and Wx}} = T* = orn™ as representation

module, where T* denotes the or-dual with dual basis n* of 7.
Consider the Rg-linear (but of course not Rx (I'y)-linear) map

twy : M — M(x), m— m®t,.

Lemma 4.5.22. There is a commutative diagram

~ —7 =L 1 — {7} w
M(XL%)wL TLoox -M(XJLT)T/)L_1 L D(I'z,Cp)

tw _j tw_j Tw j
XLT XLT XLT

MR« st U peg ey,

95



Proof. We have for all f e Rg(T'r),
< foftw,; (), tw; (m)}hr >r, = {f - ((or — D@47 7(%% —~m @1}
= (T, ()~ (or — 1) @5, (s~ m @)
= ((Tw,y (1) (r = ) . (CEpr — m)
=< waz% (f)v {Th, m}Iw >ry
=< f, TinT({m, m}]w) >FL

where we used Corollary [.5.11] for the last equation. The second equation is clear for 4-
distributions and hence extends by the uniqueness result of Thm.4.3.21] cf. the proof of Thm.
[4.3.20] O

4.5.5 The abstract reciprocity formula

We keep the notation from the preceding subsection and set tg) := logy.

Compatibility of the Iwasawa pairing under comparison isomorphisms Let M, N
be (not necessarily étale) L-analytic (¢r,I'r)-modules over R. We extend the action of I'r,

¢, and ¥, to the R[%]—module M[%] (and in the same way to N[é]) as follows

m

,yﬁ _am . xgir(n)
Tk T k0
ty 7y ty
( ) SOL(km)

m wr(m 7r
¢L(t7) = (5 = tkL and

D) PLily 2

k

m b (m)
wL(tT) = L ik :

2 2

Now we assume that there is an isomorphism
1 ~ 1
c:RI—]|®r M = R|—]|®r N
ty ty

of (¢r,I'r)-modules over R[%]

Lemma 4.5.23. (i) (M[é])W:O = (M¢L=0)[%] = {%|m e M¥r=Y k > 0}.
(ii) The (separatedly continuous) Ry (I'r)-action on MYL=9 extends to a (separatedly con-

tinuous with respect to direct limit topology) action of Rix(I'L) on (M[%])T/’Lzo.

k k
19Since t% = SOL(%) one checks that vy, (t%m) = %’,wL(m) by the projection formula. In particular, the

definition is independent of the chosen denominator.
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Proof. For (i) note that 0 = ¢ (;5) = W if and only if 11 (m) = 0. For (ii) take for any
Y

by
f € Rk (L) the direct limit of the following commutative diagram

ty 0

MYL=0 " gper=0™ "M a0
fl Tw, 1(f)l Tw —i (f)i
XLT
MYL=0 " ppup=0 M a0
This defines a (separatedly continuous) action. O

Consider the composite map

1
ER[—]®r M = HomR[L](R[g] ®r M,R[—] ®r Q%)
ty
1
= Hompp 1 ](R[Q] ®r N,R[—] ®r Q)
Y
1 -
= R[f] r N
ty

where the second isomorphism is (¢~ 1)*.
Lemma 4.5.24. ¢¥2=9 and ¢¥2=0 are Ry (I'1)-equivariant.

Proof. Consider, for n € Z, the (¢r,I'r)-modules (!) My := ty"M over R and note that
the inclusion (M,,)¥2=0 (M[é])wzo is Rk (I'r)-equivariant by construction of the action.
Now, since M, N are finitely generated over R, there exists ng = 0 such that c¢ restricts
to a homomorphism ¢y : M — Ny, of (pr,'r)-modules over R, whence chL:O s MYL=0
NPE= (N [%])W:0 is Rk (I'1)-equivariant by the functoriality of Thm.4.3.23/and similarly
for the induced maps ¢y, : My, = Nyy1p for all n > 0. The equivariance for c¥2=Y follows by
taking direct limits.

Similarly, for some ng = 0, the inverse b of ¢ induces homomorphisms b, : N_,,—, — M_,, of
(¢, T')-modules over R all n € Z. We obtain homomorphisms of (¢, 1 )-modules over R

én: (M), = Hompg (M, ty, ”QR)
~ Homg (M_,,, %)
~ Homp (N _ny—n, %)

= (N)no—i-n
where the third isomorphism is (b, )*. As above (&,)¥2=" is Ry (I'1)-equivariant and the claim

follows by taking direct limits.
O
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Lemma 4.5.25. The following diagram commutes on the vertical intersections

0
O3

MYL=0 x MYr=0 ———— - R (Ty)

(R[] ®r M)PE=0 . (R[Z] ®r M)¥L=0

iy ty
(RIA1®R N)P=0 x (R[] @ N)~°
e . 0%,
NYr=0 x N9p=0 0 R (T'y),

i.e., ifme M,meMneN,neN with ¢(m) = n and ¢(m) = n, then
{Th, m}(])\/f,fw = {’FL’ n}(])V,Iw‘
Proof. By definition of the Iwasawa pairings we have for all f € Rx(I'z)

< f {hvn}?\f,lw >Ty = {f L n}N

=<, {ma m}(l)w,[w >Ty
whence the claim. Here we use the R (I'z)-equivariance of ¢ in the third equality. O

Now let D be any ¢r-module over L of finite dimension, say d, (with trivial I'z-action)
and consider the (¢, T'z)-module N := R®g D over R (with diagonal actions) Since N =~ R?
as I'r-module, it is L-analytic. Moreover, we have N = Qf ® D* with D* = Hom(D, L)
being the dual ¢r-module. We set

Tl Q, ifY=B(and Q€ K).

Lemma 4.5.26. If)) = B, we assume QL € K. There is a commutative diagram

~ g1 0
QL{’}N,Iw

(Q ® D*)Vr=0 x  (R®g D)¥»=0 —* Ri(T'p)
Dﬁgl@idTN O'_1f)JTOL*®idT~
RK(FL) XL D*  x RK(FL) ®LD RK(FL);

where the bottom line is the R (I'r)-linear extension of the canonical pairing between D* and

D, ie., it maps A®L,p®d) to Aul(d).
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Proof. Let ch and d; be a basis of D* and D, respectively, and x = Zj Aj -Jj and y = >, pti-d;.
Then, by definition of {,}9, we have for all A\ € Rg(I'L)

<A AMY @id) (), (019 o 1, @id) (1)} 1y, >1,
= {OMY ®id)(2), (0 1Mo L ®id)(y)}
{Z (M) - (ev1 dlogy ®d;), Y t(ps) - ev_1 ®d;}

i

—Z{ A7) - (evi dlogy) ® dj, ev_1 ®d;}

7.7

= Zres@< ) evo1(ANju) - (evldlog@))

= Z d i )resy (evl()\)\j,ui) - (evq leg@))‘

Here, for the third equation we used property (iii) in Lemma On the other hand we can
pair the image >, ; Ajuid;(d;)) of (z,y) under the bottom pairing with A using the description
(130)

—— <\ w ) >r, = Zd D{M(o 1), MY (M)}

= Zd resx<ev 1 (AN 13) - (evq dlogx)),

whence comparing with the above gives the result for ) = X,using Prop. If9 =B, we
obtain the factor 2 due to Remark [£.5.3 O

Definition 4.5.27. An L-analytic (¢r,T'1)-module M over R is called étale, if it is semistable

and of slope 0. We write MMV (R) for the category of étale, analytic (¢r,T'r)-modules over
R.

Crucial is the following

Theorem 4.5.28. There are equivalences of categories

Repf(Gp) «— M"HRL(B))

and
Repf™(Gr) «— M (R (X))
Vs DL (V)

where the functor is defined in the proof below.
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Proof. Thm. D in [Bel6] and Thm. 3.27 in [BSX], which states an equivalence of categories

(134) MR (B)) «— M (RL(X))

O

We recall the definition of the subring BTL of Ry (B) by defining first A := W((CZ)L and

Al = {z = Z i an] € A ¢ 7|zl 2255 0 for some 7 > 0}.

n=0

Then we set AT := AT A, Bf := AT[%] as well as ATL = (ANHL and BTL = (BN,
It follows from the proof of [Bel6, Thm. 10.1] that for V € Rep{"(Gp) we have Djig(V) =

Rr(B) ®gi DY(V), where DY(V) belongs to Smét(BTL). From the theory of Wach modules we
L
actually know that Dy (V) is even of finite height, if V' is crystallin in addition:

pf(v) =8Bl ®a+ N(T) = B! ®g: N(V)

for any Galois stable op-lattice T' € V. From the big diagram in section we thus obtain
the following diagram, in which the horizontal maps are equivalences of categories.

Br®5+—
M dSDL,FL,ll"I Br gﬁet,cris B
0 BZ ~ ( L)

O®Bz_l w ~| Dir(4)
VLOD

MOdéL’FL’O = Repzms,an(GL)
MODcris,L
RL(B)@)O\L c

., Di(v
MR (B))™ < Repn(Gy)

Here 9M°<"%(B ) denotes the essential image of Rep§ ™" (G'r,) under Dyp(—) in 9 (By)
with B, := Az[-].

Now let T" be an or-lattice in an L-linear continuous representation of G, such that V*(1)
(and hence V(77 1)) is L-analytic and crystalline: Then it follows from [KR] and the discussion
above that

M := Djig(V(T_l)) = RL(B) ®(’)K(B) M(Dcris,L(V(T_l))) = RL(B) ®AZ N(T(T_l))
as well as
M = D}, (V*(1)) = Ri(B) ®0,.(8) M(Deris, . (V*(1))) = Ri(B) @, N(T*(1))

and the comparison isomorphism (20)) induces isomorphisms

compyy : M[ ] = Ry (B)[

1
to) t

] ®L Dcris,L(V(Til))
)
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and

compy : M[t;] > Rr(B)[—]®L Deris,. (VF(1)).

1
7,
2

By [BSX| §3.4/5] an analogue of Kisin-Ren modules exists for 9 = X, i.e., if we take M :=

DLg(V(Tfl))x and M = Djig(V*(l)) x we obtain analogous comparison isomorphisms
1 1 »

(135) comp,; : M[g] >~ RL(%)[Q] ®L Deris,n(V(T77))

and

comp,y : M[t;] ~ RL(%)[t;] ®L Deris, 1. (V*(1)).

which this time stem from [BSX| Prop. 3.42] by base change Rr(X) ®p,(x) — using the

inclusion O (X)[Z71] < RL(%)[%] Moreover, these comparison isomorphism for B and X

are compatible with regard to the equivalence of categories (134) by [BSX, Thm. 3.48]. Note
that for ¢ = comp,; and D = D5 ,(V(771)) we have

(136) comp,; = (compma ®p idpx) o ¢
using the identifications Q% =~ R(xrr) and
Dcris,L(V*(l)) = D* ® Dc’ris,L(L(XLT))-

We set b := compgqy (t%ldlogLT) = é ®mn € Dy := Depis ,(L(xrr)) and

N Vv, if9 =%,
Tl g ifY=B(and Qe K).
Remark 4.5.29. As operators on R we have the equalities

V = tg)agj and @ = t@é@

wmuv mu?

where we define 0B, = 0iny and

2 [0, V=X
v - 61-61,’ if Y =B (and Qe K).

Indeed, for ) = B the fact grants these equalities of operators on the subring Ok (B).
Concerning the ring Ry (B) we note that V is acting as a continuous derivation as can be
shown similarly as in [KR, Lem. 2.1.2], while for the operator tgdiy this is clear anyway.
Thus the same equalities hold for R by , Indeed, on the localisation Ok (B),n it extends
uniquely by the derivation property and then it extends uniquely by continuity to Ry (B).
Regarding ) = X note that all operators are defined over K. Since the equality can be checked
over Cp, the claim follows from Remark[{.2.9 and the previous case ) = B.
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Lemma 4.5.30. The following diagram commutes

compﬂ%2 ®ridp*

Qkl7y ] ®D* Rlz1® D* ® Do
] i
(Qk @ D*)¥e=0 RYL=0® D* ® Dy
mﬂ ®id Tg E)Jt@idD*@DOTg
Ri(TL) ® Crrwenrt (01 @ D* @ Dy

assuming Q2 € K, if 3 = B.

Proof. We first give the proof for ) = B. Observe, since on D* we have the identity through-
out, that the commutativity of the above diagram follows from the commutativity of

(137)  Ric(Dy) — 20 ()0 Q[ 190
R(xrr)¥r="
2,8y | ompay,
Ric(T1) 228 RUL=0 @1 Depis.r(L(x17))
‘| il 5
Ric(Pp) 22 RYE0 @ Dy, 1(L(xur)) > (RE] @1 Derisn(L(xrr))) ¥+~

2. ®ty : RO Deris,r.(L(xrr)) — R{xrr) sends f® &~ 5 ®n to 6mvf®n and
the composite with the natural identification R(xrr) = Q', which sends 7 to dlogLT, is the
map § . R - Ql upon identifying R ®r, Depis .(L(xr7)) with R by sending f ® ® 7 to
f Remark m implies the commutativity of the left lower corner while for the upper left
corner it follows from (104)), the easily checked identity 6mv77(1, Z) =n(1,Z) and (123)

where the map o

imgl(/\) = (waLT(/\) (1, Z))dlogLT
= (Twy,r (A - 03,11, Z))dlog
=02, (A n(1, 2))dlogp

muv

Finally, since (1, Z)®b € R¥E=°®p, Deris.1.(L(x 1)) is sent up to n(1, Z)dlog and down to
tyn(1, Z)®b, the compatibility with compg is easily checked. The same proof works for ) = X

by using (103)) instead of (104) and replacing n(1, Z) and % by evy and d, respectively. [

Now we introduce a pairing - if ) = B assuming 2 € K as usual -

[.1:=1[, ]Dms,L(V(Tfl)) RV @y Deris,.(V*(1)) x RV @1 DcriS,L(V(Til)) — Rk(T'r)
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by requiring that the following diagram becomes commutative

(138) RwL:()@D* ® Dy x RYL=0 ®LDL>'RK(PL)

fm®idD*®DoT~ Ulmtol*@idTN

Rik('L)®L D*® Dy x Rr(rL)®L D —Rk([TL),

where the bottom line sends (A ® I ® b, u ® d) to AuSl(d).
Combining the Lemmata [4.5.26{ and [4.5.30| we obtain for N = R @, Deyis,n(V (7))

Lemma 4.5.31. [, ~]p,, ,(v(r-1) = LV (compoy, @ idps) (=), =} 1o
Setting
M = COmp_l(RwLZO XL Dcris,L(V(T_l))) and
M = COmpil(Rszo QL Dcm’&L(V*(l)))
we obtain

Theorem 4.5.32. Assume Qe K, ifY) = B. For allz € M'n(M¥:=°) and y € M' ~(M¥2=0)
it holds

q—1
T{VZ',y}(}w = [33>y]7
1.e., the following diagram commutes on the vertical intersections

—1
qTV{’}?W,Iw

N¥L=0 x M¥r=0 Rr(T'r)

X

(R[] @r N)¥e=0 (R[] @r M)~

compyy | = comp, |

(Rl 1 ®L Deris, o (V(r71)))¥E=0

ty

X

(Rl ] ®L Deris £ (V*(1)))¥="

Lbgpie (V1))

R @p Derist (VF(1)) % RU=0@p Doge o (V(771) — 2 2 Rye(Ty ).

Proof. Combine Lemmata [4.5.31| and |4.5.25| using ((136]). O

Interpretation of the abstract reciprocity formula in terms of the D ;-pairing
The canonical pairing Dcm’s,L(V*(l)) X Dcris,L(V(T_l)) - Dcris,L(L(XLT)) extends to a pair-
ing -if Y = B assuming Q) € K as usual -

[7] cris

RVLP=0@L Deyis,t(V*(1)) % RYE=0®L Deyis,r(V(17")) == RY2=0 @ Deris,1.(L(xLT))

103



by requiring that the following diagram is commutative (in which the lower one is induced by
multiplication within R (I'r) and the natural duality paring on Depis 1)

Lleris

(139) ’R}f’L:O ®L Dcm’s,L(V*(l)) x ’R}Z’L:O L Dcm’s,L(V(T_l)) RwL:O ®r Dcm’s,L(L(XLT))
Tgﬁ@id Talfmm*@id T‘.‘m@id
Ri(TL)®L Deris, n{V*(1)) x Rg(TL)®L Deris, . (V(771)) ——= R (L) ®L Deris, L (L(xLT))
Note that
comp ([377 y] eV ® (til ®77)> = [JI, y]cris-
Hence using the diagram (137)) Thm. [4.5.32]is also equivalent to
qg—1
q

L
comp o M? 0 Q) {z,y}}, = [comp(z), comp(y)]eris,

i.e., the ’‘commutativity’ (whenever it makes sense) of the following diagram
(140)

&5q9—1
SzL{w}Iqu

by o= 4

Y= LA\ = q
Dl (v¥a) T [ x Dl (V)P ET T — ~'= = > R (Tp)

qufl{.}o 1
_ _ L q ITw me _
Dl V¥Vl x Dl (VETNVEO ] = — = = > R () > Rxp7) [ 197"
comp \L >~ comp \L >~ >~ \L comp
_ _ [erie _
RYL=O[E1@L Deria, . (V¥(1) % RYLLEEI@L Depia, (V™)) = — = — ='= — — > RVL=[1] @ Deris, 1 (L(xL1))

for 2) = B while for ) = X one has to decorate the Djigs with index X.

Question: Can one extend the definition of [, | and {, } to (M[%])W:O X (M[%])W:0

by perhaps enlarging the target Rx(I'z) by an appropriate localisation, which reflects the
inversion of ty somehow?
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5 Application

5.1 The regulator map
Recall that we write 71 = xp7Xoe Let T be in RepCT;‘gf(GL) such that T(7~!) belongs to

o

Rep ™™ (G1) with all Hodge-Tate weights in [0,7], and such that V := L ®,, T" does not

OL:f
have any quotient isomorphic to L(7). Then we define the regulator maps

Ly :Hjy,(Loo/L, T) = D(T'1, Cp) ®L Deris,r(V (1)),
LY :Hpy(Leo/L, T) — OL(B)** =" @1 Deris,p(V(771)),
Ly :Hfy(Loo/L, T) = D(T'1, Cp) ®L Deris, (V)

as (part of) the composite

_ 1—-=L o,
H} (L JL.T) = Dy (T(r=))*1=" = N(T(r))¥rurcrein= L0 w (1)) =0

(141) > 0Y:=0 @ Deris V(7)) € O, (B)"*=° @1 Deris,p(V (1))
2@, pry, Cp) @ Deris,t(V(171)) = D(T'z,Cp) ®r Deris, (V)

using [SV15, Thm. 5.13], Lemma the inclusion and where the last map sends
12 ® d e D(FLy(Cp) ®L Dcris,L(V(T_l)) to 1% ® d ® dl € D(PL,(CP) ®L Dcris,L(V(T_l)) ®L
Deyis,.(L(7)) = D(T'1,, Cp)®L Deris,.(V'). Note that D := Depis 1,(L(7)) = DgR’L(L(T)) = Ld;
with d; = tLTt@i ® (®~1 @n¥°), where L(xrr) = Ln and L(Xeye) = Ln™°.

Alternatively, in order to stress that the regulator is essentially the map 1 — ¢, one can
rewrite this as

(142)

H} (Lo /L, T) = Dia(V(r 1) = N(T(r1)Peurac=n=! o N(V(7 1) Pourve== @, D
ﬂ) @f(N(V(T_l)))wL:O ®L D — OwL:O ®L Dcris,L(V(T_l)) ®L D < O(Cp (B)U)Lzo ®L Dcris,L(V)
M’ D(FLa (Cp) ®L Dcris,L(V)

where the < in the first line sends n to n ® d; and the ¢y, now acts diagonally. By construc-
tion, this regulator map Ly takes values in D(I'y, K)%0* @, Deyis,,(V), where the twisted
action of G, on the distribution algebra is induced by the Mellin-transform as in (ii) of Prop.
4.1.25

We write Vi € Lie(I'z) for the element in the Lie algebra of I';, corresponding to 1 under

the identification Lie(I'y) = L.

Proposition 5.1.1. The regulator maps for V and V(xpr) - assuming that both representa-
tions satisfy the conditions above - are related by

1 p—
Lv(xer) (@ ®n) = Ve - <QTWXL% (Lv(x) ® thlpn> :

1.e., the following I'r-equivariant diagram commutes:

ﬁV(XLT)

H} (Lo /L, V(xr1)) D(T'L,Cp) ®L Deris.r.(V(xrr))
;l Tt ®tL%T

LyvRL
HY (Loo/L, V) @0, Lxir) —2XXTL DDy C,) @1 Derin(V) @1 Lix1r).
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Proof. Analogous to [LVZ15, Pro. 3.1.4]. Note that the period  enters due to (104)). O]

This twisting property can be used to drop the condition concerning the Hodge-Tate
weights in the definition of the regulator map, i.e., upon replacing D(I'z, Cp) in the target by
its total ring of quotients one can extend the regulator map as usual to all 7" in Repl*%(Gp)

. or,f
such that T(77!) belongs to Rep" """ (GL).

or,f
In order to better understand the effect of twisting we have the following

Lemma 5.1.2. For pe D(I'z, K) we have
1 _
q(VieTwy-1)(p) =M HtorM(p))

and for alln =1
(ViieTwy—1 (1) (X Er) = nu(Xp7')-

Proof. The first claim follows by combining (146) with (104)), while the second claim is just
Lemma [4.1.22 applied to the first. O

One significance of regulator maps is that it should interpolate (dual) Bloch-Kato expo-
nential maps. We shall prove such interpolation formulae in subsection by means of a
reciprocity formula.

5.1.1 The basic example
Setting U := lim | ozn with transition maps given by the norm we are looking for a map
L:URzT;— D(Ir,Cp)®r Deyis,r.(L(T))
such that
ol- "

rl 1 _ "L
q

(143) L{u®an®)(xXpr) ® (try @n® ") = CW(u@an®™")

for all =2 1,u € U, a € o, where CW denotes the diagonal map in

Theorem 5.1.3 (A special case of Kato’s explicit reciprocity law, [SV15, Cor. 8.7]). Forr > 1
the diagram
U Rz Tg@—r

n®idl

Hj(Leo/L, T2 7 (1))

Corl

HY(L, T2 (1))

exp

D (VE(1)) = Ld,,
commutes, i.e., the diagonal map sends u® an®~" to

—r r L—m," r
a(l =7 ")riow (u)dr = a = 1L), Oiny 108 Gup(Z)| z=0dr

with d, := typtg” ® (187 @7Y°).
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We set £L = £ ®d; with £ given as follows

Yr=1 (I_WTLSD)

£:URT: 5 opfwrrl] Oc, (B)"+7" <, 0 (B)"+ ™" 2, DT, C,),

where the map V has been defined in [SV15] §6] as the homomorphism

V:UzT* — OL[[wLT]]w=1

ainv (gum) (

u®an* — a wrT) -

gu,n

Note that due to the multiplication by log; the maps £, £ are not I'z-equivariant. Using
Lemmata [4.1.22] 4.1.21| we obtain

* r — m r
L(u @ an®)(x}y) = a9 (log (1 — fso)aim 10g gun) (X7.1)
_ _ ™ —
(144) = aQ lrom (1 - jw)amv 108 Gu) (X7 7)

mv

—r L _r— r—
= arf) (1 — ?TFL 1)(6 1ainv 10ggu,n)|Z:0

mv

_ TL e
=arQ (1 - FL)(a ! Oinv 108 Gu,n)| 705

i.e., L satisfies (143)), indeed. By construction and Proposition [4.1.25| the image of £ actually
lies in the Gp-invariants:

L:U®zTF — DT, K)° @ Deris,r.(L(T)).
We claim that

K

—kQT ¥ LL(rx ) ®0L(XLT)®tLT
- Hllw(LOO/LvoL(T)) - =

(145) U®zT*

D(FL; Cp) &L Dcris,L(L(T))
coincides with
L:U®;y T: d D(FL,Cp) ®r Dcm‘s,L(L(T))'
Indeed, from to the commutativity of the following diagram (cp. with [LVZI5, Appendix
C| for L = Qyp), in which L7y, ) ®d(1971 or more generally Lp-yr ®d?*1, r = 1, shows up

at ¢, the above claim immediately follows by tensoring the diagram for » = 1 with of, (XZ:IF)
and then composing with the multiplication by tz7; we set e, := ¢, ®N®" € Deris,n.(L(X5 7))
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Q@(r—1)
U®T9(r_1) —k@Tx

Hiy (Lon/L, oL (TX 7)) ~

ven®r =

(or[[wrr]] @ n®")¥r =1 (wior[[wrr]] @ n®7) V1 =" N(oL(xir))*=="

D(I'L,K)° ®e,

D(I'p, K)St @

(A=53er)0id i(lﬂf‘%)@d e
= r - = " T = ¢
OL[[OJLT]][%]wL_O@T]@ o p(wir) OL[[wLT]][%]wL 0 Q@ =————* (N (L(x}1))) 2 =°
Eic ith@tz; comr
lo-l_1®id
OVL=0g e, OT ﬁrl , O"r="@e, O¥1= @1 Deris, L (L(XLr))
=tp 70y ®id
Smfl®id/
9ﬁf1®id D(FL7 K)GL ®L Dcm’s,L(L(XET))

L (xT )

Deris, . (L(XLT))

At id @t
D(T'L, K)9" @ n" D(T'r, K)°* ®r L(X71),
where [; := 170y — %, Oy = ﬁ. Note that we have

e S )
D) = )

see [KR], Lem. 2.1.4] for the fact that Vi = t170iny as operators on O. By abuse of notation we
thus also write [; = Ve —i for the corresponding element in D(I'y,, K'), compare [ST1], §2.3| for
the action of Lie(I'1) on and its embedding into D(I'z, K). Moreover we set [1(,r _y = ]_[;-:(} [;.
Note that Oy is invertible on O¥2=0 by [FX| Prop. 3.12]. Finally the map

(146) = VLieM ' (f),

comp : o*(N(or,(X50)) "2~ = 0= @, Deyis, 1 (L(X5r))

is .

Inspired by Proposition — we define L) - since L(7) does not satisfy the conditions
from the beginning of this chapter while L(7x7) does - as a twist of Ly, ,) by requiring
the commutativity of the following diagram:

Lrir
H} (Loo/ L, 01,(7)) o D(T1,Cp) ®r Deris £ (L(7))
Lrrxr®oL _
H} (Lo/L,or(TXLT)) ®op, 0L(X11) XLT—>MB(I‘L, Cp) ®L Deris, . (L(TxrT)) ®L L(X 1 7)

which is possible due to the commutativity of the above diagram. Then

L: U ®y, T;: - D(FL, (Cp) ®r Dcris,L(L(T))
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also coincides with

P (%VLieTwX,1®id)o£L(T)

* T:
(147) Uz T —21=5 HE (Loo/L, 01(7))

by Proposition

We refer the interested reader to §5 of [ST2] for an example of a CM-elliptic curve E with
supersingular reduction at p in which they attach to a norm-compatible sequence of elliptic
units e(a) (in the notation of [dS| II 4.9]) a distribution u(a) € D(I'z, K) in [ST2, Prop. 5.2]
satisfying a certain interpolation property with respect to the values of the attached (partial)
Hecke- L-function. Without going into any detail concerning their setting and instead referring
the reader to the notation in (loc. cit.) we just want to point out that up to twisting this
distribution is the image of x(e(a)) @ n~! under the regulator map Lr;:

D(T'r,,Cp)®r Deris,r.(L(1))

Ly (sle(@) @171 = QTwy,, (1(a)) @ di.

Here, L = K, = F, (in their notation) is the unique unramified extension of Q, of degree 2,
71, = p, ¢ = p?, and the Lubin-Tate formal group is Ep while K = L.
Indeed, we have a commutative diagram

(148) U Crol D(T'1, K)

—H(—)®77_1 iQTwXLT@)dI

Lrr
H} (L) Ly 01, (1)) — > D(T'p, K) ®, Deris,1.(L(7)),

where the Coleman map Col is given as the composite in the upper line of the following
commutative diagram

L
1 _ —_1 172 -
(149) U89 o¥r==] g(f)wﬂiomﬂiip(rb[()
L ainv l ainv l [0 ‘( iVLie
1-"Lop, -1

U@ Ty Y oVt L on 0 L ovis0 M pry K),

in which the second line is just £. Then the commutativity of (148])) follows by comparing (149)
with (147). Finally, Col(e(a)) = u(a)(= M"1(ga(Z)) in their notation) holds by construction
1

in (loc. cit.) upon noting that on OYE=7L the operator 1 — I%QDL oy, which is used implicitly
to define ga(Z)(= (1 — JzoL 0 Y1) log Qu(Z)), equals 1 — Z.

5.2 Relation to Berger’s and Fourquaux’ big exponential map

Let V denote a L-analytic representation of G and take an integer h > 1 such that
Fil_th-s,L(V) = D¢ris,.(V) and such that DCM&L(V)%"L=7TZ}L = 0 holds. Under these condi-
tions in [BF] a big exponential map & la Perrin-Riou

A=0 - a9
QV,h : (OW:O ®rL Dcris,L(V)) - Djig(v)wL L
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is constructed as follows: According to [BE], Lem. 3.5.1] there is an exact sequence

h

ok NP

0= @ th7Deria (V)#E™"E — (O oy, Derie£(V))"H 70 2L
k=0

h
OwL:O ®rL Dcris,L(V) A) C_D Dcris,L(V)/(l - FIZCJQOL)DC”'S?L(V) -0,
k=0

where, for f € O ®r Deris,r.(V), A(f) denotes the image of (—BZ:O(&ﬁW ® ich,.is,L(V))(f)(O)
0

in @ _g Deris..(V)/(1 = 7501) Depis (V). Hence, if f € (O¥2=0®p Depis (V)" there

exists y € (O Qo, DCM-SVL(V))W:% such that f = (1 — ¢r)y. Setting V; := V — i for any
integer ¢, one observes that Vj_1 o... 0o Vq annihilates (—BZ;& t’ZTDm-s,L(V)S"L:”Zk whence
Qun(f) :=Vp_10...0Vp(y) is well-defined and belongs under the comparison isomorphism
to D;rig(V)szﬁ by Prop. [3.1.13]

Note that (OWZO L DCMS’L(V))A:O = O¥r=0g, Deyis, (V) if DCMS,L(V)SOL:”ZIC = 0 for
all 0 < k < h. If this does not hold for V' itself, it does hold for V' (x ) for r sufficiently large
(with respect to the same h).

In the case L = Q, the above map specialises to the exponential map due to Perrin-Riou

and satisfies the following adjointness property with Loeffler’s and Zerbes’ regulator map, see
[LVZ15, A.2.2], where the upper pairing and notation are introduced:

DT, Q) @, Hia(@ V(1) *  D(T, Q) ®ng, HrulQy, V) —= DT, Q)
TQV*(l),l ’Y—lﬁvl

D(F7 Qp) ®Qp Dcris,Qp(V*(l)) X D(R Qp) ®Qp Dcm’s,Qp(V) - D(F7 Qp)

In fact this is a variant of Perrin-Riou’s reciprocity law comparing Qy,p, with Qyrs(qy 1, -

For L # Q) the issue of L-analyticity requires that V*(1) is L-analytic for the construction
of Qyu(1)1-p, which then implies that V' is not L-analytic. Instead our regulator map is
available and the purpose of this subsection is to prove an analogue of the above adjointness
for arbitrary L.

Theorem 5.2.1 (Reciprocity formula/Adjointness of Big exponential and regulator map).

Assume that V*(1) is L-analytic with Fil™' Deyis . (V*(1)) = Deris.n(V*(1)) and
DCM-S,L(V”‘(1))‘“:“21 = DCM‘S’L(V"‘(l))S"L=1 = 0. Then the following diagram consisting of
D(T'1,, K)-ty-sesquilinear pairings (in the sense of (131)) commutes:

_q LEEN T
(150) DY (V*(1)" x DV (r Yyt — " D1y, C,)
TQV*(l),l L(\)/l
0¥r=0 @ Dovis . (V*(1))  x O¥=0@; Depis.r(V(r~1)) —2s D(T;, C,).

Note that the terms on the right hand side of the pairings are all defined over L!

Proof. This follows from the abstract reciprocity formula 4.5.32 (with M := Diig(V(Tfl))
as before) by construction. Indeed, assuming that z € O¥2=Y ®p Dewis . (V¥(1)) and y €
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D(V(r71))¥2=1 we have that (1-"Eer)y € M’ A (MY=9) (see (T41))) and comp ! ((1—¢r)z) €
_a

M for z € (O®y Dms’L(V*(l)))wL:”L such that z = (1 — o )z. Moreover, comp 1((1 —

or)r) € M¥:=0 by Prop. [3.1.13/as V*(1) is positive by assumption. Recall that comp ! (Vz
.

is an element in Djig(V*(l))wL_”L again by Prop. 3.1.13, We thus obtain

qg—1 qg—1

{comp™!(Va), y} 1w = T{Vcomp’l((l —wr)r), (1= %@L)y}(}w

[(1 - o), comp((1 — %m)y)].

By definition of the big exponential and regulator map the latter is equivalent to

{ Qe (2) Y}rw = [ LY ()]
g

We also could consider the following variant of the big exponential map (under the as-
sumptions of the theorem)

a

Qv : DI, Cp) ®r Dcm’s,L(V*(l)) = pf (V)wL:"L

rig
by extending scalars from L to C, and composing the original one with Q_hw times

MRid
_—

D(T'L,Cp) ®r Deris,.(VF(1)) (O (B))"*=° ®L Deris, . (V*(1)).

Corollary 5.2.2 (Reciprocity formula/Adjointness of Big exponential and regulator map).
Under the assumptions of the theorem the following diagram of D(I'p, K)-t,-sesquilinear
pairings commutes:

_a =i,
(151) D V(1) S DV (r Y-t — " DTy, Cp)
TQV*(DJ %
(0]
D(T1,Cp) ®1 Deris 1 (V*(1)) % D(T'1,Cp) ®r Deris £(V(r 1)) = D(T'1,C,),

where [—, —]° = [M@id(—),c 1M id(-)], i.e.,
(152) [)‘ ®d’ 2 ®d]0 : 77(17 Z) ® (tE% ®77) = AL*(M) ’ 77(17 Z) ® [d’ d]cris,

where Depis. ,(V*(1)) X Deris . (V(771)) L derie, Deris,.(L(xrT)) is the canonical pairing.

Remark 5.2.3. By [BE, Cor. 3.5.4] we have Qy(x) @ n® = QV(XJL )hﬂ.(&i;ix ®tz%77®j)
T) i ‘
and Iy, o Qv = Qupi1, whence we obtain Qyp(z) @ = QV(X{T)7h+j(TwXZ§~ (z) @t Fn®7)

and [h o QV,h = QV,h+1-

20This means to replace V by % in order to achieve twist invariance of the big exponential map, see the
remark below.
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5.2.1 Some homological algebra

Let X > Y bea morphism of cochain complexes. Its mapping cone cone(f) is defined as

4 d 0
X[1] @Y with differential Deome(f) = ( f)[(l[]lg i ) (using column notation) and we define
Y

the mapping fibre of f as Fib(f) := cone(f)[—1]. Here the translation X[n] of a complex X is
given by X[n]’ := X" and d&[n] = (—1)”d§f”. Alternatively, we may consider f as a double
cochain complex concentrated horizontally in degree 0 and 1 and form the total complex (as
in [SP), Def. 18.3/tag 012Z]). Then the associated total complex coincides with Fib(—f).
For a complex (X*,dx) of topological L-vector spaces we define its L-dual ((X*)*, dxx)
to be the complex with
(X*)" := Homp, os(X ", L)

and
dxs(f) := (=1)48 1 f o gy

More generally, for two complexes (X*,dx) and (Y*,dy) of topological L-vector spaces
we define the complex Homj ., (X*®,Y*) by

Homz,cts (X.a Y.) = H HOHIL7Cts(Xi7 Yern)
1€Z

with differentials df = d o f + (—1)38()=1f o d. Note that the canonical isomorphism
Hom*(X*,Y*)[n] = Hom*(X*,Y"*[n])

does not involve any sign, i.e., it is given by the identity map in all degrees.
Also we recall that the tensor product of two complexes X* and Y* is given by

(Xo ®L Yc)i = @Xn ®L Yi—n

and
dlr®y) =dr®y + (—1)deg(x)x ® dy.

The adjunction morphism on the level of complexes
adJ : Homz,cts (X. ®L Y.7 Z.) - Homz,cts (Y.? Homz,cts (X.> Z.))

sends u to (y — (z — (—1)des@ dee)y (2 ®y))). It is well-defined and continuous with respect
to the projective tensor product topology and the strong topology for the Homs. Furthermore,
by definition we have the following commutative diagram

(153) X @LY* - L[-2],

id @adj(u)l

evy

X* ®L Homi,cts(X.7 L[_2]) - L[—Q]

where evs sends (z, f) to (—1)deg("’f) deg(f)f(x),

Lemma 5.2.4. Let (C*,d*) be a complez in the category of locally convex topological L-vector
spaces.
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(i) IfC consists of Fréchet spaces and h'(C*) is finite-dimensional over L, then d'~' is strict
and has closed tmage.

(ii) If d* is strict, then h='(C*) = h*(C)*.
Proof. (i) Apply the argument from [BW] § IX, Lem. 3.4| and use the open mapping theorem
INFAL Prop. 8.8]. (ii) If
A—e.p- " ¢
forms part of the complex with B in degree i, one immediately obtains a map
ker(a®)/im(B*) — (ker(B)/im(a))*
where ker(3) carries the subspace topology and ker(f3)/im(a) the quotient topology. Now use

the Hahn-Banach theorem [NFAL Cor. 9.4| for the strict maps B/ ker(S) < C (induced from
B) and ker(3) — B in order to show that this map is an isomorphism. O

Definition 5.2.5. A locally convex topological vector space is called an LF-space, if it is the
direct limit of a countable family of Fréchet spaces, the limit being formed in the category of
locally convex vector spaces.

Remark 5.2.6. (i) If V.5 W is a continuous linear map of Hausdorff LF-spaces with
finite dimensional cokernel, then « is strict and has closed image by the same argument
used in (i) of the previous lemma. However, since a closed subspace of an LF-space
need not be an LF-space, we cannot achieve the same conclusion for complexes by this
argument as ker(d') may fail to be an LF-space, whence one cannot apply the open
mapping theorem, in general. But consider the following special situation. Assume that
the complex C* consists of LF-spaces and h'(C*) is finite-dimensional. If moreover C'**1 =

0, i.e., C' = ker(d"), then d*~ ! is strict and h'~*(C*) = h*1(C)*.
(ii) Ifd® is not strict, the above proof still shows that we obtain a surjection h=H(C*) —» h*(C)*.

However, for a special class of LF-spaces and under certain conditions we can say more
about how forming duals and cohomology interacts.

Lemma 5.2.7. Let (C*,d*) = lim (C7.d}) be a complex in the category of locally conver
topological L-vector spaces arising as reqular inductive limit of compleres of Fréchet spaces,
i.e., in each degree i the transition maps in the countable sequence (Cl), are injective and for
each bounded subset B < C* there exists an r > 1 such that B is contained in C. and is bounded

as a subset of the Fréchet space Ct. Then,

(i) we have topological isomorphisms (C*)* = lim (Cr)*,

(ii) if, in addition, @7{20 R((C2)*) = 0 for all i, we have a long exact sequence

L BI((C)) —lim_ B((C2)F) — B (lim!_ (C)F) — hITL(C)F) — ..,

(iii) if, in addition to (i), the differentials d? are strict, e.g., if all h*(C?) have finite dimension

sl o\x __ . .
over L, and &n@o(CT) = 0, we have isomorphisms

hz((co)*) ~ linhfz(co)*

r

r=0
Proof. (i) is [PGSL Thm: 11.1.13] while (ii), (iii) follows from (i) and [Lu, Ch. 3, Prop. 1]
applied to the inverse system ((C;)*), combined with Lemma [5.2.4] . O
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5.2.2 Koszul complexes

In this paragraph we restrict to the situation U = Zg and fix topological generators 7y, . ..y of
U and we set A := A(U). Furthermore, let M be any complete linearly topologized or-module
with a continuous U-action. Then by [Laz2, Thm. I1.2.2.6] this actions extends to continuous
A-action and one has Homy s(A, M) = Homy (A, M).

Consider the (homological) complexes K,(y;) := [A 22— A] concentrated in degrees 1
and 0 and define

d
K, :=K! = K.(7) == &) K.(%),

A
i=1
K*(M) :=K{ (M) := Hom}, (K., M) =~ Hom$ (K., A) @y M = K*(A) @ M,
K (M) :=K,®x M (homological complex),
K (M)*

=(K.®x M)* (the associated cohomological complex).

If we want to indicate the dependence on v = (v1,...74) we also write K*(vy, M) in-
stead of K*(M) and similarly for other notation; moreover, we shall use the notation vy~ ! =
(m 'y ) and AP = (’y‘fn, . .’ygn) . Note that in each degree these complexes consists of
a direct sum of finitely many copies of M and will be equipped with the corresponding direct
product topology.

The complex K, will be identified with the exterior algebra complex A} A9 of the free
A-module with basis ey, ..., e4, for which the differentials d, : A% A — /\?\_lAd with respect

to the standard basis e;,, .. ;, =€y A= Ae, 1 <iyp <.+ <ig < d, is given by the formula

q
D+ (s, — ~
q(@iy i Z (Vi 1)ai1,...,ik,...,iq'

Then the well-known selfduality (compare [Ei, Prop. 17.15] although the claim there is not
precisely the same) of the Koszul complex, i.e., the isomorphism of complexes

(154) K.(A)* = K*(A)[d]
can be explicitly described in degree —q as follows (by identifying /\jl\Ad =AegA---neqg=A):

LAY 275 Homy (A /A% A

€iy,.ig > sign(l, J)er

J1 o Jd—q?
where ef,...e} denotes the dual basis of eq, ..., eq4, the elements e]1 g = e;-‘l A A e;‘d_q,
1 <j1 < <jag—q < d, form a (dual) basis of Homan ( /\A YA A), the indices J = (ji)r are
complementary to I = (in), in the following sense {i1,...,iq} U{j1,...,Ja—q} = {1,...,d} and
sign(I, J) denotes the sign of the permutation [i1,...,14, j1,...,Jd—q|- Indeed, the verification
that the induced diagram involving the differentials from cohomological degree —q to —q + 1
AGA? Hom, (AF 7A%, A)

dql i( (=14 ldd q+1
=1 Ad 7 Homy (A7 A, A)

114



P1] commutes, relies on the observation that

sign(Z, J)sign(1z, Jp) 7t = (=)7L

where [} := (i1, .-y iAk, ..., 1q) denotes the sequence which results from I by omitting 45, while
Je = (J1s- -, Ji—=1,k, Ji, - - - 1d—q) denotes the sequence which arises from J by inserting iy, at po-
sition [ with regard to the strict increasing ordering: The permutations [i1, ..., %q, j1,- -, Jd—ql

and [ig,. .. ik igs 1y -y Ji—1, Uy Jis - - - Jd—q] differ visibly by ¢ — k41 — 1 transpositions.

Now we assume that M is any complete locally convex L-vector space with continuous U-
action such that its strong dual is again complete with continuous U-action. Then we obtain
isomorphisms of complexes

K* (3, M)* = Hom}, o, (Hom (K. (1), A) @ M, 1)
~ Hom} (Hom} (K. (v~ D, A), Homy, +s(M, L))
—HomA(HomA( (AL A) @ Homy, +s(M, L)
(155) ~ K.(y" ', A)* @y Homp, os(M, L)
~ K* (v, A)[d] @ M*
= K*(y~!, M*)[d],

where in the second line we use the adjunction morphism; the isomorphism in the fourth line
being the biduality morphism (according to [Ne, (1.2.8)])

K.(\)* = Hom (Hom$ (K., A), A)

T (—1)i$**
with the usual biduality of modules

K.(A)" = Homp (Homp (K_;, A), A)
x> (2 f e f2))

involves a sign, while the isomorphism in the third last line stems from together with
Lemmal4.5.1](i). Note that the isomorphism in the second last line does not involve any further
signs by [Nel (1.2.15)].

We finish this subsection by introducing restriction and corestriction maps concerning the
change of group for Koszul complexes. To this end let U; € U be the open subgroup generated
by fyfn, . .fygn. Then Hom} (—, M) applied to the tensor product of the diagrams

A A

e
AU) X AU)

gives a map corU : K7, (V") (M) — K (v)(M) which we call corestriction map and which is
compatible under - ) below with the corestriction map on cocylces (for appropriate choices

21 The signs (—1)% and (—1)?"97! result from the shift by d and the sign rule for complex-homomorphisms,
respectively.
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of representatives in the definition of the latter). Using the diagram
A(U)
A(U)
instead, one obtains the restriction map resgl P K3 () (M) — Ky, (v?")(M), again compatible
under (169)) with the restriction map on cocycles.

Pnfl
A(U)
ZZiol'Yfi
vi—1

AU) —

5.2.3 Continuous and analytic cohomology

For any profinite group G and topological abelian group M with continuous G-action we write
C* :=C*(G, M) for the continuous (inhomogeneous) cochain complex of G with coeflicients in
M and H*(G, M) := h*(C*(G, M)) for continuous group cohomology. Note that CO(G, M) =
M.

If G is moreover a L-analytic group and M = li_n)18 @T M5 with Banach spaces M a
LF space with a pro-L-analytic action of G, i.e., a locally analytic action on each M5! which
means that for all m € MI"™] there exist an open L-analytic subgroup T',, T in the notation
of subsection such that the orbit map of m restricted to I';, is a power series of the form
g(m) = Yoo £(9)*my for a sequence my, of elements in M1 with 77 m, converging to zero.
Following [Co2, §5] we write C3,, := Cg,,(G, M) for the locally L-analytic cochain complex
of G with coefficients in M and H} (G, M) := h*(C;,(G, M)) for locally L-analytic group
cohomology. More precisely, if Maps;,.; (G, M"*1) denotes the space of locally L-analytic
maps from G to M1 then

Cin(G. M) = lim lim Mapsioer,—on (G, MU))

S s

is the space of locally L-analytic functions (locally with values in @T M) for some s and

such that the composite with the projection onto M) is locally L-analytic for all 7). Note
that again C%, (G, M) = M and that there are canonical homomorphisms

(156) Con(G, M) — C*(G,M),

(157) H; (G,M)— H*(G,M).

Let f be any continuous endomorphism of M which commutes with the G-action. We
define

(158) HO(f, M) := M/='  and  H'(f, M) := M,
as the kernel and cokernel of the map M SNy , respectively.
The endomorphism f induces an operator on C* or C3, and we denote by T := Ty q(M)
and 79" := “g(M) the mapping fibre of C*(G, f) and C;,,(G, f), respectively.
Again there are canonical homomorphisms
(159) fa(M) = Tpa(M),
(160) W (Tie(M)) — b*(Tya(M)).
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For 7 either empty or an, one of the corresponding double complex spectral sequences is
(161) 1By = H'(f, H{(G,M)) = h™(T")
@ It degenerates into the short exact sequences
0 — Hy (G, M) ;=1 — B(T{ (M) — H}(G,M)"~" — 0.

In (loc. cit.) as well as in |[BF| analytic cohomology is also defined for the semigroups
Iy x @ and I'y, x ¥ with @ = {¢}[n = 0} and ¥ = {(Z¢1)"|n = 0}, if M denotes an
L-analytic (¢r,, ', )-module over the Robba ring R.

Remark 5.2.8. Any L-analytic (pr,T'p)-module M over the Robba ring R is a pro-L-analytic
I'-module by the discussion at the end of the proof of [BSX, Prop. 2.25], whence it is also an
L-analytic Uy, x ®- and 'y, x U-module as ® and U possess the discrete structure as L-analytic
manifolds.

Proposition 5.2.9. We have canonical isomorphisms

RH(TEr e, (M) = Hp, (T x ®,M) = H,, (U, x ¥, M) = h'( ggLIL(M)).

and an ezact sequence
(162)
-9 i an =4 an
0 — Hopn (D, MYET7) — W (TEY, 1, (M) —> (M, —a)'* —> Hen (Do, MPET7) — h3(TE, r, (M)) .

Proof. The isomorphism in the middle is [BF, Cor. 2.2.3|. For the two outer isomorphism we
refer the reader to [Th 3.7.6]. The exact sequence is the extension [Th, Thm. 5.1.5] of [BE
Thm. 2.2.4]. 0

Note that, for U < U’, the restriction and corestriction homomorphisms C*(U’, M) SN

C*(U,M) and C*(U,M) =5 C*(U',M) induce maps on T;p(M) = T;y(M) and
Tru (M) =5 Ty (M), respectively.

We write Ext:(A, B) for isomorphism classes of extensions of B by A in any abelian
category €. Furthermore, we denote by My (R) (M (R), QJTE(R) ) the category of all (étale,

overconvergent) (yr,U)-modules over R, respectively, and by RepE(G rv) the category of
overconvergent representations of Gyu consisting of those representations V' of G v such that

dimpy DY (V) = dimy V with DY(V) := (BT @, V)L,

Theorem 5.2.10. Let V be in Rep (GL) and U € T'p, be any open subgroup.

%2Naively, one would expect that the second corresponding double complex spectral sequences looks like
IIE;’j = H;(Gv Hj(f7 M)) = hH—j(T?) .

But this would require to first of all give sense to the required structure of H7(f, M) as topological/analytic
G-module! In low degrees this can be achieved and we obtain an exact sequence

0 — HH (G, M~ — WN(T") — (M1)€ = HI(G, M™Y.

See [Th]. If M/=! is again a LF-space with pro-L-analytic G-operation, one might be able to interpret the
second spectral sequence in low degrees.
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(i) For D(V) the corresponding (¢r,T'1)-module over By, we have canonical isomorphisms
(163) hW* = hy  H* (LG, V) = b*(T,, v(D(V)))
which are functorial in 'V and compatible with restriction and corestriction.

(ii) If V is in addition overconvergent there are isomorphisms

(164) hO(Tpy (DL, (V) = VO,
(165) W (To, (DL, (V) = HH(LY, V),

which are functorial in' V' and compatible with restriction and corestriction and where by
definition H%(LOUO, V) < HY LY, V) classifies the overconvergent extensions of L by V.
In particular, these L-vector spaces have finite dimension.

(iii) If V is in addition L-analytic, then we have

(166) Hip (L5, V) == BT (DL (V)
where by deﬁm'tion HL (LY, V) < HTI(L%, V)< HY(LY,V) classifies the L-analytic
extensions of L by V.

Proof. (i) is [Ku, Thm. 5.1.11.] or |[KV, Thm. 5.1.11.]. The statement (iii) is [BEF, Prop.
2.2.1] combined with Prop. while (ii) follows from [EX] (the reference literally only
covers the case U = I'z, but the same arguments allow to extend the result to general U)
as follows: Firstly, by Lemma below one has an isomorphism h' (EDU(DLQ(V))) ~

ExtéﬁU(RL)(RL, D!. (V)). Then use the HN-filtration & la Kedlaya to see that any extension

g
of étale (ypr,U)-modules is étale again, whence

Extly, (r,)(Re: D)ig(V)) = Extie g 1 (R, D]y (V)

and the latter group equals

1 ¥ ~ 1 _ gl U
EthmL(RL)(RL’DMg(V)) ~ EXtRCPTL(GLg)(L’ V) = HT (LOO, V)

by Prop. 1.5 and 1.6 in (loc. cit.). For the claim in degree 0 one has to show that the inclu-

sion DT(V) DIZ- ,(V) induces an isomorphism on ¢ -invariants, which follows from [Ked08,

Hypothesis 1.4.1, Prop. 1.2.6] O

Lemma 5.2.11. Let M be in My (R). Then we have a canonical isomorphism

W (Top (M) = Extyy o y(Re, M).

Z3Note that the absolute Galois group of LY is not L-analytic, so this group has not been defined earlier.

2Since the strong hypothesis holds by |[Ked08, Hypothesis 1.4.1, Prop. 1.2.6] we also obtain an isomorphism
on the or-coinvariants H'(pr,—). Then the second spectral sequence above or a similar argument via the
Koszul complexes as in Prop. implies that the canonical base change map induces an isomorphism
h* (T, v (DY (V) = h* (T, v (D], (V))). Cp. [Li, proof of Prop. 2.7].

rig
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Proof. Starting with a class z = [(c1,—co)] in h'(T,, v (M)) with ¢; € CY(M) and ¢y €
CO%(M) = M (i.e., we work with inhomogeneous continuous cocycle) satisfying the cocycle
property

(167) ci(o7) = oci(t) +ci(o) for all o, 7€ U, and (¢r—1)ci(1) = (1—1)¢g for all 7 € U,

we define an extension of (¢, U)-modules

0—M E. Rr—0

with E. := M xRy, as Rp-module, g(m,r) := (gm+gr-ci(g), gr) for g € U and ¢g. ((m,r)) :=
(prpr(m) + @r(r)co, pr(r)); note that this defines a (continuous) group-action by the first
identity in , while the U- and ¢p-action commute by the second identity in . If we
change the representatives (c1, —cg) by the coboundary induced by mg € M, then sending
(0,1) to (—mg, 1) induces an isomorphism of extensions from the first to the second one,
whence our map is well-defined.

Conversely, if F is any such extension, choose a lift e € F of 1 € Ry and define

ca(r):=(r—-1ee M, cy:=(pg— e,

which evidently satisfy the cocycle conditions . Choosing another lift € leads to a cocycle
which differs from the previous one by the coboundary induced by € — e € M, whence the
inverse map is well-defined.

One easily verifies that these maps are mutually inverse to each other. O

Question 5.2.12. Can one show that hQ(%LyU(DLg(V))) is finite-dimensional (and related

to H*(LY,V)) and that the groups hi(’]?ﬂLyU(Diig(V))) vanish for i = 37

Remark 5.2.13. By [FX, Thm. 0.2, Rem. 5.21] it follows that the inclusions
Ha (LS, V) € Hi (L, V) € HY (L5, V)

are in general strict. More precisely, the codimension for the left one equals ([LY : Qp] —
1) dimy, VY
Let us recall Tate’s local duality in this context.

Proposition 5.2.14 (Local Tate duality). Let V' be an object in Rep; (Gr), and K any finite
extension of L. Then the cup product and the local invariant map induce perfect pairings of
finite dimensional L-vector spaces

HY(K,V) x H*~{(K,Homg, (V,Q,(1))) — H*(K,Q,(1)) = Q,

and
HY(K,V) x H*(K,Homp(V,L(1))) — H*(K,L(1)) = L

where —(1) denotes the Galois twist by the cyclotomic character. In other words, there are
canonical isomorphisms

HY(K,V) =~ H* (K, V*(1))* .

119



Proof. This is well known. For lack of a reference (with proof) we sketch the second claim
(the first being proved similarly). Choose a Galois stable op-lattice T S V and denote by »n A
the kernel of multiplication by 77 on any or-module A. Observe that we have short exact
sequences

0— HY(K,T)/r"}

H(K,T/x"T)

41
o HY(K,T) —0

for i > 0 and similarly for T replaced by T%(1) = Hom,, (T, 0r(1)). By [SV15, Prop. 5.7]
(remember the normalisation given there!) the cup product induces isomorphism

HYK,T/n}T) = Hom,, (H* (K, T*(1)/7}T*(1)), 0r/7})
such that we obtain altogether canonical maps
HY(K,T)/r} — Hom,, (H* (K, T*(1))/7},0r/77) = Hom,, (H* (K, T*(1)),0r)/7}.

Using that the cohomology groups are finitely generated or-modules and isomorphic to the
inverse limits of the corresponding cohomology groups with coefficients modulo 7} we see that
the inverse limit of the above maps induces a surjective map

H(K,T) - Hom,, (H* (K, T*(1)),0r)

with finite kernel, whence the claim after tensoring with L over or using the isomorphism
HY(K,T)®,, L =~ H(K,V) and analogously for T*(1). O

Now let W be a L-analytic representation of Gy, and set
Hj (g, W*(1)) := H{ (L, W)*,

which, by local Tate duality and Thm. [5.2.10} is a quotient of H'(LY, W*(1)). By definition,
the local Tate pairing induces a non-degenerate pairing

(168) <, >Tate, 1t Hi (Lo, W) x HJ (L, W*(1)) — H*(L, L(1)) = L.

In order to compute this pairing more explicitly in certain situations we shall use Koszul-
complexes. For this we have to assume first that U is torsionfree. Following [CoNi, §4.2] we
obtain for any complete linearly topologised or-module M with continuous U-action a quasi-
isomorphism @

(169) K3 (M) = (U, M)

which arises as follows: Let X, := X,(U) and Y, = Y,(U) denote the completed standard
complex [Laz2, V.1.2.1],i.e., X,, = Zp[[U]]@)(”“), and the standard complex computing group

25 (unique up to homotopy, i.e., unique in the derived category of or-linear topological U-modules.) We have
not yet defined any topology on the cocycles nor do we know whether the references says anything about it!

M is allowed to be any complete linearly topologised or-module with continuous U-action by [Laz2 V.1.2.6]
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cohomology, i.e., ¥;, = Z,[U]®" 1. Then, by [Laz2, Lem. V.1.1.5.1] we obtain a diagram of
complexes

(170) Yo (U) —2> Yo (U x U) = Y. (U) ®g, Yo (U)

A |

Xo(U) —=> X (U xU) = X,(U)®z,X.(U)

|

KJY = K@z, K7,

which commutes up to homotopy (of filtered A-modules) . Here the maps A are induced by
the diagonal maps U — U x U, e.g., Z,[[U]] = Z,[[U x U] = Z,[[U]]®z,Z,[[U]]. The first

column induces a morphism
HOHIA(KEJ, M) - Hom/\ﬁts (X' (U)> M) - HomZp[U],cts (Y'(U)a M)a

which is (169). The upper line induces as usual the cup product on continuous group coho-
mology
H™(U,M) x H*(U,N) =% H™™ (U, M ® N)

via
HOIIIZP [U],cts(}/' (U)> M) X HomZp[U],cts (K (U)v N)
A*
= HomZp[U](@Zp[U],cts(Y;(U) ®Zp Y;(U)v M® N) - HomZp[U],cts(K (U)v M® N)
The lower line induces analogously the Koszul-product
K (M) x KiH(N) =5 K;75(M ® N).

By diagram both products are compatible with each other.

Let f be any continuous endomorphism of M which commutes with the U-action; it induces
an operator on K*(M) and we denote by Ky (M) := cone (K’(M) S, K‘(M)) [—1] the
mapping fibre of K*(f). Then the quasi-isomorphism induces a quasi-isomorphism

~

(171) Kou(M) — Tou(M).

Remark 5.2.15. By a standard procedure cup products can be extended to hyper-cohomology
(defined via total complexes), we follow [Ne, (3.4.5.2)], but for the special case of a cone, see
also [Ni, Prop. 3.1]. In particular, we obtain compatible cup products Ui and Uy for K, (M)
and To, (M), respectively.

Now we allow some arbitrary open subgroup U € I'p, and let L' = LY. Note that we obtain
a decomposition U =~ A x U’ with a subgroup U’ =~ Zg of U and A the torsion subgroup of
U. By Lemma we obtain a canonical isomorphism

~

(172) Ko (M2) = Tou(M).
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Now let M be a finitely generated projective R-module M with continuous U-action. Then
M* = M is again a finitely generated projective R-module M with continuous U-action by
Lemma m (i). Hence M as well as M* satisfies the assumptions of and we have
isomorphisms 7]

K, (M2)* = cone (K‘(MA)* Lt N K'(MA)*>

(173) — cone (K'((MA)*)[d] LN K‘((MA)*)[d])

= Koo (M*)3)[d + 1]
— Ky (V) [d + 1]
— Ky u (M)[d +1].

The last isomorphism is induced by the canonical isomorphism M? =~ MAa.
Now note that

(174) DL, (W)" = DL (W*(xrr))

rig rig

for any L-analytic representation W by the fact that the functor Djig respects inner homs,
(cp. [SV], Remark 5.6] for the analogous case Drr). Hence the tautological pairing evy from
(153) together with the above isomorphism (173 induces the following pairing:

(175) Uk :h (Kau (D]

rig

(W)2)  x W (Kypu (DL, (W*(xr)®)[d —1]) — L

Remark 5.2.16. For U = U’ and M = D!

m»g(W), on the level of cochains this pairing is given
as follows:

M@K (M) x KNM)®M — L, ((x,y),(@,y) = {y/, 2} — y('),

where we again use that K1 (M) =~ K'(M)* and where { , } denotes the pairing (116)). More
generally, we have the following diagram

(176)
0 dl, 0o
(1de0> 1j¢ —d%
Ko u(M): 0 M K{(MYOM — K2(M)® K' (M) —
X X X
a1t o
. ) 1y —di? C (e —agt)
Ky u(M)[d—1]: —— KN M)@ K 2(M) — M ® K4 1(M) M 0
L L L
in degrees: 0 1 2

Z6For X L, Y we have cone(f)* = cone(f*)[—1] the isomorphism being realized by multiplying with (—1)°
on (X*)" and cone(f[n]) = cone((—=1)"f)[n].
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W)aswellas M = D! (V(r 1)) =

Recall that W = V*(1) is L-analytic and set M = D rig

i g(W*(X 1)) We obtain a Fontaine-style, explicit map

mg(

(177) pry : DY

g

(V(r=)?=t > W Ky (M)]d = 1]), m o [(m,0)],
where m = #% D sen 0m denotes the image of m under the map M — Ma = M.

Remark 5.2.17. Let Uy € U an open subgroup with torsion Subgroups Ay and A, respectively.
Assume that the torsionfree parts U and U’ are generated by ~} ,...757' and vy1,...74, Te-
spectively. Then, for M any complete locally convex L-vector space with continuous U-action,
the restriction and corestriction maps of Koszul-complexes from section extend by func-
toriality to the mapping fibre

U/
corgl i==cory; © K%U{(NA/Al) : K%U{(MAl) — @,U’(MA)
'resgl K@ U’( ) @) TCSZE : K%U/(MA) —> 907U{ (MAl)

Here Naja, : MAY — M? denotes the norm/trace map sending m to Z(SeA/Al om while
L: M2 — M2 s the inclusion. Taking duals as in (I73) we also obtain

corg1 :=(resgl)*[1 —d]: KMUi(MAl) — Ky (M*)
resgl 'z(corgl)*[l —d]: KMU/(MA) — Kyu (MA1)

(co)restriction maps for the 1-Herr complezes.

Since inflation is compatible with restriction and corestriction one checks that the above

maps are compatible under the isomorphism (163)) with the usual maps in Galois cohomology.

Moreover, they define such maps on H1 and H/lT via and h*(Ky (D MQ(W*(XLT))A[d—
1) = H/T(L' W (1)).

the discussion  at the end of section the  restriction  map

esy Uy
K%U/(MA) 0, K, (MAl) and corestriction map K 1 (MA1) 2o, o (M?) in de-
Nyr,groNajay

gree 0 are given as inclusion M* — M and norm M™ M2, respectively,

where
d p"—1

Ny oy = H Z 7 e AU).

i=1 k=0

resV, .
Hence, by duality the restriction map Ky y(M2)[d — 1]? 0, Ky, (MA1)[d — 1) and

~ 1 ~
corestriction map Ky, (MA1)[d — 1]? Lo, Kyu(M2)[d — 1]% are given by the morm

. (A:ADNUNyr, U’) %NA/A -
MA ————— 15 M?' and projection map MAl G Dt M?A, respectively. Here

t denotes the involution of A(U) sending u to u . Note that the latter two descriptions
U

also hold for the first components of Ky y(M*~)[d — 1] oo, Ky, (MAY)[d — 1] and

~ I'Ul ~
Ky, (MAY)[d — 1] 2o, Ky (M?)[d — 1]}, respectively. Hence, we obtain

U U
cory! o pry, = pry and resg, o pry = pry, © Naja, © (Nyr 7).
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Berger and Fourquaux in contrast define a different Fontaine-style map in [BF, Thm. 2.5.8]
for an L-analytic representation Z and N = DY

L (2

(179) hly , DL (2)" 77 — HL(U, DL (2)"775) — hN (T, 0(N)) = B (K, 0(N2),

y = [es(9)] = [(eo(y), =me)] = [(G(y), —mic)],

in which the cocycle hLU Z( ) is given in terms of the pair (cy(y), —m.) in the notation of

Thm. 2.5.8 in (loc. cit.): m, is the unique element in D! (Z)¥2=% such that

rig
(180) (o = Den(y)(7) = (v = hm

for all v € U and this pair defines the extension class in the sense of Lemma [5.2.11] Here, the
first map is implicity given by Prop. 2.5.1 in (loc. cit.), the second one is the composite from
maps arising in Cor. 2.2.3, Thm. 2.2.4, of (loc. cit.) with the natural map from analytic to
continuous cohomology
P —_9
H, (U, D}y (2)"772) = Hyy (U x W, D}y, (2)) = Hy, (U x @, D} (2)) — H'(U x @, D}, ()
combined with the interpretation of extension classes (see §1.4 in (loc. cit.) and Lemma |5.2.11),
while the last one is (172]) (the concrete image (¢ (y), —m.) will be of interest for us only in
the situation where A is trivial, when m, = m,).
According to [BE, Prop. 2.5.6, Rem. 2.5.7| this map also satisfies

(181) cor¥, o th, hLL},Z

7

Since D:Iig(V(T*l)))v ~ Djlg(V*(l)) by (174), concerning the Iwasawa-pairing we have
the following

Proposition 5.2.18. For a Gp-representation V' such that V*(1) is L-analytic the following
diagram consisting of D(I'1, K)-ly-sesquilinear pairings (in the sense of (131))) is commutative

W (Koo (DL, (VD OG)™) x W Ky (DL, (VO)™ld — 1) —~ L ¢,
TML,V*(U(%T)OWX‘iT prom ot ) “xih
_q —{,} 1w,
DY (V*(1)" x D (V(r 1))¥r=! U by

taking U' x A =U =Tp.

*"We do not know whether this map coincides with the following composite we had used in older versions
and which uses the shuffle maps from Propostion [5.2.9

== an
(178) Wiy 2 Dl (2) 770 - H (U, DY (2)""770) — W (TE, o (N) = hH(TEr o (M)
= W' (Top0(N)) = Hy (L, Z).

Here the second map is stemming from the spectral sequence (162)), the third from Propostion [5.2.9} the fourth
is the natural map (160)), while the last one is (165)).
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Proof. By Lemma [4.5.22] it suffices to show the case j = 0, i.e., the trivial character Y¢p.
Furthermore, it suffices to show the following statement for any subgroup of the form I')
without any p-torsion:

(182) 4" VL xppien © (8 Y} 1w = hE vy (@) Uiy P, ()

for x € Djig(v*(l))mzﬁ,y € Djig(V(T_l))szl-

Indeed, by Remark [5.2.17] for every such n, we have the commutative diagram

W (Kor, (DL, (VH(D) KKy, (DL, (V)d - 1]) =% L

lcor Tres
UK,y

WK g (D];g(VF(1)2) % W (K (D), (V)*)[d = 1]) —> L.

rig

Hence we obtain using
his vy (®) Ui pro(y) = (cor o by gy (@) U pro(y)
= hp, v (@) Uk (res o pru(y))
= hp, vea) (@) Uiy (orr, (Na o UNpr,)y)),
where we use Remark for the last equality. On the other hand one easily checks that™]
ULy Xprivgry © PTUT, © Na © UNurr,.) = evr i - DU, Cp) — C,,

whence
q—1

qg—1
CVLxarin © {z,y} oy = ULy Xirivirn © PTUT(NA 0 UNp r, {2, Y} rw,v)

q—1
= T Ve, opryr, {z, Na o UNy 1, )y} 1w,U)

qg—1 —
= T[U : Fn] 1€ULn7Xtri1)\Fn © {x’ NA © L(NUlyrn)y}var‘n

= qinevLthrivIFn © {ZC, NA © L<NU,1Fn)y}Iw7Fn

where we have used Remark [4.5.21] for the last equation.
In order to prove (182)) choose n = ng (see section [4.3.4). As recalled in (179)) the map

hp, veqy Dl (V)77 = b (K, (DL (VF(1))))

is given by the cocycle hy V*(l)(x) in terms of the pair (é(x), —m.). Note that we have
n07

—

me = Ep(or — 1)z

Indeed, by [BE, Thm. 2.5.8] we have cb(:v)(b;?) = (b;C - 1)5,90 for all j,k > 0, which together
with (180)) and the uniqueness of m,. (loc. cit.) implies the claim. On the other hand we have

the map (177)

prr,, Dl (Ve )P~ - b (Kyr,, (D]

rig

(V(ir Y)[d—-1]), y — class of (y,0).

28This is obvious if you decompose D(U,C,) = ®yevjr, D(I'n,Cp)g with respect to the inverses of the
representatives used in the definition of Na o ((Ny» ).
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Thus the pairing U, sends by construction (see diagram (176))) the above classes to
hp, ve) (@) Uiy prr, (y) = 006 (2)) + {=Eb(er — Dz, y}
= TL
= {E(pr — Dz, (?m — Dy}

=< Eba {.Z', y}lw,rn >Fn

= qinaug({x7 y}lw,rn)'

Here the second equality holds due to Lemma because the left hand side belongs to

DIig(V*(l))wLZO, the third one is (133)) while the last one comes from ([125)). O

Proposition 5.2.19. For W an L-analytic representation we have a canonical commutative
diagram

Ukt B (Ko (DL, (W)2)) % hN(Ey oo (DL (W* (xpr)®)[d — 1]) L
<,>Tate,L.4: HH (L', W) x H (L, W*(1)) ——————— H*(I/,L(1)) —— L
<, >Tate,r: H (L', W) x HY L ,W*(1)) ———— H*(L/,L(1)) — L.

Moreover, the isomorphism a is compatible with the middle map of the diagram (199).

Proof. The lower square of pairings comes from Tate duality as in Prop. [5.2.14] and (168).
Its commutativity holds by definition. In the upper square of pairings the left upper vertical
isomorphism b arises from combined with , while the middle vertical isomorphism a
is uniquely determined as adjoint of the latter because both pairings are non-degenerate: The
middle one by definition of H/lT while the upper one due to Corollary ii) with W = V*(1).
Therefore one immediately checks that a~! o pr is induced by the cohomology of the middle
map (going down) in diagram (199)) (being the same as the middle map (going from right to

left) of diagram (200) upon identifying h! (K%}U,(D(V(T_l))A)[d - 1]) and H'(L', V) by the

isomorphism described there). O

Combining the last two propositions we get the following result.

Corollary 5.2.20. For a Gp-representation V such that V*(1) is L-analytic the following
diagram is commutative

* ] —q <,>Ta e,L,} ~
HNL V() (xip) *  HLLV(GE) ———= H*(L,L(1)) = LS C,
ThlL’V*(l)OthJLT TprLothZ% evxz%
_q =L,
DL (v =7« DL (vt — L DIy, C,).

Remark 5.2.21. For applications it might be useful to renormalize U by the factor ﬁf

i.e., setling Uy, = qfql Uk - Then we would get rid of the factor % in front of the
lwasawa pairing in the above results. Moreover and more important the new normalisation
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would be compatible with the cyclotomic situation taking L = Q,, 1, = p = q, i.e., the upper
pairing in Proposition would coincide - at least up to a sign - with the cup product
pairing of Galois cohomology

inv

H' Qo VG +1) x  H'(Qu V(=) —= H2(Q), Q1) ~> Q.

using Tate’s trace map
inv s H*(Qp, Qp(1)) = Qp

gwen by class field theory, if one chooses Z = ~v — 1 for a topological generator v of I'g,
satisfying log xeye(y) = 1. This follows from [Ben, Prop. 1.8.4, Thm. 2.2.6], [Hel, Thm.
5.2,Rem. 5.3] and |[KPX, Rem. 2.8.11/12]: they claim that —pp%linv corresponds to the trace

map from the secozlzd cohomology group of the p-Herr complex induced by sending f ®n to
1 Weyc
log Xcye(7) resw(:yc (f 1+“’Zyc ) ’

With respect to evaluating at a character we have the following analogue of Corollary

5.2.201

Proposition 5.2.22. For a Gp-representation V' such that V*(1) is L-analytic the following
diagram is commutative

) . Lleris
Cr®L DcriS,L(V*(l)(X]LT)) x Cp®L DcrisﬁL(V(Tfl)(XL% ) — > Cp ®r Deris, L (L{xrr)) = Cp

ev _: @tTI n®di ev i ®t) n®—i ev _;
T 4O S i
0
[

D(FLv (CP)7

D(FLv(cp) ®L Dcri&,L(V*(l)) x D(FLv(cp) ®L Dc7‘is,L(V(7-71))

where, for the identification in the right upper corner we choose tz% ®n as a basis.

Proof. Using Lemma [5.2.23] below the statement is reduced to j = 0. Evaluation of (152)
implies the claim in this case. O

Lemma 5.2.23. There is a commutative diagram

-7 [#]0

D(FLv(Cp) QL DcriS,L(V*(l)(X%T)) X D(FLv (Cp) L DcriS,L(V(Til)(XLT)) - D(FLv(Cp)

TTU} —j
XLT
L1°

D(FL7 (Cp) ®L Dcris,L(V*(l)) X D(FL7 (Cp) ®L Dcm’s,L(V(’ril)) —— D(FLa Cp)

Tw _; ®tz7n® Tw j @)1
XLt XLT

Proof. The claim follows immediately from (152)), the compatibility of the usual D,;s-pairing
with twists and the fact that Tw_; A (p)) = Tw; ()\)L*(wa_j (1)) holds. O
LT LT LT

5.2.4 The interpolation formula for the regulator map

In this subsection we are going to prove the interpolation property for Ly . First recall that
we introduced in section the notation Dyg 1/(V) := (Bar ®q, V)&, Since Bgg contains
the algebraic closure L of L we have the isomorphism

Bir®q,V = (Bir®qg, L)@V = || Bir®swLV
UGG@p/GL
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which sends b® v to (b ® v),. The tensor product in the factor By ®q.1, V is formed with
respect to L acting on Bgr through o. With respect to the Gp-action the right hand side
decomposes according to the double cosets in Gr\Gq,/Gr. It follows, in particular, that
DiL(V) := (Byr ®1 V) is a direct summand of Dgg (V) and we denote by prid the
corresponding projection. Similarly, tang ;q(V) := (BdR/B;R ®r, V)G is a direct summand
of tanp (V) := (Bar ®1 V)“E. More generally, also the filtration D%, ; (V) decomposes into
direct summands. 7

According to [SV15, Appendix A] the dual Bloch-Kato exponential map is uniquely deter-
mined by the commutativity of the following diagram, in which all pairings are perfect:

<7>Ta,te,L/

(183) HY (L, W) x HY (L, W*(1)) L

leszUW Texpyyw*(l) {\

Dop (W) x tany(W*(1)) — Dar 1/ (Qp(1)) — LI/

Dany(W) = Dappo(W*(1)) —= Dan s (Qy(1) — 1.

In the Lubin-Tate setting we can also consider the dual of the identity component expy, y+ (1) 14
of eXpL/7w*(1) . @

<7>Tate,L/

(184) HY L, W) x HY (L, W*1)) L

— )
leXpL’,W,id TeXpL’,W*(l),ld [

id,0 _ i N
D (W) = tangssa(W*(1) —= Difh 1 (L(xer) ——= I/
d

D(iidR,L/(W(T_l)) X DiidR’L/ W*(]_)) E— DildR,L’(L(XLT)) é L/.

Upon noting that under the identifications Dgg 1/(Qp(1)) = L’ and D, (Q,(1))=L’ the
elements tq, ® 7eye and tpr ® 1 are sent to 1, one easily checks that, if W*(1) is L-analytic,

?*We have the compatibility of the following pairings

leri =

Dcris,L(V* (1)) X Dcris,L(V(T_l)) SAE Dcris,L(L(XLT)) —— L

id [y % id —1 L1dk id i ~
Djr(V*(1)) X Dir(V(r™)) Dir(L(xrr)) ——= L

injective prid surjective
Dar(V*(1)) x Dar(V(r™")) —— Dar(L(xrr)) ———> L®q, L =
pT‘id
= id @teycty, p@ONONS .
[

Dar(V*(1)) x Dar(V) - Dar(Qp(1)) ———L

cf. [SV15] Appendix,(57)].
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whence the inclusion tanp q(W*(1)) S tany(W*(1)) is an equality and expp ys(1)a =
eXpL/7W*(1), lt hOldS

(185) TT—l ¢] eXPZ/’W = é\XI/)Z’,W,ida

where T, -1 : DY, (W) — D;%OL,(W(T_l)) is the isomorphism, which sends b ® v to b% ®
VRN® ng@yzl; note that % € (B;p)*, whence the filtration is preserved.
Now let W be an L-analytic, crystalline L-linear representation of Gp. Recall that n =
(nn)n denotes a fixed generator of T and that the map tw ;- D! (W) — Diig(W(XJLT))
LT

rig
has been defined before Lemma [4.5.22| For D ;s twisting Deyis,r,(W) &, Dcris,L(W(X]['JT))

maps d to d® e; with e; := tZT ®Xn® e Dcm‘s,L(L(X]LT))-
If we assume, in addition, that

(i) W has Hodge Tate weights < 0, whence W*(1) has Hodge Tate weights > 1 and
Dip ,(W*(1)) =0, and
_a
(11) Dcm’s,L(W*(XLT))(PL L= 0>
then expy, w1y : Dar,(W*(1)) — H'(L,W*(1)) is injective with image H}(L,W*(1)) =
H}(L, W*(1)) by our assumption (see [BKl Cor. 3.8.4]). We denote its inverse by
logr, w1 : Hf (L, W*(1)) = Dap,.(W*(1))
and define
~ T, _
log w1y : HF(L, W*(1)) = Dap,. (W*(1)) == Deris,.(W* (xr1))
where (by abuse of notation) we also write T, -1 : Dgp (W*(1)) — Diﬁq,L(W*(XLT)) =

Deyis,.(W*(xrr)) for the isomorphism, which sends b ® v to b% ®v®n®nS;t. We obtain

cyc
the following commutative diagram, which defines the dual map logz’W being inverse to eXpZW
(up to factorisation over H'(L, W)/H}(L7 W)):

<,>Tate,L

L

(A86)  H'(LW)/HNLW) x  HYLW*(1)
logf,WT IOgL,W*(l)\L

~

Dgr (W) x Dgyr,,(W*(1)) — Dgr,.(Qp(1)) — L.

Similarly as above we obtain a commutative diagram more convenient for the Lubin-Tate
setting:

<,>Tate,L

(187) HYNL,W)/H (L, W) x H (L, W*(1)) L
lng,W,idT lg/gL,W*(l)i
Difpa, (W) x D (W*(x1r)) — Diffg 1 (L(x17)) — L.

We write Evyy,, : Op ®r Depis, ., (W) — Ly, ®r Deris,r, (W) for the composite ODeris (W) © g "
from the introduction of [BE|, which actually sends f(Z) ®d to f(n,) ® ¢, "(d). By abuse of
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notation we also use Evyy for the analogous map Ok ®r Deris, (W) = K ®r Deyis, . (W).
For z € D(T'1,, K)®f, Deris,. (W) we denote by z(x} ) the image under the map D(T'z, K) ®y,
Dcm’s,L(W) - K ®r DCT’iS,L(W)v AQd— )‘(X]LT) ®d.

Lemma 5.2.24. Assume that Q is contained in K. Then there are commutative diagrams

MRid
D(TL, K) ®L Deris.s (W) 222 O @1 Deris.r.(W)

evtrivi iEVW:O

K ®r Deyis, . (W) =—= K ®r, Deris..(W)

1—p &
& OK &L Dcm’s,L(W)

lEVW’O

1-id®
e K L Dcris,L(W)

and

MEid 1—p®¢L
D(Tr, K)®r, Deris,r, (W) ————> Ok QL Deris, . (W) <————— Or QL Deris,.(W)

T’%ﬁ"’ﬁ'l J{(;;)—Jc@ej l(;})ﬂ'@ej

j MEid j 11— ®pr, j
D(FLyK) ®L Dcris,L(W(XLT)) — Ok ®L DCT'LS,L(W(XLT)) <~— Ok ®L Dcris,L(W(XLT))-

In the latter we follow the (for j > 0) abusive notation 0=/ from [BE, Rem. 3.5.5.].

Proof. For the upper diagram note that no = 0 and (d4 - n(1, Z))‘Z:O = 1, from which the
claim follows for Dirac distributions, whence in general. For the right square we observe that

©1(9(2))|z-0 = 9(0). Regarding the lower diagram we use 4.3.25/ and the relation diny 0 ¢y, =
TLYL 0 0. O

With this notation Berger’s and Fourquaux’ interpolation property reads as follows:

Theorem 5.2.25 (Berger-Fourquaux [BE, Thm. 3.5.3]). Let W be L-analytic and h > 1
such that Filthm'syL(W) = Depis,.(W). For any f € (szo R DCM‘S,L(W))A:O and y €
(O®r DCM-S,L(W))QXE% with f = (1 — @)y we have: If h +j > 1, then

1 ) _
P w0, (Qwa(£)) =
(188)
eXan,W(XJLT) (q*”EVW(XiT)’n(ﬁi;iy ® €j)) ifn>1;

(=DM (R + 5 — 1) x ') |
XPL W p) ((1 - q_ISOLl)EVW(XfT),O(aiH{/y ®ej)), if n=0.

If h+35 <0, then

*® 1 _
XPL, W) (th,W( j y(tw (QW,h(f)))) =

XLT LT
(189) LBy a0y @) ifn > 1;
(“h =D (C=a o EV g oGy ®e€p) ifn=0.

By abuse of notation we shall denote the base change K ®r — of the (dual) Bloch-Kato
exponential map by the same expression. Using Lemma, [5.2.24] we deduce the following inter-
polation property for the modified big exponential map with x € D(I'r,, K) ®r, Deyis,r, (W) = If
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7 = 0, then

1 ) —
DL (s (B (2))) =

(190) (—=1)751077-1 eXPL (i) ((1 —q o)1 —er)™! (QU(XZJT) ® ej) )5
if 5 <0, then

hi,W(xiT)(tw i (Qwa(f) =

" logL,W(XJLT)((l ¢ ¢r )1 —¢r) (m(XLT)®6J)>’

(191)
assuming in both cases that the operator 1 — ¢ is invertible on Dps, L(W(X]LT)) and for

j < 0 also that the operator 1 — ¢ '¢7! is invertible on Depis,,(W(x}4)) (in order to grant
the existence of IOgLW(XJLT))'
Recall that the generalized Iwasawa cohomology of T' € Rep,, (G 1) is defined by

H},(Loo/L, T) = lim H* (K, T)
K
where K runs through the finite Galois extensions of L contained in L and the transition
maps in the projective system are the cohomological corestriction maps. For V := T ®,, L €
Repr(Gr) we define
Hiy(Leo/L, V) := Hf\(Leo/ L, T) Qoy, L,

which is independent of the choice of 7. As usual we denote by cor : H} (Leo/L,T) —
H*(L',T) the projection map and analogously for rational coefficients. Similarly as in (177))
we have a map

(192) pro: D(V(r )Y~ = b Ky (DV(r ) = 1]) = HY(L', V), m = [(m, 0)].

m under the map M — Ma =~ M?. Note that under the assumptions of Lemma for
V(771) there is a commutative diagram

(193) H},(Loo/L, T) —== Dy (T(r~ 1))V =1—— D, (V(r~1))¥=!
cor pru lpTU
HNL',V) ——— HY(L',V) HL(L', V),

where the right vertical map is induced by (177). Indeed, for the commutativity of the left
rectangle and the right rectangle we refer the reader to (B.0.5) and (200)), respectively. Let

Yy denote the image of y under the map
LT

-@n®=J —j cor —j -7
Hiy(Loo/ L, T) == Hi,(Lao/L, T(x17)) <> H' (L, T(xp7)) = H'(L, V(x77)-

The following result generalizes [LVZ15, Thm. A.2.3] and |[LZ, Thm. B.5] from the cyclotomic
case.
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Theorem 5.2.26. Assume that V*(1) is L-analytic with Fillem-S’L(V*(l)) = Deris,. (V*(1))
and D(;M~S7L(V*(1))‘F’L:”Z1 = Deyis,p(V*(1))?2=1 = 0. Then it holds that for j =0
; j . -1 -1 L ~ %
VL () (xp) = (=700 0= TEeDBE] ) ) @

Jj+1
| T =5 . , .
(1 Ty YL ) (1 q SOL) (expL,V(sz),id (yXZ%) & e])

and for j < —1:
(=1

j iy = _ 11 - "L, \oa , .) .
Q LV(Z/)(XLT) (—1—j)! ((1 Ty SDL ) (1 q ‘pL)lOgL,V(X;JT),id(yX;JT) ® e;
(—1)7 1o —1y—1 mitt ~
= o e T 0 e () @),
j+1
if the operators 1 — 7rL goL L - ﬂLq o or equivalently 1 — 7 <pL 11— —gpL are invertible

on Depis L(V(T_l)) and Deps L(V(T_IX]LT)); respectively.

Proof. From the reciprocity formula in Corollary [5.2.2] and Proposmons 5.2.20| and [5.2.22] we
obtain for x € D(I'z, C,) ®L Deris.r.(V*(1)), y € D(V(r~1))¥2=! and j > 0 using (193)

[CL’(XZ%) ® €js (_1)JLV(y)(X]LT) ® efj]cm's
- afr, TV W0y )

violet)
N —j
= QT{QV* (1),1 (z), y}Iw(XLT)

=< hi o thjLT (QV*(l),l(x)) 7yxz-; >Tate
Q< (C1YI0 T expy ey (1= 0971 = 90) @) @),y >rate
= (=17 =g o)1 = or) H@(X0h) © €), 8D 1y a ) sa(¥ysi eris
—j i~ _ m ~
= [m(XLé“) ®eja (_1)]Q 75 (1 -7 199L1) (1 - ?L@L)expzyv(xzéﬂ)’id(yX;;)]cris

Here we used in the fourth equation for the interpolation property of €y ;. The
fifth equation is the defining equation for the dual exponential map resulting from (184).
Furthermore, for the last equality we use that wglgozl is adjoint to ¢, under the lower pairing.
The claim follows since the evaluation map is surjective and | , ]os is non-degenerated. Now
assume that j < 0:

[‘T(XZ%) ® €55 (_1)jLV(y)(XJL',T) ® 6—j]cris

= 9z, —"*”;ZV(y)]O(xz%)

- Q—{nv* 1(2), ¥ re (X7

=Q< hL © thJLT (QV*(l),l(x)) 73/Xz; >Tate

1 L L B .
Q< T e (-0 =) (00D @) ) gy >
Q- -1 1 —d ~
- ﬁ[(l —-q SDL )=o) (z(xr) @¢€j)), IOgLy(XZ;),id(sz;)]cris
QO-J

i 11— L ~
= [x(XL%) ® ey, (—1—j)! (1— 7TL150L1) 1(1 - ?QOL)lOgL,V(XZ%),id(yng)]cris
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O

Now consider V' = L(7xrr) and W = V(xrr). Then the latter satisfies the condition of
the Theorem and using Proposition and Lemina [5.1.2] one easily derives the following

interpolation property concerning the former for y = —k(u), ue U d for all r > 1:
r! 1 1. T —~
Ly (y)(XLr) = @((1 - 7TLl‘PLl) 1(1 - ?SOL)GXPZ,V(XZ}),id(yxZ;)> ® ey

r! 77

_ —ry—1 L\
= @(1 - 7TLT) (1 - ?)eXpL,V(Xz;),id(yXZ;) X er.

On the other hand we have Ly (y) ® d; = Ly (y) and hence by the claim concerning (145

Ly (y)(X1r) ®@di @0 ' @trr = Lv(y)(Xir) @0 ' @ trr
= L(—r(w) @n ) (XLr),

whence

_ , 7! e iy .
£lw() © 1 )G ®err = (1= w1 = Eyexpy

o (y

e id W)

This is (143), i.e., together with (144)) we have just obtained a new proof of Kato’s reciprocity
law and we may consider Theorem [5.2.26] as a vast generalisation of it.

133



A Cup products and local Tate duality

The aim of this subsection is to discuss cup products and to prove Prop. [5.2.19] We fix some
open subgroup U < I'y, and let L' = LY. Note that we obtain a decomposition U =~ A x U’
with a subgroup U’ =~ Zg of U and A the torsion subgroup of U.

Lemma A.0.1. Let My be a complete linearly topologised or-module with continuous U-
action and with a continuous U-equivariant endomorphism f. Then there is a canonical quasi-
isomorphism

1 1
Mo)[—] = K} 1 (Mo[—]%).
Th(Mo)l =1 = K3 (Vo[ 1)
If My is an L-vector space, the inversion of wr, can be omitted on both sides.

Proof. Let C (U, My) < C*(U, My) denote the subcomplex of normalized cochains. Since A is
finite, [Thl, Thm. 3.7.6] gives a canonical quasi-isomorphism:

Cr (U, Mo) = C3(A x U', Mo) = C3(A,C (U, Mp)).

Here we understand the above objects in the sense of hypercohomology as total complexes of
the obvious double complexes involved. After inverting 77, we may compute the right hand
side further as

CHACHU M) = CHALCU" M) [ ]) & CAU M)

1

TL

1
A . A

17 =C U Mg)[—].
TL
Here the middle quasi-isomorphism comes from the fact that a finite group has no cohomology
in characteristic zero. The right hand equality is due to the fact that A acts on the cochains

through its action on My. Altogether we obtain a natural quasi-isomorphism
. 1 ~ o ! A 1
Co(U, Mo)[—] = Co (U, M) [—] -
L L

By using [Thl Prop. 3.3.3] we may replace the normalized cochains again by general cochains
obtaining the left hand quasi-isomorphism in
. 1 . ! A 1 . A 1 . 1 A
C*(U,Mo)[—] =C*(U', My )[—] = Kin (Mg ) [—] = K (Mo[ —]7) -
T T, TL TL
The middle quasi-isomorphism is (169). The claim follows by taking mapping fibres of the
attached map f — 1 of complexes. O

Proposition A.0.2. Let M be a ¢r-module over R = Ry (cf. and ¢ € K*. Then
M /(¢ — ¢)(M) is finite-dimensional over K.

Proof. (The proof follows closely the proof of [KPX| Prop. 3.3.2] in the cyclotomic situation)
We set . := ¢~ '¢ and show that M /(3. — 1)(M) is finite-dimensional over K.

1 1
Choose a model MoV of M with 1 > 79 > p@De and put r = 7“52. Recall that

for all 1 > s > r we have maps M Yeol, D) (where strictly speaking we mean
1. followed by the corresponding restriction). We first show that it suffices to prove that

coker (M (1) Y=l 6y [7"’1)) has finite dimension over K. Indeed, given any m € M we have
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m € MY for some 1 > s > r. Then there exists k > 0 such that r > s?° > ro, whence YE(m)
belongs to MY and represents the same class in M /(¢ — 1)(M) as m.

Choose a basis €},...,€!, of MI"o1) and take e; := ¢(e]) € MU'V, by the y-module
property the latter elements also form a basis of M"Y . Note that by base change these
two bases also give rise to bases in M[$1) for 1 > s > 4. Thus we find a matrix F’ with
entries in RI™Y such that e; = 3, Fje; and we put F' = @(F') with entries in R,
ie., p(e;) = X Fyje;. Similarly let G be a matrix with values in R < R such that
e = >, Gije; and hence e; = ¢ (3, Gije;) .

We identify M with (R[T’l))n by sending (X;); to D, A\je; and endow it foreachr < s <1
with the norm given by max; |\;|s. Note that then the "semi-linear” map 1. (followed by the
corresponding restriction) on (R[T’l))n is given by the matrix G as follows from the projection

formula :
YR Aie) = D (Mo Gigen)) = D (X)) Gige.
i i i j

1
Moreover, the restriction of ¢ : M"Y — MIP"D t0 37 O (B)e; becomes the semi-linear map
(Og(B))" — (R[M))n given by the matrix F.
Consider, for I any subset of the reals R, the K-linear map Py : RI") — R[“l),z a; 7" —
DieZl a;Z'. We then introduce K-linear operators Py and Qy, k = 0, on M"Y by

Pr((N)i) == (Pr(\))s,
C .
Qk = P_oo,—k) — %@ © Pk o), U-€.,

Qi((N)i) = (P—o,—k)(N)i)i —

CTy,

TF' (P(Plr,c0y(Ai))is

because P, ) factorises through Ok (B). Then the K-linear operator ¥y := id —P_jp +
(1 — 1)Qp of M"Y satisfies

cTy, .
\Ilk: = ¢c 0 P(—oo,—k:) + Tgp o P(k,oo)a 1.€e.,

Ui ((Ni)i) = G+ (Ye(P—oo,—k)(Ai)))i + F - (CWTL‘P(P(k:,oo)()‘i)))ia

whence its operator norm satisfies

CcTy,
1Wklls < max{||Gls|tc © P—oo,—iy s, THFHSIW © Plge.o)lls}-

-1
It is easy to check that, for 1 > s > goT, we have [¢ o P o)s < |Z|gq_1)k = 50~k (ysing
the norm relation after (56)) and [[1bc 0 P _py[s < Cys*1=07") for some constant Cy > 0.
E.g. for the latter we have for A\ = >, a;Z" € RV
| > Yel@iZ)ls < sup Jailve(ZY)]s
i<—k i<—k

< sup |a;|Cys
i<—k

< Oy sup || Z[is"@ Y
i<—k

< Cy|A[ss™Ha D),
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where we use that by continuity of 1. there exists Cs such that

e(Z1)|s < Cu|Z1| 1 = st

1
s4q
Thus we may and do choose k sufficiently big such that | ¥y, < 3. Given mg e MI™D we

define inductively m;y1 := WU (m;). This sequence obviously converges to zero with respect to

1
the r-Gauss-norm. We shall show below that also for all s € (re, 1) the series (m;); tends to
zero with respect to the Gauss norm | [, i.e., by cofinality the sum m := },_,m; converges
in M"Y for the Fréchet-topology and satisfies

m—mgy=m — P[*kyk] (m) + (wc - 1)Qk(m)7

i.e. P_p)(m) represents the same class as mq in MU /(3p, — 1)(M). Since the image of
P[_j k) has finite dimension, the proposition follows, once we have shown the following

Claim: For all s € (r%, 1) we have

1\ —k /
1 s cm s\
[0y < max{ L], |G () e | T ()l
Indeed, we fix such s and may choose k' > k such that |¥y s < 3. Then ¥y = Uy —¢c 0
Py — C’TTLgp o P, 111, whence the claim as for A € R
1\ —k
X
|tbe o P[*k’,*k)()‘”s < G <T> Al
s\ ¥
lo o Pue1(N)]s < (7,) RV
by similar estimations as above. O

Remark A.0.3. This result answers the expectation from [BF, Remark 2.3.7.] positively.
Corollary A.0.4. Let V*(1) be L-analytic and M := D;[ig(V*(l)).

(i) The cohomology group h2(K1;7U,((M)A)[d —1]) is finite dimensional over L.

(ii) We have isomorphisms

W 10 (D (Ve )2 = 1])* = b (K 1 (M2))
HE (L', V*(1)),

12

and

hQ(K;W(DT

rig

(V)2 — 11)* = WG (M)
= (V*(1)%v.
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Proof. (i) Since h?( Ky (M )2)[d — 1]) is a quotient of (M /(v A by (176) this
follows from the Proposition. (ii) We are in the situation of Remark - ) with regard
to C = wU,(DIZg(V( “1)2)[d — 1] and @ = 2,3 in the notation of the remark. Indeed,
for h3(C) = C* = 0 by construction and C3 = 0 as well as h?(C) is finite by (i). Hence the
first isomorphism follows in both cases from (173]) using the reflexivity of M. The second

1somorphisms arise emma [A.0.1) together wit an respectively.
i phi ise by L gether with ([L65) and (L64), respectively O

We quickly discuss the analogues of some results of §1.6 in [ChCo2|. First we remind the
reader of the definition of A := W((C;)L,

Al = {2 = Z T an] € A ¢ 7@, |l === 0 for some r > 0}
n=0

At := AT ~ AP and AT := (AT)HL

Remark A.0.5. There is also the following more concrete description for ATL n terms of
Laurent series in wrr :

A;r: = {F(wrr) € AL|F(Z) converges on p < |Z]| < 1 for some pe (0,1)} € Ap.

Indeed this follows from the analogue of [ChCol, Lem. 11.2.2] upon noting that the latter holds
with and without the integrality condition: "rvy(ay) +n = 0 for all n € Z” (for r € R\R) in
the notation of that article. P*| In particular we obtain canonical embeddings ATL c BTL — R
of Tings.

Now consider the subring A = A [[Jikr]] = {z = Y, axZ" € Ap|vx, (ar) = ——} C AL
For 2 € Ay and each inter n > 0, we define w,(z) to be the smallest integer k > () such that
xe Z7FA+ 7T A L. Tt satisfies wy, (2 +y) < max{w,(z), w,(y)} and wy(2y) < wy(z) +w,(y)
(since A is a ring) and w,(p(x)) < qw,(x) (use that % € A%, whence p(Z7F)A = 271 A).
Set for n > 2,m > 0 the integers 7(n) := (¢ — 1)¢"~!, I(m,n) = m(qg — D)(g"~! — 1) =
m(r(n) — (¢ — 1)) and define AE” ={z =Y, 2" € Ap|vs, (ar) + Ty P for k — —c0}.

Then, by Remark and the footnote we obtain that ATL =Up>2 ATL’”.

30 In the literature one also finds the subring ALI i= Upoo WEL(C)) of AT where WZ,(C)). = {z €

r M—00

W7 (C)1| |z|, < 1} consists of those = € A such that |7} ||z, ) = 0 and |7} |z,|; < 1 for all n. Denoting
—1

JUIE B Y
by AL the ring defined in [Ste, Def. 3.4] we have the equality WZ,(C}) ., = A;t 7 corresponding to A’

(L)~
in the notation of [ChColl §II.1] for ¢ = p. For these relations use the following normalisations compatlble

. — Y __a_ .
with [Stel: |7z| = é, Vo (w) = L3, vrp(m) = 1, [z, = ¢ . |wly = ¢ =T = |w|a=T, where w = wrr
mod 77 as in section Furthermore, |z|» = |7L |V(I 7 and lwrr|r = |7rL|qTTg1 = |w|y, where V(x,r) :=

infy (U@; (xk)% + k) for x =3, . 78 [z1] € A. For # € AT we have V(z,r) = %VSt(:v,r) where Vs (z,r)
=1
uses the notation in [Ste]. Note also that wy; is contained in W_{ (L. )r by [Ste, Lem. 3.10] (in analogy
with [ChColl, Cor. IL.1.5]).
31 This description does not require any completeness property! A similar result holds for ATsl,L when
requiring for the Laurent series in wrr in addition that F'(Z) takes values on p < |Z] < 1 of norm at most

1. More precisely, for » < 1 (or equivalently s(r) := qr;ql > %) W7 (Ch)r and WZ,(Ch) correspond to

{F(wrr) € AL| F(Z) converges on |w|" < |Z| < 1} and {F(wrr) € AL| F(Z) converges on |w|” = ¢ Q) <
|Z| < 1 with values |F(z)| < 1}, respectively. The latter condition on the values can also be rephrased as
5(r)vr; (am) + m = 0 for all m € Z corresponding to V(z,s(r)) = 0 on the Witt vector side if F(Z) =
Zm G,mZm eAy.
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Lemma A.0.6. Letz =Y, axZ* € A and 1 > 0,n > 2. Then

(i) we have

k+1
(194) wm(x) <1< vy, (ag) = min{m + 1, _q—+1} for k < —l.

(ii) x € AE’" if and only if wy,(x) —l(m,n) goes to —oo when m runs to oo.

Item (ii) of the Lemma is an analogue of [ChCo2, Prop. III 2.1 (ii)] for AE’” instead of
A% <1 = ={z =2 IVANS ATL |Vr, (ar) + (k) > 0 for all k < 0}.

Proof. (i) follows from the fact that = € Z~'A if and only if vy, (ay) = =2 for k < —L. (ii)
Let M, N = M(q — 1) » 0 be arbitrary huge integers and assume first that = € ATL’". Then

(195) wm(z) = l(m,n) < =N
is equivalent to

k+1(m,n)—N
-1

(196) Uz, (ag) = min{m + 1, — } for k < —l(m,n) + N.

by (i). To verify this relation for m sufficiently huge, we choose a kg € Z such that v., (ar) +

(’jl > N > 0 for all k < ko. Now choose mqg with —I(mg,n) < ko and fix m > myg. For
(k) > m we obtain vr, (ag) = m + 1, because k < ko holds. For k with

<

~

<

k k+U{m,n)
r(n) q—1

(197) k> —-r(nym< <0

we obtain vy, (ag) = % Thus the above relation holds true.

Vice versa choose mg such that - ) holds for all m = myg, and fix
k < ko := —r(n) max{Mq" ', mg}.

Let mq be the unique integer satisfying r(n)M —k = r(n)my = r(n)M —k—r(n). In particular,
we have mp + 1 + T(n) > M and k > —r(n)m1, which implies —% + % > M by
(197). Moreover, it holds my = mg and k < —l(mq,n) + N (using k < r(n)M — r(n)m; =
—I(my1,n) +¢" N — (¢ — 1)my and m1 > (¢" ' — 1)M by our assumption on k). Hence we
can apply to conclude vy, (ag) + % > M as desired. O

The analogue of Lemma 6.2 in (loc. cit.) holds by the discussion in [SV15] after Remark
2.1. This can be used to show the analogue of Corollary 6.3, viz w,(¢(z)) < 1+ w”q(m) Now
fix a basis (e1,...,eq) of D(T) over Ay and denote by ® = (a;;) the matrix defined by
ej = Zle a;jp(e;). The proof of Lemma 6.4 then carries over to show that for z = ¢(y) —y
with z,y € D(T) we have

(198) waly) < max{wn (), L (n(@) + 1),

where w, (®) = max;; wy,(a;;) and wy(a) = max; wy(a;) for a = Zle a;p(e;) with a; € Ap.
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Lemma A.0.7. Let T' € Rep,, (Gr) such that T is free over o, and V = T ®,, L is over-
convergent. Then the canonical map DY (T) — D(T) induces an isomorphism DY(T)/(¢ —
D(DYT)) = D(T)(4 — 1)(D(T)).

Proof. We follow closely the proof of [Li, Lem. 2.6], but note that he claims the statement
for DT@(T)- Choose a basis eq,...,eq of the ATL—module DT(T), which is free because ATL is
a henselian discrete valuation ring with respect to the uniformizer 77, compare with [Ked15!
Def. 2.1.4]. Since V is overconvergent it is also a basis of D(T). Due to étaleness and since
(ATL) NAJ = (ATL)>< also p(e1),...,p(eq) is a basis of all these modules. Given x = ¢(y) —y
with # € DY(T) and y € D(T) there is an m > 0 such that all 2;, a;; lie in A%m for some m.
Since ¢ > 2 it follows from the criterion in Lemma [A.0.6] (ii) combined with that all y;
belong to A?mﬂ, whence y € DY(T). This shows injectivity. In order to show surjectivity we
apply Nakayama’s Lemma with regard to the ring oz, upon recalling that D(T")/(¢) — 1) is of
finite type over it. Indeed, by left exactness of DT we obtain DY(T) /7, DY (T) € DY (T/rT) =
D(T/mT). Since these are vector spaces over Ej of the same dimension, they are equal,
whence

(DUT)/(=1))/(n1) = (DN(T)/(7p)) /(v —1) = (D(T)/(7p)) /(¥ ~1) = (D(T)/($~1))/(m1).

Corollary A.0.8. Under the assumption of Lemma for V(r1), the inclusion of com-
plexes

K} (D'(V(r™1))%) € K3, (D(V(r~1)%)
1S a quasi-isomorphism.
Proof. Forming Koszul complexes with regard to U’ we obtain the following diagram of (dou-
ble) complexes with exact columns

0 0
KDYV (r1))2) — K*(DH(V(r1))2)
K*(D(V (1)) — K*(D(V (1))

K*((D(V(r)/D(V (7)) = K= (D(V (7 )/DI(V (7))

~

0 0

in which the bottom line is an isomorphism of complexes because under the assumptions 1) —1
induces an automorphism of D(V (771))/D¥(V(r71)) and as the action of A commutes with
1. Hence, going over to total complexes gives an exact sequence

0 — KJ n(DY(V(r™1)2) = K§, iy (D(V (™)) = K, 1 (D(V(r71))/DI(V (r~1)))%) — 0,

in which K¢

d,’U,((D(V(Tﬁl))/DT(V(Tﬁl)))A) is acyclic, whence the statement follows. O
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Remark A.0.9. Instead of using Lemma (for crystalline, analytic representations) one
can probably show by the same techniques as in [ChCo2, Prop. 111.5.2(ii)] that for any over-
convergent representation V. we have DT (V)¥=1 = D(V)¥=1,

The interest in the following diagram, the commutativity of which is shown before Lemma
B.0.5| stems from the discrepancy that the reciprocity law has been formulated and proved
in the setting of KJ;,U'(DLQ(V(T_I))A)[CZ — 1] while the regulator map originally lives in the

setting of K, /,(D(V(r71)))[d —1]:

(199)  C*(Gp,VH(1) ~ (G, V) ———E (L, (1)) ="~ L[-2)]
| |
v ° »
Ky (M2) > K (D(V(r)M)[d 1] * I[-2]
K3 (MY2) < Kp (DN(V(r=))2)[d - 1] e L[-2]
K3 (M )2) < K3 (DL (Ve 1)) [d — 1] L[-2]

which in turn induces the commutativity of the lower rectangle in the following diagram (the
upper rectangles commute obviously)

(200) Dl (V== OD1 (v (=1 v=t€ D(V (=)=t

pry \L pry l lpru

Rt (K3 (DL (V)M d = 1) <——r! (K3 /(DT Ve )A)ld = 1]) —> a! (K L, (D(V(r—1))[d - 1])

H/lT(L’,V) HY (L', V)

Here the vertical maps pry are defined as in (177)), @ and pr are taken from Prop. [5.2.19| while
the isomorphism ¢ stems from (206]). The map a is bijective under the assumption of Lemma

which extends to the map b by Corollary [A.0.8]

B Iwasawa cohomology and descent

In this subsection we recall a crucial observation from [Kul [KV], which is based on [Ne]
and generalizes [SV15, Thm. 5.13 |. As before let U be an open subgroup of I'r. We set
T := A(U) ®,, T with actions by A(U) := or[[U]] via left multiplication on the left factor
and by g € G/ given as A®t +— A\g~! ® g(t), where g denotes the image of g in U. We write
RY'1y(Loo/L', T) for the continuous cochain complex C*(U, T) and recall that its cohomology
identifies with Hj, (Le/L',T) by [SV15, Lem. 5.8]. For any continuous endomorphism f of

M, we set Ty(M) :=[M EineN M], a complex concentrated in degree 0 and 1.
Themap p: T — o, Qpqy) T = T, t = 1@, and its dual i : TV(1) — TV(1) induce
on cohomology the corestriction and restriction map, respectively, and they are linked by the
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following commutative diagram

(201)  CUGpT) x CH(Gp,TY(1) —% (L, Lfor(1) -~ Loy [~2]

va

C*(Gr T) x CGp,TY(1)) —%C*(I', Ljor (1)) -~ Ljoy[~2]

By [FK| Prop. 1.6.5 (3)] (see also [Nel (8.4.8.1)]) we have a canonical isomorphism
(202) or, ®f ) RU(L',T) = RT(L', 01, @xu) T) = RT(L, T)

where we denote by RI'(L', —) the complex C*(Gp/, —) regarded as an object of the derived
category. Dually, by a version of Hochschild-Serre, there is a canonical isomorphism

(203) RHomy (or,, RU(L',TY(1))) = RI'(L', TV (1)).
It follows that the isomorphism
RTy(Lo/L',T) =~ RHom,, (RT(L', TV (1)), L/or)[~2]
induced by the upper line of induces an isomorphism
(204) oL &y BT rw(Leo/L', T) = RHom,, (RHomy (or, RT(L', T (1)), L/or)[-2],

which is compatible with the lower cup product pairing in (201)) via the canonical identifica-
tions (202) and (203)).

Lemma B.0.1. There is a canonical isomorphism RT(L', TV (1)) = T,(D(TV(1))) in the
derived category.

Proof. See [KV, Thm. 5.1.11]. O

For the rest of this section we assume that U € 'y, is an open torsionfree subgroup.

Lemma B.0.2. Let T be in Rep, (GL) of finite length. Set A := A(U) and let v1,...,7a be
topological generators of U. Then we have a up to signs canonical isomorphism of complezes

Homj, (K. (), To(D(T (1)) ¥ [-2] = tot (Ty(D(T(r~ 1) [~1] @ K. (y7H)(A)*)
where —V denotes forming the Pontrjagin dual.

Proof. Upon noting that 7,(D(TV(1)))V[-2] = Typ(D(T(r1)))[—1] (canonically up to a
sign!) this is easily reduced to the following statement

Hom} (K. (), M)” = MY @y K.(7)(A)",
which can be proved in the same formal way as , and a consideration of signs. O
Remark B.0.3. For every M € M(A L) we have a canonical isomorphism
Hom} (KY, T,(M)) = K, (M)
up to the sign (—1)" in degree n and a non-canonical isomorphism
tot (Tp(M)[-1] ®1 K (A)*) = Ky (M)[d - 1]
(involving the self-duality of the Koszul complex). Here, the right hand sides are formed with

respect to the same sequence of topological generators as the left hand sides.
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Proof. By our conventions in section K, (M) is the total complex of the double complex

Hom®(K.(A)*, M) 1%, Hom® (Ko(A)®, M). A comparison with the total Hom-complex (with
the same sign rules as in section [5.2.1)) shows the first claim. For the second statement we have

tot (Tp(M)[~1] @x K+(A)*) = tot (Ty(M) @ K+(A)*) [-1]
= tot (Ty (M @1 K.(A)")) [-1]
~ tot (T, (M @1 K*(A)[d])) [~1]
— tot (Ty (K 1]

*(M)[d))) [
= cone (K3 (M)[d] — Kg(M)[d]) [-2]
> Kyu(M)[d—1].

The first isomorphism involves a sign on 7;1(M ). The third isomorphisms stems from ((154)
while the last isomorphism again involves signs. O

Theorem B.0.4. There are canonical isomorphisms
(205) RU1(Leo/L,T) = Ty, (D(T (1)) [-1]
(206) Kyu(D(T(r7H)[d — 1] = RI(L,T).

in the derived category Dpe,r(Ao, (I'L)) of perfect complezes and in the derived category D (or,)
of bounded below cochain complexes of or,-modules, respectively.

Proof. The first isomorphism is [KV] Thm. 5.2.54 | while the second one follows from this and

as
U (Leo/ L, T) &, ) o = Ty (D(T(r™1)) [1] @ Ko(A)*
= tot (Ty (D(T(71))) [-1] ©a K.(A)*)
= Ky u(D(T(r~1))[d - 1].
by Remark [B.0.3] L
By Lemma and Remark we see that, for T be in Rep,,, (G) of finite length,

(207) Ko u(D(TV(1))) = RHomy (o, To(D(TY (1)))))[2]
is dual to
(208) Ky u(D(T(r1))) = o, & ) To(D(T(r~ 1)) [-1],

such that the upper rectangle in the diagram (199) commutes by (204)), taking inverse limits
and inverting 7p,.

Lemma B.0.5. Let T be in Rep,, (Gr). Then the left rectangle in (193)) is commutative.

Proof. (Sketch) By an obvious analogue of Remark [5.2.17]it suffices to show the statement for
U=I,=z Zg. In this situation we have a homological spectral sequence

H; (U, Hp, (LOO/L T)) — H'~ J(L’ T)

cts
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which is induced by (202)), see [Ne| (8.4.8.1)] for the statement and missing notation. We may
and do assume that T is of finite length. Then, on the one hand, the map H}, (Lo/L,T) <5
HY(L',T) is dual to H'(L',TV (1)) =% H'(Le,TV(1)), which sits in the five term exact
sequence of lower degrees associated with the Hochschild-Serre spectral sequence. As explained
just before this lemma the above homological spectral sequence arises by dualizing from the
latter. Hence cor shows up in the five term exact sequence of lower degrees associated with
this homological spectral sequence. On the other hand via the isomorphisms and
the latter spectral sequence is isomorphic to

Hiets(U,h (T (D(T(771)) [-1]) = b (K (D(T (1)) [d — 1])

and one checks by inspection that cor corresponds to pry. O
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