HERR-COMPLEXES IN THE LUBIN-TATE SETTING

BENJAMIN KUPFERER AND OTMAR VENJAKOB

ABSTRACT. In this article we extend work of Herr from the case of cyclotomic (¢, I')-modules
to the general case of Lubin-Tate (¢, ')-modules. In particular, we define generalized ¢- and
1-Herr complexes, which calculate Galois cohomology, when applied to the étale (¢, I')-
modules attached to the coefficients.

1. INTRODUCTION

Fontaine’s theory [14] of (cyclotomic) (p,I')-modules plays a central role both in the p-adic
local Langlands programme, more specifically in Colmez’ celebrated work [13], as well as in
(local) Iwasawa, where, for example, it contributes to proofs of reciprocity formulas or the
construction of regulator maps and big exponential maps [2] a la Perrin Riou. One reason for
this impact stems from the possibility to explicitly calculate Iwasawa and Galois cohomology
of a Galois representation V in terms of the associated (¢,I')-module D(V'). While the
description of Iwasawa cohomology was given by Fontaine himself, it was his disciple Herr
[18, 19] who described Galois cohomology as the cohomology of the following complex, now
named after him. To this end we fix an odd prime p and consider a Z,-representation V' of
the absolute Galois group G, of the p-adic numbers @Q,. Then the complex G;(I‘, D(V))

(p—1,9-1) ) (y=1)pri—(p—1)pry

0—D(V) D(V) & D(V

computes the group cohomology of G, with values in V', where ¢ denotes the Frobenius en-
domorphism while v is a topological generator of I' = G(Q,(u(p))/Qp). (cf. e.g. [12, Theorem
5.2.2., p.93-94] and [12, Theorem 5.3.15, p. 103-104]). Upon replacing ¢ by its left-inverse
¥ we obtain the complex C3(I', D(V)), which like a miracle turns out to be quasi-isomorphic
to C3(I', D(V)) in the cyclotomic theory (cf. [12, Proposition 5.3.14, p. 103]). Moreover, Herr
established that taking an appropriate dual of the Herr complex € (T', D(V*(1))) results - up
to shifting by 2 - another complex quasi-isomorphic to €3 (I', D(V)) giving rise to Tate’s local
duality.

Recently there has been quite some activity to develop a theory of Lubin-Tate (¢,T')-
modules [4, 5, 3, 6, 31, 16], where the ground field now is a finite extension L of Q, with ring
of integers O, and prime element 7. Fixing a Lubin-Tate formal group G associated to 7y, we
obtain the Galois extension Lo, by adjoining the 77-division points of § to L with L-analytic
Galois group I'y, = G(Loo/L); we also set Hy, := G . Following Fontaine’s original ideas
Kisin-Ren established an equivalence of categories [20, Theorem (1.6), p.446]), which for the
convenience of the reader we recall in section 3 adding some details concerning topologies etc.
based on the very detailed account [30, Theorem 3.3.10, p. 134]). In particular, to any finitely
generated Or-module V' with linear and continuous action by Gg, where K is any finite
extension of L, we may attach an étale (¢, I')-module D K| (V). In this context the Iwasawa
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cohomology again has been successfully described in terms of D (V) in [31]. The purpose
of this article is to add an explicit description of the Galois cohomology groups in terms of a
- and 9-Herr complex, respectively. To this end let V' any such Op-representation of Gi as
above. Then there is a complex of the corresponding (¢, I')-module, of which the cohomology
is exactly the continuous group cohomology of G with coefficients in V' as follows. By
Cs(G, A) we denote the continuous cochain complex of a profinite group G with values in
the abelian group A. Furthermore, for any (¢, I')-module M we introduce a generalized Herr

complex € (', M) as the total complex of the double complex

PK|L

Ce Tk, —id
(FK7 M) cts( K <PM) C.

[ ]
C cts

cts

(FK7 M)
*
PK|L

groups (or of R-modules for a suitable ring R), then we denote by RI'(C®) the same complex
viewed as object in the derived category DP/*(Ab) (respectively in DP/+(R-Mod)).

and we denote by H (T'x, M) its cohomology. If €* is a bounded below complex of abelian

Theorem A (cf. Theorem 5.1.11). Let V € Repgf)(GK) and set M = Dy (V). Then there
are tsomorphisms

Hy(Gr, V) —= 35 (Ti, M),

PK|L

o~

H*

cts

(HKv V)

J¢ (M),

PK|L

These isomorphisms are functorial in V and compatible with restriction and corestriction.
They stem from isomorphisms in DT (Or-Mod)

RI(C8 (G, V)) —=RI(€Y,,, (T, M),
RI(C8,(Hi, V) ——= RI(CL, (M),

In our proof, we follow closely the approach of Scholl in [34, Theorem 2.2.1, p. 702-705].
Due to the lack of Hochschild-Serre spectral sequences for general continuous cohomology (see
[40] for a discussion of this issue), the main technical difficulty consists of using Mittag-Leffler
type arguments to reduce to cases in which the coefficients become discrete (and hence admit
such a spectral sequence). We would like to mention that in the course of writing up our
results we learned that independently Aribam and Kwatra have achieved a (partial) result of
this kind, too, concerning torsion coefficients (cf. [1, Theorem 3.16, p. 10-11]).

The situation for a generalized -Herr complex is more difficult. First of all there is no
reason why one should obtain a quasi-isomorphic complex upon replacing ¢ by ¥. One reason
is, that the integral operator ¢ considered in [31] is no longer a left inverse to ¢ if L # Q.
Furthermore, the structure of the kernel M¥=0 of the 1)-operator of an étale -module M is
difficult to analyse (but see [32, 5] for some aspects in this regard). Therefore, we decided to
follow the path of dualizing as this was already successful in [31] for the purpose of Iwasawa
cohomology: Since ¢ and v are related to each other under Pontrjagin duality (cf. [31, Remark
5.6, p.27]), it seems to be the correct way, to dualize the complex of ¢. One attempt would
have been to imitate the methods of Herr (cf. [19, Lemme 5.6, p.333]) to establish a quasi
isomorphism between the complexes of (¢, I')-modules related to ¢ and ¢ using Tate duality.
This approach requires to show that all the differentials of the p-Herr complex have closed
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image, which implies that they are strict which then implies that the cohomology groups of
the dualized complex coincide with the dual of the cohomology groups of the complex we
started with. In his original work, Herr checked that the differentials have closed image for
each differential separately (cf. [19, p.334]). Unfortunately, in the general case we have to
deal with direct products of Herr’s differentials and modules and it is no longer clear, that
the differentials have closed image.

Instead we imitate results of Nekovar (cf. [26, Sections (8.2) and (8.3), p. 157-160]) to replace
the complex C(Hg, A) with a complex C&(Gx, Fr, (A)) of Ax = Or[I'k]-modules, where
A = V"V is the dual of some G g-representation. Here "replace’ means, that the two complexes
are quasi isomorphic (cf. Proposition 5.2.21). This then has the advantage that we can apply
the Matlis dual D = Homy,. (—,A),;) to this complex. Nekovai proved that this dualized
complex is quasi isomorphic to a complex computing the Iwasawa cohomology (cf. Lemma
5.2.44). We then finally check, that the complex related to 1 is quasi isomorphic to this
dualized complex. Using again a result of Nekovar , we then get the following statement.

Theorem B (cf. Theorem 5.2.53). Let T € Repgf (Gk) and let K C K' C Ko an interme-
diate field, finite over K, such that 'y = Gal(Ko|K') is isomorphic to some Zy,- Then we
have an isomorphism in D1 (Or-Mod)

L
RI(C(Dgr(T(r71) @4, OL 2 RIS

cts

(G, T).

The left hand side of the isomorphism in the theorem should be considered as generalised
1-Herr complex. For instance, by choosing a Koszul type complex associated with topological
generators of '/ one obtains a quite explicit complex, which specialises to the ¥-Herr complex
in the cyclotomic situation. Moreover, this result is crucial for descent calculations, see e.g.
[32] in the context of pairings and regulator maps.

2. PRELIMINARIES

By N we denote the natural numbers starting with 1 and we let Ngo = N U {0}. For a
homomorphism f: A — B we denote by ker(f) its kernel, by im(f) its image and by coker(f)
its cokernel.

2.1. On Continuous Group Cohomology. Continuous group cohomology has been intro-
duced by Tate. For the convenience of the reader we recall the basic notions, but refer the
reader to [39], [28, §2.7] and [23, §2.1] for further details.

For topological spaces X,Y we endow the set of continuous maps Map.is(X,Y) always
with the compact open topology (cf. [8, Definition 1, Chapter X §3.4, p.301]). Note, that
in this topology Map.(X,Y) is a Hausdorfl space if Y is (cf. [8, Remarks (1), Chapter X
§3.4, p.301-302]). For K C X compact and U C Y open denote by M(K,U) the set of all
f € Map(X,Y) with f(K) CU.

Remark 2.1.1. We recall that for a profinite group G and an abelian topological group A on
which G acts continuously we have the canonical acyclic complex

0—A4—— Mapcts(Gv A) - Mapcts(G27 A) - Mapcts(G37 A) -

Let for n € Ny
X(?ts(Gv A) = Mapcts(Gn—Ha A)
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and o% . Xl 5 xn

cts* cts cts

be the differential , which is given by
n
Ols(x) (o0, ... on) = Z(—l)zm(ao, ce s Biy ey On),
i=0

where means that the corresponding element is omitted. Furthermore, we denote by
Xs(G, A) the corresponding complez, i.e.

. s’ o1 s o ottt
Xcts(G7A) =T Xcts (G7 A) - Xcts(G7 A) — .

As usual, we then set

Cny(G,A) = X1 (G, A)°.
One checks that %, restricts to a homomorphism Ch 1 (G, A) — Cn.(G,A). We then let
C (G, A) be the complex

n—1 n n—+1
6cts

6cts n—1 8cts
(G,A) = s 0P UG, A) === Cn (G, A) —2> ...

.
C cts cts

cts

This complezx is called the continuous standard resolution of G with coefficients in A. We
denote its n-th cohomology group by H (G, A) and call it the n-th continuous cohomology
group of G with coefficients in A.

Lemma 2.1.2. Let G be a profinite group and let

0 A—2.p_ .o ¢ 0

be an exact sequence of topological G-modules such that the topology of A is induced by that
of B and that B — C' has a continuous set theoretical section s: C'— B. Then for alln >0
the diagrams

0—— Mapcts(Gnilv A) - Mapcts(Gnia B) - MapctS(Gnilv C) —0

l | |

0—— Mapcts(Gna A) Mapcts(Gna B) Mapcts(Gn7 C) —0

and

0—— Mapcts(Gna A)G Mapcts(Gn7 B)G Mapcts(Gna C)G —0

| | |

00— MapctS(GnJrl? A)G - MapctS(Gn+1v B)G - Mapcts(GnJrl? C)G —0

are commutative with exact rows and the latter diagram induces a long exact sequence of
continuous cohomology

0 A6 BE e HY (G A) —— -

n
o Hcts

Furthermore, the topology of Map.(G", A) is induced by the topology of Maps(G™, B) and
the section s: C — B induces a continuous, set theoretical section s.: Mapys(G™,C) —
Mapcts (Gn7 B) :

(G,A) — H" (G,B) — H" (G,C) — H' TG, A) — - --

cts cts cts
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2.2. Monoid Cohomology. As described in the introduction, the aim of Section 5 is to
compute Galois cohomology using the theory of Lubin-Tate (¢, I')-modules. For this, we also

compute the cohomology of complexes like A = A, where A is a topological abelian group
and f is a continuous endomorphism of A.
This can be embedded in the theory of monoid cohomology, which then allows us, in the
case of discrete coefficients, to write this cohomological functor as derived functor. We then
combine this with a usual group action, which commutes with the endomorphism and obtain
spectral sequences on cohomology.

Let A be a topological abelian group and f € End(A) continuous. Then

(1) = Nox A——= A, (n,a) —— f"(a),

defines a continuous Ng-action on A. As in the group case the following holds:
Let M be a topological monoid and A be a discrete abelian group with a continuous action
of M. Then we have

(2) AM = Homgpy (Z, A),

as Z[M]-modules, where Z is considered as trivial Z[M]-module.

We are mostly interested in the case of a discrete G-module A, where G is a profinite group,
together with an Ny-action (which then automatically is continuous since both, Ny and A are
discrete), which comes from a G-homomorphism of A. To shorten notation, we make the
following definitions.

Definition 2.2.1. Let G be a profinite group and M a topological monoid.

By ®isy; we denote the category whose objects are discrete abelian groups with a continuous
action of M and whose morphisms are the continuous group homomorphisms which respect
the operation of M.

Similarly we denote by ®isg the category whose objects are discrete abelian groups with
a continuous action of G and whose morphisms are the continuous group homomorphisms
which respect the operation of G.

And finally we denote by ®isg v the category whose objects are discrete abelian groups,
together with commuting continuous actions of G and M and whose morphisms are the con-
tinuous group homomorphisms which respect the operations from G and M.

The corresponding categories, whose objects are abstract abelian groups, are denoted by
lesM, leﬁ(; and Q[EJEQM.

Furthermore, by Topg we denote the category of topological abelian Hausdorff groups with a
continuous action from G. The morphisms of this category are the continuous group homo-
morphisms which respect the action from G.

Analogously we denote by Topg \; the category of topological abelian Hausdorff groups with
continuous actions from both, G and M, such that these actions commute. The morphisms
of this category are the continuous group homomorphisms which respect the actions from G
and M.

Remark 2.2.2. Let G be a profinite group and M a topological monoid. Then the categories
Disgm and Disgxm coincide, where G x M is considered as a topological monoid.

Our aim now is to see that the category Disg v has enough injective objects. For this, we
follow the idea of [29, (2.6.5) Lemma, Chapter I §6, p. 131] and outline some details.
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Remark 2.2.3. Let G be a group and M a monoid. Then the category Absg \ coincides with
the category of Z|G]|[M]-modules. In particular, the category Absg v has enough injectives.

Let G be a profinite group and M a discrete monoid. The usual arguments show that the
category ®isg v has enough injective objects (cf. [23, Prop. 2.2.12] for details).

Lemma 2.2.4. Let G be a profinite group and M a discrete monoid. Then the functor
(—)M: Disgy — Ab
is left exact and additive (Ab denotes the category of abelian groups).

Proof. Since Disg v and Disgxm coincide (cf. Remark 2.2.2) we can view the functor (—)%M

as (—)“*M. Then (2) says
(—)M = Homgz g ar)(Z, —)

which immediately gives the claim, since Hom(Z, —) is left exact and additive. t

By the above the right derivations for (=)™, where G is a profinite group and M a
discrete monoid, exist (cf. [38, Tag 0156, Lemma 10.3.2 (2)]). This then leads us to the
following definition.

Definition 2.2.5. Let G be a profinite group and M a discrete monoid.  Then
H™(G,M;—) := R"(—)%M denotes the n-th right derived functor of (=) and is called the
n-th cohomology group.

Proposition 2.2.6. Let G be a profinite group, N <G a closed, normal subgroup and M a
discrete monoid. Then for every A € Disq v there are two cohomological spectral sequences
converging to H"(G, M; A):

H*(G/N,H*(N,M; A)) == H(G, M; A)
H*(G/N,M; H*(N, A)) == H""(G, M; A).

Proof. Recall that the categories Disg M, Disq/n v and Disq/n have enough injectives. The
functors (—)VM: Disgy — Disg N respectively (—)N: Disgy — Disq/n,m send injectives
to injectives as is straightforward to check, see [23, Lem. 2.2.16]. Furthermore, since the
actions of G and M on objects of Disg v commute, the compositions

N,M )G/N
@iﬁg/N

Ab

Disg M

and
_\N (_)G/N,]\l

DisG/N,M Ab

@iﬁ(}jM

both coincide with (—)%. This then leads to the claimed Grothendieck spectral sequences.
O

As we now have accomplished the abstract theory for our goals, we want to discuss how
to compute these cohomology groups when the monoid action arises from an endomorphism.
First of all, we want to compare Ny-actions with Z[X]-modules.

Remark 2.2.7. The category Absy, coincides with the category of Z[X]-modules.

In the following, we will switch between these two concepts without further mentioning it.
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Remark 2.2.8. Let G be a profinite group, A € Disq ,. For every n € Ny we can define an
No-action on C% (G, A) by operating on the coefficients:

(X - f)(o) =X - (f(o)).

Remark 2.2.9. Let A*® be a (commutative) double complex of abelian groups. We write
Tot(A®**®) for its total complex, by which we mean the complex with objects

Tot™ (A*®) = @ Ab
i+j=n
and differentials
d%ot(Aw) = @ dﬁér opr;_q; D (_1)id€e]rt oOPpr; i1
i+j=n
If f**: A** — B** is a morphism of (commutative) double complexes, then
Tot™(f**): Tot"(A**) Tot™(B**)

(aij)itrjmn > (fij(aij))irij=n

defines a morphism of the corresponding total complezes.

If X® and Y* are complexes of abelian groups and ¢*: X® — Y* is a morphism of com-
plexes, then it also is a double complex concentrated in degrees 0 and 1 and we again write
Tot(g®: X®* — Y'®) for its total complex.

Remark 2.2.10. Let G be a profinite group and A € Disg. As in [29, p. 12-13] we omit the
subscript "cts" for the notations introduced in Remark 2.1.1, i.e., we write

X™M(G, A) = Map (G", 4),
O™ for the differential X" (G, A) — X"(G, A) and
C™(G, A) = X" (G, A)°.
Definition 2.2.11. Let G be a profinite group and A € Disq n,. Then define

% (G, A) = Tot (C*(G, A) — "

I (G, A) = H* (€% (G, A)).

C*(G, A),

If the Np-action on A comes from an endomorphism f € Endg(A) (cf. (1)), then we also write

C*(G,f)—id

C3(G, A) = Tot(C*(G, A) C*(G,A)),

H5(G, A) = H* (€3G, A)).

If A € Absy, then we also write 3% (A) for the cohomology of the complex A X4 A concen-
trated in the degrees 0 and 1.

The aim now is to see that the cohomology of the complex C% (G, A) coincides with the
right derived functors of (—)®No. Before proving this, we want to make a smaller step and
explain first how to compute the right derived functors of (—)No and that these coincide with

the cohomology of the complex A X1 4 concentrated in degrees 0 and 1.
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Proposition 2.2.12. Let A € Absy,. Then we have
H°(Ng; A) = Ao,
H'(No; A) = An,,
H'(Ng; A) =0 for alli € Z\ {0,1}.
In particular, the right derived functors of (—)No coincide with the cohomology of the complex

A2 A concentrated in degrees 0 and 1. Using the notation from above, this means that for
all © € 7 there are natural isomorphisms

HY(Noj A) = 3 (4).
Proof. Follows immediately from the projective resolution of Z by:
0 Z[X] Z[X] Z 0
P(X)—— (X —1)P(X)
P(X)— P(1).

O
Proposition 2.2.13. Let G be a profinite group and A € Disqn,. Then the double complex

X-1

K**: C*(G, A) C*(G, A)

gives rise to two spectral sequences converging to the cohomology H% (G, A):
HY (HY (G, A)) == HE(G, A)
HY G, HYy (A)) == HE(G, A).

Proof. Since for every n € Z the double complex K**® has at most two nonzero entries K¢
with p + ¢ = n, this is shown in [38, Tag 012X, Lemma 12.22.6]. O

Lemma 2.2.14. Let G be a profinite group and f: A — B be a morphism in ®isqn,. Then
the diagram
CY(G.f)

Cx (G, A) C%(G, B)
J/BA \LaB
oG
erl(a, A) —= Cv(@G, B)
is commutative for all n € Ny.
Proof. Left to the reader. O
Lemma 2.2.15. Let G be a profinite group and
0—=A—22-p-o 00
be an exact sequence in Disqn,. Then, the sequence
€% (Ga) €% (G.8)

0—= C%(C. 4) e (G, B) €%(G,C) —>0

is exact.
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Proof. Since A, B and C' are discrete groups, we deduce from Corollary 2.1.2 that for all
n € Ny the sequence

e (G,2) €™(G,B)

0——= (G, A)

e"(G, B)

(G, C) —=0

is exact. But since €% (G, Z) = C*(G, Z2)®C" (G, Z) (where C71(G, Z) = 0) and C% (G, n) =
C(G,n) ® C"TH(G, n) for all Z € Disg , and any morphism 7 in Disg n,, we immediately
deduce that the sequence

€% (G,a) €% (G.B)

0—> C%(C, A)

€% (G, B)

Y (G, C) ——=0
is also exact. U]

Lemma 2.2.16. Let G be a profinite group. The functors (H% (G, —)), then form a coho-
mological §-functor, i.e. if

0 A—2.p_ . ¢ 0

is an exact sequence in Disq , then, for every n € Ny, there is a group homomorphism

5 HY (G, C) HE NG, A)

such that the sequence
= M5 (G B) — HK(G.0) —"= HETH(G, A) —> K (G B) — -
15 exact.

Proof. The proof is the standard application for the snake lemma (cf. for example at [29,
(1.3.2) Theorem, Chapter I §3, p.27]). O

Lemma 2.2.17. Let G be a group. Then there holds
Z|G)[X] 2 Z|G]) &z Z]X].

Lemma 2.2.18. Let G be an abelian profinite group. Then, for every n € N the func-
tor H% (G, —) is effaceable, i.e. for every A € Disqy, there exists a B € Disqn, and a
monomorphism u: A — B in Disqn, such that H%(G,u) = 0.

Proof. Left to the reader, or [23, Lem. 2.2.31]. O

Corollary 2.2.19. Let G be a profinite group. Then the family of functors (H%(—)), from
Disa N, to Ab forms a universal delta functor.

Theorem 2.2.20. Let G be a profinite group. Then we have
IO (G, A) = H'(G, No; A)
for alln € Ng and A € Disq -

Proof. Since (H™(G,Ng; —)), are the right derived functors of (—)9MNo this is a universal
delta functor and since (H% (G, —)), is also an universal delta functor (cf. Corollary 2.2.19),
it remains to check that they coincide in degree 0. For this, let A € Disq n,. We have

HY(G,Ng; A) = Ao
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and
Hx (G, A) = H'(C%(G, 4))
. 1 X-1
=ker(A — € (G, A)) Nker(A — A)
= AN AX=!
Since, by definition, AX=1 = ANo it follows immediately that A%No = A& ANo, 0

Next we want to reformulate Proposition 2.2.6 with the above theorem, just to avoid
confusions for latter applications.

Proposition 2.2.21. Let G be a profinite group, N <G a closed, normal subgroup and A €
Disq n,. Then there are two cohomological spectral sequences converging to H'% (G, —):

H(G/N,H% (N, A)) == H(G, M; A)
HY(G/N, H (N, A)) == H5*(G, M; A).

Proof. This is Proposition 2.2.6 using H"(G,Np; —) = H% (G, —) from Theorem 2.2.20. O

As for the standard continuous cohomology (cf. [29, (2.7.2) Lemma, Chapter II §7, p. 137]),
we will also need a long exact sequence for H% (G, —) in a slightly different setting as in Lemma
2.2.16.

Proposition 2.2.22. Let G be a profinite group and let

0 A—2.p_ . ¢ 0

be a short exvact sequence in Topg N, such that the topology of A is induced by that of B and
such that B has a continuous, set theoretical section. Then there are continuous homomor-
phisms

o HE(G, O) HE NG, A)

such that the sequence

- K% (G, B) — H%(G, C) = KNG, A) — HEH(G, B) — - -

s exact.

Proof. Algebraically this is exactly the same proof as Lemma 2.2.16. It then remains to check,
that the occurring homomorphisms are continuous which is only for the 6™ a real question.
But this can be answered using a topological version of the snake lemma, like [33, Proposition
4, p.133]. g

2.3. Some Homological Algebra. In this subsection we want to collect and prove some
facts we will need later on.

Definition 2.3.1. Let C* be a complex of abelian groups and n € Z. Then we denote by
C*[n] the shift of this complex by n. This means, that for all i € Z we have C'[n] = C"*".
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Lemma 2.3.2. Let Y* and Z* be complexes of abelian groups and let g*: Y* — Z° be a
morphism of complezes, such that every g* is surjective. Then there is a canonical, surjective
homomorphism
ker(dy ) Nker g* — H'(Tot(g*: Y* — Z°)).
In particular, if all the g* are bijective, we have
H'(Tot(g*: Y* — Z°*)) = 0.
Proof. Easy to check, see [23, Lem. 2.3.2] O
Lemma 2.3.3. Let
0—=xLoye Tz o
be a short exact sequence of complexes of abelian groups. Then the sequence

0— > X* — = Tot(Y* — Z°) — Tot(Y*/f*(X*) — Z*) —=0

s also an exact sequence of complexes and for the cohomology we have
HY(X®) = H(Tot(g*: Y* — Z°)).
Proof. Standard, see [23, Lem. 2.3.3]. d

Corollary 2.3.4. Let G be a profinite group, A, B € Disq and f a continuous endomorphism
of B which respects the action of G such that the sequence

0 A il Lp 0

is exact. Then we have ' '
H'(G,A) = fH?(G,B)
for all i > 0.

Proof. This is just the above Lemma 2.3.3 with Corollary 2.1.2 and the notation from Defi-
nition 2.2.11. ]

Corollary 2.3.5. Let G be a profinite group and let

0 A—2.p_ " ¢ 0

be an exact sequence in Topg, such that the topology of A is induced by that of B and such
that B has a continuous, set theoretical section. Then the exact sequence of complexes

Céis(G.B)

Clis(G.a)
00— C5s(G, A)

(cf. Corollary 2.1.2) induces
AG = Hgts(Gv A) = HO(TOt(CC.ts(Gv /B) C.tS(G7 B) - Cc.ts(G7 C)))

(G B)

cts

* (G,C) —=0

cts

and
CG — Hclts(G7 A) = Hl (TOt(CC.ts(G> ﬁ) : CC.tS(G) B) — C.tS(G7 C)))

Proof. This is an immediate consequence of the combination of the above Lemma 2.3.3 with
Corollary 2.1.2. O

Now let’s turn to some facts about projective limits.
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Remark 2.3.6. Note that Co(G,—) commutes with projective limits, since the functors
Mapets(G™, —) and (=) commute with projective limits, i.e. if A = Mn Ay, then

C(:ts(G7 A) = m C(:ts(G? An)

Lemma 2.3.7. Let G be a profinite group, A € Topg and let (A,)y be an inverse system in
Topg such that A = @n A, in Topg. Let furthermore f € Endeis (A), such that f = m In
with f,, € Endes,c(Apn). Then it holds

€3(G, A) = lim €3(G, Ay).

Proof. First we want to note, that for groups X = @Xn and Y = l’len always holds
XxY = @n(Xn X Yn).

This means that the objects of the two complexes C3(G, A) and Jim €$(G, Ay) coincide, so it
remains to check that the differentials do as well. If we denote the i-th object of C&, (G, A) by

C" and the differential by d’ then it suffices to check that the following cube is commutative
e'(G.f)

Ci Ci
\ , lim € (G, f) \ ,
d c < ot c
i+l ” [Z(G’f) olax! g
\ Ym e1’(G,fn)\*

CiJrl CiJrl

This is a direct consequence from the assumption f = ££n fn and that C?

%< (G, —) commutes
with inverse limits. n

Lemma 2.3.8. Let G be a profinite group and (Ay)n be an inverse system in Topg such
that the inverse system of complexes (Cos(G, Ap))n has surjective transition maps and let
A= Jm Ap. If [ € Endes,o(A) then also the system (C$(G, An))n has surjective transition
maps.

Proof. By assumption, for every k € Ny, the transition map CX (G, A,) — CE (G, A1) is
surjective. But then also the transition map
C(]fts(Gv An) ©® Cgtgl(G’ An) - C(]fts(G, An—l) ©® Cgtgl(G’ An—l)
G’}(G, Ap) G’}(G, Ap—1)
is surjective, since it’s the direct sum of two surjective maps. (]

Definition 2.3.9. An inverse system (of abelian groups) (X, )nen is called Mittag-Leffler
(ML) if for any n € N, there is an m > n such that the image of the transition maps X — X,
coincide for all & > m (cf. [29, p. 138]). An inverse system (of abelian groups) (X, ),en is called
Mittag-Leffler zero (ML-zero) if for any n € N there is an m > n such that the transition
map X — X, is zero for all k > m (cf. [29, p.139]). A morphism (X,,), — (Y3,), of inverse
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systems is called Mittag-Leffler isomorphism (ML-isomorphism) if the corresponding
systems of kernels and cokernels are ML-zero.
By l’gﬂ" we denote the r-th right derived functor of @1

Proposition 2.3.10. Let (X,,) and (Y;,) be inverse systems of abelian groups.

1. If (Xp) has surjective transition maps, then it is M L.
2. If (X,) is ML then @Z X, =0 forallr > 0.
3. If frn: Xnn = Yy is a ML-isomorphism then for all © > 0 the homomorphism

fin, fo: Jony, X — Jom ¥y
is an isomorphism.

Proof.

1. Let apm: X — X, denote the transition map for m > n. Then it is im(ay,,) = X,
for all m > n, i.e. the system X,, is ML.

2. [29, Chapter II §7, (2.7.4) Proposition, p. 140]

3. [38, Tag 0918, Lem. 15.79.2.]

]
Proposition 2.3.11. Let (X)) and (Y,?) be inverse systems of complexes of abelian groups

such that the transition maps X! il = X and Y, 4 — Y are surjective for all i € 7 and
n > 0.

1. For all i € Z we get a short exact sequence
0 ——lim! Hi~'(X3) — Hi(lm X2) —>lim H(X2)—0.
2. Let (f3): (X3) = (Yy )?(9

map on cohomology H*
then gnn ) LnX

Proof.

1. [24, Chapter 3, Proposition 1, p.531; Corollaryl.1, p. 535-536]
2. From the first part of the proposition we obtain for every ¢ € Z a commutative diagram
with exact rows

0 — lim! =L (X3) —> H'(lim X3) — lim H(X}) —>0
ll'g; HL(f) lH(lgln 12 J{lgln H(f2)
0 —lim" H=Y(Y}) —— Hi(lim Y;}) —>lim Hi(Y;?) —0.

a morphism of inverse systems of complexes. If the induced
) H{(X?2) — HYY,?) is a ML-isomorphism for all i € Z,
lm Yn’ is a quasi tsomorphism.

The assumption that H(f?) is a ML-isomorphism for all i € Z then says that the left
and the right horizontal maps in the above diagram are isomorphisms (cf. Proposition
2.3.10). The 5-Lemma then implies that also H 1(¥Lnn fx) is an isomorphism for all
1 €7, ie. mn [ is a quasi isomorphism.

O

Remark 2.3.12. Since isomorphisms of inverse systems are always ML-isomorphisms, the

above Proposition also states, that if (fy): (X2) — (Y,?) is a quasi isomorphism of inverse
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systems of complexes, for which the transition maps XfH_l — X! and Yri—&-l — Y are surjective
for alli € Z and n > 0, then also (thn(fq;) l&ln Xy — mn Y?® is a quast isomorphism.

Remark 2.3.13. In the above Proposition 2.3.11 and Remark 2.3.12 one cannot easily drop
the assumption that the transition maps are surjective. There exist examples (see [23, Rem.
2.3.13.]) of two inverse systems of complexes which are quasi isomorphic, but their projec-
tive limits are not. Hence in the proof of [34, Theorem 2.2.1, p.702-705] right before [34,
Proposition 2.2.7, p. 703-705], an explanation is missing why it really is enough to prove this
proposition.

3. LUBIN-TATE (¢, I')-MODULES

The goal in this section is to state in the Lubin-Tate case the equivalence of categories from
[20, Thm. 1.6], which follows closely the original result [14, 3.4.3] for (¢,I')-modules in the
cyclotomic case, in the style and with similar notation as in [10] or [15, Theorem 4.22, p. 82].
Namely, if K|L|Q, are finite extensions, we want to describe an equivalence of categories
between the category of continuous Op-representations of the absolute Galois group G and
a yet to be defined category of étale (¢, 'k )-modules. While there is only a sketch of proof
in [20, Thm. 1.6], for the case K = L a very detailed proof can be found in the book [30]. In
his thesis [23] the first named author checked and comments how to adjust Schneider’s proof
in the general case. One more useful source will be [35].

3.1. Preparations and Notations. Let p be a prime number and let Q, be a fixed algebraic
closure of the p-adic numbers @@, and let as usual Z, be the integral p-adic numbers. Each
finite extension of Q, is considered to be a subfield of Q,. Let C, be the completion of Q,
with respect to the valuation v, with v,(p) = 1 and let Oc, be the ring of integers of C,.
Let furthermore L|Q, be a finite extension, dj, its degree over Q,, Or, the ring of integers,
7w, € O, a prime element, k;, the residue class field, q;, = p” its cardinality, Ly the maximal
unramified extension of Q, in L with ring of integers O, .

Let furthermore K|L be a finite extension, dk its degree over Q,, O its ring of integers,
g € Ok a prime element, kx the residue class field, ¢ its cardinality, Ky the maximal
unramified extension of Q, in K with ring of integers O, .

We will denote the absolute Galois groups of Q,, L and K by Gg,, G and Gk, respectively.
For any kr-algebra B we will denote by W(B), the ring of ramified Witt vectors with
values in B. (cf. [30, Section 1.1, p.6-21]). If B happens to be perfect, these are standard
Witt vectors tensored with Op (cf. [30, Proposition 1.1.26, p.23-24]).

A perfectoid field X C C,, is a complete field, such that its value group |X*| is dense in R}
and which satisfies (Ox/pOx)? = O /pOx (cf. [30, p.42]).

Let K be a perfectoid field. The tilt K* of K is the fraction field of the ring

Og{b = 1&1 Og{/w(‘)g{,
a9l
where w is an element in Og such that |w| > |7z|. In fact, this definition is independent
from the choice of the element w (cf. [30, Lemma 1.4.5, p. 43-44]). The field X’ is perfect and
complete and has characteristic p (cf. [30, Proposition 1.4.7, p.45]). Moreover, the field (Clb7
is algebraically closed (cf. [30, Proposition 1.4.10, p.46-47]). The theory of perfectoid fields
was originally established by Peter Scholze (cf. [35]) but Schneider’s book covers all of the
theory we do need here.
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Let from now on, as in [30, Definition 1.3.2, p.29], ¢ € R[X;,...X,] be a fixed Frobenius
power series associated to 7y, i.e. we have

¢(X) =7 X mod deg 2

¢(X) = X9 mod ’/TLOL[[X]].
Let furthermore G4 € Or[X,Y] be the Lubin-Tate formal group which belongs to ¢ (cf. [30,
Proposition 1.3.4, p.31]). For a € Or denote by [a]g € Or[X] the corresponding endomor-
phism of G4 (cf. [30, Proposition 1.3.6, p.32]). Note that we then have
[a]¢(X) = aX mod deg 2 and |71}, = ¢ (loc. cit.). We then set 9 = {x € Q, | |z| < 1} and
obtain that the operation

Op x M m

(@, 2) ————laly(2)

makes 9 into an Oz-module (cf. [30, p.33]). Then, for every a € O, we can view [a], as
endomorphism of 9t and therefore are able to define

Ggn = ker([n]]g: M — M) = {z e M| [7]]s(z) = 0}.
Note that (S4.r)n is via [7]4 an inverse system and we let

be the projective limit of this system. (cf. [30, p.50]). TG is also called the Tate module of
the group G4. From [30, Proposition 1.3.10, p. 34] we can deduce that TG, is a free Oz-module
of rank one.

Following [30, (1.3.9), p.33] we let L, = L(G4[7}]) and Lo = UpL,. Denote as there
the Galois group Gal(Leo|L) by Tz, set Ty, = Gal(L,|L) and Hy, = Gal(Qy|Loo). Define
furthermore K,, := K(Gy[n}]) = KL, and Ko, == U K,, = KL as well as ' = Gal(K|K)
and Hx = Gal(Q,|K). These definitions can be summarized in the following diagram:

Q
Hg
Hy, Gk

Koo
Gr, /
Lo 'k

N3 K
L/
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Remark 3.1.1. The group T', is isomorphic to OF via the Lubin-Tate character xyr. Fur-
thermore, I'f, acts continuously on TG4 via xr,, i.e. for ally € 'y and t € TG4 we have

v-t=xp(y) t= [XL("Y)]¢(t)-

Proof. For the first assertion see [30, (1.3.12),p. 36], the second follows immediately from [30,
(1.3.11),p. 34-35] and is also stated at [30, (1.4.17),p. 51]. O

Remark 3.1.2. One can view ' as an open subgroup of U'p. If, in addition, K|L is un-
ramified, then we have 'y = T'f.

3.2. The coefficient ring. We first want to recall the definition of the coefficient ring used
in [30] and then deduce the coefficient ring in the general case.
First we recall the ring

= 1im O /mp O (X)),
n
from [30, p. 75]. This ring will be prototypical for our coefficients once we bring the variable
X to life. &7}, carries an action from I';, by
'y x o, ],
(v, ) = f(Ixe(M]s(X))-

and possesses an injective Op-algebra endomorphism

fr——— f(lrL]s(X))

(cf. [30, p.78]). At [30, p.79] Schneider defines a weak topology on <7, for which the
O [X]-submodules

Up = X™OL[X] + .o,

form a fundamental system of open neighbourhoods of 0 € o7;. As ¢ (47)-module o7, is free
with basis 1, X, ..., X% ~! ([30, Proposition 1.7.3, p. 78]), with respect to the weak topology
<71, is a complete Hausdorff topological O -algebra ([30, Lemma 1.7.6, p. 79-80]) and both the
endomorphism ¢y and the I'p-action are continuous for the weak topology ([30, Proposition
1.7.8, p. 80-82)).

Following Colmez [11, §9.2] one can find an element w € Ocs such that X +— w defines an

inclusion kr((X)) < (C;J (respecting important properties). As in [30, p.50] we denote the
image of this inclusion by Ej and we want to recall from loc. cit. that Er is a complete
nonarchimedean discretely valued field, with uniformizer w and residue class field k. Let
in addition EJLr denote the ring of integers inside E;. Furthermore, E; carries a continuous
operation by I'p, for which we have v - w = [x1(7)]¢(w) mod 7z, (cf. [30, Lemma 1.4.15,
p.51]). By raising elements to its gz-th power, it is clear that Ej also carries a Frobenius
homomorphism, which is continuous and the reduction modulo p of ¢y, Let furthermore EF*
denote the separable closure of Ej, inside Cl;a and let ESLep’Jr denote the integral closure of EJLr
inside E7". The Galois group Gal(E7?|E},) is isomorphic to Hy, by [30, Section 1.6, p. 68-75]
and [30, Theorem 1.6.7, p.73-74]. Then Schneider lifts w to W(Er)r C W<OCZ>L and calls
this lift wy (cf. [30, Section 2.1, p.84-98; in particular p.93]). Here one cannot just take the
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Teichmiiller lift, because one wants that the lift fulfills the following relations

Fr(wg) = [m]e(ws)
7 ws = [xL(Mlp(ws)
for all v € I';, and where Fr is the Frobenius on W((CZ)L (cf. [30, Lemma 2.1.13, p.92-93] for
the Frobenius and [30, Lemma 2.1.15, p. 95| for the I'p-action). Similar to the construction of

Er, sending X to wyg then defines an inclusion o7, — W(Er)r ( cf. [30, p.94]). In Particular,
it gives us a commutative square (loc. cit.)

Xi—)UJ¢.
o W(EL)L

| |

k(X)) —2Y~E,.

Let A denote the image of the inclusion <7, — W(Ep). In addition, define
Az = OL[[(,U¢]] =ArnN W(EI)L

A is endowed with the weak topology, i.e., induced by that from W((CZ) 1 and the isomor-
phism 77, = A is topological for the weak topologies on both sides (cf. [30, Proposition
2.1.16, p. 95-96]). Furthermore, this topological isomorphism respects the I'-actions on both
sides, where Ap-carries a I'p-action induced from the Gp-action of W(C?)) L (cf. [30, p.94])
and what is ¢, on 7, is the Frobenius on A, which again is induced from the Frobenius
on W(CZ)L (cf. [30, Proposition 2.1.16, p. 95-96]). We therefore denote the Frobenius on Aj,
also by ¢r. An immediate consequence then is, that the I'r-action and ¢y, are continuous on
.

This is the coefficient ring for Schneider’s (¢, I'r)-modules (cf. [30, Definition 2.2.6, p. 100
101]) but since we want to establish (¢, I')-modules over a finite extension K|L as it was done
in the classical way (cf. [15, Definition 4.21, p. 81]) for finite extensions of Q,, we transfer this
construction to our situation. Let for this A¥* C W(ET?), be the maximal unramified exten-
sion of Ay, inside W(ET?),. In particular [30, Lemma 3.1.3, p. 112-113] says that for every
finite, separable extension F|Ej, inside ET", there exists a unique ring Ar(F) C W(ET"),
containing Ay, such that A} is the colimit of the family Az (F). The ring A is defined as
the closure of A} inside W(ET?) with respect to the mz-adic topology and one has (cf. [30,
p. 113 and Remark 3.14, p. 114])

A = 1im A/l AR

AT and A have an action from Gy, the Frobenius on W (EJ?) preserves both rings, they are
discrete valuation rings with prime element 7y, where A is even complete and their residue
class field is E® (cf. [30, p. 113-114]). In fact, the Gz-action on both A} and A is continuous
for the weak topologies, since the GG, action on W((C;’Q) 1, is continuous for the weak topology
(cf. [30, Lemma 1.4.13, p. 48-49] and [30, Lemma 1.5.3, p. 65-66]) and both, the weak topology
and the G, action on AJ" respectively A, are induced form W((C;) 1. Furthermore we have
the relation (cf. [30, Lemma 3.1.6, p. 115-116])

(A = A;.
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This leads to the definition
A'K|L = (A)HK
In addition, define
AT = ANW(ET),
AT = AP N W(ETTT)L
AfL = A NWETT)L.

Then, since by definition it is A, C A, € W(E}")L, the ring Ay, is a complete nonar-
chimedean discrete valuation ring with prime element 7, and the restriction of the Frobenius
from W(ETP)., gives a ring endomorphism o of Ag|r, which then also commutes with
or, (cf. [30, Lemma 3.1.3, p. 112-113]). Furthermore, since A carries an action from G, and
therefore also one from G, the ring Ag|; carries an action from I'k. Next, we want to
define a weak topology on A/, deduce some properties and see that ¢ and the action
from I'i are continuous for this topology.

Definition 3.2.1. The weak topology on any of the rings A, A7, Agr, and A is defined
as the induced topology of the weak topology of W((CE,) 1, (for the latter see [30, p.64-65]).

Remark 3.2.2. The weak topology on W((CZ)L is complete and Hausdorff (cf. [30, Lemma

1.5.5, p.67-68]) and W((CZ)L is a topological ring with respect to its weak topology (cf. [30,
Lemma 1.5.4, p.66-67]). Therefore, the induced topology on any of the rings A, A", Ak
and Ay is Hausdorff and these rings are topological Tings.

The question now is, wether g 7, and the action from ' are continuous for the weak
topology on A . For this, we want to recall a well-known fact.

Lemma 3.2.3. Let X and Y be topological spaces, f: X — Y be a continuous map and let
Z CY be a subspace with im(f) C Z. Then f: X — Z is continuous.

Proposition 3.2.4. The from W(ET?), induced T k-action and the induced Frobenius PK|L
on Ay, are continuous.

Proof. This now is an immediate consequence of Lemma 3.2.3 and the fact, that G acts
continuously on W(ET?), (cf. [30, Lemma 1.5.3, p. 65-66]) as well as that Fr is continuous
on W (ET?) with respect to the weak topology:

Since the maps

G, % AK\L — G X W(ESLep)L — W(ESLep)L
and
A= W(EL) —> W(E),
are continuous as composite maps of continuous maps and their image is inside A |, (for the

latter see [30, Lemma 3.1.3, p. 112-113]) the claim follows. O

We want to end this subsection by fixing some notation, defining weak topologies on mod-
ules over any of the above rings and calculating the residue class field of Ag|;. We denote by
B., B, By and B]' the quotient fields of Ar, A, Ay and A}', respectively. Furthermore,

set Egr, = (ESLep)HK and let E;rq ;, denote the integral closure of EZ inside Ey. In Lemma
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3.2.11 we will see that Eg,y, is the residue class field of Ay . Beforehand, we define weak
topologies for modules.

Lemma 3.2.5. Let R € {A, A}, Ak ,AL} and M be a finitely generated R-module. If
k,l € N such that R* — M and R — M are surjective homomorphisms, then the induced
quotient topologies on M coincide (where R* and R' carry the product topology of the weak
topology on R).

Proof. This is [21, Lemma 3.2.2 (i), p. 100-102]. There, in fact, is no proof for Ak, but in
his proof, the author only uses that the coefficient ring is a topological ring with respect to
the weak topology, what we stated in the above Remark 3.2.2. O

Definition 3.2.6. Let R € {A, A}, Ak, AL} and M be a finitely generated R-module. The
weak topology on M is defined as the quotient topology for any surjective homomorphism
RF — M, where RF carries the product topology of the weak topology on R.

Lemma 3.2.7. Let R € {A, A", Ak, AL} and M be a finitely generated R-module. Then
M with its weak topology is a topological R-module and if M = My & M, then the weak
topology on M coincides with the direct product of the weak topologies on the My and Mos.
Furthermore, if N is another finitely generated R-module and f: M — N is an R-module
homomorphism, then f is continuous with respect to the weak topologies on both M and N.

Proof. This is [21, Lemma 3.2.2 (ii)-(iv), p. 100-102]. Again, there is no proof for Az, but
the property used is that of a discrete valuation ring, which Az, also fulfills. 0

Proposition 3.2.8 (Relative Ax-Sen-Tate). Let X be a nonarchimedean valued field of char-
acteristic 0, X an algebraic closure with completion C and L|K a Galois extension within K
with completion L. Let furthermore H < Gal(£|X) be a closed subgroup. Then it holds

(L) = (L),

Proof. This is an immediate consequence of the usual Ax-Sen-Tate theorem (cf. [15, Propo-
sition 3.8, p.43-44] ): Since L£|X is algebraic, X is also an algebraic closure for £ and then
we deduce (loc. cit.)

el = L.
Infinite Galois theory then says that we have H = Gal(£|£H) & G u/Gy. Together with
Ax-Sen-Tate we then deduce

~

(LH)/\ _ GG/;H _ (CGE)H _ (L)H
O

For our purposes the following integral version of the above Relative Ax-Sen-Tate Theorem
will be the interesting one.

Corollary 3.2.9. Let K be a nonarchimedean valued field of characteristic 0, X an algebraic
closure with completion C and L|X a Galois extension within K with completion L. Denote
by O2 the ring of integers of any of the above fields 7. Let furthermore H < Gal(£L|X) be a
closed subgroup. Then it holds

(02)" = ((00)")".
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Proof. For an element z € € we have
z € (05)" =z e (L) with |z| <1282 € (L7)" with |z] < 1<z € (0)7)",

where the last equivalence comes from the fact that the integers of the completion are the
completion of the integers. O

Lemma 3.2.10. It holds (A} )75 = Ay ;.

Proof. This is a direct consequence of the above Corollary 3.2.9. This namely says that
Ay = (AT = (AN,

But since (A¥)x|A[ is finite and A, is complete, (A} itself is complete, i.e. it is

(AR = (AP)T)" = Ay

Lemma 3.2.11. Egy;, is the residue class field of Agr.

Proof. We have an exact sequence

0 Ay T A AV /m A —— 0.

By taking H-invariants and using (A¥)Hx = A K|z from Lemma 3.2.10 we obtain the exact
sequence

0 AK‘L T AK\L . (ESLGP)HK s HI(HK,AIE)~

Since B}'|By, is unramified, and therefore also tamely ramified, we get from [29, (6.1.10)
Theorem, p.342-342] that A}" is a cohomologically trivial Hy-module. Therefore the right
term in the latter sequence is equal to zero and we get the exact sequence

T

0—AgL AL Egr——0

which ends the proof. O

3.2.1. Concrete description of Weak Topologies. As the title says, the goal of this chapter is
to give a concrete description of both, the ring Ay, and its weak topology. We will start
with the topology and first we want the recall the description of the weak topology of Ap
and recall that a similar description holds true on W((C'I’)) L

Remark 3.2.12. [30, Proposition 2.1.16 (i), p.95-96] says that the weak topology A has
an analogous description as the description above. Concretely, a fundamental system of open
neighbourhoods of O for the weak topology on Ay is given by

wgbA}f +7'Ap, m > 1.

Remark 3.2.13. A fundamental system of open neighbourhoods of O for the weak topology
on W((CE,)L is given by the W(Ocz)L—submodules
WiW (Ogs )L + TPW(C)), m > 1.

Proof. Because of |®g(wg)|, = |wl|, = |7L|%/% "1 < 1 (cf. [30, Lemma 2.1.13 (i), p. 92-93] for
the first equality and [30, Lemma 1.4.14, p.50] for the second) this is exactly [30, Remark
2.1.5 (ii), p. 86-87). O
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In the following Proposition we will show, that the above description of the weak topol-
ogy on Ay extends to unramified, integral extensions. Its proof is a generalization of [30,
Proposition 2.1.16 (i), p. 95-96].

Proposition 3.2.14. Let B|By be an unramified extension, A C B the integral closure of
Ay in B and set At = ANW(ET>T)L.
Then the family

w$A+ +7 A, m>1
of At -submodules of A forms a fundamental system of open neighbourhoods of 0 for the weak
topology on A.

Proof. Since we have wf'A* C wp’ (ch)L and 7'A C 7 ((C:Z)L for all m > 1, we also
get

Wi AT + 7P A C (W W (O )r + 7 W(C))1) N A
for all m > 1, i.e. the topology on A generated by the family (ngA“‘ + 7" A),y is finer then
the topology induced from W((C;) L-

To see that it is also coarser, let E|Ep be the residue class field of A and ET be the integral
closure of E] in E and consider the following families of W(ch )r-submodules of W(Czb,) L

Vi = {(bo, b1, -..) € W(Og )1 | bo, b1 € w"Ogy |,
— b n
Unm = {(bo,bl,...) eW(C)L | boy- . b1 € w o@}.

These are introduced in [30, Section 1.5, p.64-68] to define the weak topology on W((Clb)) L
In particular, the U, ,, give a fundamental system of open neighbourhoods of 0 in W((C;’D) L
(loc. cit.) and the V,,,, give one of W(O(C%)L. Since wy is topologically nilpotent (cf. [30,
Lemma 2.1.6, p.87]) we can find for any k£ € N an element n € N such that wg € Vim. But
since ®o(wg) = w, i.e. wy = (w,...), the condition wj € Vi, implies n > k. Therefore we
can find an increasing sequence of natural numbers m < [y < --- < [, such that

li
wgf eV 41 forall2<i<m.
qr, 1

Since A" only contains positive powers of wg, this then implies, that for all 2 < i < m we
have

l.
q 1
wgt AT C Vi

L m
We will now show that
qume NAC w$A+ + 77
For this let f,, € qum ., M A. We then have
L

Since by [30, Lemma 3.1.3 (b), p. 112-113] the diagram




22 BENJAMIN KUPFERER AND OTMAR VENJAKOB

Im
commutes, we can find g, € wZ)L AT and f,,_1 € A such that
fm =gm + 7TLfm—1-

Im
Recall w?f AT CV,, ,+1 from above and obtain
qr, T
L fm—1= fim — gm € (Uqle,m + ‘/qLLm,1+17m) NA= Uqle71+1,m NnA.

Then [30, Proposition 1.1.18 (i), p.16-17] says that, if f,,—1 = (bo, b1, ...) for some b; € C]bo
then we have 7, fr,—1 = (0,b¢", ", ...). This then immediately implies f,,,—1 € qum,l _NA.

)

L
This means that we can do a decreasing induction for m > ¢ > 1 and find for every such i

li
elements ¢; € wgf At and f;_1 € A such that

Ji=9gi +7rfia1.
Putting all this together, we get

m
fn =270 " g + 7L fo-
i=1
In particular we have
m . 1
Z T gm € wZ)L AT C wng"'.
=1
Therefore we have f,, € W$A+ + 7' A which was exactly the statement we wanted to see to

end the proof. O

Corollary 3.2.15. A fundamental system of open neighbourhoods of 0 for the weak topology
on Ak (resp. AT') is given by the A}‘L— (resp. A2r7+—) submodules

w;”A}w + 7 Ak, m > 1, respectively
wg”ArLlr7+ + 7 AT, m > 1.
Proof. This is an application of Proposition 3.2.14. O

Proposition 3.2.16. The weak topology on Ay, coincides with the weak topology of Ak r,
considered as Ay -module.

Proof. If (u;); is an Ap-basis of Ag, then (wgul)l is so for all k£ > 0. Therefore A, has
an A-basis consisting of elements of A}‘ ;- The claim then follows from the above Corollary
3.2.15 together with Corollary 3.2.12. O

Proposition 3.2.17. The canonical inclusion A, < A is a topological embedding. Fur-
thermore, for every n € N the induced inclusion AK|L/7T2LAK‘L — A/7TA is a topological
embedding as well.

Proof. Because of

AK\LmA:AK\LﬁAﬁW(OCZ)L :AK|L0W(OCZ)L
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the first part of the assertion follows from the definition of the weak topology. The second
then follows from the commutative diagram

Agpc——A

| |

Ag /T AR L A/T[A.
]

Proposition 3.2.18. The weak topology on A coincides with the topology of the projective
limit @n AV /7t AT where each factor carries the quotient topology of the weak topology on
AT, Moreover, a fundamental system of open neighbourhoods of 0 for the weak topology on
A is given by the sets

Wi AT+ A, m > 1.
Note that, by definition, AT = A",
Proof. For this proof, we will refer to the latter topology of the Proposition’s formulation as
the projective limit topology.

As in the above Proposition 3.2.17 the inclusion A}" — A clearly is a topological embedding
and since the diagram

A A
A} /TpAF —— A/r}

for every n € N is commutative, the quotient topology on A} /77 A" with respect to the
weak topology on A} coincides with its quotient topology with respect to the weak topology
on A. Therefore the canonical projections

A =lim A} /TpAY —= AY/TEAY

are continuous for the weak topology on A. This means that the weak topology of A is finer
than its projective limit topology.
From Proposition 3.2.14 we deduce that a fundamental system of open neighbourhoods of 0
for the quotient topology of the weak topology on A} /w7 A" is given by the sets

WP AT 4 A AY, m > 1.
Then the sets

wg@Af’+ +7rA, myn>1
form a fundamental system of open neighbourhoods of 0 for the projective limit topology on

A. But clearly the sets with m = n define the same topology. Since the weak topology is
defined by the sets

(WEW(Og)r + 7L W(C))) N A, m>1
(cf. Remark 3.2.13) and we clearly have
W AT+ 7T A C (W W (O + 7T W(C))) N A

for all m > 1, the projective limit topology is finer than the weak topology. (|
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Lemma 3.2.19. Let k be a finite field and E|k((X)) be a finite, separable extension. Then
there exists a finite extension klk and 'Y € E such that E = k((Y)).

Proof. This is [22, Lemma 1.38, p.20]. O

Lemma 3.2.20. Let K|k be an extension of finite fields and K ((Y))|k((X)) be a finite,
separable extension. Then the Y -adic and the X -adic topologies on K'((Y')) coincide.
In particular, there exists an l € N such that for all n € N it holds

XrE[y] c Y™K [Y] € X"K'[Y].

Proof. Since k[X] is a discrete valuation ring with respect to its X-adic topology and k'[Y]
is so as well with respect to its Y-adic topology, we deduce from usual ramification theory,
that there exists an [ € N such that

YY) = XK'Y].
Since YE'[Y] is the maximal ideal of k'[Y] it clearly is XA'[Y] C YK'[Y] and therefore we
get for alln € N
X y] c Y™K Y] € X"K[Y].
O

Lemma 3.2.21. Let E|E be a finite and separable extension. Then the subspace topology
on E induced from the topology of C;, coincides with the extension from the w-adic topology
on Er. Note that the latter topology is the w-adic topology on E, due to the above Lemma
3.2.20.

In particular, the integral closure ET of EJLr inside E consists of exactly those elements of E
whose absolute value in (C?] is less or equal to 1.

Proof. We denote the absolute value induced from (C; by ||, as in [30, Lemma 1.4.6, p. 44-45]
and we use the identifications £ = k((Y)) as well as E, = kr((X)) (cf. Lemma 3.2.19), where
k|kr is a finite extension.
The maximal unramified intermediate field of k((Y))|kr((X)) is k((X)) and therefore it exists
an | € N and g; € k[X] for 0 <4 <[ with X | g; and X2 ¢ gg such that (cf. [37, Chapter I,
§6, Proposition 17, p.19])

-1

Y gY' +Yi=0.

i=0
Since | X, < 1 and |z], = 1 for € k (in particular, every nonzero element coming from a
finite field has absolute value 1 in O@; with respect to | - |,) we have |g;|, <1 forall 0 <i<{
and we can deduce ‘ A

V1, < max lgils| V'), < max Y7,
and therefore |Y|, < 1. Furthermore, since we have Y'k[Y] = X&[Y] we can find a g € s[Y]
such that Y = X g and since [Y|, <1 we then deduce [g|, <1 and
YY), = [Xlgl, < 1X], < 1.

But this then immediately implies
Y], < 1.
Since X | go and X2 { go it is |go|, = | X, and because of X | g; for all 0 < i < [ we also have

lgols > lgs|, forall 0 <i<I.
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Since |Y'|, < 1 we deduce from the above
\gol, > |gil,|Y?|, forall 0<i<1I

and therefore
Y, = |gol, = X1,

because |- |, is a nonarchimedean absolute value.

Denote by | - | the extension of the absolute value of Ey, (which corresponds with the w-adic
topology) to E. Then we deduce from [37, Chapter 2, §2, Corollary 4, p.29] that
Y| = [Nor(Y)J,,

where Nor denotes the norm of the extension x((Y))|x((X)). From the polynomial we started
with we then can deduce Nor(Y') = go and therefore

Y| = |gol, = | X5

This means that |- | and | - |, coincide on E.
From the identification above we deduce E™ = s[Y]. But since |Y|, < 1, these are exactly
the elements of E¥ whose absolute value is less or equal to 1. ]

Corollary 3.2.22. Eg 1, is, with respect to the topology induced from (C;, a complete, nonar-
chimedean discretely valued field of characteristic p with residue class field kx and ring of
integers E?('L.

Lemma 3.2.23. Let X be a topological space and (Yy)yn a family of subsets of X with Y, C
Yoqr1. SetY = hénn Y, = U, Yn. Then, the subset topology on Y coincides with the final
topology of the inductive limit with respect to the subset topologies on the Y.

Proof. First we show that the canonical injections f,,: Y, < Y are continuous for the subset
topology on Y. This then implies that the subspace topology on Y is coarser than the
projective limit topology since the latter is the finest topology such that all injections f,, are
continuous (cf. [7, Chapter I, §2.4, Proposition 6, p. 32]).

Let U C Y be open and V C X open such that U =V NY. Then it is

) =UNY,=VNVNY,=VnNY,,

ie. f,1(U) CY, is open.

It is left to show, that the subspace topology is finer then the direct limit topology. For this,
let U C Y be open with respect to the direct limit topology, i.e. it is U = U,, f,, 1(U), where
for every n € N it exists an open V;, C X such that f~1(U) = V,,NY,. Weset V :=JV,, and
claim U =V NY. To see this, let u € U. Then it exists n € N such that v € V,, NY,, and in
particular u € V. Conversely let u € V NY. Then, by definition, there exist ny,no € N such
that u € V,,, and u € Y,,,. For n := max{ni,ns} we then deduce u € V;, NY,, and therefore
uel. O

Proposition 3.2.24. The integral closure ESLep’+ of Ez inside ETY consists of exactly those
elements with absolute value | - |, less or equal to 1.
Furthermore, the topology on ET? induced from Cg’, coincides with the final topology with
respect to the colimit

Ef*= (J E

E|EL

fin, sep
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where each E carries the topology induced from C;,.
In particular, the ESLep’+—subm0dules
W BTt
form a fundamental system of open neighbourhoods of 0 for this topology on EYP.
Proof. This now is an immediate consequence of Lemma 3.2.21 and Lemma 3.2.23. O

3.2.2. Structure of Coefficient Rings (unramified case). For this subsection, let K|L be an
unramified extension. Then this a Galois extension and its Galois group is isomorphic to the
Galois group of the respective residue class fields. It therefore is cyclic and generated by the
lift of the gz-Frobenius z +— z9. We will denote this lift by o/ and call it Frobenius on
K. Recall also from Remark 3.1.2 that the groups I';, and ' are isomorphic and for every
n € N the groups I'y, |1, and ', | i are isomorphic as well.

Remark 3.2.25. We have (Hp : Hi) = [K : L].
Proof. Since I';, = ' (cf. Remark 3.1.2) we have (Hp, : Hx) = [Kso : Loo| = [K : L. O
Lemma 3.2.26. We have kxEL = Eg .
Proof. Since k is fixed by Hy it clearly is kxEj C Egr. Since K|L is unramified we have
[K : L] = [kk : k1] and therefore

kkEr Ep)| =k :kx NEr] =[kx : kp]| =[K : L| = (Hy : Hg) = [EK\L :Ep].

Lemma 3.2.27. We have A, = Ok ®o, AL and By, = KBy,

Proof. Since K|L is unramified Og ®¢, A, is unramified over A, and since K is fixed by Hg
we deduce Ox ®o, A C Agjr. Since both are free Az-modules of rank [K : L] = (H[, : Hk)
they coincide.

The statement for the fields of fractions then follows immediately. U

In order to understand how the operations of I' and the Frobenius look on A, respec-
tively By, it now suffices to understand the corresponding operations on Ok respectively
K. Note, that since K|L is unramified, we clearly have W (kg)r, = Ok.

Lemma 3.2.28. Let Fr denote the (restriction of the) qr-Frobenius on k. Then the auto-
morphism o, on Ok coincides with the restriction of W (Fr)L.

Proof. Due to the functoriality of the Witt construction, W (Fr)y is an automorphism on
O which fixes Op, it induces also an automorphism on K which fixes L and it’s reduction
modulo 7y, is Fr. The first observation says, that the restriction of W (Fr)y, is an element of
Gal(K|L) and since Gal(K|L) and Gal(kk|kr) are isomorphic via o — ¢ mod 7y, the second
observation says that the restriction of W (Fr)y, is a lift of Fr. Since this lift is unique we get
the desired equality W (Fr)L = ok, on K respectively O. O

Before we give explicit descriptions of the operations on A |, we want to fix some notation.

Definition 3.2.29. Let 9 be an Op-linear endomorphism of O and f € A/ we denote by
17 the element, on which ¥ is applied to the coefficients of f, i.e. if flwg) =3 aiwé then

Flws) = D 9lai)ws.

i€Ng
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Proposition 3.2.30. Let f = f(wy) = Zaiwé € Ak, and v € T'. We then have
v =Y ailxur ()]s (wh).
€L
For the Frobenius ¢, we have
@K|L(f) = ZUK|L(ai)[7TL]¢(sz>)-
€L
Together with the above Definition 3.2.29, we then have the description
orL(f(we)) = fIEIE 0k L (We))-
Proof. This is an immediate consequence of Remark 3.1.2, Lemma 3.2.27 and Lemma 3.2.28.
O
3.2.3. Structure of Coefficient Rings (general case).
Proposition 3.2.31. Let B|By, be a finite, unramified extension and A C B be the integral

closure of Ar. Then there exists a finite, unramified extension E|L and an element vy €
W(EL) L with l/g5 = wy for some j > 0 such that

A=1imOp/m0p((vy))-

Proof. Let k be the residue class field of A and recall that the residue class field of Ay is
E; = kr((w)). Since B|By, is unramified, we then have
[B:Byr] =[k: kp((w))]
Since k|kr((w)) is finite and separable (B|By is unramified), we deduce from Lemma 3.2.19
that £ = k((v)) for some finite extension k|k;, and v € E7P with 1/ = w for some j > 0. But
then there exists a unique finite and unramified extension F|L with kg = k. In particular, we
have j[E : L] = [B : Br]. Furthermore, since By, is a complete discrete valuation field, and
B|By is a finite extension, the henselian lemma in the sense of [27, IT §4, (4.6) Henselsches
Lemma, p.135-136] holds true and therefore we can find a vy € B C W(ET?),, which is a
root of the polynomial X7 — wg and for which we have
vy mod 7y, = v.
Since X7 — wy is irreducible over By, and E|L is unramified, we deduce
[EBL(vs) : Br] = [EBL(vg) : BL(vg)] - [Br(vs) : Br)
= [E : EﬁBL<I/¢)] g
(B
and therefore
B = EBr(vy).
In particular, we have

B = {Z%Vés

€7

a; € F, lim a; =0 and it exists n € N

1——00

such that 77a; € O for all i € Z}
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Then A consists of those elements of B with 7p-adic absolute value < 1. Since this absolute
value s nonarchimedean, these are exactly those elements
>icz @ivy € B with a; € O for all i € Z, i.e. A= lim Or/mt0E((vy)). O

3.3. (K|, 'k)-modules and Galois representations. If not otherwise stated, all conti-
nuity statements refer to the corresponding weak topology.

Definition 3.3.1. Let M be an Ay -module. We regard M as a left-A g|z-module and
A itself as a right-A gz-module via ¢g . For the tensor product in this situation we
write Agr, oriL @Ay M, which is per definition an abelian group, but since Ay, is also
a left- A ;-module (with the standard multiplication) this tensor product is also a (left)-
A g -module.

Definition 3.3.2. Let M be a finitely generated A g|z-module equipped with a ¢z -linear

endomorphism ¢j,s. Then cpﬁ}} denotes the homomorphism

@R}[l: AK|L SPK|L®AK|LM M
fem; fon(m).

Definition 3.3.3. A finitely generated Agz-module M is called (g z,'x)-module if it
is equipped with a ¢ r-linear endomorphism s and a continuous, semilinear action from
[k, which commutes with the endomorphism ¢u. A (g |z, ['x)-module is called étale if
the homomorphism ¢! is bijective.

A morphism of ((pK|L,I‘K)—modules J: M — N is an Agjz-module homomorphism, which
respects the actions from 'y and the endomorphisms ¢ and ¢n. We will denote the
category of étale (|1, 'x)-modules by Modip(AKw).

Theorem 3.3.4. The exact tensor categories Repgf)(GK) and Mod‘;t,F(AK‘L) are equivalent
to each other. The equivalence is given by the quasi inverse functors

Dkr: Repgf)(GK) — Mod{'r(Ag|L)
Vi (AR, V)&
and

Vi MOdet,r(AmL) Repgf)(GK)

M (A ®AK|L M) Fr®ep=1 ‘

4. TwASAWA COHOMOLOGY

In this section we want to list the results from [31, Section 5, p.23-31] which we will need
later on. Note that [31, Remark 5.1, p. 23] was also proven here (cf. Lemma 5.1.1).

Definition 4.0.1. Let M be a topological Op-module. The Pontrjagin dual of M is defined
as

MY := Hom{* (M, L/Or) = Hom§? (M, K/Ok).
It is always equipped with the compact-open topology.
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Proposition 4.0.2 (Pontrjagin duality). The functor — defines an involuntary contravari-
ant autoequivalence of the category of (Hausdorff) locally compact linear-topological O -mo-
dules. In particular, for such a module M there is a canonical isomorphism

M = (MY)V.
Proof. This is explained in [31, Proposition 5.4, p. 25-26]. O

Remark 4.0.3. Let My = M ﬁ) M be a sequence of locally compact linear-topological Oy -
modules such that im(a) = ker(f) and B is topologically strict with closed image. Then the

dual sequence
v BY arvaY oy
My — M — M,
is exact as well.

Proof. The proof is similar to the one of [31, Remark5.5, p. 27]. O

Remark 4.0.4. Let V € Repgf)(GK) of finite length and n > 1 such that 7}V = 0. Then
there is a natural isomorphism of topological groups:

Dii(V)" = Dy (VY (xer))-

This isomorphism identifies wDKlL(VV(XLT)) with %\SK\L(V)'
Proof. This is [31, Remark 5.6, p.27] O

Proposition 4.0.5 (Local Tate duality). Let V € Repgf)(GK), n > 1 such that 7}V =0
and E a finite extension of K. Then the cup product and the local invariant map induce
perfect pairings of finite Or-modules

Hi(GEv V) x Hzfi(GE,HomZp(V, Qp/Zp<1))) - H2(GEv@p/Zp(1)> = QP/ZP
and
H' (G, V) x H* " (Gg,Homy, (V,L/0L(1))) = H*(Gg,L/OL(1)) = L/Oy.

There —(1) denotes the twist by the cyclotomic character.
This means that there are conical isomorphisms

HY(Gg, V)= H*(K,VY(1))".
Proof. This is [31, Proposition 5.7, p. 27-28], where [36, Theorem 2, p.91-92] is applied. [

Definition 4.0.6. Let V ¢ Repgf)(G k). The generalized Iwasawa cohomology of V is
defined by
Hi,(Kw|K, V)= lim H'(Gp,V).
KCECKeo
We always consider these modules as I'x-modules.

Remark 4.0.7. Let E|K be a finite extension contained in K. Then there is an isomor-
phism of Or-modules:

H'(Gp,V) = Hi, (K |K, V).
Koo
Proof. The claim follows immediately from the fact, that the set {E'|E finite | B’ C K} is
cofinal in the set {E’'|K finite | B’ C K }. O

15

ECE'

N
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Lemma 4.0.8. Let V € Repgf)(GK). Then we have
Hi(Ko|K, V) 2 H (G, OL[Tk] ®0, V).
Proof. The proof is similar to the one of [31, Lemma 5.8, p. 28-29]. O
Lemma 4.0.9. V — Hyw (K| K, V) defines a d-functor on Repgf)(GK).
Proof. Replace I'r, by 'y in the proof of [31, Lemma 5.9, p. 29]. O

Remark 4.0.10. Let V,Vj € Repgi)(GK) such that Vy is O -free and Gg acts through its
factor 'y on V. Then there is a natural isomorphism

Hiy (Kool K,V ®0, Vo) = Hiy, (KooK, V) @0, Vo.
Remark 4.0.11. Let V € Repgi)(GK) be of finite length. Then there is an isomorphism
H (KooK, V)= H(Hg,VV(1))".
Note that Hx = Gk, .
Proof. From Proposition 4.0.5 we deduce
H'(Gk,,V) = H*7'(Gk,, V' (1))"
for every n € N. Taking projective limits gives us
Hi, (K| K, V) = lim H'(G,, V)
_ @HQ—i(GKn’ vV
= lim Hom§? (H* (G, V"(1)), L/OL)
= Homg; (lim H*(Gk,, V¥(1)),L/Or)
= Hom§ (H*~"(lim G, V"(1)), L/Or)
= Hom§?® (H**(Hg, V" (1)),L/Oy)
= H*"(Hg,VY(1))".

O
Lemma 4.0.12.
1. Hi (KooK, V) =0 fori#1,2.
2. HE (K |K,V) is finitely generated as Op-module.
3. Hi (Kw|K,V) is finitely generated as O[T k]-module.
Proof. The proof is similar to the one of [31, Lemma 5.12, p.29-30]. O

Theorem 4.0.13 ([31, Theorem 5.13]). Let V be in Repgf)(GK), T = XeyeXip and ¢ =
wDK‘L(V(rl))- Then we have an exacl sequence
0 — i\ (Kool K, V) — Dyeip (V(r 1) 25 D (V(r™) — HE (Koo K, V) — 0,

which is functorial in V. Furthermore, each occurring map is continuous and Or['k]-
equivariant.

Remark 4.0.14. A version in the derived category is shown in Proposition 5.2.51 and,
unfortunately, is not a direct consequence of this theorem, of course.
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5. GALOIS COHOMOLOGY IN TERMS OF LUBIN-TATE (¢, I')-MODULES

We keep the notation from Section 3. Recall from Theorem 3.2 (resp. from [30, p. 113-114])
that ET™ is the residue class field of A and ESLep’Jr is the residue class field of At.

5.1. Description with ¢. The goal of this subsection is to compute Galois cohomology from
the generalized p-Herr complex, which is related to ¢g |7, and I'k.

Lemma 5.1.1.
1. The following sequences are exact:

0 0 A e A 0.

Fr—id

0 Or AT AT 0.
2. Let E'| L be a finite extension. For every n € N the maps

gL —id: ngg ngg,

Fr —id: W EfP" —— Wl EFPT
are tsomorphisms.
3. For every n € N the map
Fr —id: wjAT —— wfA™
is an isomorphism.

Proof.
1. We start with the sequence

r—xil —x

0 kL EP EP 0,

and claim that it is exact. Recall that Fr(z) = 29 mod 7y, holds for all z € A by

definition. The inclusion O, < A induces the inclusion kj, < E7” and we have
ker(Fr —id) = {z € ET" | 2% — 2} = kp.

It remains to check that Fr — id is surjective on E". But since the polynomial

X — X — « is separable for every o € ETP and E" is separably closed by defi-

nition this follows immediately.
Now suppose that the sequence

pr—id

0——0./7m}0, — A/} A A/TPA ——0
is exact for n > 1 and consider the following commutative diagram

pr—id

00— 0p/mh0, — A/x7 A/TA ——0

! ! !

0— >0, /a0, — = AjmitiA PP At g,



32

BENJAMIN KUPFERER AND OTMAR VENJAKOB

Our aim is to show that the second sequence is exact. The kernel of the homomorphism
Op — A —» A/WZHA is w?*lOL, i.e. we have exactness at the first position. Since we
have ¢y, (z) =z for all x € O, we also have O /77710, C ker(Fr — id). So let z € A
such that Fr(z) — z = 0 mod 7"t A. Then we also have Fr(z) — 2 = 0 mod 77 A and
because the first sequence is exact, we obtain a y € Of, such that y =  mod 77 A.
Then there is an o € A such that z — y = 7}, especially we have x — y = 7o mod
A, Since Fr(X) = X% mod 7, we get Fr(a) = a? mod A and therefore
Fr(n7a) = 77a% mod 7}t A since Fr is O-linear. Then we also get

0= (Fr —id)(z — y) = (Fr — id)(7}7a) = 7} (% — o) mod 77T A.

Since A is a domain, this then implies % = o mod 7w A. Since the sequence in
question is exact for n = 1 by the start of the proof, we then get a z € O, such that
z=amod 7 A, i.e. it exists § € A such that o = z + 7wy 8. We then get

r=y+ria=y+7l(z+78) =y+arzmod TfTA,

i.e. ker(Fr —id) C Or /7710y,

It remains to check that Fr — id is surjective on A /77T A. So let + € A. Because
Fr —id is surjective on A/n7A we get a y € A such that ¢r(y) — y = 2 mod
nfA. As before there is now an a € A such that ¢r(y) —y = = + 7fa mod
7TE+1A. Again, since the sequence for n = 1 is exact we can find z € A such that
vr(z) — z = amodn,A and therefore we can find 8 € A such that
or(z) — z+ 78 = a. We then get

Fr(y —npz) — (y —7p2) = Fr(y) —y — n(Fr(z) — 2)
=z +nla—nla+ Pt s =2 mod 77 TA,
ie. y—mrzis modﬂZHA a preimage of x under oy, — id.
Since the transition maps Op,/ WEHO  — Op /710y, are surjective, the inverse system

(Or/7}OL)y is a Mittag-Leffler System and therefore we have yinl Or/m70r =0 (ct.
Remark 2.3.9). By taking the inverse limit of the sequence

0——>0,/770, —> A/aA — 20 L AumnA o0
we then get the exact sequence
0—>0,—>A—" A

The proof of the exactness of the second sequence is similar to the prove above. Just
replace ESP by E5P" which is the separable closure of Ef in E}P.

. As before we have Fr(z) = 2% for all z € ETP. Especially this equation holds for

elements in E5™" and E},. The injectivity of the above maps then is easy to see:

Let 0 # 2 € wy fp’Jr. So, in particular we have deg,, (z) > n > 0 and therefore
also deg,,, (Fr(z)) > deg,, (z), i.e. Fr(z) — 2 # 0 and so Fr — id is injective on wiET.
Because of Ef, C E? the homomorphism ¢, — id is also injective on ngJEC

For the surjectivity let o be an element of wg SLep’+ or of ngE Then the series
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(Fr(a)?); converges to zero and therefore
i .
B = Z —Fr(a)’
=0

is also an element of ngsLep’Jr or of ngE and clearly is a preimage of o under Fr —id.
3. Let n,l € N be fixed and note that there is a canonical identification

(wgA")/(mpwp AY) = wi(A™ /n]AY)
since W} is not a zero divisor in both A* and A*/rf A*. Now assume that
Fr—id: Wi (At /nfAY) — Wi (AT 7} AT)

for all natural numbers k < [ is an isomorphism. Note that we just proved this for
[ = 1. Consider the commutative diagram:

Fr—id: w(At/nf AY) —— Wi (AT /7] AT)
Fr —id: w$(A+/7TlL+1A+) — wg(A+/7rlL+lA+)

Our aim is to show, that the latter horizontal homomorphism is also an isomorphism.
Let x € A™ such that wgz # 0 mod 7rlL+1A+. The degree n-term (with respect to wg)

of Fr(wjz) — wiz is wy(m — 1)z and therefore it is unequal to zero modulo ' To

see this, we assume wg(ﬂL — 1)z = 0 mod WEH and let j be the smallest integer such
that 2/ > n + 1 and multiply this congruence with (1 + 77)(1 + 72)--- (1 + w%ﬁl).
Then we get ‘

0 = wj(my, — 1)z = —wjiz mod AT

what we excluded, i.e. it has to be wy (7 —1)x # 0 mod 7 At and therefore Fr —id
is injective on wZ(AJF/W?lAJ’).

Let x € ng“‘. Then there exists y € w(ZA*‘ such that ¢r(y) — y = x mod 7TlLA+
(because we assumed the surjectivity for all values < [), i.e. there exists a € ngJr
such that Fr(y)—y = {E—|—7TlLOé. Then again there exists 5 € ngJr such that Fr(g8)—p =
a mod 7y, i.e. there exists some n € cuZAJr such that Fr(8) — 8 = a + mrn. We then
get

(Fr —id)(y = 71,8) = (Fr — id)(y) — w1, (Fr — id)(8)
=2+ 7ha—7h(a+7mn) =2 mod 7T AT,

Le. the map Fr —id is surjective on wy (A*/ 772+1A+). Since these maps are all isomor-
phisms, passing to the projective limit gives that the map Fr — id is an isomorphism

on wyA*
O
Corollary 5.1.2. For every n € N the following sequence is exact:

Fr—id

0— 0 — A/ulA" AJIAT ——0.
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Proof. In Lemma 5.1.1 we showed that

0 0 AT A 0.

is an exact sequence and that
Fr —id: cugA+ —_— (,ugA+

is an isomorphism for every n € N. Since every element of the image of O — A has degree
0 (with respect to wg) the homomorphism Op — A /w} A" is still injective. Since Fr fixes Of,
it is clear that we have O, C ker(Fr — id). For the other inclusion let x € ker(Fr —id). Then
there exists an a € A such that @ mod wjA™ =z and Fr(a) —a € w}A*. But since Fr—id is
an isomorphism on w? AT there exists also a # € wj A" C A such that Fr(8) — 8 = Fr(a) —a.
Because of the exactness of

0 0 A A 0

it then exists n € O such that n = « — 8. This implies n = « mod ngJr, ie. n ==x
which means ker(Fr —id) C Or. This proves the exactness in the middle. For the surjectivity
of Fr — id recall that A — A/ngJr and Fr —id: A — A are surjective and consider the
commutative diagram

A Fr—id A
AJuBAY s AJuBAY.

This implies that the homomorphism Fr —id: A/w} A" — A/wiA™T is also surjective. [

Lemma 5.1.3. Let A|AL be a finite, unramified extension. Then, for every m € N, the
canonical projection A/WTLnJrlA — A/7[*A has a continuous, set theoretical section with respect
to the weak topology on A.

Proof. From Proposition 3.2.31 we deduce that
A=1imOp/m}0p((X))
n

for some finite, unramified extension F|L. Therefore we have
Afm'A = Op/m}0p((X))

for every m € N. Therefore it is enough to give a continuous set theoretical section of
the canonical projection Op /77" O0g((X)) — Op/7POg((X)) with respect to the X-adic
topology. Since the Op/7'Of are finite discrete, there exists for every m € N a continuous
map

tm: Op/700p — Op/7" 1 0g

which is a set theoretical section of the canonical projection. We then define a map

' Op/TPOR((X)) Op/m 1 0p((X)),

Pis oo MX ¥ o tm (M) X"
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This then clearly is a set theoretical section of the canonical projection. We have to check
continuity.

So let f € Op/77"™Og((X)) and n € Np. If then a;,'(f + X"Og/a7"" 1 Op[X]) is empty,
there is nothing to prove. So assume there is g € aj,'(f + X"Og/a7"OE[X]) and let
h e X"Op/m*Op[X]. Then g and g+ h coincide in degrees < n and therefore, by definition,
also a;,(g) and a,, (g + h) coincide in degrees < n, i.e.

am(g+h) € am(g) + X"Op/mP T Op[X] = f+ X"0/m  0R[X]
since a(g) € f 4+ X"Op/7P T Op[X]. Tt then follows
g+ X"0g/mTOp[X] C at (f + X"O0g/m T OR[X])
and therefore that a,, is continuous. ]

Corollary 5.1.4. For every m € N the canonical projection A/m'7"" A — A/7T'A has a
continuous, set theoretical section.

Proof. Since A is the mr-adic completion of A}" it is
A/TPA = A} /7P AY
for every m € N. Since colimits are exact it is
wimAE = ) A/
A|Ap fin, nr

for every m € N and since we have for every A|A finite and unramified and every m € N a
continuous, set theoretical section of the canonical projection
AT A — A7 A (cf. Lemma 5.1.3) this induces for every m € N a set theoretical section
of the canonical projection A /771 AW — AW /7 AW which then is continuous, since A"
carries the topology of the colimit and then so does A} /7" A} for every m € N. O

Lemma 5.1.5. Let V € Repgf)(GK), set M = Dy (V) and Vi, := V/7l'V as well as
My, := M /7" M for m € N. Then the transition maps of the inverse systems (Vp)m, (Mm)m
and (A ®o, Vin)m are surjective and they have a continuous, set theoretical section. In
particular, the short sequences

0—= A R0, Vin % A ®9, Vinp1 —= A ®0, Vi —=0,

0 My — > My M, 0

are exact and have continuous, set theoretical sections.

Proof. Since Dy, is exact as an equivalence of categories (cf. Theorem 3.3.4) and the tensor
product is right exact, it is immediately clear that the transition maps of the systems (M, )m
and (A ®o, Vmn)m are surjective since the transition maps of (V},,)., are.

Since the V,,, are finite and discrete one can define a set theoretical section of the canonical
projection V11 — V,, by choosing a preimage for every element in V,,,. Since M,, is a finitely
generated A | r-module, there are for every m € N isomorphisms of topological A |;-modules

n(m) (

Mpn = P Axip/m; Agr
i=1
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such that ngm) < nl(ff and the canonical projection M,,11 — M,, maps the i-th component of

m (m+1) , m (m) _
@?:(1+1)AK‘L/7TZZ A, to the i-th component of @?:(1)AK‘L/7TZZ Agp fori > n(m and

is zero on the i-th component with ¢ > n(™. With Lemma 5.1.3 we then obtain a continuous,
set theoretical section for every component, which then also gives a continuous set theoretical
section for My,+1 — My,.

As topological Or-module we have

J(m) (m)
Ao, V= P A/ A
i=0

and therefore we see that there exists a continuous, set theoretical section of the canonical
projection A ®g, Vint1 — A ®go, Vi, as above using Corollary 5.1.4 instead of Lemma 5.1.3.
The statement on the short exact sequences then follows immediately. O

Lemma 5.1.6. Let E|L be a finite extension and Hg = Gal(Q,|Fx) as usual. Then the
operation of Hr on ET? is continuous with respect to the discrete topology on ETY.

Proof. Let x € EYP. Then there exists a finite extension F|Eg such that z € F. Then z is
fixed by U := Gal(E7"|F) which is an open subgroup of Hpg. If then 7 € H and y € ET? are
such that 7(y) = x, then Ut X {y; 1s an open neighbourhood of {7} X (y; iIn Hg X wit
h that 7(y) hen Ut x {y} i ighbourhood of {7} x {y} in Hp x ET" with
o(t(y)) ==« for all 0 € U. O

Lemma 5.1.7. Let V be a finite dimensional ki -representation of Gx. Then there exists a
finite Galois extension E|K such that Hg acts trivially on V.

Proof. Since the action of Gx on V is continuous, the homomorphism Gg — Auty, (V) is
continuous and since V' is a finite dimensional kz-vector space, it is finite and so Auty, (V)
carries the discrete topology, i.e. the kernel of the upper homomorphism is open, which means
that there exists a finite Galois extension E|K such that Gg acts trivially on V. With Gg
also Hg acts trivially on V. ]

Lemma 5.1.8. Let V be a finite dimensional ki -representation of Gk and E|K a finite
Galois extension, such that Hg acts trivially on V' and set A := Gal(Eo|Koo). Then A acts
on the short exact sequence

0— wZEE Qkp, V - Eg Qk;, V — EE/W(T;EE Qk;, V=0
and it holds

1. H(AEg ®k, V) =0 for all j > 0.

2. There exists r > 0 such that ngj(A,ngE ®k, V) =0 forallj >0 andn € Z.
Proof. The proof is literally the same as the one of [34, Lemma 2.2.10, p.20] O
Lemma 5.1.9. Let V be a finite dimensional ki -representation of Gx and E|K a finite
Galois extension, such that Hg acts trivially on V and set A := Gal(Ex|K~). Then we have

1. (EFP @, V)Hr = (Eg @, V)2

2. (o.;gESfp’+ ®y, V)IK = (wZEE @k, V)A for alln > 0.

Proof. In both cases the proof is the same. So let X be E}" or ngsLep’Jr for some n > 0.
Note that Hx/Hgr = A. We then get

(X Ok, V)HK = ((X Ok, V)HE)HK/HE = (XHE Ok, V)Av
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where the last equation is true, since Hg acts trivial on V. U

Before stating a corollary, we should introduce some notation. Since all projective systems
which appear here are indexed by the natural numbers, we will make the following definitions
only for projective systems indexed by natural numbers.

Proposition 5.1.10. Let V' be a finite dimensional kp-representation of Gk and E|K a
finite Galois extension, such that Hg acts trivially on V' and set A := Gal(Ex|K~). Let in
addition M = Dy (V) and

H
M, == M/ (ngSLep’* R, V) K
Then we have
1. The inverse systems (Hj(A,ng'g Rk, V))n and (H (A, EE/ngJbC @k, V))n are ML-
zero for all j > 0.
2. The map of inverse systems (M), — (H°(A, EE/ngEQ@kL V))n is an ML-isomorphism.
Proof.

1. Since V is a finite dimensional kj-vector space, it’s flat and therefore the homomor-
phism wZ“EE ®p, V C ngJEF ®y, V is injective and induces a homomorphism

H (A, Wi EL @, V) = H (A, WiEf @, V).

The image of this last homomorphism is a subset of w(ij(A,ngg ®k, V), i.e. the
maps Hj(A,wZEE Rk, V) — Hj(A,ngJEr ®g, V) are zero for k > n +r (cf. Lemma
5.1.8, 2.), i.e. the inverse system (Hj(A,ngJLC ®k, V))n is ML-zero for j > 0.

Since every class in Eg/ ngE has a unique representative of highest degree <n—1 in
wge the homomorphism Er — Eg /wZEE has a set theoretical splitting (by sending a
class to this representative). This map is continuous, since the preimage of a subset of
Ep in Eg/ ngE is equal to the image under the canonical projection, which is open
by definition. Since V is flat, the sequence

0= wiEf @k, V - Eg @, V = Eg/wiEf @, V =0

is exact and we can deduce a long exact cohomology sequence (cf. [28, (2.3.2) Lemma,
p.106]) and since H? (A, Ep ®k, V) =0 for j > 0 (cf. Lemma 5.1.8, 1.), the homomor-
phism

HI (A, Ep/wiBf @, V) = HTH A WIEL @, V)
is an isomorphism for all 7 > 0 and the diagram

HI (A, Bp /wBEf @, V) HIPY A, WpEL @, V)

T T

HI (A Ep/w) ™ Ef @4, V) —— HITH A, W Ef @, V)

commutes. This means that the transition map
HI(AEp/wiEf @k, V) = H (A, Eg/wiEL @, V)

is zero for k > n + r and therefore the inverse system (Hj(A,EE/ngJbC Qk, V))n is
ML-zero.
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2. As seen before, for every n > 0 we have an exact sequence
+ +
0— WZEE Qk, V> Ep®, V — EE/ngE ®pk, V — 0.

Taking A-invariants then gives an exact sequence

0

(WEEL @, V)2 (Eg ®k, V)2
oo — (Bp/wiE} @, V)2 — HY(A,wlE} @, V) —0,

where the last term is zero because H’ (A, Eg ®;, V) =0 for j > 0 (cf. Lemma 5.1.8,
1.). With Lemma 5.1.9 this sequences becomes

(BL® @, V)
o —— (Ep/wiEf @, V)? — HY(A, Wl Ef @, V) —0

0 —— (WIETPT @, V)Hx

and then gives the following short exact sequence
0 — (B @, V) /(WIETPT @y, V)HE
(Ep/wjEL @, V)2

HY (A, whEL @, V) —0.

In particular, H!(A, ngJEF ®k, V) is the cokernel of the homomorphism
M, — (Eg/ ngE ®k, V). According to the first part of the proof the inverse system
(Hl(A,ngE ®k, V))n is ML-zero, and since the kernel of M,, — (EE/wZEE ®V)A
is zero it is also ML-zero, which then ends the proof.

O

Theorem 5.1.11. Let V € Repgf)(GK) and set M = Dy (V). Then there are isomor-
phisms

H: (G, V) —> 3 (T, M),

PK|L

o

Hes(Hi, V)

FCE (M),

PK|L

These isomorphisms are functorial in V' and compatible with restriction and corestriction. On
the level of complexes these isomorphisms are induced from quasi-isomorphisms

Cos(Gr, V) —=lim Cp (G, (AJwgAT) @, V/['V) <— €5 (Tx, M),

PK|L

Oo(Hi V) —=lim €3 (Hy. (A AY) B0, V/7EV)

e (M).

PK|L

If A denotes a cofinitely generated O -module with continuous G -action, we obtain similar
quasi-isomorphisms

Cto(Gr, A) —liy lim €3, (G, (A/uAY) @0, Aw) <— €4 (Txe, M)

PK|L

where Ay, := A[r]'] denotes the kernel of multiplication by 77" and M = hgm Dii(Am). An
analogous statement for Hy is stated in (4), but compare also with Proposition 5.2.24 below.
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Proof. In this proof, we follow closely the proof of [34, Theorem 2.2.1, p.702-706].
Step 1: Explaining the strategy.
First, for m € N set V,,, :== V/7['V and M,, := M /x}*M. Since D1 is an equivalence of
categories (cf. Theorem 3.3.4) it is exact and therefore we have M,, = Dy (V;,). The open
subgroups
H

M (1 (WEAT @0, Vin ) = (WA @0, Vin)
form a basis of neighbourhoods of 0 in M,,. These subgroups are clearly stable under the
operation of I'x and since ¢ ;, commutes with the operation of Gk on ((,L)ZAJr ®o, Vm)
these subgroups are also stable under ¢ ;. We then set

Hg
Mm,n = m/ (ngJr X0, Vm)

H
Since (ngJr R0y Vm) " is an open subgroup, this is a discrete I'x-module and we have
topological isomorphisms

M, = lim M,
m % m,n
M = lim M,,.

% m

In Corollary 5.1.2 we proved that the sequence
Fr—id

0—>0p —> A/wA* A/wiAt ——0

is exact and since A/ ng+ is a free Op-module, it is flat and therefore the sequence

Fr—id

0 —— Vi —— A/ A @0, Vin AJIAT @o, Vi —=0

is also exact. Then Lemma 2.3.3 says that for every m,n > 1 we have a quasi isomorphism

Cos(GK, Vi) — Ch (G, (A/wEAT) @0, Vin).

cts

The inverse systems (Vi ), and ((A/wfAT)®0, Vin)n,m have surjective transition maps. From
Corollary 2.1.2 we then can deduce that also the inverse systems of complexes (Ca(Gr, Vin))m
and O3 (G, ((A/wiAT) @0, Vin))n,m have surjective transition maps and Lemma 2.3.8 then

says that the system Cp, (G, ((A/ngJr) ®0, Vin))n,m has surjective transition maps as well.
From the quasi isomorphism Cg(Gr, Vin) = Chy(Gk, (A/wiAT @ V;,)) we then can deduce
with Proposition 2.3.11 that the cohomologies of the complexes lim €, (G, (A/wpAT®o,
Vim)) and lim Cés(GK, Vim) coincide. Since lim = C (G, Vin) = C& (G, V), the cohomol-
ogy of @m Co(Gg, Vi) is Hi(Gk,V), which then 1is also computed by
€ (Gro (AJwAT B0, Vi)

On the other hand, since the canonical inclusion ¢: M, , — (A/ngJr) ®o, Vm commutes
with ¢z, and since together with the canonical projection pr: G — I'k it holds

Wpr(0)z) = ou(x)
for all 0 € Gk and =z € My, and since the operations of ¢ and Gk respectively I'y
commute wo get an induced morphism of complexes

I, Mpmn) = Ch(Gr, (A/w;}AJ“) ®o, Vim)

. e
Qm,n - GSOK\L(
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(cf. [29, 1 §5, p45], the additional properties concerning ¢ |, we noted above, ensure that we
get the morphism of the above total complex with respect to g/, on the left hand side and
Fr on the right hand side).

We now want to see that l&ln 1 Qmun is a quasi isomorphism. Because of

)

yLnn’m G;K‘L(FK,Mm’n) = G;KIL(I‘K,M) (cf. Lemma 2.3.7), this then says that the coho-

mology of G;K‘L(FK,M) and lim €} (G, (A/wiAT @, Vi) coincide. But then the
cohomologies of C
prove.

To see that lim o, ., is a quasi isomorphism, it is enough to see, that lim o« , is a quasi
n,m ) ’ ’ n )
b

[
PK|L

(P, M) and Cs(Gk,V) coincide, what is exactly what we want to

isomorphism for every m > 1. Because if this is shown, one knows that the inverse systems of
complexes (G;KlL(FK, M) m and (@;KIL(GK, A ®p, Vin))m are quasi isomorphic. Since the
transition maps M,41 — M, as well as A ®p, Viny1 — A ®o, Vi are surjective and have a
continuous section (cf. Lemma 5.1.5), one can see as before, using Corollary 2.1.2 and Lemma
2.3.8, that the inverse systems of complexes (G;K‘L (Tx, Myp,))m and (@;KIL(GK, A®o, Vin))m
have surjective transition maps. As before with Proposition 2.3.11 respectively Remark 2.3.12
one then sees that lim - G;K‘L (T'x, My,) and lim G;K‘L (Gk,A®p, Vi) are quasi isomorphic.
So, what is still to show, is that I&nn O, 18 @ quasi isomorphism for every m > 1. This will
be the rest of the proof.
Step 2: Reduction to the case m = 1.

Since for every m > 1 the sequence

0 Vin Vit Vi 0.

is exact and Dgp, is an exact functor (since it is an equivalence), this implies that for every
m > 1 there is a short exact sequence

0 Mm Mm+1 H—Ml —0.

By the definition of the topology on the M,, it is clear, that the topology of M,, is induced
from that of M,,+; and from Lemma 5.1.5 we deduce that it has a continuous set theoretical
section. Therefore Proposition 2.2.22 says that we get a long exact sequence of cohomology.
Now assume the result is shown for m = 1. Then J{;K‘L(FK,M) — H%(Gk,V) is an
isomorphism for every V with 7V = 0. Induction on m and the 5-lemma applied to the
following diagram which arises from the long exact cohomology sequences (where we write

['=Tk and G = Gk and ¢ = ¢ )

_ 0 d
ﬁ@1ﬂlﬂﬁ)—»JQAFJme—>}%GINQWQ4—>WLGXAA)—»JQJRFJWm)

| T

_ 1) 1)
Hl I(G? Vl) - H(l:ts(G7 Vm) - Héts(Ga Vm+1) - H}:ts(Ga Vl) - HlJrl(Gv Vm)

cts cts
then implies the result for all m > 1.
Step 3: Splitting ay , up.
For the rest of the proof we may assume 7V = 0 and therefore also 7y M = 0, but we will
still write My, to avoid confusion. Note that this implies
A ®p, VEET @, V,

wiAT ®g, V = ngSLep’Jr Qp, V
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as well as the correspondingly isomorphism with respect to the fixed modules of H.
Now fix a finite Galois extension E|K such that Hg acts trivially on V' (cf. Lemma 5.1.7).
Then, the canonical inclusion

(Efp%kLV)HK c (EsLep(EikLV)HE
(WRETP T @, V)HK (WRETP T @y, V)HE

M, = = EE/WEEE Rk, V

induces together with the canonical projection Gal(Ex|K) — I'k, as in step 1 for ayy, p, for

all n € N a morphism of complexes

Bn: €4, (T, Miy) — Chy (Gal(Ewo| K), EE/ngg Rk, V).

Simultaneously, the canonical inclusion Eg /wZEE Rk, V = EpP/wl Pt @, V together
with the canonical projection Gx — Gal(Es|K) induces for all n € N a morphism of com-
plexes

Yt Cy(Gal(Bo|K), Ep/wiEf @, V) — Co(Gr, EXY Wi ESP T @, V).

Since both diagrams

Ml,n<—>\EE/ngg kL V I <— Gal(Ey|K)
Eiep/wg SLep7+ ®kL V? GK

are commutative, where all the arrows in the left diagram are canonical inclusions and the
ones in the right diagram are canonical projections, it is immediately clear that also the
diagram

Bn

e (I'g,Miy)

PK|L

Ch (Gal(Ex|K), Ep/wiBy ®k, V)

l’yn
a1n

Ch (G, ETP JwBET™ T @y, V)

commutes. So, to prove that l&nn a1, is a quasi-isomorphism it is enough to prove that
@n By and l&nn Yn are quasi-isomorphisms. In addition, we will also show that ~, is a
quasi-isomorphism for every n > 1.

Step 4: mn Yn is a quasi-isomorphism.
Due to Lemma 2.2.21 there is an FEs-spectral sequence converging to the cohomology of the
source of 7,

H*(Gal(Ex|K), Hp, (Bp/wiBEL @, V) =
Hin(Gal(Ew| K), Ep /wiEf @k, V)
as well as en Fy-spectral sequence converging to the target of v,
HY(Gal(Es|K), 3. (Hp, ET? JwlEFPT @, V) =—
i (Gre BEP JwgBLP T @1, V).
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The canonical inclusion Ep/wiEf @, V < EFY/ ngSLep’Jr ®g, V together with the trivial
map Hg — 1 then induces a homomorphism on the above Es-pages. Together with the from
~n induced map on cohomology this then gives a morphism of spectral sequences. So, to show
that v, induces an isomorphism on cohomology it is enough to show that the induced homo-
morphism on the above Ey pages is an isomorphism. And for this it is enough, that the homo-
morphism between the coefficients fH%r(EE/ngE ®k, V) and Hb (Hg, ESLep/z,ugEsLep’Jr ®Qk, V)
is an isomorphism. Since Hg acts trivially on V it is

%%Y(EE/WZSLEE Ok, V) = :H%r(EE/ngE) Ok, 4
J—f%r(HE’ Ezep/ng?p,+ Qky, V)= j{%r(HEv EsLep/ngzep,+) Qp, V
by [26, (3.4.4) Proposition, p.66-67]. Therefore it is enough to show that there is an iso-

morphism between }C%r(EE/ngJEC) and }C%r(HE,ES’Lep/wZESLep’+). To see this, consider the
commutative square

Ht (Eg) H} (Ep/wiEL)

| |

3y (Hp, ET”) — 3G, (Hp, i JwjEL™T),

where E7? is regarded as discrete Hp-module (cf. Lemma 5.1.6) and where the horizontal
maps are induced from the respective canonical projections and the vertical maps from the
respective canonical inclusions.

First we Want to see, that the upper horizontal map is an isomorphism. H% (Eg) is computed

by Eg * ‘B g and 7% (Ep /wZEJF) by the corresponding complex and the square
Ep Fr—id Ex
Ep/wlEf — > Ep/wlE}

is commutative. Denote the kernel and image of the upper horizontal map by k1 and im;
and the ones of the lower vertical map by ko and img respectively. By Lemma 5.1.1 the map

EJr fr-id w¢EE is an isomorphism, especially is W”EJr C im; and so we see immediately
1m2 Cim; / wd)EJr For the other inclusion let Z € im; / w¢E p and z € Eg a preimage under
the canonical projection. Because of w"E+ C im; we deduce x € im;. If y € Ep is a
preimage of x under Fr — id, then because of the commutativity of the latter diagram we get
(Fr —id)(y) = T, i.e. T € imy. Therefore H}, (Eg) and %%r(EE/wZEE) coincide.

For the term in degree zero let « € k1 such that = € ngE Since Fr — id is an isomorphism
on wg 4 and (Fr —id)(x) = 0,  itself is zero, i.e. the canonical homomorphism 1 — k2
is injective. Let now 7 € ko and y' € Eg be a preimage under the canonical projection. By
commutativity it is (Fr —id)(y’) = 0 and therefore (Fr —id)(y’') € w¢E+ Again since Fr —id

is an 1somorphlsm on wd)EE we find an element y” € w¢EE with (Fr—id)(y') = (Fr—id)(y").
Set y:=y'—y". Theny =y —y” =3y = nand (Fr—id)(y) = 0, i.e. kK1 — Ko is also surjective
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and therefore an isomorphism. Since every other cohomology group is zero, we conclude that
H(Ep) = Hpy(Ep/wpEL)

for all b > 0.

For the lower horizontal map in the upper square, recall that Lemma 5.1.1 also says that Fr—id
ison w ¢E °®* an isomorphism. Therefore one sees with a similar argument as above that the
canonical projection E}” — E” /Wl ET™ " induces an isomorphism between the cohomology
groups HY% (ESP) and U-Cb, w (BL" /Wi Sep’J”) for all & > 0. Lemma 2.2.13 states that there are
two Ep-spectral sequences converging to Hjy. (Hg, ET?) respectively 3. (Hg, ET?/ ngSLep’+)
(recall from the beginning of Step 4 that E is considered as discrete Hp-module):

HGI(HE, f}c%,r(EsLep)) N j{%;+b/(HE, EsLep)
H (Hp, S (B W BPH) = 9 (Hip, By By,

We conclude as before: The canonical projection ES” — E7P/ szSLep’Jr induces a morphism
of spectral sequences and since the induced homomorphism is an isomorphism on the Fs-pages,
we obtain an isomorphism between the limit terms H% (Hg, EX?) and 1% (HE, ESLep/ngsLep’Jr)
for all b > 0.

To see that the left vertical arrow in the first square is an isomorphism we consider the
Es-spectral sequence (cf. Lemma 2.2.13)

¢ (HY (Hp, ET?)) = He Y (Hp, EXP).

Since E® is a separabel closure of Ep with Galois group isomorphic to Hg it is HY (Hg, EYP) =
0 for all b" > 0. Then [29, Chapter II §1, (2.1.4) Proposition, p.100] says that we have an
isomorphism H% (Eg) = 34 (Hg, EYP) for all b > 0 (here we identified HY(Hpg, E7?) =
(E7?)He = Ep), which is induced from the canonical inclusion, i.e. the left vertical arrow
in the first square also is an isomorphism. Then also the right vertical arrow is an isomor-
phism (since all other arrows are isomorphisms) and so is the map on Ea-terms from which
we started. Hence 7, is a quasi-isomorphism for all n.

To see that l&ln Yn is an isomorphism, it remains to check that the transition maps are
surjective (cf. Proposition 2.3.11 respectively Remark 2.3.12). Since the transition maps

Ep/wy "B} @, V Ep/wjEf ®, V,

Ezep/wg+lEfp,+ ®kL V — Eiep/w;Efp,+ ®kL 1%
are surjective and the groups carry the discrete topology, Corollary 2.1.2 says that also the
transition maps

cts(Ga‘l( OO‘K) EE/wn+1EE ®kL V) - cts(Gal OO‘K)7 EE/WZEE ®kL V)7
Cos(Grc, ETP W T ETP T @y, V) Co(Gr, B Jwp BT @, V)

C

are surjective. But then Lemma 2.3.8 says that the transition maps
Ch(Gal(Ew|K), Eg /W T Ef @), V) — Cp(Gal(Ex|K), Ep/wiEL @1, V),
Ch (G, B [wp B @, V)

C (G, BYP fwl M ETP T @y, V)
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are surjective, too. Then Proposition 2.3.11 respectively Remark 2.3.12 say that 1£1n Tn 18 a
quasi isomorphism.

Step 5: @n Bn is a quasi-isomorphism.
Now let A := Gal(E | Koo). Lemma 2.2.21 then says that there is an Es-spectral sequence
of inverse systems of abelian groups given by

Hin (T, H(A, Eg/wiEL @, V) == H{? (Gal(Exo|K), Eg /w B} @k, V).

We will write né";j for second page of this Fs-spectral sequence, ,&* for its limit term
and &7 = Hm n&y as wells as &% = lim 2&¥*. Proposition 5.1.10 says that the system
(Hj(A,EE/ngE ®k, V))n is ML-zero for j > 0, i.e. for every n € N there is an m(n) € N
such that the transition map

HI(A, EE/wZL(n)EE Qk, V) — Hj(A,EE/ngE Rk, V)

is the zero map. For fixed n € N and m(n) € N as above, we then obtain that the transition
map
Ci

cts

(Pre, HY (A B o "B 04, V) — Clio(Tre, HY (A B Wi B 0, V)
is also zero for all ¢ > 0 and j > 0. Then clearly the transition map
CL. (T, HI (A, EE/wZ”(”)EE Rk, V) — Ch (T, H (A, Ep /w}EL @, V)

is zero for all i > 0 and j > 0, too. And so is the induced map on cohomology, i.e the inverse
systems (n%j )n are ML-zero for all @ > 0 and j7 > 0. But then the edge homomorphism
&0 — &' is an isomorphism, since £’2ij =0 foralli > 0 and 57 > 0 (cf. [29, Chapter II, §1,
(2.1.4) Corollary, p.100]). Recall that this edge homomorphism is induced from both, the
canonical projection Gal(E|K) — I'k and the canonical inclusion (Eg /wZEE Rpy, V)A =
Ep/wjEL @, V.

Proposition 5.1.10 says that (,)n: (M1,)n — (HO(A, EE/ngEJEr ®k, V))n is an ML-isomor-
phism. Therefore the inverse systems (ker(n,)), and (coker(n,)), are ML-zero. As above, we
then deduce that also the systems (C,, (I'r,ker(n,))), and (Cg,(I'x, coker(n,))), are ML-

PK|L
zero for all i € Ny. Since H(A, EE/ngE ®k, V) and M, carry the discrete topology for
all n € N, we deduce from Lemma 2.2.15, which says that C% (T'x, —) is for discrete modules
an exact functor, the exact sequence

. el (FKvnn)
el Tk, Ml,n) R

PK|L

00— ¢ (T'k, ker(ny,))

PK|L

- — Ch (Tx, HY(A, Ep /WiE} @k, V) — €y (Ck, coker(1,)) —— 0.

Taking inverse limits then gives us an isomorphism of complexes

Uy (FK?MI) = G]?’r(FKaHO(AaEE Okr, V))>

PK|L
which, by construction, is induced from the canonical inclusion M; — Eg ®j, V and which
then prolongs to an isomorphism of its respective cohomology groups, i.e. for all i € Ny we
get ‘ A
3 (FKaMl) = %r(FKvHO(A7EE Rk, V))

PK|L
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Together with the observation from above, that the edge homomorphism &3° — & is an
isomorphism for all ¢ € Ny we deduce for all ¢ € Ny the isomorphism

g_(i (FK?Ml) = ZFr(Gal(EOO|K)?EE ®kL V)v

PK|L
which by construction is len Bn. -

5.2. Description with . In this subsection we want to give a description of the Galois
cohomology groups of a representation using a w-operator.

Definition 5.2.1. Let A be an Op-module. We say that A is cofinitely generated if its
Pontrjagin dual AY = Homfgti (A, L/0Op) is finitely generated.

Remark 5.2.2.

1. Since finitely generated Op-modules together with their natural topology are compact,

cofinitely  generated  Op-modules are discrete, which means that
Hom%th(f,L/(‘)L) = Homg, (—,L/Oy) for both, finitely and cofinitely generated Oy, -
modules.
2. For n € N we have an isomorphism
OL/m}0L (OL/770L)Y

z mod 77O +—— [1 mod 77O, — 7"z mod O]

which then also implies a non-canonical isomorphism T = TV for a finitely generated
torsion Or-module, since (—)V is compatible with finite direct sums. These isomor-
phisms are clearly topological, since all these objects carry the discrete topology.

3. Due to Pontrjagin duality (cf. Proposition 4.0.2) a cofinitely generated Op-module is
always the Pontrjagin dual of a finitely generated O -module.

4. If T € Repgf)(GK) is torsion, then TV also is a finitely generated torsion Op-module
with a continuous action from G .

Definition 5.2.3. Let A be a cofinitely generated Oy-module and n € N. We denote by A,
the kernel of the multiplication mz» with 7} on A4, i.e.

Ap = ker(mgr: A — A).

Proposition 5.2.4. Let A be a cofinitely generated Op-module. Then we have A = lign A,
In particular, if A is torsion, say with 7*A =0 for some m € N, then we have A = Ay,.

Proof. Let T be a finitely generated Or-module such that A = Hom%tLS (T,L/Op),letey,...,em
be a set of generators of T'and let f € A. Then for every i € {1,...,m} there exists an n; € N
such that 77" f(e;) = 0. Set n := max;n,;. Then it is 7} f(a) = 0 for every o € A, i.e. f € A,.
In particular, if there exists m € N such that 77'g = 0 for every g € A, then the above shows
A= An. O

Lemma 5.2.5. Let T € Repgf) (Gk) such that #7*T = 0. Then Hg acts continuously on
A ®p, T equipped with the discrete topology.

Proof. Recall from page 17 that

A lim A} /x7 A}

n
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and that Hy, is the Galois group of A}'|Ap. The latter means, that Hj, acts continuously
on A" with respect to the discrete topology because if z € A}, then By (z)|By, is a finite
extension and therefore it exists an open subgroup U < Hj, which fixes . But then (U, z) is
an open subset of the preimage of x under the operation

HLXBL—)BL.

Then Hj, also clearly acts continuously on A} /7n}AY" for all n € N equipped with the
discrete topology. Since Hp is an open subgroup of Hy it then also acts continuously on
AV /r AV for all n € N equipped with the discrete topology. Because of 77T = 0 we have
T=T®p, Or/7}0Or, and therefore

A®@L T = A®OL OL/WZOL Koy T = A/ﬂ'zA Koy, T = Arir/ﬂz Iir Koy T.

Since Hp acts continuously on both 7" and A}" /7 A} with respect to the discrete topology
it does so on the tensor product equipped with the linear topological structure, which then

again is discrete. O
Lemma 5.2.6. Let T € Repgi)(GK) such that 7T = 0. Then we have
Hl(Hg,A ®y, T) =0 for all i > 0.

Proof. This is [31, Lemma 5.2, p.23-24], since it is even HE (U, ET?) = 0 for all i > 0 and

open subgroups U < Hj. O

Corollary 5.2.7. Let A be a cofinitely generated Or-module with a continuous action from
Gr. Then Hg acts continuously on A ®q, A equipped with the discrete topology and we have
Hl(Hg,A ®o, A) =0 for alli > 0.

C

Proof. If A is torsion, then Remark 5.2.2 says that this is just Lemma 5.2.5 and Lemma 5.2.6.
If A is general, then with Proposition 5.2.4 we can write A = li nA”’ where the A, are
torsion Op-modules. Since tensor products commute with colimits we have

@A@oL AngA®OLA
n

algebraically. But the direct limit topology of hgn A ®p, A, again is discrete and so the
above isomorphism is also topological. Then, A ®¢, A is a discrete Hr-module and therefore
we deduce from [29, (1.5.1) Proposition, p.45-46]

H'(Hg,A ®o, A) = lim H'(Hg, A Qo An)
for all i > 0. Since H'(Hg,A ®p, Ap) = 0 for all i > 0 and n € N we also have
H{(Hp,A ®9, A) =0 for all i > 0. O
Lemma 5.2.8. Let A be a cofinitely generated Or-module. Then the sequence

Fr®id—id

0—=A—>A®y, A A®y, A——=0.

is exact and has a continuous set theoretical splitting, where all terms are equipped with the
discrete topology.

Proof. Since A is a flat Op-module the first assertion comes from Lemma 5.1.1, the second is
obvious since all terms carry the discrete topology. (|
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Proposition 5.2.9. Let A be a cofinitely generated Op-module with a continuous action from
Gr. Then the exact sequence

Fr®id—id

0—=A—>A®y, A A®y, A——=0.

and the canonical homomorphism
(A ®oy, A)HKC—> Cgts(HK7 A ®oy, A)
induce quasi isomorphisms

(4) Ce (HK7A) — e;‘r(HKﬂ A ®g, A) ~— G&K|L(DK|L<A))'

cts

Proof. Since Fr commutes with the action from Hp, the exact sequence

Fr@id—i

0—>A—>A®y, A 4 A®y, A—>0.

clearly is an exact sequence of (discrete) Hg-modules. Then Corollary 2.3.4 says that
Hgts(HK?A) = %‘r(HK7A®OL A)7
which is exactly the first quasi isomorphism. For the second quasi isomorphism it is with
Proposition 2.2.13 enough to show
, D A) Jifi=0
Hgts(HK7A®OL A) = { K‘L( )
0 , else .

But this is exactly the above Corollary 5.2.7. O

Corollary 5.2.10. Let A be a cofinitely generated O -module with a continuous action from
Gg. Then the following sequence is exact

P L—id
0
0 —— Hg,

(Hg, A) — Dg(A)

Dy (A) — H}

cts

(Hg,A) —0.

Proof. This is the long exact cohomology sequence of

Fr@id—i

0—A——>A®y, A d A ®y, A——0.

combined with H:

cts

(Hig,A ®9, A) =0 from Corollary 5.2.7. O

In the next step, we want to replace the above exact sequence with a sequence of A =
Or[I'k]-modules. An idea how to do this gives Nekovar in [26, (8.3.3) Corollary, p.159] but
unfortunately the modules we are working with are not ind-admissible, since A is no direct
limit of finitely generated Or[Gk]-modules. As in the proof of Theorem 5.1.11 we use limits
and colimits to reduce to the case of discrete coefficients.

We want to recall the notation from [26, (8.1.1), p.148; (8.2.1), p.157] and from the
beginning of [26, (8.3) Infinite extensions, p. 158-159].

Definition 5.2.11. Let G be a profinite group, U < G an open subgroup and M a discrete
Or[U]-module. We then define the induced module to be

Ind$(M) = {f: G = X | f(ug) =uf(g) for all u € U,g € G}.

Ind$ (M) carries a G-action by (g - f)(0) = f(og). Furthermore, if M is a discrete Op[G]-
module define
vM = Homg, (OL[G/U], M).
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uvM then again carries a G-action by (¢ - (f))(z) = o(f(c~(z))). Let now H <G be a
closed, normal subgroup and U(G; H) be the open subgroups of G containing H. Then,
for V,U € UW(G; H) with V' C U the canonical map G/V — G/U induces Op-linear maps
vM — yM under which the system (yM)yey(a; ) becomes a filtered directed system. We
then set
FG/H(M) = hﬂ UM.
UEU(G;H)

Similar as above, F (M) then also carries an action from G. If H = {1} we write U(G)
instead of U(G; H) and Fg(M) instead of Fg 41} (M). Furthermore, we set Ux == U(Gk; Hc)
and we write Fr, (M) instead of Fg, /f, . This can lead to an abuse of notation, but it will
be clear from the context, which construction is chosen.

Remark 5.2.12. For the above situation, Nekovdr proves in [26, (8.1.3), p. 149] that
Ind{j (M) ——>yM, fr—[gU = g(f(g7"))]

is a G-equivariant isomorphism.

Remark 5.2.13. In the above situation, if f € Fg/g(M) then it exvists U € W(G; H) such
that f € yM. If then V € W(G; H) with V C U we also have f € v M as well as

flgV) = f(gU)
forall g € G.

Remark 5.2.14. Let G be a group and H <G a normal subgroup such that G/H is abelian.
Then every subgroup U < G with H C U is normal as well. In particular, if additionally
G is profinite and H is closed, then the elements of W(G; H) are normal, open subgroups of
G containing H. This is of great interest for us, since our application of this theory will be
G=Gg and H=Hg and G =Tk and H = {1}. In both cases, the factor G/H is ' which
is abelian.

Proposition 5.2.15. Let G be a profinite group, H < G a closed, normal subgroup, M a
discrete Op[G]-module and let U € U(G; H). Then the compact-open topology on yM is
discrete and the G-action on y M is again continuous with respect to this topology.
Furthermore, the transition maps v M — v M for V,V' € W(G; H) with V' C 'V are injective,
the direct limit topology on Fg/H(M) is discrete and its G-action is continuous.

Proof. Since U < G is an open subgroup, the set of cosets G/U is finite and therefore
OL[G/U] is a finitely generated free Or-module. So in particular, Or[G /U] is compact. Then
vM = Homg, (O1[G/U], M) is discrete with respect to the compact open topology since M is
discrete. To see that the action from G is continuous on ;M it is enough to see that for every
f € uM there exists an open subset V' C G under which f is fixed. Note also that G acts by
left multiplication on G/U. So, let f € y M and let g1,...,g, € G be a set of representatives
of the cosets of G/U. Since the action of G on M is continuous and M carries the discrete
topology, there exist open subsets Vi,...,V, C G such that g; is fixed by V; for all 1 < i < n.
Then f is fixed by V = nN;V;.

The statements on Fg/ (M) follow immediately by taking the direct limit. So the statement
on the transition maps is left. Let V,V’ € U(G; H) with V/ C V. Then the canonical map
G/V' — G/V is surjective. Then Op[G/V'] — Op[G/V] is a surjective Op-linear homo-
morphism and since Homg, (—, M) is left exact, the induced homomorphism /M — M is
injective. U
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In the above situation, under the additional assumption that U is normal in G, Nekovar
introduces in [26, (8.1.6.3) Conjugation, p.151] an action from G/U on yM which will be
important for us. We recall this action in the following Remark and we prove the statements.

Remark 5.2.16. Let G be a profinite group, U <G be an open, normal subgroup and M a
discrete Op[G]-module. For g € G and f € Ind§(M) we define Ad(g)(f) to be

(Ad(9)(H)(0) = g(f(g o).
This is an action from G on Indg(M) which isirivial on U, i.e. it induces an action from
G /U on Ind§(M) which we will denote also by Ad. Since both, Ind$(M) and G/U carry the
discrete topology, this action is continuous.

Furthermore, this action commutes with the standard action from G and under the isomor-
phism Ind$ (M) = y M from Remark 5.2.12 it corresponds to the G /U-action

(Ad(gU)(f))(eU) = f(ogU)
on yM. Then clearly the G-action on yM commutes with this action from G/U and the
latter is again continuous.

Lemma 5.2.17. Let Gl)e a profinite group and H <G a closed, normal subgroup, such that
G/H is abelian. Then Ad induces a continuous action from G/H on Fg g (M).
In particular, with this action Fg, (M) becomes an Or[G/H]-module.

Proof. The action from G/H on Fg (M) is given as follows: For f € Fg/p(M) and U €
U(G; H) such that f € yM and g € G we have

Ad(gH)(f) = Ad(gU)(f)-
This is well defined, since if V' € U(G; H) such that V C U then f € M and for o0 € G we
have

Ad(gU)(f)(eU) = f(ogU) = f(ogV) = Ad(gV)(f)(cV).

The action is continuous since the above f is fixed under U/H, which is an open subgroup of
G/H.
If f is as above, z € OL[G/H] and pry;: OL[G/H] — Or[G/U] denotes the canonical projec-
tion, then we have

Ad(z)(f) = Ad(pry (x))(f)-
This again is well defined and makes Fg (M) into an OL[G/H]-module. O

Proposition 5.2.18. Let G be a profinite group and H < G a closed, normal subgroup
such that G/H is abelian. Then Fg/p is an exact functor, viewed as functor from discrete
OL[G]-modules to discrete Or[G/H][G]-modules.

Proof. The above Lemma 5.2.17 says that Fg /g is a functor from discrete O, [G]-modules to
discrete Or[G/H][G]-modules.  So it is left to check that it is exact. For fixed
U € UW(G; H) the functor M — yM from discrete Or[G]-modules to discrete Op[G/U][G]-
modules is exact since Or[G/U] is a finitely generated, free Or-module. Since taking direct
limits is exact as well, Fig,/p is exact. ]

Definition 5.2.19. If C is an abelian category, we denote by D(C) the corresponding derived
category. As usual, we denote by D*(C) the full subcategory whose objects are the complexes,
which have no nonnegative entries and by DP(C) the full subcategory whose objects are the
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bounded below complexes.

If €* is a complex in an abelian category C, we denote as in [26] by RI'(€*) the corresponding
complex as an object in the derived category R(C).

In particular, if G is a profinite group and M is a topological G-module we set

Rrgts(G7 M) = RP( cts(G M))

as an object in R(Ab).

Remark 5.2.20. Let G be a profinite group, H <G a closed, normal subgroup, and M a
discrete Or[G]-module. As in [26, (3.6.1.4), p. 72] we define an action from G on C& (H, M)
by

Ad(g)(c)(h07 SER) hn) = g(c(g_1h097 s ag_lhng))v
where c € CL(H,M). Inloc. cit. Nekovdr also proves that for h € H this action is homotopic
to the identity and therefore induces an action from G/H on RI&(H, M) and H*(H, M)
respectively.
Similarly, by

o Ad(g) o Ad(g)
Ccts(Gv FG/H(M)) - CCtS(G7 FG/H(M)) - Ccts(Ga FG/H(M))

we can define an action from G on Cg (G, Fg/u(M)). Note that in this situation
Ad(g): C&s(G, Fg/u(M)) — C&(G, Fg/u(M)) is homotopic to the identity and so the com-
plex RIG(G, Foyp(M)) becomes a complex of OL[G/H]-modules. See also Remark 5.2.23
below.

Proposition 5.2.21. Let G be a profinite group, H 4G a closed, normal subgroup and M a
discrete Or[G]-module. Then there is a canonical morphism of complexes

C(:ts(G7FG/H(M)) — C¢ (Hv M):

cts

which is a quasi isomorphism. Moreover, for g € G the diagram

Cc.ts(Ga FG/H(M)) - cts(H M)

’AH@i
Ces(G, Fgya(M)) Ad(g)
Ad(g)i
Ces (G Fayu(M)) — Ce(H, M)
is  commutative. So in  particular, the  corresponding  isomorphism

RFcts(Gv FG/H<M)) — RI?

cts

(H, M) in the derived category D' (0-Mod) is G/H -linear.
Proof. For the proof set U := U(G; H). [29, (1.5.1) Proposition, p.45-46] says that we have

Czts(Ga FG/H(M)) = cts(G lg UM) = lg cts( aUM)'
vel vel
With Remark 5.2.12 we then obtain
g cts( 7UM) lg cts(GJndg(M))'

Uelu Ul
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Shapiro’s Lemma (cf. [29, (1.6.4) Proposition, p.62-63]) and again [29, (1.5.1) Proposition,
p. 45-46] then give us

lim C5(G, Ind§ (M) = limg 2y (U, M) 2 Oty (lim U, M) = Clyy(H, M).
Uvelu vel velu

[26, (8.1.6.3), p. 151] says that for U € U(G; H) and g € G the diagram

Cc.ts(G7 Indg(M)) - c.ts(U7 M)

Ei(g)i

C*. (G, Ind%(M)) Ad(g)

cts

Ad(g)i
(G, Ind§(M)) — C&

[ ]
C’cts cts

(U, M)

is commutative. Taking direct limits then proves the commutativity of the desired diagram.
O

Corollary 5.2.22. Let M € Modé"iF(AKw) such that M is discrete as Or[G]|-module. Then
the above Proposition 5.2.21 together with Proposition 2.2.13 induces the I i -linear isomor-
phism

RI(C% (T, Fr, (M) —=RI(C,_ (M)).

PK|L PK|L
Remark 5.2.23. In the situation of Proposition 5.2.21, the morphism
Ad(g): C’(:ts(G’ FG/H(M)) - c.ts(GvFG’/H(M))

for g € G is homotopic to the identity (cf. [26, (3.6.1.4), p.72] respectively Remark 5.2.20)
and therefore the diagram

RI%(G, Fo/p(M)) — RI¢

cts

Aﬁ(g»i lAd(g)
R’ths(Ga FG’/H(M)) - chts(H, M)

(H, M)

is commutative. The corresponding diagram for cohomology groups
Hgts(GaFG/H(M))*) §ts(H7 M)
Ad(g)- \L J{Ad(g)
H:ts(Gv FG/H(M)) — H; (H’ M)

cts

then also is commutative. This then explains that the statement from [29, p.65] coincides
with the theory from Nekovdr .
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Proposition 5.2.24. Let A = hﬂm A be a cofinitely generated Or-module, where Ay, =
ker(pxm) as usual, with a continuous action from G and set

Amn = (A @0, Ap) [ (TEAT @0, An)
H
Moy = (A ®0, An)™ / (12 AT @0, Am) " .

Then the following diagram is commutative and each arrow in it is a quasi isomorphism
Moreover, the vertical arrows on the right hand side are homomorphisms of A -modules.

C(:ts(GKﬂ FFK (A))

o

@Cgts(GK, IFry (Am))

meN

~

meNneN

1

~

lim Jm €, | (Min) <——

K|L hﬂl.&ne&KlL(rKaFFK(an))
meNneN meNneN
meN

e.

v (Drip(4) = RIY(Gk, Fr(4)) in

In particular, the induced isomorphism RI'(
D*(0p-Mod) is A -linear, i.e. it is an isomorphism in DT (Ag-Mod).
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Proof. We start with the left column and we consider the following diagram

Cc.ts(HKa A)
(1) |~
limy C&(H i, Am)
meN
(2) | =
limy €3, (Hrc, A @0, Ar)
meN
(5)
meNneN
()|~ :{(7)
i €z, , (44,)
meNneN
(6)
lim €2, (Dicir(Am)
meN
(4) | =

That the morphisms (1) and (4) are quasi isomorphisms is well known (cf. eg. [29, (1.5.1)
Proposition, p.45-46]). (2) and (3) are quasi isomorphisms by Proposition 5.2.9. Proposition
2.3.7 says that (5) and (6) are isomorphisms of complexes. But then (7) is also a quasi
isomorphism. So, all the morphisms in the left column of the original diagram are at least
quasi isomorphisms. The horizontal morphisms are quasi isomorphisms by Proposition 5.2.21
and therefore the morphisms in the right column are also quasi isomorphisms. So it is left
to check that the induced isomorphism RI'(CY, (D (A))) = RI%(Gk, Fry(A)) is Ak-

PK|L
linear. But the morphisms

ligNG;mL(@K\L(Am)) — €3, L (DriL(A))

and
meNneN meN
are clearly Ax-linear and so are all the morphisms in the right column of the original diagram
with respect to the Ag-action induced by Ad (which is the correct action in the derived
category according to Remark 5.2.23). Finally, the morphism
lim JmRI(€, | (P, o (M) — lim ImRI(€S, | (M)

PK|L
meNneN meNneN
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is Ag-linear by Corollary 5.2.22. 0

This description now has the advantage that the objects of the complexes are A g-modules
which allows us to apply the theory of Matlis duality. We give a brief overview of this theory.

Remark 5.2.25. We have to consider different types of group actions on Ag. First, 'k acts
by multiplication and Gpg acts by multiplication through the mnatural projection
pr: Gg — I'x. Sometimes we also have to consider A as Ax-module via the involution
L, i.e. T then acts by v -z = vy Lz, If this is the case, we write A% . Note that this does
also affect the action from G, i.e. Gk acts on Ay by g-x = pr(g) 'z and Tk acts by
VX = 'y_lx.

Additionally, if M is a Ag-module, we denote by M* the Ax-module M where 'k acts via
the involution v, i.e. for all v € Ty and m € M we have v-m = v~ 'm. If N is another
A -module we clearly have

Homy (M, N*) = Homy, (M*, N).

Definition 5.2.26. A Ag-module with a Ag-semilinear action of G is a Ag-module M
with an action from Gx such that for all A € Ag, m € M and g € Gg we have

g(xm) = g(A)g(m) = pr(g)Ag(m),
where pr: G — ' denotes the canonical projection (cf. Remark 5.2.25).

Remark 5.2.27. For us it feels more natural to consider Ax-modules with a semilinear G -
action instead of Ax-modules with a linear action from G, which are considered in [26]. The
main reason for this is that if we consider modules with a linear action from Gg we would
have to consider N with the trivial action from G . But this feels nonintuitive. In the text
below we will always compare our results to the results of Nekovdr in [26]. He considers A
with the trivial action of Gx (cf. [26, (8.4.3.1) Lemma, p.161-162]).

Both concepts are linked in the following sense: If M is a Ag-module with a (linear or
semilinear) action from G, then for n € Z denote by M < n > the Ax-module M with the
Gx-action given by

g-m = rpr(g)"g(m),

with g € Gg and m € M and where g(m) denotes the given action of Gx on M (cf. [26,
(8.4.2), p.161]). Then M — M < 1 > induces a morphism from Ag-modules with a linear

action from Gg to Ax-modules with a semilinear action from Gg. Its inverse clearly is
M— M < —1>.

Remark 5.2.28. Let M,N be Ag-modules with a Ai-semilinear action of Gg. Then
Homy, (M, N) also carries actions from both Gg and I'x (respectively Ag ). The action
from Tk is given by the multiplication of A on N (respectively M since the homomorphisms
are Ag-linear). The action from G is given by

(9- £)(m) = gn(f(ga; (m))),
for f € Homy, (M,N) and m € M and where gy respectively gn denote the actions from
Gg on M and N.

Remark 5.2.29. Let T be a topological Or-module with a continuous action from Gy and
let M be a Ag-module with a Ag-semilinear action of Gi. Then 'k acts on Homg, (T, M)
by multiplication on the coefficients and G as in the above Remark 5.2.28, i.e. by

(9- N) = gu(flor" (1)),
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for f € Homg, (T, M) and m € M and where gr and gy denote the actions from G on T
and M respectively.

Lemma 5.2.30. Let T be a topological Op-module with a continuous action from Gg and
let M be a Ag-module with a Ag-semilinear action of Gg. Then the homomorphism of
O, -modules

Homg, (T, M) — Homy, (T ®o, Ax, M), fr— 0 =[t@x— xf(t)]

s an isomorphism which respects the actions from ' and Gk described in the above Remark
5.2.29 for the left hand side and Remark 5.2.25 for the right hand side.

Proof. The inverse homomorphism is given by
HOH]AK(T Qo Ak, M) — Homg, (T\M), h+—— [t — h(t® 1)]

So it is left to check that the above homomorphisms respects the actions from ' and Gk,
which we leave to the reader. ]

Remark 5.2.31. Let M be a Ay -module with a Ag-semilinear action of Gg. Then MY =

Hom§® (M, L/OL) also carries actions from Gg and T Both are given by

(g f)(m) = flg~"(m)),

where g € Gi orin g, f € MY and m € M.

Note that Nekovdr considers the Pontrjagin dual of M with the Ik -action without the involu-
tion, i.e. by (v-f)(m) = f(y(m)) (cf. the proof respectively the result of [26, (8.4.3.1) Lemma,
p.161-162]). In our notation the Pontrjagin dual of Nekovdr of M is (MY)" = (M*")".

Remark 5.2.32. Let M be a Ag-module with a Ag-semilinear action of G andn € Z. Then
the identity of MV induces an isomorphism of Ax-modules with a A -semilinear action of
Gk

(M<n>)V=2M <n>.

Definition 5.2.33. Let M be a Ag-module. The Matlis dual of M is defined as
Dg (M) := Homy , (M, A)).

This is a contravariant functor of Ag-modules and maps finitely generated Ag-modules to
cofinitely generated and vice versa.

Ak acts on Dy (M) by multiplication and if M has also a semilinear action from G, then
G acts on D (M) as described in the above Remark 5.2.28

Remark 5.2.34. AY, is an injective Ax-module. Moreover, it is an injective hull of the
residue class field of Ax as Ag-module. Therefore D is exact and for every finitely respec-
tively cofinitely generated Ax-module the canonical homomorphism M — Dy (Dg(M)) is an
isomorphism.

Proof. Since v +— «v~1 defines an isomorphism of A-modules Agx — Ak, the first statement
is [26, (8.4.3.2) Corollary, p.162]. For this, note that in [26, (8.4.3.1) Lemma, p.161-162]
Nekovar proves that (A},)" = (A% )" and Nekovai’s dualizing module coincide and with (A% )Y
also A} is a dualizing module. The second statement is [9, Theorem 3.2.12, p. 105-107]. O
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Remark 5.2.35. As mentioned in [26, (2.3.3, p.41)] L/O is an injective hull for k.
Therefore we have a canonical isomorphism M = Homg, (Homg, (M, L/Or),L/Or) for every
finitely or cofinitely generated Or-module M and Homg, (—, L/Or) is an exact functor. As
above, the proof for this is [9, Theorem 3.2.12, p. 105-107].

We need some more notation from [26].

Remark 5.2.36. Let T € Repgi)(GK) and U € Ug. Then we have two group actions on
T ®o, OL|Gk/U]. The first action, is the diagonal action from G

g9-(a®@zU) = (ga) ® (gaU).
The second action is the following action from Gy /U :
Ad(gU)(a @ 2U) == a @ xg~U.

The homomorphism > a,u @ U +— > a,uyd.y where dpy is the Kronecker delta-function on
Gr/U (ie. it is 1 for aU and zero otherwise) defines an isomorphism between
T ®o, OL|Gk /U] and yT (cf. [26, (8.1.3), p.149; (8.2.1) p.157]) under which the actions
described above coincide with the corresponding actions on yT' (cf. [26, (8.1.6.3), p. 151]).

Definition 5.2.37. Let T € Repgi)(GK). We set
I (T) = lm T'®o, OL[Gk/U]
Uelg
together with the two actions from Gx and I'x described in the above Remark 5.2.36. With

this, we define
RIT, (KooK, T) = RI% (G, T (T).

L
Furthermore, by @ p we denote the derived tensor product over the ring R.

Remark 5.2.38. At [26, p.201] Nekovdr proves
Hiy (KooK, T) = H*(RIT, (K |K, T)),

i.e. that the cohomology of the above complex coincides with the Iwasawa cohomology defined
in Definition 4.0.6.

Remark 5.2.39. Let T € Repgi)(GK), then we have an isomorphism of Ax-modules with

a A -semilinear action of G
Fr,o(T) = T @0, A

Proof. Since T is finitely generated and Oy, is a discrete valuation ring, 1" is finitely presented.
Therefore we have
lim T ®o, OL[Gx /U] = T o, Ak
UelUk
as Op-modules. Gk acts on both sides diagonally and 'k acts on the left hand side via Ad
(which technically means via the involution) on the right hand term Op[Gk/U]. Since I'k
acts on Al also via the involution, the claim follows. O

Lemma 5.2.40. We have an isomorphism of Ax-modules with a Ag-semilinear action of
Gk

(A%)" = Fry(L/Or) (‘ lim HomoL(OL[GK/U],L/OL)> :
Uely
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Proof. Or[Gk /U] is compact for U € Ug, therefore Homg, (O1[Gk /U], L/Or) is discrete
and so li_rrgUeuK Homg, (O1[GKk /U], L/Or) is discrete too. This means that every map with

source theuK Homg, (O1[Gk /U], L/O1) into any topological space is continuous. We then
compute (as Or-modules)

Hom%tE(FrK(L/OL),L/OL) = Homfgti( hﬂ HomoL(OL[GK/U],L/OL),L/OL)

UelUgk
=Homy, ( %ﬂ Homg, (01[GKk/U],L/OL),L/OL)
Uelg
&~ @ Homgp, (Homg, (0|Gk/U],L/Or),L/Or)
Uelg
= lim OL[Gk/U]
Uelg
=Ax.

At the third equation, we used the identification
OL[GK/U] = HOHIOL(HOIH@L(OL[GK/U],L/OL),L/OL)
from Remark 5.2.35. Now we head towards the action from I'y. For ~ € Tk,
f € Hom@® (Fr, (L/OL),L/OL) and h € Fr, (L/OL) we have
(v-N(h) = f(y - h) = f(Ad(y)h)

for all z € Fr, (L/Or). Going through the above isomorphisms shows that this results in an
action from ' on Ag via the involution, i.e. we have an isomorphism of Ag-modules

Hom{?® (Fr, (L/OL),L/OL) = A%.
With the above notation, we have for g € G
(- F)(h)=flg~ -h) = f(hoy),

since G acts trivial on L/Op by definition. Therefore the above isomorphism is also G-
linear. 0

Remark 5.2.41. The above result differs a bit from Nekovdr’s result in [26, (8.4.3.1) Lemma,
p. 161-162] since Nekovdr considers A -modules with a Ak -linear action from Gk and there-
fore he considers A with a trivial Gx action (cf. Remark 5.2.27). Furthermore, his Pontr-
jagin dual and ours for Ax-modules differ in the action of I'k by an involution (cf. Remark
5.2.31). For a better comparison, if we consider A with the trivial action from Gk the result
of loc. cit in our notation is

(AY) = Fro (L/0L) < 1> .
This is equivalent to
(Ak) < —=1>=Fp (L/Op)
and for the left hand side we obtain
(AY) <—-1>=(Ay%)" <-1>
= (A% < —1>)Y
— (A <13)).
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In the second line we used Remark 5.2.32. But this means that Nekovdr’s result translate
into ours since we considered A with the action from Gg given by the canonical projection
pr: Gg - I'k.

Lemma 5.2.42. Let T € Repgi)(GK). Then we have an isomorphism of Ax-modules with
a N -semilinear action of G :

Fro(T") = Dg (Ir, (1))

Proof. This proof follows similarly as in [26, (8.4.5.1) Lemma, p.163], see [23, 5.2.42] for
details.
O

Remark 5.2.43. Again, the above result differs slightly from the analogous result of Nekovdr
(cf. [26, (8.4.5.1) Lemma, p. 163]). This is a consequence of the difference pointed out in the
above Remark 5.2.41. Translated to our notation, Nekovdr’s result from (loc. cit.) then is
that there is an isomorphism of A -modules with a A -semilinear action of Gi

FFK((TV)L) = Homy (ngK (T)Lv (A}/()L)

Note that Nekovdr’s original result is formulated for Ax-modules with a linear action from
Gr. But as pointed out in Remark 5.2.27 both concepts are linked by the shifts < 1 > and
< —1 > respectively. So to be precise, Nekovdr’s result is the above shifted by < —1 >. If we
apply this shift, we would have to invert it below in order to compare Nekovdr’s result to our
result. Since Tk acts trivially on T and therefore also on TV we have (TV)" = TV and we
have a canonical isomorphism of Ax-modules with a A -semilinear action of Gi

HomAK (?FK (T)L7 (A}/()L) = HomAK (StFK (T)7 A}/() = W(SFFK (T))

Combining the above identifications then gives us an isomorphism of Ax-modules with a Ak -
semilinear action of Gg

(Fry (TY)) = Dk (Ir, (1)),
which is exactly our result.

Lemma 5.2.44. Let T € Repgf)(GK). We then have an isomorphism
RIY, (KooK, T) 2 D (RT3 (G, Frye (T7)(1))) [-2]-
For the cohomology groups we then have for all i > 0 an isomorphism of Ax-modules

D (Hiy (K| K, T)) = H2Z (G, Fro (TY(1))) = HEL (Hre, TV (1))

cts cts

Proof. This is [26, (8.11.2.2); (8.11.2.3), p.201], but note that the shift of our complex is
outside D (—) and that we have Fr, (TV) = D (Fr, (T)) (cf. Lemma 5.2.42) since we have
a slightly different convention for the involved action of I'x. In particular, this is Lemma
5.2.42 together with [26, (5.2.6) Lemma, p.92]. The last isomorphism of the cohomology
groups is Proposition 5.2.21. g

Proposition 5.2.45. Let T € Repgf)(GK). Then the sequence

Dk (pxip)—id

0 — Hj, (Koo K, T) — D (M) D (M) — Hi\ (KooK, T) — 0

is exact, where M = Dy (TV(1)).
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Proof. With A := TV(1) we deduce from Proposition 5.2.10 and Proposition 5.2.21 that the
sequence

px|L—id

0— HY

cts

(GKa FFK(A)) —0

(GK7 FFK (A>) - ®K|L(A) ®K|L(A) - Hclts
is exact and Proposition 5.2.24 says that it is a sequence of Ax-modules. Applying Dy (—)

then gives the exact sequence

Dk (¢x|z)—id

0 — D (Heyo (G, Frc (4))) Dk (D (4))
Dk (Dgz(4)) D (Hes (G, Fric (A))) 0
(cf. Remark 5.2.34). Lemma 5.2.44 translates this sequence into the desired one. 0

This sequence looks similar to the sequence

_ Y—id _
0> HL (Keo| K, T) = Dy (T(771) —— Dy (T(771)) = HE, (Ko K, T) =0

from Theorem 4.0.13 where 771 = XLTXc_y{; and T € Repgf)(G k). In order to compare these

sequences, we prove the following.

Lemma 5.2.46. Let n € N. We have Q‘IAK\L/T‘-EQ}AK\L = (Ag|L/mt Ak L)Y and a T -linear
inclusion
QlAK‘L/TrEQ}xK‘LC—>E(AK\L/WEAK\L)
Proof. The isomorphism is a reformulation of an analogue of [31, Lemma 3.5, p. 11]. For the
inclusion using the tensor-hom adjunction we obtain
Homoy, (Ak /71 Ak, L/Or) = Home, (Ak /7L Ak L @ny Ak, L/OL)
= Homy, (A /7 Ak|L, Home, (Ax, L/OL)).

So we have to check that under this isomorphism Hom%tz‘(AK‘ /T Ak L, L/OL) is sent to
Homy, (Ag /T Ak|L, (Ak)V). For this, recall the above isomorphism precisely: Let f &
Hom%tLS(AK‘L/WzAK‘L, L/Or), then f is mapped to the element

[a— fo=[A— f(Aa)]]
in Homy, (Ag /77 Ak, Home, (A, L/Or)). For a € Ak /7] Ak|r, the homomorphism
fa then is the composition
!
Ag — AK|L/7TEAK|L —L/Og
A Xa

of continuous maps, i.e. f, is continuous too and we get the desired inclusion
HOmg;(AKw/TFgAKM,L/OL)CH HomAK(AK\L/WzAK\L7 (AK)\/)

It is easy to check this inclusion is I'g-linear. O



60 BENJAMIN KUPFERER AND OTMAR VENJAKOB
Definition 5.2.47. Let M be a topological A g|z-module with a continuous and semilinear
action from I'xr. We define
D(M) = Homa,, (M, Q4 ®a,, Bri/AxL).
And we define the I'g-action on D(M) to be
(- Hm) =2y~ (m))),

where 'k acts diagonal on the tensor product.

Remark 5.2.48. Using the isomorphism A r(xvr) — Q}‘{K|L’ f®ty — forrdZ we can
identify D(M), for M as above, with

Homa ., (M, By /A r(xur))-
Lemma 5.2.49. Let M be a discrete Ag|r-module with a continuous and semilinear action
from Ui such that M = hﬂm M,, where M,, = ker(,u,rzn). Then we have a I i -linear inclusion
Proof. For m € N we obtain with the tensor-hom adjunction
D (M) = Homy o (M, (Ak)Y)

= Homy, (M, @A, AgiL/7L Ak, (Ax)Y)

= HomAK\L<Mm7 HomAK(AK\L/W?AK\L/7 (Ax))).
Lemma 5.2.46 then implies, that there is an inclusion

HomAKlL(Mm, Q}AK\L/WTQ}AK\L)C—) D (My,).
But since 7'M, = 0 it is
Homa e, (M, Q4 /70 ) = Homa g, (Mo, Q) Oay, Brin/Ak|L),

i.e. we have an inclusion D(M,,) < Dy (M,,). Since Hompg(—, X) commutes with limits
for arbitrary rings R and R-modules X, we get the desired inclusion D(M) < Dg (M) by
applying limits. n

Lemma 5.2.50. Let A be a cofinitely generated Op-module with a continuous action from
Gg. Then we have

D(DK\L(A)) = DK|L(AV(XLT))'
This isomorphism respects the action from I'k.

Proof. As usual we write A = hﬂm A with Ay, = ker(uzm). By an analogue of [31, Lemma
3.6, p. 11-12] we have an isomorphism

D(Dkir(Am)) = Dk (Am)Y,

which is I'-linear by similar arguments as in (the proofs of) [31, Corollary 3.18, Proposition
3.19]. Remark 4.0.4 says that we have a I'k-linear isomorphism

Dn(Am)” = D ((Am)” (xar))-

Combining these results gives us the I'g-linear isomorphism
D(Dgr(Am)) = Dy ((Am)” (xrr))-
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Applying limits now gives the desired result. O

Proposition 5.2.51. Let T € Rep(fg)(G ) and set
CL(Dri(T(r7h)) = €y D(Dey (T (1)) [-1]-

Then the inclusion of complexes

CL(Dr (T () — €, Dk (D (T (1)) [1]
|

D (C (D (TV(1))))[2]
is a quasi isomorphism. So in particular we have an isomorphism in the derived category
DP(Ax — Mod)
RI(€}(Dg (T (1)) = RN, (Kw| K, T).

Proof. With TV(1) = T(—1)", the above Lemma 5.2.49 and Lemma 5.2.50 imply
Dy (T(77) —= D(D (T (1))~ D (D (TV(1)).

The cited lemmata also show that both homomorphisms are I'g-linear. Let
M = DK|L(TV(1)) then Proposition 5.2.45 together with Theorem 4.0.13 implies the com-
mutative diagram with exact rows and A g-linear vertical homomorphisms

_ Dk id
0 HL. (Koo|K,T) — D (M) —<P 7 B M) — H2 (Koo |K,T) =0

| I J |

O»Hllw(Koo\K,T)»TDK‘L(T(T_l))HDK‘L 1) = H (KoK, T) — 0.

This gives the desired quasi isomorphism. The second statement then follows from Lemma
5.2.44 by using Proposition 5.2.24. O

Question 5.2.52. [t follows that, for A cofinitely generated over Op and with continuous
G -action, the complex

D (¢)—id

0— E(QIQL(A))/D(@KM(A))

is acyclic, in particular for D(Dg(A)) = Akr. Can one show this directly, without going
the intricate way using Matlis duality and the Nekovar’s results? Moreover, is it realistically
conceivable that even D (D1 (A)) = D(Dgr(A)) holds?

Dr (D (A4))/D(Dgin(A)) —0

Theorem 5.2.53. Let T € Repgi)(GK) and let K C K' C K, an intermediate field,
finite over K, such that T = Gal(K|K') is isomorphic to some Zy,- Then we have an
isomorphism in the derived category DT (0p-Mod)

L
RFfW(KOO|K7 T) ®AK/ O = erts(GK/7T)‘

In particular, we have

RF(%(DK\L(T(FI))) w 0L = RIC(Grr, T).
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Proof. The first assertion is [26, (8.4.8.1) Proposition, p. 168]. Note that we have an isomor-
phism RI7, (Kx|K',T) = RI'Y, (Kx|K,T) in D (Ag/-Mod) since the intermediate fields
of Ko|K' are cofinal in the intermediate fields of K |K. The second assertion then is an
application of Proposition 5.2.51. g

Using [17, Prop. 1.6.5 (3)] we obtain the following variant.

Theorem 5.2.54. Let T € Repgf)(GK) and let K C K' C K4, any intermediate field, finite
over K. Then we have an isomorphism in the derived category DT (0-Mod)

L
RIy (KooK, T) ®p, Op|Gal(K'|K)] 2 Rlets(Gr, T)
in particular
L
RI(CY(Dyen(T(7))) ®ay Op = Rles(Gi, T).

Proof. We have the following isomorphisms

RTs(Gr, I, (T)) éAK 01[Gal(K'|K)] & Rlcts(Gr, A ®0, T) é’AK Or[Gal(K'|K)]
= Rls(Gr, OL[Gal(K'|K)] @4, (Mg @0, T))
>~ Rlws(Gr, Op[Gal(K'|K)]* ®o, T)
= Rl (Ggr, T)

where the first isomorphisms comes from Remark 5.2.39, the second one from (loc. cit.), the
third one is trivial while the last one is Shapiro’s Lemma. ([l

Remark 5.2.55. We want to give a more concrete statement of the above Theorem 5.2.53.
So let as there T € Repgf)(GK) and K C K' C K an intermediate field, finite over K,
such that T'gr = Gal(K«|K') is isomorphic to some Z;,. Let furthermore y1,...,v be a set
of generators of I'r. The Koszul-complex Ko(Ag:) of Ak then is the complex

—1 d1

0 A" A~ AT A Agr 0L 0,

where \* A+ denotes the i-th exterior algebra of Ay and
Z' .
di(x1 N Nxy) = Z(—l)]+1pr(:cj)x1 N NZTG A Ny
j=1
Here (/—\) denotes that this entry is omitted and pr denotes the projection
Agr = A /(1 — 1,00, — 1) =2 Op (cf. [38, Section 15.28]). Under the (uncanonical)
isomorphism A — Op[X1,...,X,], i — 1 — X; the above projection becomes the pro-

jection to degree zero. Then by [25, Theorem 16.5, p. 128-129] the Koszul-compler Ko(Agr)
of Ak is a free resolution of O and therefore (cf. [38, Section 15.57, Definition 15.57.15])

L
RF(G;(DKM(T(TA))) @, O is represented by the complex

(€D (T(771)) @4, Ke(Axr)



HERR-COMPLEXES IN THE LUBIN-TATE SETTING 63

which then is isomorphic to the complex

B (Y—id)®id
Tot (D (T(r~1) @4, Ka(Ax)

DT ) @ Ka(Ar)) =

Ko (¢)—id

Tot (Ka(Di1 (T(r1) Ko(Di(T(r1)))).

Here Ko(D g (T(771))) denotes the Koszul-complex of D e, (T(771)) which is defined in an
analogous way to the Koszul-complex of Agr. This last complex then is the generalization of
the y-Herr complex from the classical theory.

Using the self-duality of the Koszul-complex and an inspection of the complex in the last

remark compared to the Pontrjagin dual of the (by local Tate-duality) corresponding ¢-Herr-
complex, one can indeed derive now that the differentials in the original p-Herr-complex are
strict with closed image (at least for finitely generated torsion coefficients). Indeed, its dual
complex has the right cohomology groups, namely the duals of the cohomology groups of the
original ¢ by the above results. It would be desirable to show these topological properties
directly in order to get a genuine theory within the world of (¢, I")-modules.
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