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The aim of this series of 3 talks is to report on

I Siegel’s result on the rationality of the values L(1− k, ε), k ≥
1, of certain L-functions over totally real number fields to be
defined later and

II the congruences among those values which have been shown by
Deligne and Ribet and which amount to the existence of p-adic
L-functions.

I. Rationality

In the first lecture we concentrate on topic I. The main idea of Siegel
which actually goes back already to Klingen consists of considering
certain Eisenstein series the constant term of which are exactly the
L-values above. Then he applies the following principle:

Let f(z) be an SL2(Z)-Eisenstein series, z ∈ H, of weight k with Fourier
series

f(z) =
∞∑
n=0

an q
n, q = e2πiz

and assume that a1, · · · , ak ∈ Q. Then it follows from the following
result that also a0 is rational.

Proposition 1.1 (Siegel)

There exist integers ck,0, · · · , ck,r with

r := r(k) := dimCMk(SL2(Z)) =


[
k
12

]
+ 1 if k 6= 2 mod 12,[

k
12

]
otherwise,

such that
ck,0 a0 + ck,1 a1 + · · ·+ ck,r ar = 0

and
ck,0 6= 0 .

1
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Proof. ([3, §5.2 Cor. 1], [12]) Let X be the compact Riemann surface

X = SL2(Z)\H ∪ {∞}∼=
j

P1

with meromorphic differentials Ω1(X) and consider the C-linear map

Mk(SL2(Z))
φ
↪→ Ω1(X)

f 7→ w(f) := f Tk(z)dz =
1

2πi
f Tk(q)

dq

q

where

Tk(z) := G14−k+12(r(k)−1)∆
−r = ck,rq

−r + · · ·+ ck,0 + · · ·

is a weight 2 − k modular function, holomorphic on H, with integral
Fourier coefficients ck,r ∈ Z. Here ∆ is Ramanujan’s ∆-function, a cusp
form of weight 12, and Gk is the weight k-Eisensteinseries with constant
Fourier coefficient 1. Note that for the weights actually showing up in
the Tk’s, the q-expansions of the Gi are integral. It is easy to show
that the image of φ has the basis ωm := jmdj, m = 0, · · · , r− 1, where

j =
G3

4

∆
= q−1 + . . . is the modular j-function. The constant term of

Tkf is obviously

ck,0 a0 + · · ·+ ck,r ar

which equals the coefficient of q−1 in ω(f) = 1
2πi

Tkf
dq
q

. But each ωm =

jmdj = 1
m+1

djm+1

dq
dq has trivial coefficient in q−1, thus the first claim

follows. The fact that ck,0 6= 0 is an explicit calculation concerning Gi

and ∆, see [3]. �

Remark 1. Siegel’s argument in [13] is slightly different: he shows that
for the linearly independent modular forms 1, γ1, · · · , γr(k) of weight
0 and k the vectors 1t, (γ1)t, · · · , (γr(k))t of their first t + 1 Fourier
coefficients are still linearly independent (for t = r(k) + 1). From this
fact he is able to express a0 as a linear combination of a1, · · · , ar(k). If
f(z) is a weight k Eisenstein series of Γ(N) he uses the fact that f(z)
satisfies some algebraic relation with coefficients in SL2(Z)-Eisenstein
series up to a certain bounded weight `. For the linearly independent
modular forms 1, γk11 , · · · , γk1r(k1), · · · , γ

kd
1 , · · · , γ

kd
r(kd) (γji of weight j and

kd = `) he determines an upper bound for t, the minimal integer such

that the vectors (1)t, · · · , (γkdr(kd))t stay linearly independent. Thereby
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he again manages to express a0 as a rational linear combination of the
a1, · · · , at (with bounded denominators).

Since the coefficients ck,j are computable, we obtain explicit numerical
formulae for the first Fourier coefficients.

Example 1. The classical Eisenstein series

Ek(z) =
(k − 1)!

2(2πi)k

∑
(m,n)∈Z2\{0}

(mz + n)−k,

=
ζ(1− k)

2
+
∞∑
n=1

σk−1(n)qn

with σk(n) :=
∑

0<d|n d
k gives

ζ(1− k) = − 2

ck,0

r(k)∑
j=1

σk−1(n)ck,j ∈ Q

for even integers k > 2. Here ζ denotes the Riemann zeta-function.

We now fix some notation for the rest of the talks:

K totally real number field,
r = [K : Q]
O = OK its ring of integers

D = (O∗)−1 different
dK = N (D) discriminant
N : K → Q (or K ⊗Q R→ R for any Q-algebra R) the norm map.
f ⊂ O conductor

K̂ the ring of finite adeles of K

α ∈ K is called totally positive, α � 0, if σ(α) > 0 for all embeddings
σ : K ↪→ R.

HK = {τ ∈ K ⊗ C| Im(τ)� O} ∼= Hr
Q

Γ00(f) =

{(
a b
c d

)
∈ SL2(K)| a, d ∈ 1 + f

b ∈ D−1, c ∈ fD

}
.
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Let Ek(τ), τ ∈ HK , be an SL2(O)-Eisenstein series of weight k. Then
its pullback f = (∆∗Ek)(z) along the diagonal

HQ
∆
↪→ HK = Hr

Q
z 7→ (z, · · · , z)

is an SL2(Z)-Eisenstein series of weight kr with the same constant
Fourier coefficient as Ek(τ), thus one may apply Siegel’s theorem.

Example 2. For a ⊂ O consider

Ek(τ, a) = N (a)k
∑

(λ,µ)∈a×a/O×
N (λτ + µ)−k, for even integer k > 2,

which actually only depends on the class [a] ∈ ClK ; here N (λτ + µ) =∏
σ:K↪→R

(λστσ + µσ) with τ = ((τσ)σ) and O× acts diagonally on a× a.

Then Ek(τ) :=
∑

[a]∈ClK Ek(τ, a) restricted to HQ has q-expansion

(∆∗Ek)(z) = ζK(k) +

(
(2πi)k

(k − 1)!

)r
d

2k−1
2

K

∞∑
n=1

∑
0�ξ∈D−1

Tr(ξ)=n

σk−1(ξD)qn

where ζK =
∑
b⊂O
N (b)−s, Re(s) > 1, denotes the Dedekind zeta-function

of K and σk(b) :=
∑
a|b
N (a)k.

Thus we obtain Siegel’s formula(
Γ(k)

(2πi)k

)r
ζK(k)

d
2k−1

2
K

= −
kd∑
j=1

ckd,j
ckd,0

∑
0�ξ∈D−1

Tr(ξ)=j

σk−1(ξD) ∈ Q.

Remark 2. Siegel applies the same technique to (values of) partial
ζ-functions, thereby showing the rationality of the L-values L(1− k, ε)
to be defined below.

Let I0 (resp. I0(f)) denote the group of fractional ideals of K (prime to
f). Also we write A0 (A0(f)) for the submonoid of integral ideals in O
(prime to f). Then Gf := A0(f)/ ∼f is the strict ray class group, where
a ∼f b⇐⇒ ab−1 = (α) for some 0� α ∈ 1 + fb−1.
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For a function ε : Gf −→ C we set

L(s, ε) :=
∑

a∈A0(f)

ε(a)Na−s =
∑

[a]=a∈Gf

ε(a)ζ(a, f, s)

where

ζ(a, f, s) =
∑

b∈A0(f),b∼fa

Nb−s .

Then, setting b := aD−1f−1, for k ≥ 1 Siegel constructs a Hilbert
modular Eisenstein series Ek(a, f)(τ) whose pullback (∆∗Ek(a, f))(z)
(= ϕ(z) in [13, (98)]) is an elliptic modular form of weight kr

(
Γ(k)

(2πi)

k
)r

d
2k−1

2
K N (f)k−1N (b)k


∑

(x,λ)∈K2/O×+
x∈aD−1,λ∈b

e2πiTrλN (xz + λ)−kN|xz + λ|−s


|s=0

,

where O×+ := {α ∈ O×|α = 1 mod f, α � 0}, and has Fourier coef-
ficients (loc. cit., (100), (101) and the last displayed formula on page
19)

a0 = ζ(a, f, 1− k) (k > 2, if K = Q, f = 1),
an ∈ Q.

Thus the rationality of the partial zeta values follows. Moreover, if
ε : Gf → Q takes values in the rational numbers, we obtain

Theorem I. L(1− k, ε) ∈ Q for all k ≥ 1 (K 6= Q).

Furthermore, we can extend the definiton of L(s, ε) to all functions
ε : Gf → V with values in a Q-vectorspace V , e.g. Qp, by setting

L(s, ε) :=
∑
a∈Gf

ζ(a, f, s)ε(a) ∈ V .

II. Congruences

In a second step we are now going to discuss the type of congruences
which Deligne-Ribet prove in order to show the existence of p-adic
L-functions. To this end let
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G = lim←−
n

Gfpn

be the strict ray class group of conductor fp∞, which by class field
theory corresponds to the maximal abelian extension of K, which is
unramified at all finite places v not dividing fp (infinite places are
allowed to ramify!). Let

N : G→ Z×p
be the unique continuous character which is compatible with the usual
norm map N : A0(fp) → Zp and the natural map A0(fp) → G. Note

that N is actually nothing else than the p-cyclotomic character of K.
For ε : Gf → Qp and c ∈ G we set

∆c(1− k, ε) := L(1− k, ε)−N ckL(1− k, εc) ∈ Qp

for k ≥ 1, where εc(g) := ε(c̄g) if c̄ denotes the image of c under the
canonical projection G � Gf . Note that for a character ε this is equal
to (

1−N ck ε(c̄)
)
L(1− k, ε) .

For a family (εk : Gf → Qp)k≥1 (almost all zero) we define a map ϕ on
A0(f) via

ϕ(a) =
∑
k≥1

εk(a)Nak−1 ∈ Qp .

Theorem II. If ϕ(a) ∈ Zp for all a ∈ A0(f), then

∆ :=
∑
k≥1

∆c(1− k, εk) ∈ Zp for all c ∈ G .

These kinds of congruences were (axiomatically) first introduced by
Coates [1]. In the case K = Q they are nothing else than the “gener-
alized Kummer congruences” as considered by Mazur and others and
they can be rather easily proved from the fact that over Q the values
L(1 − k, ε) for k ≥ 1 can be expressed in terms of Bernoulli polyno-
mials; see [2, §1]. Thus, from now on we shall concentrate on the case
K 6= Q.
For the purpose of p-adic L-functions we now assume that all primes
lying above p divide the conductor f ⊂ O. Note that a locally constant
function ε : G → Qp factorizes over Gf ′ for some f|f′|(fp)n, n ≥ 1,
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which allows us to define ∆c(1 − k, ε) (independently of the choice of
f′, as A0(f′) = A0(f) for any such f′). Thus we obtain a distribution for
any k ≥ 1, c ∈ G,

µc,k : {ε : G→ Qp locally constant} −→ Qp

ε 7−→ ∆c(1− k, ε).
Setting εk := ε : G → Zp (locally constant) and εi := 0 for i 6= k, it
follows from Theorem II that µc,k(ε) ∈ Zp, i.e., the distribution µc,k is
bounded or in other words:

Theorem III. µc,k is a measure on G with values in Zp. Moreover,
µc,k = N k−1 · µc,1.

Proof. It suffices to show for k ≥ 1 and n ≥ 1 that∫
εN k−1dµc,1 ≡ ∆c(1− k, ε) mod pn Zp

for each locally constant ε : G → Zp. For this, let η : G → Zp be a
locally constant function such that

η ≡ N k−1mod pn.

Taking ε1 := εη, εk := −ε, and εi := 0 for i 6= 1, k, the function
ϕ = εη − εN k−1 takes values in pnZp, and Theorem II implies:

∆c(0, εη)−∆c(1− k, ε) ∈ pnZp,

which gives

∆c(1− k, ε) ≡ ∆c(0, εη) =

∫
εηdµc,1 ≡

∫
εN k−1dµc,1 mod pnZp.

�

Setting λc := N−1µc,1 ∈ Zp[[G]] for c ∈ G we obtain∫
N kεdλc = ∆c(1− k, ε).

Then λ := 1
1−cλc in the total quotient ring of Zp[[G]] is a pseudo-

measure à la Serre [11] for 1− c a non-zero divisor in Zp[[G]]:

(1− c′)λ = λc′ ∈ Zp[[G]] for all c′ ∈ G.
Also, it can be deduced that for k ≥ 1
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N kεdλ = L(1− k, ε).

Indeed, if ε belongs to the set of continuous characters XG of G (with
values in C×p ) we calculate

∫
N kεdλ =

∫
N kεdλc

1−N ckε(c)
=
L(1− k, ε)−N ckL(1− k, εc)

1−N ckε(c)
= L(1−k, ε),

where we choose a c which does not lie in the kernel of N kε.

Setting

L = Lf : XG \ {1I} −→ C×p
ϕ 7−→

∫
ϕdλ

we get the p-adic zeta-function of K as

ζK,p(s) = L(< χK >1−s), s ∈ Zp \ {1},
satisfying

ζK,p(1− k) = L(ω−kK χkK) = Lf(1− k, ω−kK )
= ζK,f(1− k) if k|#ωK .

Here χK denotes the p-cyclotomic character, ωK the Teichmüller char-
acter of K and <> the projection from Z×p to 1+pZp. More generally,
the p-adic L-function for φ ∈ XG arises as

Lp,K(s, φ) := L(φ < χK >1−s)

with

Lp,K(1− k, φ) = Lf(1− k, φω−kK ),

where Lf

(
s, φ ω−kK

)
is the Artin L-function attached to φω−kK without

the Euler factors of the places dividing f.

Consider the following decomposition and projection

α : G ∼= A× Γ � Γ
∼−→Zp,
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α(γ) = 1 for a fixed topological generator γ of Γ, where A = ker(<>)
where we simply write <> also for the composite <> ◦N . For the
convenience of the reader we recall the following well-known

Proposition 2.1([10, (4.8)-(4.10)]) Let ε : G → Zp[ε]
× be an (even)

character of finite order.

(i) Then, for each c, there exist unique H ′ε,c, G
′
ε,c ∈ Zp[ε][[X]] such

that

∫
< x >1−s ε(x)dλc(x) = G′ε,c(< γ >1−s −1),

1− ε(c) < c >1−s = H ′ε,c(< γ >1−s −1).

(ii) If ε|A 6≡ 1I, then

Lp,K(s, ε) = Fε
(
< γ >1−s −1

)
for some Fε ∈ Zp[ε][[X]]. Clearly, Fε =

G′ε,c
H′ε,c

for all c such that

H ′ε,c 6= 0 even though H ′ε,c need not be a unit.

(iii) If ε|A 6≡ 1I and θ : G → C×p is a character of finite order such
that θ|A = 1I is trivial, then

Fθε(X) = Fε(ζ(1 +X)− 1) with ζ := θ(γ) ∈ µp∞ .

Remark 3. Setting

Hε =

{
−H ′ε,γ, if ε|A ≡ 1I,
1, otherwise,

and

Gε =

{
−Gε,γ, if ε|A ≡ 1I,
Fε, otherwise,

we obtain the unique power series in [14] such that

Lp,K(s, ε) =
Gε(< γ >1−s −1)

Hε(< γ >1−s −1)
.
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Proof. (sketch) Note that for any ψ ∈ XG there exists a character ψA
which is trivial on Γ and such that

ψ(g) = ψA(g) ψ(γ)α(g)

for all g ∈ G.

We will use the following well-known

Fact: Let µ be a measure on G. Then∫
ψdµ = F (ψ(γ)− 1)

where F = FψA,µ :=
∑
n≥0

anX
n ∈ Zp[ψ][[X]] with

an =

∫
G

ψA(x)

(
α(x)

n

)
dµ(x) ∈ Zp[ψ].

Taking ψ =<>1−s and µ = ελc we have∫
<>1−s εdλc = F (< γ >1−s −1).

Setting G′ε,c := F = F<>1−s
A,ελc and H ′ε,c := 1 − ε(c)(X + 1)α, if

< c >=< γ >α for α ∈ Zp, we obtain (i).

(ii) By (4.3) in (loc. cit.) there exist a measure (not just pseudo-
measure) µ′ on G such that

Lp,K(s, ε) =

∫
<>1−s εdµ′

for all ε which are non-trivial on A. Now apply the above fact to the
measure µ = εµ′ and ψ =<>1−s .

(iii) By definition we have

Fθε(< γ >1−s −1) =
∫
< x >1−s θεdµ′

= F(< >1−sθ)A,εµ′(< γ >1−s θ(γ)− 1)

by the above fact. But

Fε = F< >1−s
A ,εµ′ = F(<>1−sθ)A,εµ

′

because θA = 1I and the claim follows. �
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For the proof of Theorem II we need a q-expansion principle which we
shall state now, but explain in more detail later.

For simplicity we assume f = N , a positive integer, i.e.,

Γ00(N) =

{(
a b
c d

)
∈ SL2(K)| a, d ∈ 1 +NO

b ∈ D−1, c ∈ ND

}
Let F : HK → C be a Hilbert modular form of weight k with Fourier
expansion

F1 = a0 +
∑

µ∈O, µ�0

aµ, q
µ = e2πiTr(µτ)

at 1 and

Fα

at other cusps α. Actually, the cusps we are interested in are all induced
from finite ideles α ∈ K̂× [2, (5.3)], which in turn induce elements
c(α) in G (called j(α) just below [2, (2.22)]).

Perhaps the hardest part in [2] is the proof of the geometric irreducibil-
ity of the fibres of moduli space of Hilbert-Blumenthal Abelian Varieties
(HBAV), which implies the following

q-expansion-principle (Rapoport, Deligne-Ribet)

I If the q-expansion coefficients of F at one cusp are all rational,
then this is true for all cusps.

Now let Fk, k ≥ 0, be forms of weight k, almost all zero, such that
Fk,1 ∈ “Q[[q]]” and set

S(α) :=
∑
k≥0

Nα−kp Fk,α ∈ Qp[[q]],

which corresponds (only) to a p-adic modular form, as it mixes up

different weights! Here αp denotes the p-component of α ∈ K̂×.

II If S(α) has coefficients in Zp for one α, then for all α.
III Assume that all non-constant coefficients of S(α) lie in Zp.

Then this holds also for S(β) at any other cusp β and

a0(S(α))− a0(S(β) ∈ Zp.
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Now the idea of the proof of Theorem II consists of finding suitable
Hilbert modular forms Fk,εk such that for all cusps α its Fourier expan-
sion are essentially of the form

(Fk,εk)α = N c(α)kNαpk
{
L(1−k, εk,c(α))+

∑
µ�0

(∑
?

εk,c(α)N k−1(µ?)

)
qµ
}
,

for k ≥ 1 (F0 = 0). Then, by the assumption of Theorem II all non-
constant coefficients belong to Zp. Thus the q-expansion principle III
implies that

∆ =
∑
k≥1

∆c(α)(1− k, εk) =
∑
k≥1

(
L(1− k, εk)−N c(α)kL(1− k, εk,c(α)

)
= a0(S(1))− a0(S(α)) ∈ Zp

and Theorem II follows. �

The needed Eisenstein series Fk,εk for arbitrary locally constant func-
tions ε (these are needed for the distribution property) are similar to
those studied by Siegel (see page 5), but while for rationality it sufficed
for Siegel to realise the special L-values as constant terms of elliptic
modular forms, for the purpose of congruences Deligne-Ribet had to
find Hilbert modular forms with the corresponding L-values as con-
stant terms; they are constructed in [2, §6] in an adelic setting! Also
we should note that for k = 1 such F1,ε apparently does not exist and
Deligne and Ribet have to circumvent this problem, which leads to
some technical problems which we do not want to discuss here.

The rest of this survey is devoted to explain the q-expansion principle
in a little more detail.

II.1. The Moduli space. References for this paragraph concerning
the moduli problem of classifying abelian varieties with real multipli-
cation are [9], [8, §1], [2, §4].

Recall that a Hilbert-Blumenthal abelian variety (HBAV) relative to
O over a base S is an abelian scheme X/S, furnished with a homomor-
phism m : O ↪→ End(X) making its Lie algebra Lie(X/S) into a locally
free O ⊗OS -module of rank 1, in particular the relative dimension of
X over S equals r = [K : Q]. Fixing a polarization module c ⊂ K, and
considering for simplicity only the case S = Spec(R) for any ring R, a
c-polarization of X/S is a (positive) isomorphism

λ : P(X) := HomO(X,X t)
∼−→ c

of O-modules, where X t denotes the dual abelian variety of X.
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Finally, for N ≥ 1 a Γ00(N)-structure of X is an O-linear immersion
O ⊗ µN/S ↪→ X. Now consider the moduli problem, given by the
functor:

F (c, N) : Schemes −→ Sets

S 7−→


isomorphism classes of triples

(X,λ, i) with X a HBAV /S,
λ a c−polarization,
i a Γ00(N)-structure

 .

The moduli stack M(c, N) defined by this functor is an algebraic stack,
smooth of relative dimension r over Z and is represented by an algebraic
space, also denoted M(c, N), smooth of relative dimension r over Z for
N ≥ 4. In particular, there is a unique universal c-polarized HBAV
with Γ00(N)-structure

ϕ∗X −→ X := (Xuniv, λuniv, iuniv)
↓ ↓ π
S

ϕ−→ M(c, N)

and all elements in F (c, N)(S) arise as pullback ϕ∗X for some ϕ ∈
Mor(S,M(c, N)). In particular, for a field L, the L-valued points

M(c, N)(L)

consists of c-polarized HBAV with Γ00(N)-structure defined over L.

II.2. Hilbert-modular forms (HMF). Assume N ≥ 4 and denote
by ω the sheaf π∗(Ω

1
Xuniv/M

) on M := M(c, N) and let

ω(k) :=
⊗
σ

ω(σ)k

be ω extended by the character N k, which is an invertible sheaf over
MR := M⊗R, on which (O⊗R)× acts by N k, see [5, §1.3] for details.
Here we fix a ground ring R and for every R-algebra R′ and as before
N denotes the norm character O ⊗ R′ → R′. Then the c-HMFs of
weight k on Γ00(N) defined over R are by definition the global sections

Mk(c, N,R) := H0 (M(c, N)R, ω(k)) .
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This can also be interpreted (and this makes even sense for N ≥ 1) as
a rule F which assigns to a quadruple

(X,λ, ω, i)

over R′ an element F (X,λ, ω, i) ∈ R′, where

1. (X,λ) is a c-polarized HBAV over an R-algebra R′,
2. ω is a nowhere vanishing differential on X and
3. i is a Γ00(N)-structure

subject to the following conditions

(i) F (X,λ, ω, i) depends only on the R′-isomorphism-class of
(X,λ, ω, i),

(ii) Formation of F (X,λ, ω, i) is compatible with any extension of
scalars R′′ → R′ of R-algebras,

(iii) F (X,λ, a−1ω, i) = N (a)kF (X,λ, ω, i) for all a ∈ (O ⊗R′)×.

II.3. q-expansions. Let α be in K̂×, a = (α) the (fractional) ideal
generated by it and b := ac−1. Then there is an HBAV-analogue of
the Tate-elliptic curve: more precisely, there exist a certain Laurent
series ring Z((q)) := Z((qµ, µ ∈ ab)) and a HBAV Tateα(q) defined
over Z((q)) together with a canonical polarization λcan, a differential
ωa and a Γ00-structure iα. Then the value

F (Tateα(q), λcan, ωα, iα) ∈ R⊗ Z((q)) ⊆ R((q))

has by definition of the latter ring a q-expansion

Fα =
∑
µ∈ab

aµ(Fa)q
µ

at the “cusp α” (actually there are some choices involved which for
simplicity we do not want to mention here).

In the case K 6= Q, one knows that

aµ(Fα) = 0 unless µ = 0 or µ� 0.

Theorem IV (Ribet). The geometric fibres of M(c, N) over Spec(Z)
are all geometrically irreducible.
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From the standard geometric argument1 in [9], see also [6, thm. 1.6.1]
or [7] one obtains the following

Corollary (q-expansion principle I)

Fix N ≥ 1, k ≥ 0 and R.

(i) Then for all cusps α as above the map

Mk(c, N,R) ↪→ R((q))
F 7−→ Fα

is injective.

(ii) Let R ⊂ R′ and let F be in Mk(c, N,R
′). If the coefficients

of Fα are all in R, then F arises actually from a unique HMF
defined already over R, i.e., the sequence

0→Mk(c, N,R)→Mk(c, N,R
′)→ R′((q))/R((q))

is exact.

Remark 4. For K 6= Q the modular forms Mk(c, N,C) over C can
also be identified with the set of holomorphic functions F : HK → C
such that

F|M(τ) = N (γτ + δ)−kF

(
ατ + β

γτ + δ

)
= F (τ)

for all

M =

(
α β
γ δ

)
∈ Γ00(N) .

To this end one defines

F (τ) := F

(
K ⊗ C

2πi(a−1D−1 + ac−1τ)
, λcan, ωcan, ican

)
for ωcan = dz and certain canonical choices λcan, ican (cf. [2] before
(5.7), compare also with [4, §4.13]).

1Roughly speaking the idea is as follows: One has to show that the morphism
Spec (Z((q))) → M(c, N) corresponding to the point Tateα(q) of M has the fol-
lowing topological property: its image contains the generic point (of each fibre).
Then the vanishing of the modular form F in Tateα(q) implies the vanishing of F
in each of these generic points. By the smoothness and irreducibility (which imply
the absence of embedded components) this implies the vanishing of F everywhere.
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By the translation-invariance with respect to elements of (abD)−1 thus
F admits a Fourier-expansion

Fα(τ) =
∑
µ∈ab
µ=0
or
µ�0

cµ(Fα)qµ
(
qµ := e2πi tr(τ ·µ)

)
at the cusp α.

By a GAGA-like result one has

cµ(Fα) = aµ(Fα),

where aµ is the Fourier-coefficient defined earlier.

II.4. p-adic modular forms. Let R be a p-adic ring, i.e.,

R = lim←−
n

R/pnR.

Then the R-module V (N,R) of p-adic modular forms on Γ00(N) over
R (in the sense of Katz) consists of functions f on isomorphism classes
of triples (X,λ, i) such that (X,λ) is a c-polarized HBAV over a p-
adic R-algebra R′ and i is a Γ00(Np∞)-structure, i.e., a compatible
system of Γ00(Npn)-structures, n ≥ 0, subject to the condition that f
is compatible with scalar extensions R′ → R′′ of p-adic R-algebras.

Note first that there is no concept of weights anymore. Secondly, if p
is nilpotent in R, any R-algebra R′ is automatically p-adic, thus there
is a natural identification

M0(c, Np∞, R/pnR) ∼= V (N,R/pnR)

of weight 0 c-HMF with p-adic modular forms, both over R/pnR. Thus

we obtain the following interpretation for N ≥ 4. Let Mp-adic
R be the for-

mal scheme {M(c, Np∞)R/pnR}n∈N with structure sheaf OM p-adic . Then
the global sections

H0(Mp-adic
R ,OM p-adic) ∼= lim←−

n

H0(M(c, Np∞)R/pnR,OM p-adic)

∼= lim←−
n

M0(c, Np∞, R/pnR)

∼= lim←−
n

V (N,R/pn)

∼= V (N,R)
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are nothing else than the p-adic modular forms over R.

Now we concentrate on the case R = Zp. To a finite idele α ∈ K̂× one
can also attach a p-adic cusp [2, (5.11)] and we have the q-expansion-
maps

φα : V (N,Zp) −→ Zp[[q]]
f 7−→ f(Tateα(q), λcan, iα)

and φα⊗Qp : V (N,Qp) := V (N,Zp)⊗ZpQp −→ Qp⊗ZpZp[[q]] ⊆ Qp[[q]].

Theorem 2.4

(i) φα is injective.
(ii) coker (φα) does not have any p-torsion.
(iii) The sequence

0→ V (N,Zp)→ V (N,Qp)
φα⊗Qp−→ Qp[[q]]

/
Zp[[q]]

is exact, i.e., a p-adic modular form f ∈ V (N,Qp) all of whose q-
expansion coefficients at one p-adic cusp α belong to Zp is already de-
fined over Zp.

Sketch of proof:
Since φα is the inverse limit of the injective maps (by the Corollary of
Ribet’s theorem)

V (N,Zp/p
nZp) =M0(c, Np∞,Zp/p

n) ↪→ Zp/p
nZp[[q]]

it is clearly injective itself. Furthermore with M(c, Np∞)
/
Z also

Mp-adic
Zp

/
Zp is flat, because flatness is stable under base change, here

by (Z→)Z(p) → Zp. Hence we have the exact sequence

0→ OM p-adic
p→OM p-adic → OM p-adic

/
p→ 0.

Taking global sections gives

0→ V (N,Zp)
p→V (N,Zp)→ V (N,Zp/pZp).(1)

Now let f(q) ∈ Zp[[q]] be a power series in q such that pf(q) = g(q)
for some g ∈ V (N,Zp). Then the image of g in V (N,Zp/pZp) is zero
by (i). From (1) we see that there is a unique f ∈ V (N,Zp) such that
g = pf and with q-expansion f(q). The claim (ii) follows. Finally,
tensoring the exact sequence

0→ V (Zp)
φα→Zp[[q]]→ coker φα → 0
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with Qp/Zp claim (iii) follows from (ii). �

Finally we remark that there is a canonical map

Mk(c, N,R)
πk→V (N,R)

for any k ≥ 0, induced by sending (X,λ, i) to (X,λ, ω(i), i) where ω(i)
is a certain differential attached to i. Now we are able to prove the
q-expansion principle III. In [2, (5.15)] it is explained that

S(α) =
∑
k≥1

Nαp−kFk,α =

(∑
k≥1

πkFk

)
α

,

where the last q-expansion is with respect to the p-adic cusp attached
to α, while Fk,α denotes the expansion at the usual cusp. Setting F for∑
k≥1

πkFk, we have by the assumption of III that the q-expansion at the

p-adic cusp α of the p-adic modular form (F − t) has coefficients in Zp:

(F − t)α ∈ Zp[[q]],

where t = a0(Fα) denotes the constant term at α, considered as weight
zero HMF or constant p-adic modular form, respectively. Thus F − t
belongs to V (N,Zp) by (iii) of the last theorem. Hence the q-expansion
of F − t at any other cusp β, say, also has coefficients in Zp. In partic-
ular, its constant term

a0

(
(F − t)β

)
= a0(Fβ)− a0(tβ)

= a0(Fβ)− t
= a0(Fβ)− a0(Fα)

belongs to Zp.

I would like to thank the organizers for the very instructive workshop in
such a nice atmosphere and surroundings. Furthermore I am grateful
to Thansis Bouganis and Ulrich Görtz for some discussions as well as
to the referee for improving the presentation.
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