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Abstract

In the Lubin-Tate setting we compare di�erent categories of pφL,Γq-modules over

various perfect or imperfect coe�cient rings. Moreover, we study their associated Herr-

complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decom-

pleting, but not decompleting tower in the sense of Kedlaya and Liu.
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1 Introduction

Since its invention by Fontaine in [Fo] the concept of pφ,Γq-modules (for the p-cyclotomic
extension) has become a powerful tool in the study of p-adic Galois representations of local
�elds. In particular, it could be fruitfully applied in Iwasawa theory [Ben, B, Na14a, Na17a,
Na17b, V13, LVZ15, LLZ11, BV] and in the p-adic local Langlands programme [Co1]. A
good introduction to the subject regarding the state of the art around 2010 can be found in
[BC, FO].

Afterwards a couple of generalisations have been developed. Firstly, Berger and Colmez
[BeCo] as well as Kedlaya, Pottharst and Xiao [KPX] extended the theory to (arithmetic)
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families of pφ,Γq-modules, in which representations of the absolute Galois group of a local
�eld on modules over a�noid algebras over Qp instead of �nite dimensional vector spaces are
studied. Secondly, parallel to and in�uenced by Scholze's point of view of perfectoid spaces
as well as the upcoming of the Fargues-Fontaine curve [FF] Kedlaya and Liu developed a
(geometric) relative p-adic Hodge theory [KLI, KLII], in which the Galois group of a local
�eld is replaced by the étale fundamental group of a�noid spaces over Qp thereby extending
an earlier approach by Andreatta and Brinon. In particular, Kedlaya and Liu have introduced
systematically pφ,Γq-moduels over perfect coe�cient rings, i.e., for which the Frobenius endo-
morphism is surjective, and they have studied their decent to imperfect coe�cient rings, which
is needed for Iwasawa theoretic applications and which generalized the work of Cherbonnier
and Colmez [ChCo1].

Recently there has been a growing interest and activity in introducing and studying
pφL,ΓLq-modules for Lubin-Tate extensions of a �nite extension L of Qp, motivated again
by requirements from or potential applications to the p-adic local Langlands programme
[FX, BSX, Co2] or Iwasawa theory [SV15, BF, SV23, MSVW, Poy]. The textbook [GAL]
contains a very detailed and thorough approach to the analogue of Fontaine's original equiv-
alence of categories between Galois representations and étale pφ,Γq-modules to the case of
Lubin-Tate extensions as had been proposed, but only sketched in [KR], see Theorem 4.1.
In this setting it has been shown in [Ku, KV] that - as in the cyclotomic case due to Herr
[Her98] - the Galois cohomology of a L-representation V of the absolute Galois group GL of L
can again be obtained as cohomology of a generalized Herr complex for the pφL,ΓLq-module
attached to V , see Theorem 7.1.

The purpose of this article is to spell out in the Lubin-Tate case concretely the various
categories of (classical) pφL,ΓLq-modules over perfect and imperfect coe�cient rings (analo-
gously to those considered in [KLI, KLII] who do not cover the Lubin-Tate situation) such as
AL,A

:
L, ÃL, Ã

:
L,BL,B

:
L,BL, B̃

:
L,RL, R̃L to be de�ned in the course of the main text and to

compare them among each other. Moreover, we investigate for which versions the generalized
Herr complex calculates again the Galois cohomology of a given representation. The results
are summarized in diagrams (6) and (7). Finally, we study in the last section how Lubin-Tate
extensions �t into Kedlaya's and Liu's concept of (weakly) decompleting towers. We show that
for L � Qp they are weakly decompleting, but not decompleting.

See [Ste1] for some results regarding arithmetic families of pφL,ΓLq-modules in the Lubin-
Tate setting.
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supporting a fruitful stay. The project was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) � Project-ID 427320536 � SFB 1442, as well as un-
der Germany's Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynam-
ics�Geometry�Structure. We also acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under TRR 326 Geometry and Arithmetic of
Uniformized Structures, project number 444845124, as well as under DFG-Forschergruppe
award number [1920] Symmetrie, Geometrie und Arithmetik.

2 Notation

Let Qp � L � Cp be a �eld of �nite degree d over Qp, oL the ring of integers of L, πL P oL a
�xed prime element, kL � oL{πLoL the residue �eld, q :� |kL| and e the absolute rami�cation
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index of L. We always use the absolute value | | on Cp which is normalized by |πL| � q�1. We
warn the reader, though, that we will use the references [FX] and [Laz] in which the absolute
value is normalized di�erently from this paper by |p| � p�1. Our absolute value is the dth
power of the one in these references. The transcription of certain formulas to our convention
will usually be done silently.

We �x a Lubin-Tate formal oL-module LT � LTπL over oL corresponding to the prime
element πL. We always identify LT with the open unit disk around zero, which gives us a global
coordinate Z on LT . The oL-action then is given by formal power series raspZq P oLrrZss. For
simplicity the formal group law will be denoted by �LT .

Let Tπ be the Tate module of LT . Then Tπ is a free oL-module of rank one, say with
generator η, and the action of GL :� GalpL{Lq on Tπ is given by a continuous character
χLT : GL ÝÑ o�L .

For n ¥ 0 we let Ln{L denote the extension (in Cp) generated by the πnL-torsion points of
LT , and we put L8 :�

�
n Ln. The extension L8{L is Galois. We let ΓL :� GalpL8{Lq and

HL :� GalpL{L8q. The Lubin-Tate character χLT induces an isomorphism ΓL
�
ÝÑ o�L .

Henceforth we use the same notation as in [SV15]. In particular, the ring endomorphisms
induced by sending Z to rπLspZq are called φL where applicable; e.g. for the ring AL de�ned
to be the πL-adic completion of oLrrZssrZ�1s or BL :� ALrπ

�1
L s which denotes the �eld of

fractions of AL. Recall that we also have introduced the unique additive endomorphism ψL of
BL (and then AL) which satis�es

φL � ψL � π�1
L � traceBL{φLpBLq .

Moreover, projection formula

ψLpφLpf1qf2q � f1ψLpf2q for any fi P BL

as well as the formula
ψL � φL �

q

πL
� id

hold. An étale pφL,ΓLq-module M comes with a Frobenius operator φM and an induced
operator denoted by ψM .

Let rE� :� limÐÝ oCp{poCp with the transition maps being given by the Frobenius φpaq � ap.

We may also identify rE� with limÐÝ oCp{πLoCp with the transition maps being given by the

q-Frobenius φqpaq � aq. Recall that rE� is a complete valuation ring with residue �eld Fp and
its �eld of fractions rE � limÐÝCp being algebraically closed of characteristic p. Let m

rE
denote

the maximal ideal in rE�.
The q-Frobenius φq �rst extends by functoriality to the rings of the Witt vectorsW prEq and

then oL-linearly toW prEqL :�W prEqboL0
oL, where L0 is the maximal unrami�ed subextension

of L. The Galois group GL obviously acts on rE and W prEqL by automorphisms commuting
with φq. This GL-action is continuous for the weak topology on W prEqL (cf. [GAL, Lemma
1.5.3]).

By sending the variable Z to ωLT PW prEqL (see directly after [SV15, Lem. 4.1]) we obtain
an GL-equivariant, Frobenius compatible embedding of rings

AL ÝÑW prEqL
3



the image of which we call AL. The latter ring is a complete discrete valuation ring with prime
element πL and residue �eld the image EL of kLppZqq ãÑ rE sending Z to ω :� ωLT mod πL.
We form the maximal integral unrami�ed extension (� strict Henselization) Anr

L of AL inside
W prEqL. Its p-adic completion A still is contained in W prEqL. Note that A is a complete
discrete valuation ring with prime element πL and residue �eld the separable algebraic closure
Esep

L of EL in rE. By the functoriality properties of strict Henselizations the q-Frobenius φq

preserves A. According to [KR, Lemma 1.4] the GL-action onW prEqL respects A and induces
an isomorphism HL � kerpχLT q

�
ÝÑ AutcontpA{ALq.

Sometimes we omit the index q, L, or M from the Frobenius operator.
Finally, for a valued �eld K we denote as usual by K̂ its completion.

3 An analogue of Tate's result

Let C5
p together with its absolute value | � |5 be the tilt of Cp. The aim of this section is to

prove an analogue of Tate's classical result [Ta, Prop. 10] for C5
p instead of Cp itself and in

the Lubin Tate situation instead of the cyclotomic one. In the following we always consider
continuous group cohomology.

Proposition 3.1. HnpH,C5
pq � 0 for all n ¥ 1 and H � HL any closed subgroup.

Since the proof is formally very similar to that of loc. cit. or [BC, Prop. 14.3.2.] we only
sketch the main ingredients. To this aim we �x H and write sometimes W for C5

p as well as
W¥m :� tx PW ||x|5 ¤

1
pm u.

Lemma 3.2. The Tate-Sen axiom (TS1) is satis�ed for C5
p with regard to H, i.e., there exists

a real constant c ¡ 1 such that for all open subgroups H1 � H2 in H there exists α P pC5
pq

H1

with |α|5   c and TrH2|H1
pαq :�

°
τPH2|H1

τpαq � 1. Moreover, for any sequence pHmqm of
open subgroups Hm�1 � Hm of H there exists a trace compatible system pyHmqm of elements
yHm P pC5

pq
Hm with |yHm |5   c and TrH|Hm

pyHmq � 1.

Proof. Note that for a perfect �eld K (like pC5
pq

H) of characteristic p complete for a multi-
plicative norm with maximal ideal mK and a �nite extension F one has TrF {KpmF q � mK by

[Ked15, Thm. 1.6.4]. Fix some x P pC5
pq

H with 0   |x|5   1 and set c :� |x|�1
5 ¡ 1. Then we

�nd α̃ in the maximal ideal of pC5
pq

H1 with TrH|H1
pα̃q � x and α :� pTrH2|H1

pα̃qq�1α̃ satis�es
the requirement as |TrH2|H1

pα̃q|�1
5 ¤ |x|�1

5 � c.

For the second claim we successively choose elements α̃m in the maximal ideal of pC5
pq

Hm

such that TrH|H1
pα̃1q � x and TrHm�1|Hm

pα̃m�1q � α̃m for all m ¥ 1. Renormalization
αm :� x�1α̃m gives the desired system.

Remark 3.3. Since H is also a closed subgroup of the absolute Galois group GL of L it
possesses a countable fundamental system pHmqm of open neighbourhoods of the identity, as
for any n ¡ 0 the local �eld L of characteristic 0 has only �nitely many extensions of degree
smaller than n.

Proof. The latter statement reduces easily to �nite Galois extensions L1 of L, which are known
to be solvable, i.e. L1 has a series of at most n intermediate �elds L � L1 � . . . � Ln � L1

such that each subextension is abelian. Now its known by class �eld theory that each local
�eld in characteristic 0 only has �nitely many abelian extensions of a given degree.
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We write CnpG,V q for the abelian group of continuous n-cochains of a pro�nite group G
with values in a topological abelian group V carrying a continuous G-action and B for the usual
di�erentials. In particular, we endow CnpH,W q with the maximum norm } � } and consider
the subspace CnpH,W qδ :�

�
H 1⊴H open CnpH{H 1,W q � CnpH,W q of those cochains with

are even continuous with respect to the discrete topology of W.

Lemma 3.4. (i) The completion of CnpH,W qδ with respect to the maximum norm equals
CnpH,W q.

(ii) There exist pC5
pq

H-linear continuous maps

σn : CnpH,W q Ñ Cn�1pH,W q

satisfying }f � Bσnf} ¤ c}Bf}.

Proof. Since the space CnpH,W q is already complete we only have to show that an arbitrary
cochain f in it can be approximated by a Cauchy sequence fm in CnpH,W qδ. To this end

we observe that, given any m, the induced cochain Hn f
ÝÑ W

prm
ÝÝÑ W {W¥m comes, for some

open normal subgroup Hm, from a cochain in CnpH{Hm,W {W¥mq, which in turn gives rise
to fm P CnpH,W qδ when composing with any set theoretical section W {W¥m

smÝÝÑ W of
the canonical projection W

prm
ÝÝÑ W {W¥m. Note that sm is automatically continuous, since

W {W¥m is discrete. By construction we have }f�fm} ¤ 1
pm and pfmqm obviously is a Cauchy

sequence. This shows (i).
For (ii) recall from Lemma 3.2 together with Remark 3.3 the existence of a trace compatible

system pyH 1qH 1 of elements yH 1 P pC5
pq

H 1
with |yH 1 |5   c and TrH|H 1pyH 1q � 1, where H 1 runs

over the open normal subgroups of H. Now we �rst de�ne pC5
pq

H -linear maps

σn : CnpH,W qδ Ñ Cn�1pH,W q

satisfying }f � Bσnf} ¤ c}Bf} and }σnf} ¤ c}f} by setting for f P CnpH{H 1,W q

σnpfq :� yH 1 Y f

(by considering yH 1 as a �1-cochain), i.e.,

σnpfqph1, . . . , hn�1q � p�1qn
¸

τPH{H 1

ph1 . . . hn�1τqpyH 1qfph1, . . . , hn�1, τq.

The inequality }yH 1 Y f} ¤ c}f} follows immediately from this description, see the proof
of [BC, Lem. 14.3.1.]. Upon noting that ByH 1 � TrH|H 1pyH 1q � 1, the Leibniz rule for the
di�erential B with respect to the cup-product then implies that

f � BpyH 1 Y fq � yH 1 Y Bf,

hence
}f � BpyH 1 Y fq} ¤ c}Bf}

by the previous inequality, see again (loc. cit.). In order to check that this map σn is well
de�ned we assume that f arises also from a cochain in CnpH{H2,W q. Since we may make
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the comparison within CnpH{pH 1 X H2q,W q we can assume without loss of generality that
H2 � H 1. Then

pyH2 Y fqph1, . . . , hn�1q � p�1qn
¸

τPH{H2

ph1 . . . hn�1τqpyH2qfph1, . . . , hn�1, τq

� p�1qn
¸

τPH{H 1

��h1 . . . hn�1

¸
τ 1PH 1{H2

τ 1

�pyH2qfph1, . . . , hn�1, τq

� p�1qn
¸

τPH{H 1

ph1 . . . hn�1q p
¸

τ 1PH 1{H2

τ 1pyH2qqfph1, . . . , hn�1, τq

� p�1qn
¸

τPH{H 1

ph1 . . . hn�1q pyH 1qfph1, . . . , hn�1, τq

� pyH 1 Y fqph1, . . . , hn�1q

using the trace compatibility in the fourth equality. Finally the inequality }σnf} ¤ c}f} implies
that σn is continuous on CnpH,W qδ and therefore extends continuously to its completion
CnpH,W q.

The proof of Prop. 3.1 is now an immediate consequence of Lemma 3.4(ii).

4 The functors D, D̃ and D̃:

Let RepoLpGLq, RepoL,f pGLq and RepLpGLq denote the category of �nitely generated oL-
modules, �nitely generated free oL-modules and �nite dimensional L-vector spaces, respec-
tively, equipped with a continuous linear GL-action. The following result is established in
[KR, Thm. 1.6] (see also [GAL, Thm. 3.3.10]) and [SV15, Prop. 4.4 (ii)].

Theorem 4.1. The functors

T ÞÝÑ DpT q :� pAboL T q
HL and M ÞÝÑ pAbAL

MqφqbφM�1

are exact quasi-inverse equivalences of categories between RepoLpGLq and the categoryM
etpALq

of �nitely generated étale pφL,ΓLq-modules over AL. Moreover, for any T in RepoLpGLq the
natural map

(1) AbAL
DpT q

�
ÝÝÑ AboL T

is an isomorphism (compatible with the GL-action and the Frobenius on both sides).

In the following we would like to establish a version of the above for Ã and prove similar
properties for it. In the classical situation such versions have been studied by Kedlaya et al
using the unrami�ed rings of Witt vectorsW pRq. In our Lubin-Tate situation we have to work
with rami�ed Witt vectorsW pRqL. Many results and their proofs transfer almost literally from
the classical setting. Often we will try to at least sketch the proofs for the convenience of the
reader, but when we just quote results from the classical situation, e.g. from [KLI], this usually
means that the transfer is purely formal.

We start de�ning Ã :�W pC5
pqL and

Ã: :� tx �
¸
n¥0

πnLrxns P Ã : |πnL}xn|
r
5

nÑ8
ÝÝÝÑ 0 for some r ¡ 0u
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as well as D̃pT q :� pÃboL T q
HL and D̃:pT q :� pÃ: boL T q

HL .
More generally, let K be any perfectoid �eld containing L and let K5 denote its tilt. For

r ¡ 0 let W rpK5qL be the set of x �
°8

n�0 π
n
Lrxns P W pK5qL such that |πL|n|xn|r5 tends to

zero as n goes to 8. This is a subring by [KLI, Prop. 5.1.2] on which the function

|x|r :� sup
n
t|πnL}xn|

r
5u � sup

n
tq�n|xn|

r
5u

is a complete multiplicative norm; it extends multiplicatively to W rpK5qLr
1
πL
s. Furthermore,

W :pK5qL :�
�

r¡0W
rpK5qL is a henselian discrete valuation ring by [Ked05, Lem. 2.1.12],

whose πL-adic completion equalsW pK5qL since they coincide modulo πnL. Then Ã: �W :pC5
pqL,

and we write ÃL and Ã:
L for W pL̂58qL and W :pL̂58qL, respectively. We set B̃L � ÃLr

1
πL
s,

B̃ � Ãr 1
πL
s, B̃:

L � Ã:
Lr

1
πL
s and B̃: � Ã:r 1

πL
s for the corresponding �elds of fractions.

Remark 4.2. By the Ax-Tate-Sen theorem [Ax] and since C5
p is the completion of an algebraic

closure L̂58 he have that pC5
pq

H � ppL̂58q
Hq^ for any closed subgroup H � HL, in particular

pC5
pq

HL � L̂58. As completion of an algebraic extension of the perfect �eld L̂58 the �eld pC5
pq

H

is perfect, too. Moreover, we have ÃHL � ÃL, pÃ
:qHL � Ã:

L and analogously for the rings B̃
and B̃:. It also follows that Ã is the πL-adic completion of a maximal unrami�ed extension of
ÃL.

Lemma 4.3. The rings AL and A embed into ÃL and Ã, respectively.

Proof. The embedding AL ãÑ ÃL is explained in [GAL, p. 94]. Moreover, A is the πL-
adic completion of the maximal unrami�ed extension of AL inside Ã � W pC5

pqL (cf. [GAL,
�3.1]).

On Ã �W pC5
pqL the weak topology is de�ned to be the product topology of the valuation

topologies on the components C5
p. The induced topology on any subring R of it is also called

weak topology of R. IfM is a �nitely generated R-module, then we call the canonical topology
of M (with respect to the weak topology of R) the quotient topology with respect to any
surjection Rn ↠ M where the free module carries the product topology; this is independent
of any choices. We recall that a pφL,ΓLq-module M over R P tAL, ÃL, Ã

:
Lu is a �nitely

generated R-module M together with

� a ΓL-action on M by semilinear automorphisms which is continuous for the weak topol-
ogy and

� a φL-linear endomorphism φM of M which commutes with the ΓL-action.

We let MpRq denote the category of pφL,ΓLq-modules M over R. Such a module M is called
étale if the linearized map

φlin
M : RbR,φL

M
�
ÝÝÑM

f bm ÞÝÑ fφM pmq

is bijective. We let MétpRq denote the full subcategory of étale pφL,ΓLq-modules over R.

De�nition 4.4. For � � BL, B̃L, B̃
:
L we write Métp�q :�Métp�1qboLL with �1 � AL, ÃL, Ã

:
L,

respectively, and call the objects étale pφL,ΓLq-modules over �.
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Lemma 4.5. Let G be a pro�nite group and R Ñ S be a topological monomorphism of
topological oL-algebras, for which there exists a system of open neighbourhoods of 0 consisting
of oL-submodules. Consider a �nitely generated R-module M , for which the canonical map
M Ñ S bR M is injective (e.g. if S is faithfully �at over R or M is free), and endow it with
the canonical topology with respect to R. Assume that G acts continuously, oL-linearly and
compatible on R and S as well as continuously and R-semilinearly on M . Then the diagonal
G-action on S bR M is continuous with regard to the canonical topology with respect to S.

Proof. Imitate the proof of [GAL, Lem. 3.1.11].

Proposition 4.6. The canonical map

(2) ÃL bAL
DpT q

�
ÝÑ D̃pT q

is an isomorphism and the functor D̃p�q : RepoLpGLq Ñ MétpÃLq is exact. Moreover, we
have a comparison isomorphism

(3) ÃbÃL
D̃pT q

�
ÝÑ ÃboL T.

Proof. The isomorphism (2) implies formally the isomorphism (3) after base change of the
comparison isomorphism (1). Secondly, the isomorphism (2), resp. (3), implies easily that
D̃pT q is �nitely generated, resp. étale. Thirdly, since the ring extension ÃL{AL is faithfully
�at as local extension of (discrete) valuation rings, the exactness of D̃ follows from that of D.
Moreover, the isomorphism (2) implies by Lemma 4.5 that ΓL acts continuously on D̃pT q, i.e.,
the functor D̃ is well-de�ned. Thus we only have to prove that

ÃL bAL
pAboL T q

HL �
ÝÑ pÃboL T q

HL

is an isomorphism. To this aim let us assume �rst that T is �nite. Then we �nd an open normal
subgroup H⊴HL which acts trivially on T. Application of the subsequent Lemma 4.7 toM �

pAboLT q
H and G � HL{H interprets the left hand side as

�
ÃL bAL

pAboL T q
H
	HL{H

while

the right hand side equals
�
pÃboL T q

H
	HL{H

. Hence it su�ces to establish the isomorphism

ÃL bAL
pAboL T q

H �
ÝÑ pÃboL T q

H .

By Lemma 4.8 below this is reduced to showing that the canonical map

ÃL bAL
AH boL T

�
ÝÑ ÃH boL T

is an isomorphism, which follows from Lemma 4.9 below. Finally let T be arbitrary. Then we
have isomorphisms

ÃL bAL
DpT q � ÃL bAL

limÐÝ
n

DpT {πnLT q

� ÃL bAL
limÐÝ
n

DpT q{πnLDpT q

� limÐÝ
n

ÃL bAL
DpT q{πnLDpT q

� limÐÝ
n

ÃL bAL
DpT {πnLT q

� limÐÝ
n

D̃pT {πnLT q

� D̃pT q,
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where we use for the second and fourth equation exactness of D, for the second last one the
case of �nite T and for the �rst, third and last equation the elementary divisor theory for the
discrete valuation rings oL, AL and ÃL, respectively.

Lemma 4.7. Let A Ñ B be a �at extension of rings and M an A-module with an A-linear
action by a �nite group G. Then B bA M carries a B-linear G-action and we have

pB bA MqG � B bA M
G.

Proof. Apply the exact functor B bA � to the exact sequence

0 //MG //M
pg�1qgPG//

À
gPGM,

which gives the desired description of pB bA MqG .

Lemma 4.8. Let A be A, Anr
L , Ã: or Ã and T be a �nitely generated oL-module with trivial

action by an open subgroup H � HL. Then pAboL T q
H � AH boL T. Moreover, AH and ÃH

are free AL- and ÃL-modules of �nite rank, respectively.

Proof. Since T �
Àr

i�1 oL{π
ni
L oL with ni P N Y t8u we may assume that T � oL{π

n
LoL for

some n P NY t8u. We then we have to show that

pA{πnLAq
H �AH{πnLA

H(4)

For n � 8 there is nothing to prove.
The case n � 1: First of all we have A{πLA � Anr

L {πLA
nr
L � Esep

L . On the other hand,
by the Galois correspondence between unrami�ed extensions and their residue extensions,
we have that pEsep

L qH is the residue �eld of pAnr
L q

H . Hence the case n � 1 holds true for
A � Anr

L . After having �nished all cases for A � Anr
L we will see at the end of the proof that

pAnr
L q

H � AH . Therefore the case n � 1 for A � A will be settled, too.
For A � Ã we only need to observe that Ã{πLÃ � W pC5

pqL{πLW pC5
pqL � C5

p and that

pC5
pq

H is the residue �eld of pW pC5
pqLq

H �W ppC5
pq

HqL.

For A � Ã: we argue by the following commutative diagram

pC5
pq

H

�
))

� //W :ppC5
pq

HqL{πLW
:ppC5

pq
HqL

� // pÃ:qH{πLpÃ
:qH

��
ÃH{πLÃ

H � // pÃ{πLÃq
H � // pÃ:{πLÃ

:qH .

The case 1   n   8: This follows by induction using the commutative diagram with exact
lines

0 // AH{πnLA
H

�
��

πL� // AH{πn�1
L AH

��

// AH{πLA
H

�
��

// 0

0 // pA{πnLAq
H πL� // pA{πn�1

L AqH // pA{πLAq
H ,

in which the outer vertical arrows are isomorphism by the case n � 1 and the induction
hypothesis.

9



Finally we can check, using the above equality (4) for A � Anr
L in the third equation:

AH �

�
limÐÝ
n

Anr
L {π

n
LA

nr
L

�H

� limÐÝ
n

pAnr
L {π

n
LA

nr
L q

H

� limÐÝ
n

�
Anr

L q
H{πnLpA

nr
L

�H
� pAnr

L q
H .

Note that pAnr
L q

H is a �nite unrami�ed extension of AL and therefore is πL-adically complete.
We also see that AH is a free AL-module of �nite rank. Similarly, W pC5

pq
H
L � pW pL̂58q

nr
L q

H

is a free W pL̂58qL-module of �nite rank.

Lemma 4.9. For any open subgroup H of HL the canonical maps

W pL̂58qL bAL
AH �

ÝÑW ppC5
pq

HqL,

W pL̂58qL bÃ:
L
pÃ:qH

�
ÝÑW ppC5

pq
HqL

are isomorphisms.

Proof. We begin with the �rst isomorphism. Since AH is �nitely generated free over AL by
Lemma 4.8, we have

W pL̂58qL bAL
AH �

�
limÐÝ
n

WnpL̂
5
8qL

�
bAL

AH � limÐÝ
n

�
WnpL̂

5
8qL bAL

AH
	
.

It therefore su�ces to show the corresponding assertion for Witt vectors of �nite length:

WnpL̂
5
8qL bAL

AH{πnLA
H �WnpL̂

5
8qL bAL

AH �
ÝÑWnppC5

pq
HqL.

To this aim we �rst consider the case n � 1. From (4) we know that AH{πnLA
H � pEsep

L qH .
Hence we need to check that

L̂58 bEL
pEsep

L qH
�
ÝÑ pC5

pq
H

is an isomorphism. Since the perfect hull Eperf
L of EL (being purely inseparable and normal)

and pEsep
L qH (being separable) are linear disjoint extensions of EL their tensor product is equal

to the composite of �elds Eperf
L pEsep

L qH (cf. [Coh, Thm. 5.5, p. 188]), which moreover has to

have degree rHL : Hs over Eperf
L . Since the completion of the tensor product is L̂58bEL

pEsep
L qH ,

we see that the completion of the �eld Eperf
L pEsep

L qH is the composite of �elds L̂58pE
sep
L qH ,

which has degree rHL : Hs over L̂58. But L̂
5
8pE

sep
L qH � pC5

pq
H . By the Ax-Tate-Sen theorem

pC5
pq

H has also degree rHL : Hs over L̂58. Hence the two �elds coincide, which establishes the
case n � 1.

The commutative diagram

L̂58 bAL
AH

φm
q bid �

��

� // pC5
pq

H

φm
q�

��
L̂58 bφm

q ,AL
AH

idφm
q // pC5

pq
H

10



shows that also the lower map is an isomorphism. Using that Verschiebung V on WnppC5
pq

HqL

and WnpL̂
5
8qL is additive and satis�es the projection formula V mpxq � y � V mpx � φm

q pyqq we
see that we obtain a commutative exact diagram

0 // L̂58 bφn
q ,AL

AH

idφn
q

��

V nbid//Wn�1pL̂
5
8qL bAL

AH

can

��

//WnpL̂
5
8qL bAL

AH

�

��

// 0

0 // pC5
pq

H V n
//Wn�1ppC5

pq
HqL //WnppC5

pq
HqL,

from which the claim follows by induction because the outer vertical maps are isomorphisms
by the above and the induction hypothesis. Here the �rst non-trivial horizontal morphisms
map onto the highest Witt vector component.

The second isomorphism is established as follows: We choose a subgroup N � H � HL

which is open normal in HL and obtain the extensions of henselian discrete valuation rings

Ã:
L � pÃ:qH �W :ppC5

pq
HqL � pÃ:qN �W :ppC5

pq
N qL.

The corresponding extensions of their �eld of fractions

B̃:
L � E :� pÃ:qHr 1

πL
s � F :� pÃ:qN r 1

πL
s

satisfy FH{N � E and FHL{N � B̃:
L. Hence F {E and F {B̃:

L are Galois extensions of degree

rH : N s and rHL : N s, respectively. It follows that E{B̃:
L is a �nite extension of degree

rHL : Hs. The henselian condition then implies1 that pÃ:qH � W :ppC5
pq

HqL is free of rank

rHL : Hs over Ã:
L �W :pL̂58qL. The πL-adic completion p�qp of the two rings therefore can be

obtained by the tensor product with ÃL �W pL̂58qL. This gives the wanted

W pL̂58qL bÃ:
L
pÃ:qH �W :pL̂58q

p

L bÃ:
L
pÃ:qH �W :ppC5

pq
HqpL �W ppC5

pq
HqL.

Proposition 4.10. The sequences

0Ñ oL Ñ A
φq�1
ÝÝÝÑ AÑ 0,(5)

0Ñ oL Ñ Ã
φq�1
ÝÝÝÑ ÃÑ 0,(6)

0Ñ oL Ñ Ã: φq�1
ÝÝÝÑ Ã: Ñ 0.(7)

are exact.

Proof. The �rst sequence is [SV15, (26), Rem. 5.1]. For the second sequence one proves by
induction the statement for �nite length Witt vectors using that the Artin-Schreier equation
has a solution in C5

p. Taking projective limits then gives the claim. For the third sequence only
the surjectivity has to be shown. This can be achieved by the same calculation as in the proof
of [KLII, Lem. 4.5.3] with R � C5

p.
2

1See Neukirch, Algebraische Zahlentheorie, proof of Satz II.6.8
2For the other see [KLII, Lem. 4.5.3] : There the exactness of corresponding sequences for sheaves on the

proétale site SpapL, oLqproét is shown, which in turn implies exactness for the corresponding sequences of stalks
at the geometric point SpapCp, oCpq. Note that taking stalks at this point is the same as taking sections over
it.
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Lemma 4.11. For any �nite T in RepoLpGLq the map Ã boL T
φqbid�1
ÝÝÝÝÝÝÑ Ã boL T has a

continuous set theoretical section.

Proof. Since T �
Àr

i�1 oL{π
ni
L oL for some natural numbers r, ni we may assume that T �

oL{π
n
LoL for some n and then we have to show that the surjective map WnpC5

pqL
φq�id
ÝÝÝÝÑ

WnpC5
pqL has a continuous set theoretical section. Thus me may neglect the additive structure

and identify source and target with X � pC5
pq

n. In order to determine the components of the
map φq � id �: f � pf0, . . . , fn�1q : X Ñ X with respect to these coordinates we recall that
the addition in Witt rings is given by polynomials

SjpX0, . . . Xj , Y0, . . . , Yjq � Xj � Yj � terms in X0, . . . , Xj�1, Y0, . . . , Yj�1

while the additive inverse is given by

IjpX0, . . . Xjq � �Xj � terms in X0, . . . , Xj�1.

Indeed, the polynomials Ij are de�ned by the property that ΦjpI0, . . . , Ijq � �ΦjpX0, . . . , Xjq

where the Witt polynomials have the form ΦjpX0, . . . , Xjq � Xqj

0 � πLX
qj�1

1 � . . . � πjLXj .

Modulo pX0, . . . , Xj�1q we derive that πjLIjpX0, . . . , Xjq � �πjLXj and the claim follows.
Since φq acts componentwise rising the entries to their qth power, we conclude that

fj � SjpX
q
0 , . . . X

q
j , I0pX0q, . . . , IjpX0, . . . Xjqq.

Hence the Jacobi matrix of f at a point x P X looks like

Dxpfq �

����1 0
. . .

� �1

��,
i.e., is invertible in every point. As a polynomial map f is locally analytic. It therefore follows
from the inverse function theorem [pLG, Prop. 6.4] that f restricts to a homeomorphism
f |U0 : U0

�
ÝÑ U1 of open neighbourhoods of x and fpxq, respectively. By the surjectivity of

f every x P X has an open neighbourhood Ux and a continuous map sx : Ux Ñ X with
f � sx � id|Ux

. But X is strictly paracompact by Remark 8.6 (i) in (loc. cit.), i.e., the covering
pUxqx has a disjoint re�nement. There the restrictions of the sx glue to a continuous section
of f.

Corollary 4.12. For T in RepoLpGLq, the nth cohomology groups of the complexes concen-
trated in degrees 0 and 1

0 // D̃pT q
φ�1 // D̃pT q // 0 and(8)

0 // DpT q
φ�1 // DpT q // 0(9)

are isomorphic to HnpHL, T q for any n ¥ 0.

Proof. Assume �rst that T is �nite. For (9) see [SV15, Lemma 5.2]. For (8) we use Lemma
4.11, which says that the right hand map in the exact sequence

0 // T // ÃboL T
φqbid�1// ÃboL T

// 0
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has a continuous set theoretical section and thus gives rise to the long exact sequence of
continuous cohomology groups

(10) 0Ñ H0pHL, T q Ñ D̃pT q
φ�1
ÝÝÑ D̃pT q Ñ H1pHL, T q Ñ H1pHL, ÃboL T q Ñ . . .

Using the comparison isomorphism (3) and the subsequent Prop. 4.13 we see that all terms
from the �fth on vanish.

For the general case (for D̃pT q as well asDpT q) we take inverse limits in the exact sequences
for the pT {πmL T q and observe that HnpHL, T q � limÐÝm

HnpHL, T {π
m
L T q. This follows for n � 2

from [NSW, Cor. 2.7.6]. For n � 2 we use [NSW, Thm. 2.7.5] and have to show that the
projective system pH1pHL, T {π

m
L T qqm is Mittag-Le�er. Since it is a quotient of the projective

system pDpT {πmL T qqm, it su�ces for this to check that the latter system is Mittag-Le�er. But
due to the exactness of the functor D this latter system is equal to the projective system of
artinianAL-modules pDpT q{πmLDpT qqm and hence is Mittag-Le�er. We conclude by observing
that taking inverse limits of the system of sequences (10) remains exact. The reasoning being
the same for D̃pT q and DpT q we consider only the former. Indeed, we split the 4-term exact
sequences into two short exact sequences of projective systems

0Ñ H0pHL, V {π
m
L T q Ñ D̃pT {πmL T q Ñ pφ� 1qD̃pT {πmL T q Ñ 0

and
0Ñ pφ� 1qD̃pT {πmL T q Ñ D̃pT {πmL T q Ñ H1pHL, T {π

m
L T q Ñ 0.

Passing to the projective limits remains exact provided the left most projective systems have
vanishing limÐÝ

1. For the system H0pHL, T {π
m
L T q this is the case since it is Mittag-Le�er. The

system pφ � 1qD̃pT {πmL T q even has surjective transition maps since the system D̃pT {πmL T q
has this property by the exactness of the functor D̃ (cf. Prop. 4.6).

Proposition 4.13. HnpH, Ã{πmL Ãq � 0 for all n,m ¥ 1 and H � HL any closed subgroup.

Proof. For j   i the canonical projectionWipC5
pq � Ã{πiLÃ ↠ Ã{πjLÃ �WjpC5

pq corresponds

to the projection pC5
pq

i ↠ pC5
pq

j and hence have set theoretical continuous sections. Using the
associated long exact cohomology sequence (after adding the kernel) allows to reduce the
statement to Prop. 3.1.

For any commutative ring R with endomorphism φ we write ΦpRq for the category of
φ-modules consisting of R-modules equipped with a semi-linear φ-action. We write ΦétpRq
for the subcategory of étale φ-modules, i.e., such that M is �nitely generated over R and φ
induces an R-linear isomorphism φ�M

�
ÝÑ M . Finally, we denote by Φét

f pRq the subcategory
consisting of �nitely generated free R-modules.

For M1,M2 P ΦpRq with M1 being étale the R-module HomRpM1,M2q has a natural
structure as a φ-module satisfying

(11) φHomRpM1,M2qpαqpφM1pmqq � φM2pαpmqq ,

hence in particular

(12) HomRpM1,M2q
φ�id � HomΦpRqpM1,M2q.

Note that with M1,M2 also HomRpM1,M2q is étale.
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Remark 4.14. We recall from [KLI, �1.5] that the cohomology groups H i
φpMq of the complex

M
φ�1
ÝÝÑ M can be identi�ed with the Yoneda extension groups ExtiΦpRqpR,Mq. Indeed, if

S :� RrX;φs denotes the twisted polynomial ring satisfying Xr � φprqX for all r P R, then
we can identify ΦpRq with the category S-Mod of (left) S-modules by letting X act via φM on
X. Using the free resolution

0 // S
�pX�1q // S // R // 0

the result follows.

Remark 4.15. Note that Ã:
L � ÃL is a faithfully �at ring extension as both rings are discrete

valuation rings and the bigger one is the completion of the previous one.

Proposition 4.16. Base extension induces

(i) an equivalence of categories
Φét
f pÃ

:
Lq Ø Φét

f pÃLq

(ii) and an isomorphism of Yoneda extension groups

Ext1
ΦpÃ:

Lq
pÃ:

L,Mq � Ext1
ΦpÃLq

pÃL, ÃL bÃ:
L
Mq

for all M P Φét
f pÃ

:
Lq.

Proof. For the �rst item we imitate the proof of [KLI, Thm. 8.5.3], see also [Ked15, Lem.
2.4.2,Thm. 2.4.5]: First we will show that for everyM P Φét

f pÃ
:
Lq it holds that pÃLbMqφ�id �

Mφ�id and hence equality. Applied toM :� Hom
Ã:

L
pM1,M2q this implies that the base change

is fully faithful by the equation (12). We observe that the analogue of [KLI, Lem. 3.2.6] holds
in our setting and that S in loc. cit. can be chosen to be a �nite separable �eld extension
of the perfect �eld R � L̂58. Thus we may choose S in the analogue of [KLI, Prop. 7.3.6]
(with a � 1, c � 0 and M0 being our M) as completion of a (possibly in�nite) separable �eld
extension of R. This means in our situation that there exists a closed subgroup H � HL such
that pÃ:qH b

Ã:
L
M �

À
pÃ:qHei for a basis ei invariant under φ. Now let v �

°
xiei be an

arbitrary element in

ÃL bÃ:
L
M � ÃH b

Ã:
L
M � ÃH bpÃ:qH pÃ:qH b

Ã:
L
M �

à
ÃHei

with xi P ÃH and such that φpvq � v. The latter condition implies that xi P ÃH,φq�id � oL,
i.e., v belongs to pM b

Ã:
L
pÃ:qHq X pM b

Ã:
L
ÃLq � M , because M is free and one has

ÃL X pÃ:qH � pÃ:qHL � Ã:
L. To show essential surjectivity one proceeds literally as in the

proof of [KLI, Thm. 8.5.3] adapted to rami�ed Witt vectors.
For the second statement choose a quasi-inverse functor F : Φét

f pÃLq Ñ Φét
f pÃ

:
Lq with

F pÃLq � Ã:
L. Given an extension 0 //M // E // ÃL

// 0 over ΦpÃLq withM P

Φét
f pÃLq �rst observe that E P Φét

f pÃLq, too. Indeed, ÃL
φq
ÝÑ ÃL is a �at ring extension,

whence φ�E Ñ E is an isomorphism, if the corresponding outer maps are. The analogous

statement holds over Ã:
L. Therefore the sequence 0 // F pMq // F pEq // Ã:

L
// 0

is exact by Remark 4.15, because its base extension - being isomorphic to the original extension
- is, by assumption.
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We denote by Mét
f pÃ

:
Lq and Mét

f pÃLq the full subcategories of MétpÃ:
Lq and MétpÃLq,

respectively, consisting of �nitely generated free modules over the base ring.

Remark 4.17. Let M be in Mét
f pÃLq and endow N :� ÃLbÃ:

L
M with the canonical topology

with respect to the weak topology of ÃL. Then the induced subspace topology of M � N
coincides with the canonical topology with respect to the weak topology of Ã:

L. Indeed for free
modules this is obvious while for torsion modules this can be reduced by the elementary divisor
theory to the caseM � Ã:

L{π
n
LÃ

:
L � ÃL{π

n
LÃL. But the latter spaces are direct product factors

of Ã:
L and ÃL, respectively, as topological spaces, from wich the claim easily follows.

Proposition 4.18. For T P RepoLpGLq and V P RepLpGLq we have natural isomorphisms

ÃL bÃ:
L
D̃:pT q � D̃pT q and(13)

B̃L bB̃:
L
D̃:pV q � D̃pV q,(14)

as well as

Ã: b
Ã:

L
D̃:pT q � Ã: boL T and(15)

B̃: b
B̃:

L
D̃:pV q � B̃: bL V,(16)

respectively. In particular, the functor D̃:p�q : RepoLpGLq ÑMétpÃ:
Lq is exact.

Moreover, base extension induces equivalences of categories

Mét
f pÃ

:
Lq ØMét

f pÃLq,

and hence also an equivalence of categories

MétpB̃:
Lq ØMétpB̃Lq.

Proof. Note that the base change functor is well-de�ned - regarding the continuity of the ΓL-
action - by Lemma 4.5 and Remark 4.15 while D̃: is well-de�ned by Remark 4.17, once (13)
will have been shown. We �rst show the equivalence of categories for free modules: By Prop.
4.16 we already have, for M1,M2 PMét

f pÃ
:
Lq, an isomorphism

Hom
ΦpÃ:

Lq
pM1,M2q � HomΦpÃLq

pÃL bÃ:
L
M1, ÃL bÃ:

L
M2q.

Taking ΓL-invariants gives that the base change functor in question is fully faithful.
In order to show that this base change functor is also essentially surjective, consider an

arbitrary N P Mét
f pÃLq. Again by 4.16 we know that there is a free étale φ-module M over

Ã:
L whose base change is isomorphic to N . By the fully faithfulness the ΓL-action descends to

M3. Since the weak topology of M is compatible with that of N by Remark 4.17, this action
is again continuous.

3As γ P ΓL acts semilinearly, one formally has to replace N
γ
ÝÑ N by the linearized isomorphism ÃL bγ,ÃL

N
γlin

ÝÝÝÑ N . Upon checking that the source is again a étale φ-module with model Ã:
L bγ,Ã

:
L
M one sees by the

fully faithfulness on φ-modules that the linearized isomorphism descends and induces the desired semi-linear
action.

15



To prepare for the proof of the isomorphism (13) we �rst observe the following fact. The
isomorphism (3) implies that T and D̃pT q have the same elementary divisors, i.e.: If T �
`r

i�1oL{π
ni
L oL as oL-module (with ni P NYt8u) then D̃pT q � `r

i�1ÃL{π
ni
L ÃL as ÃL-module.

We shall prove (13) in several steps: First assume that T is �nite. Then T is annihilated
by some πnL. We have D̃:pT q � D̃pT q and Ã:

L{π
n
LÃ

:
L � ÃL{π

n
LÃL so that there is nothing to

prove. Secondly we suppose that T is free and that D̃:pT q is free over Ã:
L of the same rank

r :� rkoL T . On the other hand, as the functor D̃: is always left exact, we obtain the injective
maps

D̃:pT q{πnLD̃
:pT q Ñ D̃:pT {πnLT q � D̃pT {πnLT q.

for any n ¥ 1. We observe that both sides are isomorphic to pÃ:
L{π

n
LÃ

:
Lq

r � pÃL{π
n
LÃLq

r.
Hence the above injective maps are bijections. We deduce that

ÃL bA:
L
D̃:pT q � limÐÝ

n

D̃:pT q{πnLD̃
:pT q

� limÐÝ
n

D̃pT {πnLT q

� limÐÝ
n

D̃pT q{πnLD̃pT q

� D̃pT q

using that the above tensor product means πL-adic completion for �nitely generated Ã:
L-

modules.
Thirdly let T P RepoL,f pGLq be arbitrary and M P Mét

f pÃ
:
Lq such that ÃL bÃ:

L
M �

D̃pT q according the equivalence of categories. Without loss of generality we may treat this
isomorphism as an equality. Similarly as in the proof of Prop. 4.16 and with the same notation
one shows that pÃ:b

Ã:
L
Mqφ�1 �

Àr
i�1 oLei for some appropriate φ-invariant basis e1, . . . , er

of Ã: b
Ã:

L
M . Note that r � rkoL T . Using (3), it follows that

T � pÃboL T q
φ�1 � pÃbÃL

D̃pT qqφ�1 � pÃb
Ã:

L
Mqφ�1

�
rà

i�1

Ãφq�1ei �
rà

i�1

oLei � pÃ: b
Ã:

L
Mqφ�1.

It shows that the comparison isomorphism (3) restricts to an injective map T ãÑ Ã: b
Ã:

L
M ,

which extends to a homomorphism Ã: boL T
α
ÝÑ Ã: b

Ã:
L
M of free Ã:-modules of the same

rank r. Further base extension by Ã gives back the isomorphism (3). Since Ã is faithfully �at
over Ã: the map α was an isomorphism already. By passing to HL-invariants we obtain an
isomorphism D̃:pT q �M and see that D̃:pT q is free of the same rank as T . Hence the second
case applies and gives (13) for free T and (14). Finally, let T be just �nitely generated over oL.
Write 0Ñ Tfin Ñ T Ñ Tfree Ñ 0 with �nite Tfin and free Tfree.We then have the commutative
exact diagram

0 // ÃL bÃ:

L
D̃:pTfinq

�

��

// ÃL bÃ:

L
D̃:pT q

��

// ÃL bÃ:

L
D̃:pTfreeq

�

��

// ÃL bÃ:

L
H1pHL, Ã

: boL Tfinq

0 // D̃pTfinq // D̃pT q // D̃pTfreeq // 0,
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in which we use the �rst and third step for the vertical isomorphisms. In order to show that the
middle perpendicular arrow is an isomorphism it su�ces to prove thatH1pHL, Ã

:boLTfinq � 0.
But since Tfin is annihilated by some πnL we have

Ã: boL Tfin � Ã{πnLÃboL Tfin � Ã{πnLÃbÃL
D̃pTfinq,

the last isomorphism by (3). Thus it su�ces to prove the vanishing of H1pHL, Ã{π
n
LÃq, which

is established in Prop. 4.13 and �nishes the proof of the isomorphism (13).
Note that this base change isomorphism implies the exactness of D̃: as D̃ is exact by Prop.

4.6 and using that the base extension is faithfully �at by Remark 4.15.
For free T the statement (15) (and hence (16)) is already implicit in the above arguments

while for �nite T the statement coincides with (3). The general case follows from the previous
ones by exactness of D̃: and the �ve lemma as above.

Corollary 4.19. For a T in RepoL,f pGLq and V in RepLpGLq, the nth cohomology group, for
any n ¥ 0, of the complexes concentrated in degrees 0 and 1

0 // D̃:pT q
φ�1 // D̃:pT q // 0 and(17)

0 // D̃:pV q
φ�1 // D̃:pV q // 0 and(18)

is isomorphic to HnpHL, T q and H
npHL, V q, respectively.

Proof. The integral result reduces, by (13), Remark 4.14, and Prop. 4.16, to Corollary 4.12.
Since inverting πL is exact and commutes with taking cohomology [NSW, Prop. 2.7.11], the
second statement follows.

Set A: :� Ã:XA and B: :� A:r 1
πL
s as well as A:

L :� pA:qHL . Note that B:
L :� pB:qHL �

B: � B̃:. For V P RepLpGLq we de�ne D:pV q :� pB: bL V q
HL . The categories MétpA:

Lq and

MétpB:
Lq are de�ned analogously as in De�nition 4.4.

We now introduce the Robba ring R � RK � RKpBq of the open unit disk B{K , where
L � K � Cp denotes a complete intermediate �eld. The ring of K-valued global holomorphic
functions OKpBq

4 on B is the Fréchet algebra of all power series in the variable Z with
coe�cients in K which converge on the open unit disk BpCpq. The Fréchet topology on OKpBq
is given by the family of norms

|
¸
i¥0

ciZ
i|r :� max

i
|ci|r

i for 0   r   1 .

In the commutative integral domain OKpBq we have the multiplicative subset ZN � tZj : j P
Nu, so that we may form the corresponding localization OKpBqZN . Each norm | |r extends to
this localization OKpBqZN by setting |

°
i"�8 ciZ

i|r :� maxi |ci|r
i.

The Robba ring R � OKpBq is constructed as follows. For any s ¡ 0, resp. any 0   r ¤ s,
in pQ let Br0,ss, resp. Brr,ss, denote the a�noid disk around 0 of radius s, resp. the a�noid
annulus of inner radius r and outer radius s, over K. For I � r0, ss or rr, ss we denote by

RI :� RI
KpBq :� OKpBIq

4In the notation from [Co2, �1.2] this is the ring R�.
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the a�noid K-algebra of BI . The Fréchet algebra Rrr,1q :� limÐÝr s 1
Rrr,ss is the algebra of

(in�nite) Laurent series in the variable Z with coe�cients inK which converge on the half-open
annulus Brr,1q :�

�
r s 1Brr,ss. The Banach algebra Rr0,ss is the completion of OKpBq with

respect to the norm | |s. The Banach algebra Rrr,ss is the completion of OKpBqZN with respect
to the norm | |r,s :� maxp| |r, | |sq. It follows that the Fréchet algebra Rrr,1q is the completion
of OKpBqZN in the locally convex topology de�ned by the family of norms p| |r,sqr s 1. Finally,
the Robba ring is R �

�
0 r 1Rrr,1q.

Remark 4.20. There is also the following more concrete description for A:
L in terms of

Laurent series in ωLT :

A:
L � tF pωLT q P AL|F pZq converges on ρ ¤ |Z|   1 for some ρ P p0, 1qu � AL.

Indeed this follows from the analogue of [ChCo1, Lem. II.2.2] upon noting that the latter holds
with and without the integrality condition: �rvppanq � n ¥ 0 for all n P Z� (for r P RzR) in

the notation of that article. In particular we obtain canonical embeddings A:
L � B:

L ãÑ RL

of rings.

De�nition 4.21. V in RepLpGLq is called overconvergent, if dim
B:

L
D:pV q � dimL V. We

denote by Rep:LpGLq � RepLpGLq the full subcategory of overconvergent representations.

Remark 4.22. We always have dim
B:

L
D:pV q ¤ dimL V . If V P RepLpGLq is overconvergent

then we have the natural isomorphism

(19) BL bB:
L
D:pV q

�
ÝÑ DpV q.

Proof. Since BL and B:
L are �elds this is immediate from [FO, Thm. 2.13].

Remark 4.23. In [Be16, �10] Berger uses the following condition to de�ne overconvergence
of V : There exists a BL-basis x1, . . . , xn of DpV q such that M :�

Àn
i�1B

:
Lxi is a pφL,ΓLq-

module over B:
L. This then implies a natural isomorphism

(20) BL bB:
L
M � DpV q.

Lemma 4.24. V in RepLpGLq is overconvergent if and only if V satis�es the above condition
of Berger. In this case M � D:pV q.

Proof. If V is overconvergent, we can take a basis within M :� D:pV q. Conversely let V
satisfy Berger's condition, i.e. we have the isomorphism (20). One easily checks by faithfully
�at descent that with DpV q also M is étale. By [FX, Prop. 1.5 (a)]5 we obtain the identity

V �
�
B: b

B:
L
M
	φ�1

induced from the comparison isomorphism

(21) BbL V � BbBL
DpV q � Bb

B:
L
M.

We shall prove that M � D:pV q � pB: bL V q
HL as then M � D:pV q by dimension reasons.

To this aim we may write a basis v1, . . . , vn of V over L as vi �
°
cijxj with cij P B:. Then

(21) implies that the matrix C � pcijq belongs to MnpB
:q XGLnpBq � GLnpB

:q. Thus M is
contained in B: bL V and - as subspace of DpV q - also HL-invariant, whence the claim.

5Note that there D̄ actually belongs to the category of pφ,GF q-modules over B̃Qp b F instead of over B̃Qp

in their notation.
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Remark 4.25. Note that the imperfect version of Prop. 4.18 is not true: the base change
MétpB:

Lq Ñ MétpBLq is not essentially surjective in general, whence not an equivalence of
categories, by [FX]. By de�nition, its essential image consists of overconvergent pφL,ΓLq-
modules, i.e., whose corresponding Galois representations are overconvergent.

Lemma 4.26. Assume that V P RepLpGLq is overconvergent. Then there is natural isomor-
phism

B̃:
L bB̃:

L
D:pV q � D̃:pV q.

Proof. By construction we have a natural map B̃:
L bB̃:

L
D:pV q Ñ D̃:pV q, whose base change

to B̃L

B̃L bB̃:
L
D:pV q Ñ B̃L bB̃:

L
D̃:pV q � D̃pV q

arises also as the base change of the isomorphism (19), whence is an isomorphism itself. Here
we have used the (base change of the) isomorphisms (14), (2). By faithfully �atness the original
map is an isomorphism, too.

5 The perfect Robba ring

Again let K be any perfectoid �eld containing L and r ¡ 0. For 0   s ¤ r, let R̃rs,rspKq be
the completion of W rpK5qLr

1
πL
s with respect to the norm maxt| |s, | |ru, and put

R̃rpKq � limÐÝ
sPp0,rs

R̃rs,rspKq

equipped with the Fréchet topology. Let R̃pKq � limÝÑr¡0
R̃rpKq, equipped with the locally

convex direct limit topology (LF topology). We set R̃ � R̃pCpq and R̃L :� R̃pL̂8q. For
geometric interpretation of these de�nitions, see [Ede]. As in [KLI, Thm. 9.2.15] we have

R̃HL � R̃L.

Recall from section 2 the embedding oLrrZss Ñ W pẼqL. As we will explain in section 8 the
image ωLT of the variable Z already lies in W pL̂58qL, so that we actually have an embedding
oLrrZss Ñ W pL̂58qL. Similarly as in [KLI, Def. 4.3.1] for the cyclotomic situation one shows
that the latter embedding extends to a ΓL- and φL-equivariant topological monomorphism
RL Ñ R̃L, see also [W, Konstruktion 1.3.27] in the Lubin-Tate setting.

Let R be either RL or R̃L. A pφL,ΓLq-module over R is a �nitely generated free R-
module M equipped with commuting semilinear actions of φM and ΓL, such that the action
is continuous for the LF topology and such that the semi-linear map φM : M Ñ M induces
an isomorphism φlin

M : R bR,φR
M

�
ÝÑ M. Such M is called étale, if there exists an étale

pφL,ΓLq-module N over A:
L and Ã:

L (see before De�nition 4.4), such that RL bA:
L
N � M

and R̃L bÃ:
L
N �M, respectively.

By MpRq and MétpRq we denote the category of pφL,ΓLq-modules and étale pφL,ΓLq-
modules over R, respectively.

We call the topologies on Ã:
L and Ã:, which make the inclusions Ã:

L � Ã: � R̃ topological
embeddings, the LF-topologies.
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Lemma 5.1. For M PMét
f pÃ

:
Lq the ΓL-action is also continuous with respect to the canonical

topology with respect to the LF-topology of Ã:
L.

Proof. The proof in fact works in the following generality: Suppose that Ã: is equipped with
an oL-linear ring topology which induces the πL-adic topology on oL. Consider on Ã:

L the
corresponding induced topology. We claim that then the ΓL-action on M is continuous with
respect to the corresponding canonical topology. By Prop. 6.1 we may choose T P RepoL,f pGLq

such thatM � D̃:pT q. Then we have a homeomorphism Ã:boLT � Ã:b
Ã:

L
M with respect to

the canonical topology by (15) (as any R-module homomorphism of �nitely generated modules
is continuous with respect to the canonical topology with regard to any topological ring R).
Since oL � Ã: is a topological embedding with respect to the πL-adic and the given topology,
respectively, Lemma 4.5 implies that GL is acting continuously on Ã:b

Ã:
L
M , whence ΓL acts

continuously onM �
�
Ã: b

Ã:
L
M
	HL

with respect to the induced topology as subspace of the

previous module. Since all involved modules are free and hence carry the product topologies
and since Ã:

L � Ã: is a topological embedding, it is clear that the latter topology of M
coincides with its canonical topology.

We de�ne the functor

D̃:
rigp�q : RepLpGLq ÝÑMpR̃Lq

V ÞÝÑ pR̃bL V q
HL ,

where the fact, that ΓL acts continuously on the image with respect to the LF-topology can
be seen as follows, once we have shown the next lemma. Indeed, (22) implies that for any
GL-stable oL-lattice T of V we also have an isomorphism R̃LbÃ:

L
D̃:pT q

�
ÝÑ D̃:

rig. Now again

Lemma 4.5 applies to conclude the claim.

Lemma 5.2. The canonical map

(22) R̃L bB̃:
L
D̃:pV q

�
ÝÑ D̃:

rigpV q

is an isomorphism and the functor D̃:
rigp�q : RepLpGLq Ñ MpR̃Lq is exact. Moreover, we

have a comparison isomorphism

(23) R̃bR̃L
D̃:

rigpV q
�
ÝÑ R̃boL V.

Proof. The comparison isomorphism in the proof of (an analogue of) [KP, Thm. 2.13] implies
the comparison isomorphism

R̃bR̃L
D̃:

rigpV q � R̃boL V

together with the identity V � pR̃ bR̃L
D̃:

rigpV qq
φL�1. On the other hand the comparison

isomorphism (16) induces by base change an isomorphism

R̃b
B̃:

L
D̃:pV q

�
ÝÑ R̃boL V.

Taking HL-invariants gives the �rst claim. The exactness of the functor D̃:
rigp�q follows from

the exactness of the functor D̃:p�q by Prop. 4.6.
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Let R be BL, B
:
L, RL, B̃L, B̃

:
L, R̃L and let correspondingly Rint be AL, A

:
L, A

:
L, ÃL,

Ã:
L, Ã

:
L. We denote by ΦpRqét the essential image of the base change functor R bRint � :

Φét,f pRintq Ñ Φét,f pRq (sic!).

Proposition 5.3. Base change induces an equivalence of categories

ΦpB̃:
Lq

ét Ø ΦpR̃Lq
ét

and an isomorphism of Yoneda extension groups

Ext1
ΦpB̃:

Lq
pB̃:

L,Mq � Ext1
ΦpR̃Lq

pR̃L, R̃L bB̃:
L
Mq

for all M P ΦpB̃:
Lq

ét.

Proof. The �rst claim is an analogue of [KLI, Thm. 8.5.6]. The second claim follows as in the
proof of Prop. (4.16) using the fact that by Lemma 8.6.3 in loc. cit. any extension of étale
φ-modules over R̃L is again étale. Note that R̃L{B̃

:
L is a faithfully �at ring extension, B̃:

L

being a �eld.

Corollary 5.4. If V belongs to RepLpGLq, the following complex concentrated in degrees 0
and 1 is acyclic

0 // D̃:
rigpV q{D̃

:pV q
φ�1 // D̃:

rigpV q{D̃
:pV q // 0.(24)

In particular, we have that the nth cohomology groups of the complex concentrated in degrees
0 and 1

0 // D̃:
rigpV q

φ�1 // D̃:
rigpV q

// 0

are isomorphic to HnpHL, V q for n ¥ 0.

Proof. Compare with [KLI, Thm. 8.6.4] and its proof (Note that the authors meant to cite
Thm. 8.5.12 (taking c=0, d=1) instead of Thm. 6.2.9 - a reference which just does not exist
within that book). Using the interpretation of the H i

φ as Hom- and Ext1-groups, respectively,
the assertion is immediate from Prop. 5.3. The last statement now follows from Corollary
4.19.

Proposition 5.5. Base extension gives rise to an equivalence of categories

MétpB:
Lq ØMétpRLq.

Proof. [FX, Prop. 1.6].

Lemma 5.6. (i) B:
L � RL are Bézout domains and the strong hypothesis in the sense

of [Ked08, Hypothesis 1.4.1] holds, i.e., for any n � n matrix A over A:
L the map

pRL{B
:
Lq

n 1�AφLÝÝÝÝÑ pRL{B
:
Lq

n is bijective.

Proof. [Ked08, Prop. 1.2.6].
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Proposition 5.7. If V belongs to Rep:LpGLq, the following complex concentrated in degrees 0
and 1 is acyclic

0 // D:
rigpV q{D

:pV q
φ�1 // D:

rigpV q{D
:pV q // 0,(25)

where D:
rigpV q :� RL bB:

L
D:pV q. In particular, the complexes

0 // D:
rigpV q

φ�1 // D:
rigpV q

// 0 and 0 // D:pV q
φ�1 // D:pV q // 0

(concentrated in degrees 0 and 1) have the same cohomology groups of for n ¥ 0.

Proof. This follows from the strong hypothesis in Lemma 5.6 as the Frobenius endomorphism
on M PMétpB:

Lq is of the form AφL by de�nition.

Lemma 5.8. Base change induces fully faithful embeddings ΦpA:
Lq

ét � ΦpALq
ét and ΦpB:

Lq
ét �

ΦpBLq
ét.

Proof. As in the proof of Prop. 4.16 this reduces to checking that
�
AL bA:

L
M
	φ�id

� M.

By that proposition we know that�
AL bA:

L
M
	φ�id

�
�
ÃL bA:

L
M
	φ�id

� Ã:
L bA:

L
M.

Since AL X Ã:
L � A:

L within ÃL by de�nition, the claim follows for the integral version,
whence also for the other one by tensoring the integral embedding with L over oL.

Remark 5.9. Note that H0
: pHL, V q � H0pHL, V q and H1

: pHL, V q � H1pHL, V q. For the
latter relation use the previous lemma, which implies that an extension which splits after base
change already splits itself, together with Corollary 4.12 and Remark 4.14. In general the
inclusion for H1 is strict as follows indirectly from [FX]. Indeed, otherwise the complex

0 // DpV q{D:pV q
φ�1 // DpV q{D:pV q // 0,(26)

would be always acyclic, which would imply by the same observation as in Prop. 7.2 below
together with [SV23, Thm. 5.2.10(ii)] that H1

: pGL, V q � H1pGL, V q in contrast to Remark
5.2.13 in (loc. cit.).

6 The web of eqivalences

We summarize the various equivalences of categories, for which we only sketch proofs or
indicate analogue results whose proofs can be transferred to our setting.

Proposition 6.1. The following categories are equivalent:

(i) RepoLpGLq,

(ii) MétpALq,

(iii) MétpÃLq and
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(iv) MétpÃ:
Lq.

The equivalences from piiq and pivq to piiiq are induced by base change.

Proof. This can be proved in the same way as in [Ked15, Thm. 2.3.5], although it seems to be
only a sketch. Another way is to check that the very detailed proof for the equivalence between
(i) and (ii) in [GAL] almost literally carries over to a proof for the equivalence between (i)
and (iii). Alternatively, this is a consequence of Prop. 8.2 by [KLII, Thm. 5.4.6]. See also [Kl].
For the equivalence between (iii) and (iv) consider the 2-commutative diagram

MétpÃ:
Lq

faithfully �at base change //MétpÃLq

xx
RepoLpGLq

88ff

,

which is induced by the isomorphism (13) and immediately implies (essential) surjectivity on
objects and morphisms while the faithfulness follows from faithfully �at base change.

Corollary 6.2. The following categories are equivalent:

(i) RepLpGLq,

(ii) MétpBLq,

(iii) MétpB̃Lq and

(iv) MétpB̃:
Lq.

The equivalences from piiq and pivq to piiiq are induced by base change.

Proof. This follows from Propositions 4.18 and 6.1 by inverting πL.

Proposition 6.3. The categories in Corollary 6.2 are - via base change from (iv) - also
equivalent to

(v) MétpR̃Lq.

Proof. By de�nition base change is essentially surjective and it is well-de�ned - regarding
the continuity of the ΓL-action - by Lemma 5.1 and Lemma 4.5. Since for étale φL-modules
we know fully faithfulness already, taking ΓL-invariants gives fully faithfulness for pφL,ΓLq-
modules, too. 6

6Regarding φL-modules cf. [KLI, the equivalence between (e) and (f) of Thm. 8.5.6], see also Thm. 8.5.3 in
(loc. cit.), the equivalence (d) to (e).

23



Altogether we may visualize the relations between the various categories by the following
diagram:

Rep:LpGLq RepLpGLqRepanL pGLq

MétpRLq MétpB:
Lq MétpBLq

MétpR̃Lq MétpB̃:
Lq MétpB̃Lq

// //
�	

D
V

AI

FN

Ṽ
D̃

���	

D:

V :

AI

��

D:
rig

V :
rig

U]

PX

Ṽ :
D̃:

��

Zb

Ṽ :
rig

D̃:
rig

�"

ks +3
OO OO

ks //

KS

Here all arrows represent functors which are fully faithful, i.e., embeddings of categories.
Arrows without label denote base change functors. Under them the functorsD, D̃,D:, D̃:, D:

rig,

and D̃:
rig are compatible. The arrows �¡ represent equivalences of categories, while the arrows

�¡ represent embeddings which are not essentially surjective in general. We recall that the
quasi-inverse functors are given as follows

V pMq �pBbBL
Mqφ�1, Ṽ pMq � pB̃bB̃L

Mqφ�1, V :pMq � pB: b
B:

L
Mqφ�1,

Ṽ :pMq �pB̃: b
B̃:

L
Mqφ�1, Ṽ :

rigpMq � pR̃bR̃L
Mqφ�1 and V :

rigpMq � pR̃bRL
Mqφ�1.

7 8 9

7 Cohomology: Herr complexes

The aim of this section is to compare the Herr complexes of the various pφL,ΓLq-modules
attached to a given Galois representation.

We �x some open subgroup U � ΓL and let L1 � LU
8.

Let M0 be a complete linearly topologised oL-module with continuous U -action and with
continuous U -equivariant endomorphism f . We de�ne

T :� Tf,U pM0q :� cone

�
CpU,M0q

pfq��1
ÝÝÝÝÑ CpU,M0q



r�1s

7By [FX, Prop. 1.5 (a)] the third formula holds while by (c) there is an equivalence of categories.
8For the fourth formula compare with the proof of Propositon 4.16 omitting the index L in Ã:

L, etc. to
conclude that pB̃b

B
:
L
Mqφ�1 � pB̃: b

B
:
L
Mqφ�1.

9Since V :pM0q � V :
rigpMq � Ṽ :

rigpR̃LbRL Mq for some model M0 over B
:
L of M we obtain the last formula.
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the mapping �bre of CpU, f � 1q. The importance of this generalized Herr-complex is given
by the fact that it computes Galois cohomology when applied to M0 � DpV q and f � φDpV q :

Theorem 7.1. Let V be in RepLpGLq For DpV q the corresponding pφL,ΓLq-module over BL

we have canonical isomorphisms

(27) h� � h�U,V : H�pL1, V q
�
ÝÝÑ h�pTφ,U pDpV qqq

which are functorial in V and compatible with restriction and corestriction.

Proof. To this aim let T be a GL-stable lattice of V . In [Ku, Thm. 5.1.11.], [KV, Thm. 5.1.11.]
it is shown that the cohomology groups of Tφ,U pDpT qq are canonically isomorphic to H ipL1, T q
for all i ¥ 0, whence the cohomology groups of Tφ,U pDpT qqr 1

πL
s are canonically isomorphic to

H ipL1, V q for all i ¥ 0.

Note that we obtain a decomposition U � ∆ � U 1 with a subgroup U 1 � Zd
p of U and

∆ the torsion subgroup of U . We now �x topological generators γ1, . . . γd of U 1 and we set
Λ :� ΛpU 1q. By [Laz, Thm. II.2.2.6] the U 1-actions extends to continuous Λ-action and one has

HomΛ,ctspΛ,M0q � HomΛpΛ,M0q. Consider the (homological) complexes Kpγiq :� rΛ
γi�1
ÝÝÝÑ

Λs concentrated in degrees 1 and 0 and de�ne the Koszul complexes

K :�K
U 1

 :� Kpγq :�
dâ
Λ

i�1

Kpγiq and

KpM0q :�K

U 1pM0q :� Hom

ΛpK,M0q � Hom
ΛpK,Λq bΛ M0 � KpΛq bΛ M0.

Following [CoNi, �4.2] and [SV23, (169)] we obtain a quasi-isomorphism

(28) K
U 1pM0q

�
ÝÑ CpU 1,M0q

inducing the quasi-isomorphism

(29) Kf,U 1pM0q
�
ÝÑ Tf,U 1pM0q,

where we denote by Kf,U 1pM0q :� cone
�
KpM0q

f�id
ÝÝÝÑ KpM0q

	
r�1s the mapping �bre of

Kpfq. More generally, by [SV23, Lem. A.0.1] we obtain a canonical quasi-isomorphism

(30) Kf,U 1pM
∆q

�
ÝÑ Tf,U pMq,

i.e., by Theorem 7.1 we also have canonical isomorphisms

(31) h� � h�U,V : H�pL1, V q
�
ÝÝÑ h�pKf,U 1pDpV q

∆qq.

The next proposition extends this result to D̃pV q, D̃:pV q and D̃:
rigpV q instead of DpV q.

Proposition 7.2. If V belongs to RepLpGLq, the canonical inclusions of Herr complexes

K
φ,U 1pD̃

:pV q∆q � K
φ,U 1pD̃

:
rigpV q

∆q,

K
φ,U 1pD̃

:pV q∆q � K
φ,U 1pD̃pV q

∆q and

K
φ,U 1pDpV q

∆q � K
φ,U 1pD̃pV q

∆q

are quasi-isomorphisms and their cohomology groups are canonically isomorphic to H ipL1, V q
for all i ¥ 0.

25



Proof. Forming Koszul complexes with regard to U 1 we obtain the following diagram of (dou-
ble) complexes with exact columns

0

��

0

��
KpDpV q∆q

��

φ�1 // KpDpV q∆q

��
KpD̃pV q∆q

��

φ�1 // KpD̃pV q∆q

��
KppD̃pV q{DpV qq∆q

��

φ�1

�
// KppD̃pV q{DpV qq∆q

��
0 0

in which the bottom line is an isomorphism of complexes by 4.12, as the action of ∆ commutes
with φ. Hence, going over to total complexes gives an exact sequence

0Ñ K
φ,U pDpV q

∆q Ñ K
φ,U pD̃pV q

∆q Ñ K
φ,U ppD̃pV q{DpV qq

∆q Ñ 0,

in which K
φ,U ppD̃pV q{DpV qq

∆q is acyclic. Thus we have shown the statement regarding the
last inclusion. The other two cases are dealt with similarly, now using (24) and 4.19 combined
with (8). It follows in particular that all six Koszul complexes in the statement are quasi-
isomorphic. Therefore the second part of the assertion follows from (31).

In accordance with diagram at the end of subsection 6 we may visualize the relations
between the various Herr complexes by the following diagram:

CpGL1 , V q

K
φ,U 1pD

:
rigpV q

∆q K
φ,U 1pD

:pV q∆q K
φ,U 1pDpV q

∆q

K
φ,U 1pD̃

:
rigpV q

∆q K
φ,U 1pD̃

:pV q∆q K
φ,U 1pD̃pV q

∆q

��

EE

ks +3
OO OO

ks //

KS
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Here all arrows represent injective maps of complexes, among which the arrows �¡ repre-
sent quasi-isomorphisms, while the arrows �¡ need not induce isomorphisms on cohomology,
in general. The interrupted arrow � �¡ means a map in the derived category while   � �¡
means a quasi-isomorphism in the derived category. By [SV23, Lem. A.0.1] we have a analogous
diagram for Tφ,U p?pV qq with ? P tD, D̃,D:, D̃:, D:

rig, D̃
:
rigu.

Remark 7.3. The image of

hipTφ,U pD:
rigpV qqq � hipK

φ,U 1pD
:
rigpV q

∆qq � hipK
φ,U 1pD

:pV q∆qq � hipTφ,U pD:pV qqq

in H ipL1, V q is independent of the composite (� path) in above diagram.

8 Weakly decompleting towers

Kedlaya and Liu's developed in [KLII, �5] the concept of perfectoid towers and studied their
properties in an axiomatic way. The aim of this section is to show that the Lubin-Tate ex-
tensions considered in this article form a weakly decompleting, but not a decompleting tower,
properties which we will recall or refer to in the course of this section. Moreover, we have to
show that the axiomatic period rings coincide with those introduced earlier.

In the sense of Def. 5.1.1 in (loc. cit.) the sequenceΨ � pΨn : pLn, oLnq Ñ pLn�1, oLn�1qq
8
n�0

forms a �nite étale tower over pL, oLq or X :� SpapL, oLq, which is perfectoid as L̂8 is by
[GAL, Prop. 1.4.12].10

Therefore we can use the perfectoid correspondence [KLII, Thm. 3.3.8] to associate with
pL̂8, oL̂8q the pair

pR̃Ψ, R̃
�
Ψq :� pL̂58, o

5
L̂8
q.

Now we recall the variety of period rings, which Kedlaya and Liu attach to the tower, in our
notation, starting with

Perfect period rings:

ÃΨ :� ÃL �W pL̂58qL,

Ã�
Ψ :�W po5

L̂8
qL � Ã:,r

Ψ :� Ã:,r
L � tx �

¸
i¥0

πiLrxis PW pL̂58qL| |π
i
L}xi|

r
5

iÑ8
ÝÝÝÑ 0u,

Ã:
Ψ :�

¤
r¡0

Ã:,r
Ψ � Ã:

L

Imperfect period rings:

To introduce these we �rst recall the map Θ : W po5Cp
qL Ñ oCp ,

°
i¥0 π

i
Lrxis ÞÑ

°
πiLx

7
i,

which extends to a map Θ : Ã:,s
Ψ Ñ Cp for all s ¥ 1; for arbitrary r ¡ 0 and n ¥ � logq r the

10In the notation of [KLII]: E � L, ϖ � πL, h � r, k :� oL{pπLq � Fq, i.e. q � pr. AΨ,n :� Ln, A
�
Ψ,n :� oLn ,

X :� SpapL, oLq with the obvious transition maps which are �nite étale.
pAΨ, A

�
Ψq :� lim

ÝÑn
pAΨ,n, A

�
Ψ,nq � pL8, oL8q

pÃΨ, Ã
�
Ψq :� pAΨ, A

�
Ψq

^πL�adic � pL̂8, oL̂8q
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composite Ã:,r
Ψ

φ�n
LÝÝÑ Ã:,1

Ψ
Θ
ÝÑ Cp is well de�ned and continuous as it is easy to check. It is a

homomorphism of oL-algebras by [GAL, Lem. 1.4.18].
Following [KLII, �5] we set A:,r

Ψ :� tx P Ã:,r
Ψ |Θpφ�n

q pxqq P Ln for all n ¥ � logq ru,

A:
Ψ :�

�
r¡0A

:,r
Ψ , its completion AΨ :� pA:

Ψq
^πL�adic, and residue �eld RΨ :� AΨ{pπLq �

pA:
Ψq{pπLq � R̃Ψ, R

�
Ψ :� RΨ X R̃�

Ψ.

Note that ωLT � trιptqsu P Ã�
Ψ :� W po5

L̂8
qL � Ã:,r

Ψ for all r ¡ 0 (in the notation of

[GAL]). [GAL, Lem. 2.1.12] shows

Θpφ�n
q pωLT qq � Θptrφ�n

q pωqsuq � lim
iÑ8

rπiLsφpzi�nq � zn P Ln,

where t � pznqn¥1 is a �xed generator of the Tate module Tπ of the formal Lubin-Tate group
and ω � ιptq P W po5Cp

qL is the reduction of ωLT modulo πL satisfying with EL � kppωqq.

Therefore ωLT belongs to A�
Ψ :� AΨX Ã�

Ψ. Then it is clear that �rst A�
L :� oLrrωLT ss � Ã:

Ψ

and by the continuity of Θ � φ�n
L even A�

L � A:
Ψ holds. Since ω�1

LT P Ã
:, q�1

q

Ψ by [Ste, Lem.
3.10] (in analogy with [ChCo1, Cor. II.1.5]) and Θ � φ�n

L is a ring homomorphism, it follows

that ω�1
LT P A

:, q�1
q

Ψ and oLrrωLT ssr
1

ωLT
s � A:

Ψ.

Lemma 8.1. We have R�
Ψ � E�

L and RΨ � EL.

Proof. From the above it follows that EL � RΨ, whence E
perf
L � Rperf

Ψ � R̃Ψ � L̂58 the latter

being perfect. Since
{
Eperf

L � L̂58 by [GAL, Prop. 1.4.17] we conclude that

(32) Rperf
Ψ is dense in R̃Ψ.

By [KLII, Lem. 5.2.2] have the inclusion

R�
Ψ � tx P R̃Ψ|x � px̄nq with x̄n P oLn{pz1q for n ¡¡ 1u

(*)
� E�

L � krrωss

where the equality (*) follows from work of Wintenberger as recalled in [GAL, Prop. 1.4.29].
Since E�

L � R̃�
Ψ by its construction in (loc. cit.), we conclude that R�

Ψ � E�
L .

Since each element of RΨ is of the form a
ωm with a P R�

Ψ and m ¥ 0 by [GAL, Lem.
1.4.6]11, we conclude that RΨ � EL.

Thus for each r ¡ 0 such that ω�1
LT P A:,r

Ψ , reduction modulo πL induces a surjection

A:,r
Ψ ↠ RΨ. Recall that Ψ is called weakly decompleting, if

(i) Rperf
Ψ is dense in R̃Ψ.

(ii) for some r ¡ 0 we have a strict surjection A:,r
Ψ ↠ RΨ induced by the reduction modulo

πL for the norms | � |r de�ned by |x|r :� supit|π
i
L}xi|

r
5u for x �

°
i¥0 π

i
Lrxis, and | � |

r
5 .

We recall from [FF, Prop. 1.4.3.] or [KLI, Prop. 5.1.2 (a)] that | � |r is multiplicative.

Proposition 8.2. The above tower Ψ is weakly decompleting.

11For α P RΨ there exist m ¥ 0 such that |ωmα|5 ¤ 1, i.e., ωmα P R�
Ψ.
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Proof. Since (32) gives (i), only piiq is missing: Since ωLT has rωs in degree zero of its Te-
ichmüller series, we may and do choose r ¡ 0 such that |ωLT � rωs|r   |ω|r5 . Then |ωLT |r �

maxt|ωLT � rωs|r, |ω|
r
5u � |ω|r5 . Consider the quotient norm }b}prq � inf

aPA:,r
Ψ ,a�b mod πL

|a|r.

Now let b �
°

n¥n0
anω

n P RΨ � kppωqq with an0 � 0. Lift each an � 0 to ăn P o
�
L and set

ăn � 0 otherwise. Then, for the lift x :�
°

n¥n0
ănω

n
LT of b we have by the multiplicativity of

| � |r that
}b}prq ¤ |x|r � p|ωLT |rq

n0 � p|ω|r5q
n0 � |b|r5 .

Since, the other inequality |b|r5 ¤ }b}prq giving by continuity is clear, the claim follows.

Proposition 8.3. AL � AΨ.

Proof. Both rings have the same reduction modulo πL. And using that the latter element is
not a zero-divisor in any of these rings we conclude inductively, that AL{π

n
LAL � AΨ{π

n
LAΨ

for all n. Taking projective limits gives the result.

Proposition 8.4. A:
L � A:

Ψ.

Proof. By [KLII, Lem. 5.2.10] we have that A:
Ψ � Ã:

L X RL. On the other hand A:
L �

pÃ: X AqHL � Ã:
L X A is contained in RL by Remark 4.20, whence A:

L � A:
Ψ while the

inclusion A:
Ψ � Ã: XAL � A:

L follows from Prop. 8.3.

In De�nition 5.6.1 in (loc. cit.) they de�ne the property decompleting for a tower Ψ, which
we are not going to recall here as it is rather technical. The cyclotomic tower over Qp is of this
kind for instance. If our Ψ would be decompleting, the machinery of (loc. cit.), in particular
Theorems 5.7.3/4, adapted to the Lubin-Tate setting would imply that all the categories at
the end of section 6 are equivalent, which contradicts Remark 4.25.
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