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Abstract

In the Lubin-Tate setting we compare different categories of (¢r,I')-modules over
various perfect or imperfect coefficient rings. Moreover, we study their associated Herr-
complexes. Finally, we show that a Lubin Tate extension gives rise to a weakly decom-
pleting, but not decompleting tower in the sense of Kedlaya and Liu.
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1 Introduction

Since its invention by Fontaine in [Fo| the concept of (¢, I')-modules (for the p-cyclotomic
extension) has become a powerful tool in the study of p-adic Galois representations of local
fields. In particular, it could be fruitfully applied in Iwasawa theory [Ben| Bl Nal4al Nal7al,
Nal7bl V13| LVZ15] [LLZ11, BV] and in the p-adic local Langlands programme [Col|. A
good introduction to the subject regarding the state of the art around 2010 can be found in
IBC, [FOI.

Afterwards a couple of generalisations have been developed. Firstly, Berger and Colmez
[BeCo] as well as Kedlaya, Pottharst and Xiao [KPX] extended the theory to (arithmetic)



families of (¢, T')-modules, in which representations of the absolute Galois group of a local
field on modules over affinoid algebras over Q,, instead of finite dimensional vector spaces are
studied. Secondly, parallel to and influenced by Scholze’s point of view of perfectoid spaces
as well as the upcoming of the Fargues-Fontaine curve [FF| Kedlaya and Liu developed a
(geometric) relative p-adic Hodge theory [KLI, [KLII|, in which the Galois group of a local
field is replaced by the étale fundamental group of affinoid spaces over @, thereby extending
an earlier approach by Andreatta and Brinon. In particular, Kedlaya and Liu have introduced
systematically (o, T')-moduels over perfect coefficient rings, i.e., for which the Frobenius endo-
morphism is surjective, and they have studied their decent to imperfect coefficient rings, which
is needed for Iwasawa theoretic applications and which generalized the work of Cherbonnier
and Colmez [ChCol].

Recently there has been a growing interest and activity in introducing and studying
(¢r,I'r)-modules for Lubin-Tate extensions of a finite extension L of Q,, motivated again
by requirements from or potential applications to the p-adic local Langlands programme
[FX], BSX [Co2| or Iwasawa theory [SV15, BF| [SV23l IMSVW, [Poy|. The textbook [GAL]
contains a very detailed and thorough approach to the analogue of Fontaine’s original equiv-
alence of categories between Galois representations and étale (¢, I')-modules to the case of
Lubin-Tate extensions as had been proposed, but only sketched in [KR], see Theorem
In this setting it has been shown in [Kul, [KV] that - as in the cyclotomic case due to Herr
[Her98| - the Galois cohomology of a L-representation V of the absolute Galois group G, of L
can again be obtained as cohomology of a generalized Herr complex for the (¢, T'r)-module
attached to V/, see Theorem

The purpose of this article is to spell out in the Lubin-Tate case concretely the various
categories of (classical) (pr,I'r)-modules over perfect and imperfect coefficient rings (analo-
gously to those con51dered in [KLI KLII| who do not cover the Lubin-Tate situation) such as
A, AL, A;, AL,BL7 BL,BL, BL,RL,RL to be defined in the course of the main text and to
compare them among each other. Moreover, we investigate for which versions the generalized
Herr complex calculates again the Galois cohomology of a given representation. The results
are summarized in diagrams @ and . Finally, we study in the last section how Lubin-Tate
extensions fit into Kedlaya’s and Liu’s concept of (weakly) decompleting towers. We show that
for L # Q, they are weakly decompleting, but not decompleting.

See [Stel] for some results regarding arithmetic families of (¢r, ' )-modules in the Lubin-
Tate setting.
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2 Notation

Let Q, € L < C, be a field of finite degree d over Q,, o, the ring of integers of L, 71, € of, a
fixed prime element, k;, = or/mror the residue field, ¢ := |k | and e the absolute ramification



index of L. We always use the absolute value | | on C,, which is normalized by |r| = ¢~ '. We
warn the reader, though, that we will use the references [FX] and [Laz| in which the absolute
value is normalized differently from this paper by |p| = p~!. Our absolute value is the dth
power of the one in these references. The transcription of certain formulas to our convention
will usually be done silently.

We fix a Lubin-Tate formal or-module LT" = LT}, over o, corresponding to the prime
element 77. We always identify LT with the open unit disk around zero, which gives us a global
coordinate Z on LT. The or-action then is given by formal power series [a](Z) € o [[Z]]. For
simplicity the formal group law will be denoted by +pr7.

Let T, be the Tate module of LT. Then T, is a free or-module of rank one, say with
generator 7, and the action of G, := Gal(L/L) on Ty is given by a continuous character
XLT : G L — OZ.

For n > 0 we let L,,/L denote the extension (in C,) generated by the m}/-torsion points of
LT, and we put Lo := J,, Ln. The extension Lo /L is Galois. We let I'z, := Gal(Le /L) and
Hy := Gal(L/Ly). The Lubin-Tate character 7 induces an isomorphism I'f, = of.

Henceforth we use the same notation as in [SV15]. In particular, the ring endomorphisms
induced by sending Z to [71](Z) are called ¢, where applicable; e.g. for the ring <77, defined
to be the mz-adic completion of or[[Z]][Z7!] or By, := o/ [n; '] which denotes the field of
fractions of 77. Recall that we also have introduced the unique additive endomorphism vy, of
A1, (and then o77) which satisfies

-1
provr =y -traceg, jp,(2,) -

Moreover, projection formula

Yr(er(fi)f2) = fivn(fz)  for any f; € #p

as well as the formula

q .
Yropr =—-id
L

hold. An étale (¢r,')-module M comes with a Frobenius operator ¢p; and an induced
operator denoted by ;.

Let Et := lim oc, /poc, with the transition maps being given by the Frobenius ¢(a) = a?.
We may also identify E* with liLnon/TrLo(cp with the transition maps being given by the
g-Frobenius ¢,4(a) = a?. Recall that E* is a complete valuation ring with residue field F, and
its field of fractions E = lim C,, being algebraically closed of characteristic p. Let mg denote
the maximal ideal in E*.

The g-Frobenius ¢, first extends by functoriality to the rings of the Witt vectors W(E) and
then oz -linearly to W (E), := W(E)@OLO or,, where L is the maximal unramified subextension
of L. The Galois group G obviously acts on E and W(E) 1, by automorphisms commuting
with ¢,. This Gr-action is continuous for the weak topology on W(E)L (cf. [GALL Lemma
1.5.3]).

By sending the variable Z to wrp € W(E)L (see directly after [SVI5|, Lem. 4.1]) we obtain
an (Gp-equivariant, Frobenius compatible embedding of rings

oy, — W(E),



the image of which we call Ay. The latter ring is a complete discrete valuation ring with prime
element 77, and residue field the image Ep, of kr,((Z)) — E sending Z to w := wrpy mod 7.
We form the maximal integral unramified extension (= strict Henselization) A}" of Ay inside
W(E)L. Its p-adic completion A still is contained in W(E)z. Note that A is a complete
discrete valuation ring with prime element 77, and residue field the separable algebraic closure
E;” of Ef in E. By the functoriality properties of strict Henselizations the g-Frobenius ¢,
preserves A. According to [KRl Lemma 1.4 the Gr-action on W (E), respects A and induces
an isomorphism Hy, = ker(xrr) — Aut®™(A/AL).

Sometimes we omit the index ¢, L, or M from the Frobenius operator.

Finally, for a valued field K we denote as usual by K its completion.

3 An analogue of Tate’s result

Let CZ together with its absolute value | - |, be the tilt of C,. The aim of this section is to

prove an analogue of Tate’s classical result [Tal Prop. 10] for C?? instead of C,, itself and in
the Lubin Tate situation instead of the cyclotomic one. In the following we always consider
continuous group cohomology.

Proposition 3.1. H"(H, (C?)) =0 for alln>1 and H € Hp, any closed subgroup.

Since the proof is formally very similar to that of loc. cit. or [BC, Prop. 14.3.2.] we only
sketch the main ingredients. To this aim we fix H and write sometimes W for CZ as well as
Wep = {z e W||z|, < p%}

Lemma 3.2. The Tate-Sen axiom (TS1) is satisfied for (CE) with regard to H, i.e., there exists

a real constant ¢ > 1 such that for all open subgroups Hy € Ho in H there erists o € ((C;)Hl
with |af, < ¢ and Try, (@) = Xorep, g, T(a) = 1. Moreover, for any sequence (Hm)m of
open subgroups Hy,+1 S Hy, of H there exists a trace compatible system (ym,,)m of elements
YH,, € (C;)Hm with |ym,, |, < c and TTH\Hm(Z/Hm) = 1.

Proof. Note that for a perfect field K (like ((CE,)H ) of characteristic p complete for a multi-
plicative norm with maximal ideal mj and a finite extension F' one has Trp/x(mp) = mg by
[Ked15, Thm. 1.6.4]. Fix some x € ((C?D)H with 0 < |z], < 1 and set ¢ := |z[;' > 1. Then we
find & in the maximal ideal of (CJE,)H1 with Trpp, (@) = @ and a := (T'rp, g, (&)~ a satisfies
the requirement as |T7'1172|Hl(d)|;1 < |:c|;1 =c.

For the second claim we successively choose elements &, in the maximal ideal of ((CZ)HW
such that Try iy, (1) = @ and Try,  \#,,(Gmt1) = G for all m > 1. Renormalization
am = x 'a&,, gives the desired system. O

Remark 3.3. Since H is also a closed subgroup of the absolute Galois group Gp of L it
possesses a countable fundamental system (Hp,)m of open neighbourhoods of the identity, as
for any n > 0 the local field L of characteristic 0 has only finitely many extensions of degree
smaller than n.

Proof. The latter statement reduces easily to finite Galois extensions L’ of L, which are known

to be solvable, i.e. L' has a series of at most n intermediate fields L € Ly < ... < L, = L'
such that each subextension is abelian. Now its known by class field theory that each local
field in characteristic 0 only has finitely many abelian extensions of a given degree. O



We write C™(G, V) for the abelian group of continuous n-cochains of a profinite group G
with values in a topological abelian group V carrying a continuous G-action and ¢ for the usual
differentials. In particular, we endow C"(H, W) with the maximum norm || — || and consider
the subspace C*(H,W)? := Umr<n open C"(H/H',W) = C"(H, W) of those cochains with
are even continuous with respect to the discrete topology of W.

Lemma 3.4. (i) The completion of C"(H,W)? with respect to the mazimum norm equals
C"(H,W).

(ii) There exist (CZ)H—linear continuous maps
o C"(H,W) — C" ' (H, W)

satisfying | f — 00" f|| < c[of|.

Proof. Since the space C"(H, W) is already complete we only have to show that an arbitrary
cochain f in it can be approximated by a Cauchy sequence f,, in C*(H,W)?. To this end

we observe that, given any m, the induced cochain H" ENS 1 /RN W /Ws,, comes, for some
open normal subgroup H,,, from a cochain in C"(H/H,,, W /Wx=y,), which in turn gives rise
to fm € C*(H,W)® when composing with any set theoretical section W/Ws,, -2 W of

the canonical projection W Prm, W /W=p,. Note that s, is automatically continuous, since

W /W=y, is discrete. By construction we have | f — fi, | < me and (fm)m obviously is a Cauchy
sequence. This shows (i).

For (ii) recall from Lemmal3.2]together with Remark [3.3]the existence of a trace compatible
system (yp+) g of elements yyr € ((CZ)H/ with |yg ], < ¢ and Try g (yar) = 1, where H' runs
over the open normal subgroups of H. Now we first define ((CE,)H -linear maps

o™ C(H, W) - C" YN H, W)
satistying || f — do™ f| < ¢||df| and [|o™ f| < c| f|| by setting for f e C"(H/H', W)

o"(f) :=ymw v f

(by considering yp+ as a —1-cochain), i.e.,

o (N)(h1s o) = (1" Y (haehnam) () f(hn, o hoo, 7).
reH/H'

The inequality |yg v f| < ¢|f|| follows immediately from this description, see the proof
of [BC| Lem. 14.3.1.]. Upon noting that dyg: = Try g/ (ya) = 1, the Leibniz rule for the
differential ¢ with respect to the cup-product then implies that

f=0ym v f) =ym v af,

hence

If = o(yrr v )l < cof|

by the previous inequality, see again (loc. cit.). In order to check that this map o™ is well
defined we assume that f arises also from a cochain in C"(H/H",W). Since we may make



the comparison within C"(H/(H' ~n H"), W) we can assume without loss of generality that
H" < H'. Then

(yH” |\ f)(hl, ey hn—l) = (—1)” Z (h1 e hn—lT)(yH”)f(hh e 7hn—17 7')
TeH/H"

== > A bha Y T ) f(ha, . e, T)

TeH/H' T'eH'/H"

=(=D" > (- he) (D) T f(has e, 7)
TeH/H’ T’EH’/H”

= (_1)’” Z (hl-“hnfl) (yH')f(hlw"?hnflaT)
TeH/H'

= (yH’ £ f)(hla .- '7hn—1)

using the trace compatibility in the fourth equality. Finally the inequality |0 f| < ¢| f| implies
that o™ is continuous on C™(H,W)? and therefore extends continuously to its completion
C"(H,W). O

The proof of Prop. is now an immediate consequence of Lemma [3.4](ii).

4 The functors D, D and Df

Let Rep,, (GL), Rep,, ¢(GL) and Rep;(GL) denote the category of finitely generated of-
modules, finitely generated free or-modules and finite dimensional L-vector spaces, respec-
tively, equipped with a continuous linear Gp-action. The following result is established in
IKRl Thm. 1.6] (see also [GAL, Thm. 3.3.10]) and [SV15l Prop. 4.4 (ii)].

Theorem 4.1. The functors
T+ D(T) = (A®,, T)HL and M+— (A®a, M)@q@«ple

are evact quasi-inverse equivalences of categories between Rep,, (Gr) and the category M (A L)
of finitely generated étale (o, I'r)-modules over Ar. Moreover, for any T in Rep,, (GL) the
natural map

(1) A®a, D(T) > A®,, T
is an isomorphism (compatible with the Gp-action and the Frobenius on both sides).

In the following we would like to establish a version of the above for A and prove similar
properties for it. In the classical situation such versions have been studied by Kedlaya et al
using the unramified rings of Witt vectors W (R). In our Lubin-Tate situation we have to work
with ramified Witt vectors W (R)r. Many results and their proofs transfer almost literally from
the classical setting. Often we will try to at least sketch the proofs for the convenience of the
reader, but when we just quote results from the classical situation, e.g. from [KLI]|, this usually
means that the transfer is purely formal.

We start defining A := W(C;) L and

Al = {z = Z i an] € A ¢ |7 |z, 2225 0 for some 7 > 0}

n=0



as well as D(T) := (A ®,, T)"* and DY(T) := (AT ®,, T)"*

More generally, let K be any perfectoid field containing L and let K > denote its tilt. For
r > 0let WT(K’)L, be the set of z = Y0 7% [x,] € W(K’)L, such that |rr|"|z,|] tends to
zero as n goes to c0. This is a subring by [KLI, Prop. 5.1.2] on which the function

jaly = sup{|a} |zal}} = sup{q "|zalf)
n n

is a complete multiplicative norm; it extends multiplicatively to W7 (K”) L[%] Furthermore,

WHE") L = U2 W"(K’)L is a henselian discrete valuation ring by [Ked(5, Lem. 2.1.12],
whose 77-adic completion equals W (K”)y, since they coincide modulo 7. Then At =wt ((C?Q) Ls

and we write Ay, and AE for W(L%) and WT(L%,), respectively. We set By, = AL[%],
B = A[%], BTL = ATL[%] and Bf = AT[%] for the corresponding fields of fractions.

Remark 4.2. By the Az-Tate-Sen theorem [Adl] and since (Cb 1s the completion of an algebraic

closure Lb he have that ((Cb) ((LZO) )" for any closed subgroup H < Hy, in particular
(CE,)HL = LZO, As completion of an algebraic extension of the perfect field IA/ED the field (CE,)H
18 perfect, too. Moreover, we have AL = Ap, (AT)HL = ATL and analogously for the rings B

and B. It also follows that A is the 71 -adic completion of a mazimal unramified extension of
Ap.

Lemma 4.3. The rings Ar and A embed into Af and A, respectively.

Proof. The embedding A;, < Ay is explained in [GATL] p. 94]. Moreover, A is the mp-
adic completion of the maximal unramified extension of Ay, inside A = W((CE,) r (cf. [GALL
§3.1]). O

On A = W((C?,)L the weak topology is defined to be the product topology of the valuation

topologies on the components (CZ. The induced topology on any subring R of it is also called
weak topology of R. If M is a finitely generated R-module, then we call the canonical topology
of M (with respect to the weak topology of R) the quotient topology with respect to any
surjection R™ — M where the free module carries the product topology; this i 1s independent
of any choices. We recall that a (¢r,T)-module M over R € {Ap, AL, A } is a finitely
generated R-module M together with

— a I'g-action on M by semilinear automorphisms which is continuous for the weak topol-
ogy and

— a @r-linear endomorphism ¢jys of M which commutes with the I'p-action.

We let M(R) denote the category of (¢r,'r)-modules M over R. Such a module M is called
étale if the linearized map

lln ‘R R or M _) M
f@mr— fon(m)
is bijective. We let 9% (R) denote the full subcategory of étale (o, I'r)-modules over R.

Definition 4.4. For = = By, By, ]~3TL we write M (x) := M (+")®,, L with +' = Ap, AL,AE,
respectively, and call the objects étale (pr,T'p)-modules over .



Lemma 4.5. Let G be a profinite group and R — S be a topological monomorphism of
topological or-algebras, for which there exists a system of open neighbourhoods of 0 consisting
of or-submodules. Consider a finitely generated R-module M, for which the canonical map
M — S®pg M is injective (e.g. if S is faithfully flat over R or M is free), and endow it with
the canonical topology with respect to R. Assume that G acts continuously, or-linearly and
compatible on R and S as well as continuously and R-semilinearly on M. Then the diagonal
G-action on S ®r M is continuous with regard to the canonical topology with respect to S.

Proof. Imitate the proof of [GALL Lem. 3.1.11]. O

Proposition 4.6. The canonical map
2) AL ®a, D(T) S D(T)

is an isomorphism and the functor D(—) : Rep,, (G1) — ME(A L) is ezact. Moreover, we
have a comparison isomorphism

(3) A®;, D(T) S A®,, T

Proof. The isomorphism implies formally the isomorphism after base change of the
comparison isomorphism . Secondly, the isomorphism , resp. , implies easily that
D(T) is finitely generated, resp. étale. Thirdly, since the ring extension A /AL is faithfully
flat as local extension of (discrete) valuation rings, the exactness of D follows from that of D.

Moreover, the isomorphism implies by Lemma that I'p, acts continuously on ﬁ(T), ie.,
the functor D is well-defined. Thus we only have to prove that

~

AL ®AL (A ®OL T)HL - (A ®OL T)HL
is an isomorphism. To this aim let us assume first that T is finite. Then we find an open normal
subgroup H < Hj, which acts trivially on 7. Application of the subsequent Lemma[.7]to M =
- Hr/H
(A®,, T)" and G = Hy/H interprets the left hand side as <AL ®a, (A®,, T)" ) “ While
- Hp/H
the right hand side equals ((A R0, T)H) " Hence it suffices to establish the isomorphism
AL ®AL (A ®0L T)H = (A ®0L T)H'
By Lemma below this is reduced to showing that the canonical map
AL ®a, A" @, T=A"®, T
is an isomorphism, which follows from Lemma below. Finally let T be arbitrary. Then we

have isomorphisms

AL ®A, D(T) = AL ®Ar m D(T/WQT)

n

~ AL @a, lim D(T)/x}D(T)

n

AL ®a, D(T)/x}D(T)

12

= =5

12

lim Ay ®a, D(T/77T)

!

I

=

lim D(T /T

l

1
U* 3

(1),



where we use for the second and fourth equation exactness of D, for the second last one the
case of finite 7" and for the first, third and last equation the elementary divisor theory for the
discrete valuation rings or, Ay and A, respectively. O

Lemma 4.7. Let A — B be a flat extension of rings and M an A-module with an A-linear
action by a finite group G. Then B®4 M carries a B-linear G-action and we have

(B®a M)® = B®a MC.
Proof. Apply the exact functor B ® 4 — to the exact sequence

(9*1) eG
0— MC M J Dyec M,

which gives the desired description of (B ®4 M)% . O

Lemma 4.8. Let A be A, A7, At or A and T be a finitely generated or-module with trivial
action by an open subgroup H < Hy,. Then (A®o,, H = AH ®o, T Moreover, AH and AH
are free Ar- and Ap-modules of finite rank, respectively.

Proof. Since T = @;_, or,/n} o, with n; € N U {00} we may assume that T' = or/7}or, for
some n € N u {o0}. We then we have to show that

(4) (Afmp A =A7 jry AT

For n = oo there is nothing to prove.

The case n = 1: First of all we have A/r A = A /A" = E7”. On the other hand,
by the Galois correspondence between unramified extensions and their residue extensions,
we have that (E77)f is the residue field of (A7) Hence the case n = 1 holds true for
A = A", After having finished all cases for A = A7" we will see at the end of the proof that
(AT)H = AH Therefore the case n = 1 for A = A will be settled, too.

For A = A we only need to observe that A/ A = W((CZ)L/WLW((C;)L = (C:Z and that
((CZ)H is the residue field of (W((C;)L)H = W(((C;))H)L.

For A = A we argue by the following commutative diagram

ik4

(CH —==WT(C)M)/mWT(C)) )L (ADH jmp (AT

T |

A A (A/m A —=— (AT /m AT

The case 1 < n < 0o: This follows by induction using the commutative diagram with exact
lines
00— AH jpn AH T AH it b gH o AH ) AH 5 )

|
0 —— (A/mp Y — (A/mp AT —— (A/mp )M,

in which the outer vertical arrows are isomorphism by the case n = 1 and the induction
hypothesis.



Finally we can check, using the above equality for A = A7" in the third equation:

n

H
Al = (Lin A’i’”/wﬁAT)

~ Jim (A} /np AR
: nr\H ;_n nry
= Lin (AL )7L (AT )
= (A7)
Note that (A7) is a finite unramified extension of A, and therefore is 7z -adically complete.
We also see that A¥ is a free A-module of finite rank. Similarly, W(C;)f ~ (W(L2)p)H
is a free W(L?,)-module of finite rank. O

Lemma 4.9. For any open subgroup H of Hy, the canonical maps

W(L). ®a, AT 2 W(CHM);,

W (L)L ®41 (AHT S w((Cy)")e
are 1somorphisms.

Proof. We begin with the first isomorphism. Since A is finitely generated free over Ay by
Lemma [4.8, we have

W(L,)r ®a, A = (@ Wn(ﬁzo)L> ®a, AT = Jim (W, (L)), @, A7).

n

It therefore suffices to show the corresponding assertion for Witt vectors of finite length:
Wa(Ly) ®a, AT /mf AT = Wy(L2)r @4, AT = Wa((C)")e.

To this aim we first consider the case n = 1. From ({]) we know that AT /77 AH = (E7)H.
Hence we need to check that

f/go ®EL (Ezep) ; (Cb)
is an isomorphism. Since the perfect hull Eiﬂf of Er, (being purely inseparable and normal)
and (E77)# (being separable) are linear disjoint extensions of Ey, their tensor product is equal
to the composite of fields EPETf(Esep) (cf. [Cohl, Thm. 5.5, p. 188]), which moreover has to
have degree [Hy, : H] over E¥*"/ . Since the completion of the tensor product is L, ®g, (E57)#
we see that the completion of the field Eperf(Esep) is the composite of fields L2, (E;7)!
which has degree [Hy, : H] over L’ But L’ (E3*)H (C2)H. By the Ax-Tate-Sen theorem
((CZ)H has also degree [Hy : H]| over L. Hence the two fields coincide, which establishes the
case n = 1.
The commutative diagram

bl

Lb ®AL AH ((Cb)
%?@idi”” \L%}"
id g
Ly ®pp.a, AT —>(C)H

10



shows that also the lower map is an isomorphism. Using that Verschiebung V' on Wn(((CZ)H 9
and W,,(L%,) 1, is additive and satisfies the projection formula V™ (z) -y = V™(z - ©p'(y)) we
see that we obtain a commutative exact diagram

Vn®id
OHLI) ®50" A, AH = Wn+1( )L@ALA HW ( )L®ALA —0

id oy \L canl ~ l

(C) — = W ((C)H),, W, ((C)H)y,

0 P

from which the claim follows by induction because the outer vertical maps are isomorphisms
by the above and the induction hypothesis. Here the first non-trivial horizontal morphisms
map onto the highest Witt vector component.

The second isomorphism is established as follows: We choose a subgroup N € H € Hy,
which is open normal in Hy and obtain the extensions of henselian discrete valuation rings

A} AT =wI((C))) = AN =W (C)))1.
The corresponding extensions of their field of fractions

B} c B:= (AN[1]c F = (AHV[L

]

satisfy F1/N = E and FHL/N = BJr Hence F'/E and F/BT are Galois extensions of degree
[H : N| and [Hp : NJ, respectively. It follows that E/B ; is a finite extension of degree
[Hr : H]. The henselian condition then implie that (AH)H = WT(((CIZ)H)L is free of rank
[H : H] over AE = W(L2)L. The mr-adic corf1pletion (—) of the two rings therefore can be
obtained by the tensor product with Ay = W (L%). This gives the wanted

W(Li)r @41 (AT = WH(LL) L @4 (AN =WH(C)), = W(C) ™).

Proposition 4.10. The sequences

(5) 00 > AL A,
(6) O—>0L—>AQ—_>A—>O
(7) 0> o0, > AF 225 LA 5o
are exact.

Proof. The first sequence is [SV15, (26), Rem. 5.1]. For the second sequence one proves by
induction the statement for finite length Witt vectors using that the Artin-Schreier equation
has a solution in (C]bg. Taking projective limits then gives the claim. For the third sequence only
the surjectivity has to be shown. This can be achieved by the same calculation as in the proof
of [KLIL, Lem. 4.5.3] with R = C. O

1See Neukirch, Algebraische Zahlentheorie, proof of Satz I1.6.8

’For the other see [KLII, Lem. 4.5.3] : There the exactness of corresponding sequences for sheaves on the
proétale site Spa(L, or)proet is shown, which in turn implies exactness for the corresponding sequences of stalks

at the geometric point Spa(Cp,oc,). Note that taking stalks at this point is the same as taking sections over
it.
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~ ld—
Lemma 4.11. For any finite T in Rep,, (Gr) the map A ®,, T pa@d 7L

continuous set theoretical section.

A ®,, T has a

Proof. Since T = @;_, or/n} or, for some natural numbers r,n; we may assume that 7' =

. . —id
or/m}or, for some n and then we have to show that the surjective map Wn(C;)L RN
Wn((C?,) 1, has a continuous set theoretical section. Thus me may neglect the additive structure

and identify source and target with X = ((C;)". In order to determine the components of the
map @, —id =: f = (fo,..., fa=1) : X — X with respect to these coordinates we recall that
the addition in Witt rings is given by polynomials

Sj(Xo,...Xj,Yb,...,}/}) ZXj—l-ij + terms in XO;---ij—la}/O;---;}/j—l
while the additive inverse is given by
Ij(Xo,...Xj) = —X; + termsin Xo,..., X; 1.

Indeed, the polynomials I; are defined by the property that ®;(lo,...,I;) = —®;(Xo,..., Xj;)
where the Witt polynomials have the form ®;(Xo,...,X;) = ng + WLXiI]_l +... 4+ ﬂin.
Modulo (Xo,...,X;—1) we derive that Wi[j(X(),...,Xj) = —Fin and the claim follows.
Since ¢, acts componentwise rising the entries to their gth power, we conclude that

fi = Si(X¢, ... X! Io(Xo), ..., Ij(Xo, ... X))

Hence the Jacobi matrix of f at a point x € X looks like

i.e., is invertible in every point. As a polynomial map f is locally analytic. It therefore follows
from the inverse function theorem [pLGl Prop. 6.4] that f restricts to a homeomorphism
flUo = Uy = Uy of open neighbourhoods of z and f(x), respectively. By the surjectivity of
f every x € X has an open neighbourhood U, and a continuous map s, : U, — X with
fosz =idyy,. But X is strictly paracompact by Remark 8.6 (i) in (loc. cit.), i.e., the covering
(Uy)z has a disjoint refinement. There the restrictions of the s, glue to a continuous section
of f. O

Corollary 4.12. For T in Rep,, (GL), the nth cohomology groups of the complexes concen-
trated in degrees 0 and 1

=1 =

(8) 0— D(T) D(T) —0 and

9) 0— D(T) -

D(T) —0
are isomorphic to H"(Hp,T) for any n > 0.

Proof. Assume first that T is finite. For (9)) see [SV15, Lemma 5.2]. For we use Lemma
4.11] which says that the right hand map in the exact sequence

~ id—1 ~
0—T A, T2 A®,, T—0

12



has a continuous set theoretical section and thus gives rise to the long exact sequence of
continuous cohomology groups

(10) 0— HY(H,,T) - D(T) £=5 D(T) — HY(H.,, T) —» H'(H,,A®,, T) — ...

Using the comparison isomorphism and the subsequent Prop. we see that all terms
from the fifth on vanish.

For the general case (for D(T') as well as D(T)) we take inverse limits in the exact sequences
for the (T'/n}'T) and observe that H"(Hy,T) = lim H"(Hp,T/n}'T). This follows for n # 2
from [NSW., Cor. 2.7.6]. For n = 2 we use [NSW| Thm. 2.7.5| and have to show that the
projective system (H'(Hp,T/77T))m is Mittag-Leffler. Since it is a quotient of the projective
system (D(T'/77*T))m, it suffices for this to check that the latter system is Mittag-Leffler. But
due to the exactness of the functor D this latter system is equal to the projective system of
artinian A z-modules (D(T)/7* D(T'))m, and hence is Mittag-Leffler. We conclude by observing
that taking inverse limits of the system of sequences remains exact. The reasoning being
the same for D(T) and D(T') we consider only the former. Indeed, we split the 4-term exact
sequences into two short exact sequences of projective systems

0 — H(Hy,V/7['T) — D(T/x'T) — (¢ = )D(T/x]'T) - 0

and

0— (¢ — 1)D(T/7PT) — D(T/7PT) — HY(Hp, T /77T — 0.
Passing to the projective limits remains exact provided the left most projective systems have
vanishing yLnl. For the system H(Hp,T/m'"T) this is the case since it is Mittag-Leffler. The
system (p — 1)D(T/7'T) even has surjective transition maps since the system D(T/m"T)
has this property by the exactness of the functor D (cf. Prop. [4.6)). O

Proposition 4.13. H"(H, A/W’L”A) =0 for alln,m > 1 and H € Hy, any closed subgroup.

Proof. For j < i the canonical projection VVZ-((CE,) ~ A/t A — A/WJLA ~ W; ((CE)) corresponds
to the projection ((CZ,)i — ((C}bj)j and hence have set theoretical continuous sections. Using the

associated long exact cohomology sequence (after adding the kernel) allows to reduce the
statement to Prop. m

For any commutative ring R with endomorphism ¢ we write ®(R) for the category of
p-modules consisting of R-modules equipped with a semi-linear p-action. We write ®°(R)
for the subcategory of étale p-modules, i.e., such that M is finitely generated over R and ¢

ét

induces an R-linear isomorphism ¢*M => M. Finally, we denote by ® ¥ (R) the subcategory
consisting of finitely generated free R-modules.

For My, Ms € ®(R) with M; being étale the R-module Homp(M;, M2) has a natural
structure as a ¢-module satisfying

(11) PHom (M1, M) (@) (@21, (M) = oary ((m))
hence in particular
(12) Homp (M, My)?~' = Home ) (M, Ms).

Note that with My, My also Hompg (M, Ms) is étale.

13



Remark 4.14. We recall from [KLI, §1.5] that the cohomology groups H:D(M) of the complex

M "% M can be identified with the Yoneda extension groups Extfp(R)(R, M). Indeed, if
S := R[X; ] denotes the twisted polynomial ring satisfying Xr = p(r)X for all r € R, then
we can identify ®(R) with the category S-Mod of (left) S-modules by letting X act via opr on
X. Using the free resolution

(X—1)

0—S5 S R—0

the result follows.

Remark 4.15. Note that ATL C Ay is a faithfully flat ring extension as both rings are discrete
valuation rings and the bigger one is the completion of the previous one.

Proposition 4.16. Base extension induces

(i) an equivalence of categories . )
O (A]) © O (Ay)

(ii) and an isomorphism of Yoneda extension groups

Extl o (A}, M) = Exty s, (AL AL @z M)

(A
for all M € @?t(AE)
Proof. For the first item we imitate the proof of [KLI, Thm. 8.5.3], see also [Kedl5, Lem.
2.4.2,Thm. 2.4.5|: First we will show that for every M € <I>f¢t(ATL) it holds that (AL ®@M)¥=id
M= and hence equality. Applied to M := Hom 4 1 (M, M2) this implies that the base change
L

is fully faithful by the equation (12]). We observe that the analogue of [KLI, Lem. 3.2.6] holds
in our setting and that S in loc. cit. can be chosen to be a finite separable field extension
of the perfect field R = ﬁzo. Thus we may choose S in the analogue of [KLI, Prop. 7.3.6]
(with a = 1, ¢ = 0 and My being our M) as completion of a (possibly infinite) separable field
extension of R. This means in our situation that there exists a closed subgroup H € Hp, such
that (AT)H ®ATL M = @(A)He; for a basis e; invariant under . Now let v = 3 z;e; be an

arbitrary element in
A AH _ AH o - ATVH _ AH,
with z; € A and such that ge('u) = v. The latter condition implies that x; € Afpq=id — o
i.e., v belongs to (M Q4+ (ANHHY (M ®x1 AL) = M, because M is free and one has
L L

Ap n (ADH = (AHHL = ATL To show essential surjectivity one proceeds literally as in the
proof of [KLI, Thm. 8.5.3] adapted to ramified Witt vectors. 3 }

For the second statement choose a quasi-inverse functor F' : @ff(A L) = <I>ff(ATL) with
F(Ap) = ArL Given an extension 0 — M E A —=0 over ®(A) with M €

@?t(AL) first observe that F € @ff(AL), too. Indeed, A;, 2% Ay is a flat ring extension,
whence ¢*E — FE is an isomorphism, if the corresponding outer maps are. The analogous

statement holds over ATL Therefore the sequence 0— F(M) F(E) ATL —0
is exact by Remark because its base extension - being isomorphic to the original extension
- is, by assumption. O
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We denote by fm?(ATL) and DJT?(AL) the full subcategories of imét(ATL) and M(A ),
respectively, consisting of finitely generated free modules over the base ring.

Remark 4.17. Let M be in ?JJT?(AL) and endow N := AL®AT M with the canonical topology
L

with respect to the weak topology of Ar. Then the induced subspace topology of M < N
coincides with the canonical topology with respect to the weak topology of ATL Indeed for free
modules this is obvious while for torsion modules this can be reduced by the elementary divisor
theory to the case M = AE/W?AE ~ AL/WQAL. But the latter spaces are direct product factors

of ATL and AL, respectively, as topological spaces, from wich the claim easily follows.

Proposition 4.18. For T' € Rep,,, (G1) and V € Rep(G L) we have natural isomorphisms

(13) A, ®4t DYT) = D(T) and
(14) B, ®pt D'(V) = D(Vv),

as well as

(15) AT® Al DIT) ~ AT ®,, T and
(16) Bf ®pt DI(V)=Bi@.V,

respectively. In particular, the functor DT(=) : Rep,, (GL) — smet(ATL) is exact.
Moreover, base extension induces equivalences of categories

MY (AL) < MY (Ap),
and hence also an equivalence of categories
m(B]) & MU (B,).

Proof. Note that the base change functor is well-defined - regarding the continuity of the I'f-
action - by Lemma and Remark while D' is well-defined by Remark once
will have been shown. We first show the equivalence of categories for free modules: By Prop.
we already have, for My, M; € Sﬁ?(ATL), an isomorphism

Ml,Mg) = HOH‘@(AL)(AL ®ATL Ml,AL ®ATL Mg).

Taking I'p-invariants gives that the base change functor in question is fully faithful.
In order to show that this base change functor is also essentially surjective, consider an
arbitrary N € fm?(AL). Again by we know that there is a free étale p-module M over

Al whose base change is isomorphic to N. By the fully faithfulness the I'z-action descends to
Mﬁ Since the weak topology of M is compatible with that of N by Remark this action
is again continuous.

3As v € I';, acts semilinearly, one formally has to replace N - N by the linearized isomorphism Ap ®, 4,

lin ~
N 2— N. Upon checking that the source is again a étale p-module with model ATL ®7 it M one sees by the

fully faithfulness on p-modules that the linearized isomorphism descends and induces the desired semi-linear
action.
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To prepare for the proof of the isomorphism we first observe the following fact. The
isomorphism implies that T and D(T) have the same elementary divisors, i.e.: If T =~
@®;_,or/m}or, as or-module (with n; € NuU {co}) then D(T) = LlAL/WZiAL as A z-module.

We shall prove in several steps: First assume that T is finite. Then T is annihilated
by some 7}. We have DT(T) = D(T) and AE/TI‘%AE = Ap/n? Ay so that there is nothing to
prove. Secondly we suppose that T is free and that DT(T) is free over ATL of the same rank
r :=1k,, T'. On the other hand, as the functor D' is always left exact, we obtain the injective
maps

DY(T) /= DY(T) — DY(T /=% T) = D(T/x}T).

for any n > 1. We observe that both sides are isomorphic to (ATL/’ZTZATL)T = (Ap/mPAL)".
Hence the above injective maps are bijections. We deduce that

12

=1E

A; ®pt DY(T) DY(T) /= DY (T)

114

=

lim D(T /7T

D(T)/m.D(T)

& =1

12
el 3

(T

using that the above tensor product means wp-adic completion for finitely generated ATL—
modules. . .
Thirdly let T' € Rep,, ((GL) be arbitrary and M € SJJT?(ATL) such that Ap ®ATL M =~

D(T ) according the equivalence of categories. Without loss of generality we may treat this
isomorphism as an equality. Similarly as in the proof of Prop. and with the same notation
one shows that (AT ®ATL M)?=l = @®!_, ope; for some appropriate ¢-invariant basis ey, ..., e,

of Af ®4t M. Note that r = rk,, T'. Using , it follows that
L
T = (A, T)"™ = (Agy, DT))"™ = (A M)

' '
= (—DA‘pq:lei = (—BoLei = (AJr ®xt M)P=1,
i=1 i=1 £

It shows that the comparison isomorphism restricts to an injective map T — Af ®zt M,
L
which extends to a homomorphism AT ®o, T LH5AT® Al M of free Af-modules of the same
L

rank 7. Further base extension by A gives back the isomorphism . Since A is faithfully flat
over AT the map « was an isomorphism already. By passing to Hp-invariants we obtain an
isomorphism DT(T) = M and see that DT(T) is free of the same rank as 7. Hence the second
case applies and gives for free T and ([14). Finally, let T be just finitely generated over oy,
Write 0 = Tg, & T — Thee — 0 with finite T, and free Tiee. We then have the commutative
exact diagram

0—Ay ®41 DY (Thn) — AL ®41 DY(T)— A, ®41 D (Thee) — Ay ®41 HY(Hp, AT ®,, Thn)

{1

0 —— D(Tsn) D(T) D(Ttree) 0,
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in which we use the first and third step for the vertical isomorphisms. In order to show that the
middle perpendicular arrow is an isomorphism it suffices to prove that H'(H,, AT®,, Tin) = 0.
But since T§, is annihilated by some 7} we have

A" ®o, Tin = A/m} A ®op, Tin = A/m7 A @5, D(Thn),

the last isomorphism by (B]). Thus it suffices to prove the vanishing of H'(H/,, A /77 A), which
is established in Prop. and finishes the proof of the isomorphism (13)).

Note that this base change isomorphism implies the exactness of DT as D is exact by Prop.
and using that the base extension is faithfully flat by Remark .15

For free T the statement (and hence ) is already implicit in the above arguments
while for finite T" the statement coincides with . The general case follows from the previous
ones by exactness of DT and the five lemma as above.

O

Corollary 4.19. For a T in Rep,, ¢(Gr) and V in Repr(GL), the nth cohomology group, for
any n = 0, of the complezes concentrated in degrees 0 and 1

(17) 0— DHT) Lo DHT) —=0 and

(18) 0— D'V)—"1o DHV) >0 and
is isomorphic to H"(Hp,T) and H™"(H, V), respectively.
Proof. The integral result reduces, by (L3), Remark [£.14] and Prop. to Corollary

Since inverting 77, is exact and commutes with taking cohomology [NSW| Prop. 2.7.11], the
second statement follows. O

Set AT := ATn A and B := AT[-1] as well as A} := (AT)". Note that B} := (Bf)/r ¢
Bf < BT, For V € Rep;(GL) we define DY (V) := (Bf @ V)#£. The categories Sﬁét(AE) and
fmét(BTL) are defined analogously as in Definition

We now introduce the Robba ring R = Ri = R (B) of the open unit disk B/, where
L € K < C, denotes a complete intermediate field. The ring of K-valued global holomorphic
functions (’)K(B)E] on B is the Fréchet algebra of all power series in the variable Z with
coefficients in K which converge on the open unit disk B(C,). The Fréchet topology on Ok (B)
is given by the family of norms

|ZciZi|r := max |¢; |1 forO<r<1.
(2

120

In the commutative integral domain O (B) we have the multiplicative subset ZN = {Z7 : j €
N}, so that we may form the corresponding localization Ok (B),n. Each norm | |, extends to
this localization O (B) n by setting | >, ¢iZ%|, := max; |e;|r'.

The Robba ring R 2 Ok (B) is constructed as follows. For any s > 0, resp. any 0 < r < s,
in pQ@ let Bo,s], resp. By, ), denote the affinoid disk around 0 of radius s, resp. the affinoid
annulus of inner radius r and outer radius s, over K. For I = [0, s| or [r, s| we denote by

Rl .= RL(B) := Ok (Bj)

*In the notation from [Co2} §1.2] this is the ring R™*.
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the affinoid K-algebra of B;. The Fréchet algebra RI™D) := lim RI™s] is the algebra of
(infinite) Laurent series in the variable Z with coefficients in K which converge on the half-open
annulus By, 1) := (J,.,-1 B[s- The Banach algebra RI%5] is the completion of O (B) with
respect to the norm | |. The Banach algebra R is the completion of O (B) v with respect
to the norm | |5 := max(| |, | |s). It follows that the Fréchet algebra RI[™) is the completion
of Ok (B) ,n in the locally convex topology defined by the family of norms (| | s)r<s<1. Finally,
the Robba ring is R =y, -4 R,

7,8

Remark 4.20. There is also the following more concrete description for AE i terms of
Laurent series in wrr :

ATL = {F(wrr) € AL|F(Z) converges on p < |Z| < 1 for some pe (0,1)} € Ap.

Indeed this follows from the analogue of [ChCol, Lem. II.2.2] upon noting that the latter holds
with and without the integrality condition: "rvp(an) +n = 0 for all n € Z” (for r € R\R) in
the notation of that article. In particular we obtain canonical embeddings Al c BTL — Rp,
of rings.

Definition 4.21. V' in Rep(GL) is called overconvergent, if dimgy DY (V) = dimp V. We

L
denote by Rep}E(GL) € Rep (GL) the full subcategory of overconvergent representations.
Remark 4.22. We always have dimgt DY (V) < dimp V. If V € Rep.(GL) is overconvergent
L

then we have the natural isomorphism

(19) B ®gy DY(V) S D(V).

Proof. Since By, and BTL are fields this is immediate from [FOL Thm. 2.13]. O]
Remark 4.23. In [Bel6, §10] Berger uses the following condition to define overconvergence
of V: There exists a By-basis x1,...,xn of D(V) such that M := @]_, Bzxi is a (pr,I'p)-
module over BTL. This then tmplies a natural isomorphism

(20) B, ®gt M = D(V).

L
Lemma 4.24. V in Rep;(Gy) is overconvergent if and only if V' satisfies the above condition
of Berger. In this case M = DY(V).

Proof. If V is overconvergent, we can take a basis within M := DY(V). Conversely let V'
satisfy Berger’s condition, i.e. we have the isomorphism (20). One easily checks by faithfully
flat descent that with D(V') also M is étale. By [FX], Prop. 1.5 (a)]E] we obtain the identity

=1
V= (BT ®gt M )go induced from the comparison isomorphism
L
(21) B,V =B®s, D(V)§B®BTL M.

We shall prove that M < DT(V) = (B ®;, V)¢ as then M = DY(V) by dimension reasons.
To this aim we may write a basis v1,...,v, of V over L as v; = >, ¢j;x; with ¢;5 € Bf. Then
implies that the matrix C' = (¢;;) belongs to M,,(Bf) n GL,(B) = GL,(B). Thus M is
contained in BY ®; V and - as subspace of D(V) - also H-invariant, whence the claim. [

"Note that there D actually belongs to the category of (¢, Gr)-modules over B@p ® F instead of over B@p
in their notation.
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Remark 4.25. Note that the imperfect version of Prop. 15 not true: the base change
Dﬁét(BD — IMM(By) is not essentially surjective in general, whence not an equivalence of
categories, by [FX|. By definition, ils essential image consists of overconvergent (pr,I'r)-
modules, i.e., whose corresponding Galois representations are overconvergent.

Lemma 4.26. Assume that V € Rep; (Gp) is overconvergent. Then there is natural isomor-
phism 3 3
B! ®p1 DY(V) = DY(V).

Proof. By construction we have a natural map ]~3TL ®gt DT (V) - D(V), whose base change
~ L
to By, y ~ 3 3
B, ®51 D'(V) > BL®g1 DI(V) = D(V)
L L

arises also as the base change of the isomorphism , whence is an isomorphism itself. Here
we have used the (base change of the) isomorphisms , . By faithfully flatness the original
map is an isomorphism, too. O

5 The perfect Robba ring

Again let K be any perfectoid field containing L and r > 0. For 0 < s < r, let RI57] (K) be
the completion of WT(Kb)L[%] with respect to the norm max{| |s,| |}, and put
R(K) = lim RF(K)

o
s€(0,r]

equipped with the Fréchet topology. Let R(K) = lim R"(K), equipped with the locally

convex direct limit topology (LF topology). We set R = R(C,) and Ry := R(Ls). For
geometric interpretation of these definitions, see [Ede]. As in [KLI, Thm. 9.2.15] we have

RIL =R,

Recall from section [2] the embedding or[[Z]] — W (E)r. As we will explain in section 8] the
image wrr of the variable Z already lies in W(I:go) L, so that we actually have an embedding
oL[[Z]] = W(L%,)r. Similarly as in [KLI, Def. 4.3.1] for the cyclotomic situation one shows
that the latter embedding extends to a I';- and @p-equivariant topological monomorphism
Ry — R, see also [W], Konstruktion 1.3.27] in the Lubin-Tate setting.

Let R be either Ry, or Rp. A (¢r,I'z)-module over R is a finitely generated free R-
module M equipped with commuting semilinear actions of ¢ys and I'p, such that the action
is continuous for the LF topology and such that the semi-linear map @p; : M — M induces
an isomorphism 4,05\"4” : RQ®Rpn M =, M. Such M is called étale, if there exists an étale

(¢r,I'r)-module N over AE and ATL (see before Definition , such that Ry, ®ATL Nx>M
and Ry ®z+ N = M, respectively.
L

By M(R) and M (R) we denote the category of (o, T'r)-modules and étale (¢r,T'z)-
modules over R, respectively.

We call the topologies on ATL and A, which make the inclusions ATL CATcR topological
embeddings, the LF-topologies.
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Lemma 5.1. For M € smjf(ATL) the I'p-aclion is also continuous with respect to the canonical

, ; AT
topology with respect to the LF-topology of A; .

Proof. The proof in fact works in the following generality: Suppose that AT is equipped with
an og-linear ring topology which induces the mp-adic topology on or. Consider on AE the
corresponding induced topology. We claim that then the I'p-action on M is continuous with
respect to the corresponding canonical topology. By Prop.|6.1{we may choose T' € RepOL,f(GL)
such that M =~ DT(T). Then we have a homeomorphism AT®0L T~ AT@ATL M with respect to

the canonical topology by (as any R-module homomorphism of finitely generated modules
is continuous with respect to the canonical topology with regard to any topological ring R).
Since o, € A is a topological embedding with respect to the wp-adic and the given topology,
respectively, Lemmaimplies that G, is acting continuously on AT® Al M, whence I'f, acts

- Hy,
continuously on M = (AT @zt M ) with respect to the induced topology as subspace of the
L

previous module. Since all involved modules are free and hence carry the product topologies
and since ATL c A' is a topological embedding, it is clear that the latter topology of M
coincides with its canonical topology. O

We define the functor

il
Drig

(=) : Repr(GL) — M(Ry)
Vi— (R®y V)i,

where the fact, that I'; acts continuously on the image with respect to the LF-topology can
be seen as follows, once we have shown the next lemma. Indeed, implies that for any

G -stable oy -lattice T of V we also have an isomorphism R, @41 f)T(T) = f):ig. Now again
L
Lemma [4.5| applies to conclude the claim.

Lemma 5.2. The canonical map

V)

(22) Ri®g D'(V) = DI,
is an isomorphism and the functor Diig(—) . Rep,(GL) — M(Ry) is exact. Moreover, we
have a comparison isomorphism

(23) R®z, D}iy(V) = R @0, V.

Proof. The comparison isomorphism in the proof of (an analogue of) [KP, Thm. 2.13| implies
the comparison isomorphism

R®gz, Dliy(V) = R®,, V

rig

together with the identity V = (R ®r, D! (V))#?r=1. On the other hand the comparison

rig

isomorphism induces by base change an isomorphism
7?,@32 DT(V) i) 7§’®0L V
i

rig

the exactness of the functor Df(—) by Prop. 4.6 O

Taking H-invariants gives the first claim. The exactness of the functor D!, (=) follows from
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Let R be By, BTL, R, Br, BTL, Ry, and let correspondingly R™ be Ay, ATL, ATL7 Ap,
AE, ATL We denote by ®(R)% the essential image of the base change functor R ®pint — :
S (R — @S (R) (sic!).

Proposition 5.3. Base change induces an equivalence of categories

B(B])" o B(R,)"
and an isomorphism of Yoneda extension groups

1 T ~ 1 > >
Bty 1) (BL, M) = Bxty o\ (Rp, Ry ®g; M)

for all M € @(Bz)ét.

Proof. The first claim is an analogue of [KLI, Thm. 8.5.6]. The second claim follows as in the
proof of Prop. using the fact that by Lemma 8.6.3 in loc. cit. any extension of étale
¢-modules over Ry, is again étale. Note that 7~€L/]§TL is a faithfully flat ring extension, BTL
being a field. O

Corollary 5.4. If V belongs to Repr(GL), the following complex concentrated in degrees 0
and 1 is acyclic

(24) 0— Dl (V)/Di(v) -

rig

DL, (V)/DH (V) —0.

In particular, we have that the nth cohomology groups of the complex concentrated in degrees
0 and 1

(V) —= D]

T
0—D rig

rig

(V)—0
are isomorphic to H"(Hp, V') for n > 0.

Proof. Compare with [KLI, Thm. 8.6.4] and its proof (Note that the authors meant to cite
Thm. 8.5.12 (taking c=0, d=1) instead of Thm. 6.2.9 - a reference which just does not exist
within that book). Using the interpretation of the H. ; as Hom- and Ext!-groups, respectively,
the assertion is immediate from Prop. The last statement now follows from Corollary

4.19 O
Proposition 5.5. Base extension gives rise to an equivalence of categories

M (B]) o M (Ry).
Proof. |[FX| Prop. 1.6]. O

Lemma 5.6. (i) BTL C R are Bézout domains and the strong hypothesis in the sense
of [Ked08, Hypothesis 1.4.1] holds, i.e., for any n x n matriz A over ATL the map

(R/Bi)m 228, (R /By is bijective.

Proof. [Ked08, Prop. 1.2.6]. O
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Proposition 5.7. If V belongs to RepTL(GL), the following complex concentrated in degrees 0
and 1 s acyclic

(25) 0—> DL, (V)/D'(V) —*= D}, (V)/D}(V) 0,
where Diig(V) =Ry ®BTL DY (V). In particular, the complexes
i vl pi w1
0— D}, (V) D, (V) —0 and 0— DY(V) DY (V) —0

(concentrated in degrees O and 1) have the same cohomology groups of for n = 0.

Proof. This follows from the strong hypothesis in Lemma [5.6] as the Frobenius endomorphism
on M e M (B ) is of the form Ay, by definition. O

Lemma 5.8. Base change induces fully faithful embeddings @(ATL)ét c ®(AL)% and @(BTL)ét c
®(Bp)?.

p=id
Proof. As in the proof of Prop. |4.16| this reduces to checking that (AL @t M) c M.
L
By that proposition we know that

(Ar0a 1) < (Rr@yy 1)

Since Ay n AE = ATL within Az, by definition, the claim follows for the integral version,
whence also for the other one by tensoring the integral embedding with L over oy.. O

Remark 5.9. Note that H?(HL,V) = HY(Hp,V) and HTI(HL,V) C HY(Hp,V). For the
latter relation use the previous lemma, which implies that an extension which splits after base
change already splits itself, together with Corollary and Remark [{.1]] In general the
inclusion for H' is strict as follows indirectly from [FX]. Indeed, otherwise the complex

-1

(26) 0— D(V)/D'(V) ——= D(V)/D}(V) —0,

would be always acyclic, which would imply by the same observation as in Prop. below
together with [SV23, Thm. 5.2.10(i)] that H%(GL,V) = HY(GL,V) in contrast to Remark
5.2.13 in (loc. cit.).

6 The web of eqivalences

We summarize the various equivalences of categories, for which we only sketch proofs or
indicate analogue results whose proofs can be transferred to our setting.

Proposition 6.1. The following categories are equivalent:
(i) Repo, (GL),

(i) ML),

(iii) M (AL) and
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(iv) me(Al).

The equivalences from (ii) and (iv) to (iii) are induced by base change.
Proof. This can be proved in the same way as in [Ked15, Thm. 2.3.5], although it seems to be
only a sketch. Another way is to check that the very detailed proof for the equivalence between
(i) and (ii) in [GAL] almost literally carries over to a proof for the equivalence between (i)

and (iii). Alternatively, this is a consequence of Prop. 8.2] by [KLII, Thm. 5.4.6]. See also [KI].
For the equivalence between (iii) and (iv) consider the 2-commutative diagram

faithfully flat base change

met met )

\/

R‘epOL GL

which is induced by the isomorphism and immediately implies (essential) surjectivity on
objects and morphisms while the faithfulness follows from faithfully flat base change. O

Corollary 6.2. The following categories are equivalent:

The equivalences from (ii) and (iv) to (iii) are induced by base change.
Proof. This follows from Propositions and by inverting .. O

Proposition 6.3. The categories in Corollary are - wvia base change from (iv) - also
equivalent to

(v) M (Ry).

Proof. By definition base change is essentially surjective and it is well-defined - regarding
the continuity of the I'p-action - by Lemma and Lemma Since for étale pr-modules
we know fully faithfulness already, taking I'z-invariants gives fully faithfulness for (pr,I'r)-
modules, too. [ O

®Regarding ¢ r-modules cf. [KLI, the equivalence between (e) and (f) of Thm. 8.5.6], see also Thm. 8.5.3 in
(loc. cit.), the equivalence (d) to (e).
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Altogether we may visualize the relations between the various categories by the following
diagram:

M (R ) (B M (BL)

Rep§"(GL) — Rep! (G1) Rep.(Gr)

Here all arrows represent functors which are fully faithful, i.e., embeddings of categories.
Arrows without label denote base change functors. Under them the functors D, D, D, DT, Diig,
and ﬁiz g are compatible. The arrows => represent equivalences of categories, while the arrows
—> represent embeddings which are not essentially surjective in general. We recall that the

quasi-inverse functors are given as follows
V(M) =B@s, M), V(M) =B®g, M)*", VI(M) =B @y M)*,
VI(M) =BT @1 M)*~!, V! (M) = (R®z, M)~ and V| (M) = (R @r, M)¢~".
L

[EE

7 Cohomology: Herr complexes

The aim of this section is to compare the Herr complexes of the various (pr,I'r)-modules
attached to a given Galois representation.

We fix some open subgroup U € T'y, and let L/ = LY.

Let My be a complete linearly topologised or-module with continuous U-action and with
continuous U-equivariant endomorphism f. We define

T =Tt u(Mp) := cone (C'(U, Moy) Wl c*(U, MO)) [—1]

"By [FX| Prop. 1.5 (a)] the third formula holds while by (c) there is an equivalence of categories.
8For the fourth formula compare with the proof of Propositon omitting the index L in ATL, etc. to
conclude that (B®g: M)*=" = (BT @, M)*=".
L L

Since V(M) < VTTig(M) c VI (RL®r, M) for some model My over BTL of M we obtain the last formula.

= Yrig

24



the mapping fibre of C*(U, f — 1). The importance of this generalized Herr-complex is given
by the fact that it computes Galois cohomology when applied to My = D(V') and f = ¢p(vy :

Theorem 7.1. Let V' be in Rep; (Gr) For D(V) the corresponding (¢r,,T'1)-module over By,
we have canonical isomorphisms

(27) h* = hiy : H(L, V) — B (T,u(D(V)))
which are functorial in V and compatible with restriction and corestriction.

Proof. To this aim let T' be a Gp-stable lattice of V. In [Ku, Thm. 5.1.11.], [KV] Thm. 5.1.11.]
it is shown that the cohomology groups of 7., 7(D(T')) are canonically isomorphic to H (L', T))

for all 4 > 0, whence the cohomology groups of %U(D(T))[%] are canonically isomorphic to

HY(L',V) for all i > 0. O

Note that we obtain a decomposition U =~ A x U’ with a subgroup U’ =~ Zg of U and
A the torsion subgroup of U. We now fix topological generators ~vi,...v4 of U’ and we set
A := A(U"). By [Laz, Thm. I1.2.2.6] the U’-actions extends to continuous A-action and one has

Homp 5(A, My) = Homy (A, My). Consider the (homological) complexes K,(v;) := [A RN
A] concentrated in degrees 1 and 0 and define the Koszul complexes
, d
K. =K := K.(7) = X) K.(7;) and
A

i=1
K*(Mp) :=Kp(Mp) := Hom} (K., My) = Hom$ (K., A) @x My = K*(A) @5 Mo.

Following [CoNil §4.2] and [SV23l (169)] we obtain a quasi-isomorphism

(28) K (Mo) = C*(U', M)

inducing the quasi-isomorphism

(29) Kyu1(Mo) = Ty (M),

where we denote by Ky y7(My) := cone (K'(MO) ECN K'(Mo)) [—1] the mapping fibre of
K*(f). More generally, by [SV23, Lem. A.0.1] we obtain a canonical quasi-isomorphism

(30) Ky (MS) = Tpu(M),

i.e., by Theorem we also have canonical isomorphisms

(31) h* = hiyy  H¥ (L', V) =5 h* (K (D(V)2)).

The next proposition extends this result to D(V), D(V) and D!

g

(V') instead of D(V).
Proposition 7.2. If V' belongs to Repr(Gr), the canonical inclusions of Herr complezes

2 (DY(V)®) € K (D] (V)2),

5.0 (D'(V)2) € K2 17(D(V)?) and

s (D(V)2) € K2 1n(D(V)?)
are quasi-isomorphisms and their cohomology groups are canonically isomorphic to H'(L', V)
for all i = 0.
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Proof. Forming Koszul complexes with regard to U’ we obtain the following diagram of (dou-
ble) complexes with exact columns

in which the bottom line is an isomorphism of complexes by as the action of A commutes
with (. Hence, going over to total complexes gives an exact sequence

0= Ky (D(V)?) — Kg y(D(V)?) = K, (D(V)/D(V)?) -0,

in which K;yU((f)(V)/D(V))A) is acyclic. Thus we have shown the statement regarding the
last inclusion. The other two cases are dealt with similarly, now using and combined
with . It follows in particular that all six Koszul complexes in the statement are quasi-
isomorphic. Therefore the second part of the assertion follows from (31J). O

In accordance with diagram at the end of subsection [6] we may visualize the relations
between the various Herr complexes by the following diagram:

K2 (D] (V)2) === K}, 1;1(D}(V)*) =—== K, ;,(D(V)?)

K2 (D), (V)3) e=—==K 1, (D"(V)*)
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Here all arrows represent injective maps of complexes, among which the arrows => repre-
sent quasi-isomorphisms, while the arrows —> need not induce isomorphisms on cohomology,
in general. The interrupted arrow — —> means a map in the derived category while < — —>
means a quasi-isomorphism in the derived category. By [SV23], Lem. A.0.1] we have a analogous
diagram for T,,y(?(V)) with ? € {D,D, DT, DY, DI, DI, 1.

Remark 7.3. The image of
W (Tou (DL (V))) = WK (DL, (V)2)) = (K (DN (V)™)) = B (T,u(DN(V)))

in H'(L', V) is independent of the composite (= path) in above diagram.

8 Weakly decompleting towers

Kedlaya and Liu’s developed in [KLII, §5] the concept of perfectoid towers and studied their
properties in an axiomatic way. The aim of this section is to show that the Lubin-Tate ex-
tensions considered in this article form a weakly decompleting, but not a decompleting tower,
properties which we will recall or refer to in the course of this section. Moreover, we have to
show that the aziomatic period rings coincide with those introduced earlier.

In the sense of Def. 5.1.1 in (loc. cit.) the sequence ¥ = (¥, : (Lp,0r,,) = (Ln41,0L,4:1))neo
forms a finite étale tower over (L,or) or X := Spa(L,or), which is perfectoid as Le is by
[GAT), Prop. 1.4.12][7)

Therefore we can use the perfectoid correspondence [KLII, Thm. 3.3.8| to associate with
(Loo, o;_ ) the pair

(R, Ry) 1= (1,05, ).

Now we recall the variety of period rings, which Kedlaya and Liu attach to the tower, in our
notation, starting with

Perfect period rings:

Ay = AL =W(L)r,
A‘—f/ = W( )L - AJII}T = AE’T = 2 7TL[(13,L] c W ) | |7TLH331|T KimaceN O}
i=0
Al = U Al =
r>0

Imperfect period rings:

To introduce these we first recall the map O : W(o?c )L = 0C, Do Toplxi] — Zﬂil‘?,
which extends to a map O : AJr * > C, for all s > 1; for arbitrary r > 0 and n > —log, r the

9Tn the notation of I[KLII: E=L,w=nr,h=r,k:=o0r/(rr) =Fq,ie. g =p". Agn := Ly, A;n ‘=or,,
X := Spa(L,o0r) with the obvious transition maps which are finite étale.

(4‘1’7 4:*1—1) = li_H)ln(A‘I’:nﬁ Ag,n) = (L:/ ) OL\‘c)

(Ap, AY) := (Aw, AG) "™ 7% = (L, 01 )
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composite ATI}T RSN Ai&}l 9, C, is well defined and continuous as it is easy to check. It is a

homomorphism of o -algebras by [GAL, Lem. 1.4.18].

Following [KLII, §5] we set Ay = {z € AEﬂ@((pq*”(x)) € Ly foralln > —log,r},
ATI, = U,~0 AT’ , its completion Ay := (A‘TII)MTL*‘“I""’7 and residue field Ry := Ay/(7r) =
(AL)/(x1) € Ry, Ry := Ry Ry )

Note that wrr = {[t(t)]} € A := W(O%I‘)L c ATI;T for all » > 0 (in the notation of
I[GAL]). [GALL Lem. 2.1.12] shows

O(pg"(wrr)) = O({lpg" (@)1}) = lim[r]]o(2in) = 2n € Ln,

Z—)w
where ¢t = (z,)n>1 is a fixed generator of the Tate module Ty of the formal Lubin-Tate group
and w = «(t) € W(o?cp)L is the reduction of wryr modulo 7y satisfying with E; = k((w)).
Therefore wrr belongs to AJr =Agyn AJr Then it is clear that first AJr = OL[[wLT]] c AJr

and by the continuity of © o ¢ even AJr c AJr holds. Since wLT € AT ? by [Stel Lem.
3.10] (in analogy with [ChColl, Cor. II.1. 5]) and @ op," is a ring homomorphlsm, it follows

— T? _1
that w € Ay * and or[[wrr]][;5] < Al

Lemma 8.1. We have R$ = Ez and Ry = E

Proof. From the above it follows that E;, € Ry, whence E]zerf c Rﬁ,ﬂf c R\p = f/boo the latter
being perfect. Since E’zerf — L%, by [GALL Prop. 1.4.17] we conclude that

(32) R@erf is dense in Ry.

By [KLII, Lem. 5.2.2] have the inclusion

RE € {z € Rylo = (2,) with 7, € oz, /(1) for n>> 1} 2 EF = k[[w]]

where the equality (*) follows from work of Wintenberger as recalled in [GALL Prop. 1.4.29].
Since Ef € R§, by its construction in (loc. cit.), we conclude that Ry, = EJ.

Since each element of Ry is of the form —% with a € Ry, and m > 0 by [GAL, Lem.
1.4.6]@, we conclude that Ry = Ej. O

Thus for each r > 0 such that wZ} € ATI}T, reduction modulo 7y induces a surjection

ATI}T — Ry. Recall that W is called weakly decompleting, if
(i) Rperf is dense in Ry.

(ii) for some r > 0 we have a strict surjection AJ\&;T — Ry induced by the reduction modulo
7, for the norms | — | defined by ||, := sup{|m} [l;}} for & = 3,07} [2:], and | — |I.

We recall from [FE, Prop. 1.4.3.] or [KLI, Prop. 5.1.2 (a)] that | — |, is multiplicative.

Proposition 8.2. The above tower ¥ is weakly decompleting.

“For o € Ry there exist m > 0 such that |w™al, < 1, ie., w™a € RY.
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Proof. Since gives (i), only (i7) is missing: Since wrr has [w] in degree zero of its Te-
ichmiiller series, we may and do choose r > 0 such that |wrr — [w]|; < |w[]. Then |wrr|, =
max{|wrr — [w]|r, [w]'} = |w|l. Consider the quotient norm |[b]") = infaeA:};T,azb mod g |l

Now let b =3} _ . a,w" € Ry = k((w)) with an, # 0. Lift each a,, # 0 to a, € o and set
dn = 0 otherwise. Then, for the lift x := > anpwip of b we have by the multiplicativity of
| — |- that

n=ngo
117 < Jly = (Jwrrl)™ = (lwl)™ = [b];.

Since, the other inequality |b|; < || giving by continuity is clear, the claim follows. O

Proposition 8.3. A; = Ay.

Proof. Both rings have the same reduction modulo 7. And using that the latter element is
not a zero-divisor in any of these rings we conclude inductively, that Ap/7}A = Ay /1Ay
for all n. Taking projective limits gives the result. O

. At
Proposition 8.4. A; = A,,.

Proof. By [KLIL, Lem. 5.2.10] we have that Al, = Al A Ry. On the other hand A} =
(AT A AL = ~ATL N A is contained in Ry by Remark , whence ATL c ATI, while the
inclusion ATI, cATnAL = ATL follows from Prop. O

In Definition 5.6.1 in (loc. cit.) they define the property decompleting for a tower ¥, which
we are not going to recall here as it is rather technical. The cyclotomic tower over @), is of this
kind for instance. If our ¥ would be decompleting, the machinery of (loc. cit.), in particular
Theorems 5.7.3/4, adapted to the Lubin-Tate setting would imply that all the categories at
the end of section [6] are equivalent, which contradicts Remark [4.25]
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