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Abstract. This paper contains a complete proof of Fukaya’s and Kato’s ε-iso-
morphism conjecture in [23] for invertible Λ-modules (the case of V = V0(r) where
V0 is unramified of dimension 1). Our results rely heavily on Kato’s unpublished
proof of (commutative) ε-isomorphisms for one dimensional representations of GQp
in [27], but apart from fixing some sign-ambiguities in (loc. cit.) we use the theory
of (φ,Γ)-modules instead of syntomic cohomology. Also, for the convenience of the
reader we give a slight modification or rather reformulation of it in the language of
[23] and extend it to the (slightly non-commutative) semi-global setting. Finally we
discuss some direct applications concerning the Iwasawa theory of CM elliptic curves,
in particular the local Iwasawa Main Conjecture for CM elliptic curves E over the ex-
tension of Qp which trivialises the p-power division points E(p) of E. In this sense the
paper is complimentary to the joint work [7] on noncommutative Main Conjectures
for CM elliptic curves.

1. Introduction

The significance of (local) ε-factors à la Deligne and Tate or more general of the (con-
jectural) ε-isomorphism suggested by Fukaya and Kato in [23, §3] is at least twofold:
First of all they are important ingredients to obtain a precise functional equation for
L-functions or more generally for (conjectural) ζ-isomorphism (loc. cit., §2) of motives
in the context of equivariant or non-commutative Tamagawa number conjectures, see
e.g. Theorem 4.1; secondly they are essential in interpolation formulae of (actual) p-
adic L-functions and for the relation between ζ-isomorphisms and (conjectural, not
necessarily commutative) p-adic L-functions as discussed in (loc. cit., §4). Of course
the two occurrences are closely related, for a survey on these ideas see also [39].

Our motivation for writing this article stems from one of the main results, theorem
8.4, of [12] (see Theorem 4.2) describing under which conditions the validity of a (non-
commutative) Iwasawa main conjecture for a critical (ordinary at p) motive M over
some p-adic Lie extension F∞ of Q implies parts of the Equivariant Tamagawa Number
Conjecture (ETNC) by Burns and Flach for M with respect to a finite Galois extension
F ⊆ F∞ of Q. Due to the second above mentioned meaning it requires among others
the existence of an ε-isomorphism

(1.1) εp,Zp[G(F/Q)](T̂F ) : 1Zp[GF/Q] → dZp[GF/Q](RΓ(Qp, T̂F ))dZp[GF/Q](T̂F )
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in the sense of [23, Conj. 3.4.3], where the Iwasawa module T̂F is related to the ordinary
condition of M, e.g. for an (ordinary) elliptic curve E it arises from the formal group
part of the usual Tate module of E. Unfortunately, very little is known about the
existence of such ε-isomorphism in general. To the knowledge of the author it is not
even contained in the literature for T̂F attached to a CM -elliptic curve E and the
trivialising extension F∞ := F (E(p)), where E(p) denotes group of p-power division
points of E. Well, in principle a rough sketch of a proof is contained in Kato’s work
[27], which unfortunately has never been published sofar. Moreover there were still
some sign-ambiguities which we fix in this paper, in particular it turns out that one has
to take −LK,ε−1 , i.e., −1 times the classical Coleman map (2.6), in the construction of
the epsilon isomorphism (2.17).

Recently, Benois and Berger [1] have proved the conjecture CEP (L/K, V ) for arbitrary
crystalline representations V of GK , where K is an unramified extension of Qp and L
a finite subextension of K∞ = K(µ(p)) over K. Although they mention in their intro-
duction “Les même arguments, avec un peu plus de calculs, permettent de démontrer
la conjecture CEP (L/K, V ) pour toute extension L/K contenue dans Qab

p . Cette pe-
tite généralisation est importante pour la version équivariante des conjectures de Bloch
et Kato”, they leave it as an “exercise” to the reader. In the special case V = Qp(r),
r ∈ Z, Burns and Flach [10] prove a local ETNC using global ingredients in a semi-local
setting, while in the above example we need it for V = Qp(η)(r), where η denotes an un-
ramified character. Also we would like to stress that the existence of the ε-isomorphisms
à la Fukaya and Kato is a slightly finer statement then the CEP (L/K, V )-conjecture
or the result of Burns and Flach, because the former one states that a certain family
of certain precisely defined units of integral group algebras of finite groups in a certain
tower can be interpolated by a unit in the corresponding Iwasawa algebra while in the
latter ones “only” a family of lattices is “interpolated” by one over the Iwasawa algebra.

The aim of this article, which also might hopefully serve as a survey into the subject,
is to provide detailed and complete arguments for the existence of the ε-isomorphism

εΛ(T(T )) : 1
Λ̃
→ dΛ(RΓ(Qp,T(T )))

Λ̃
dΛ(T(T ))

Λ̃

where Λ = Λ(G) is the Iwasawa algebra of G = G(K∞/Qp) for any (possibly infinite)
unramified extension K of Qp, T = Zp(η)(r) and RΓ(Qp,T(T )) denotes the complex
calculating local Galois cohomology of T(T ), the usual Iwasawa theoretic deformation
of T (see (2.28)). Furthermore, for an associative ring R with one, dR denotes the

determinant functor with 1R = dR(0) (see Appendix B) while Λ̃ is defined in (2.2).
We are mainly interested in the case, where G ∼= Z2

p × ∆ for a finite group ∆ - such
extensions arise for example by adjoining the p-power division points of a CM ellip-
tic curve to the base field as above. This corresponds to a (generalised) conjecture
CIW (K∞/Qp) (in the notation of Benois and Berger) originally due to Perrin-Riou. It
is the first example of an ε-isomorphism associated with a two dimensional p-adic Lie
group extension. Following Kato’s approach we construct a universal ε-isomorphism
εΛ(T(Zp(1))), from which all the others arise by suitable twists and descent. But while
Kato constructs it first over cyclotomic Zp-extensions and then takes limits, here we
construct it directly over (Z2

p×∆)-extensions (and then take limits). To show that they
satisfy the right interpolation property with respect to Artin(=Dirichlet) characters of
G, we use the theory of (φ,Γ)-modules and Berger’s explicit formulae in [4] instead of
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the much more involved syntomic cohomology and Kato’s reciprocity laws for formal
groups. In contrast to Kato’s unpublished preprint, in which he uses the language of
étale sheaves and cohomology, we prefer Galois cohomology as used also in [23]. In order
to work out in detail Kato’s reduction argument in [27] to the case of trivial η we have
to show a certain twist compatibility of Perrin-Riou’s exponential map/Coleman map
for T versus Zp(r) over a trivialising extension K∞ for η, see Lemma A.4. Going over to
semi-local settings we obtain the first ε-isomorphism over a (slightly) non-commutative
ring. In a forthcoming paper [29], using the techniques of [1] and [30], we are going
to extend these results to the case of arbitrary crystalline representations for the same
tower of local fields as above. Of course it would be most desireable to extend the exis-
tence of ε-isomorphism also to non-abelian local extensions, but which seems to require
completely new ideas and to be out of reach at present (see [25] for some examples).
Some evidence in that direction has been provided by Fukaya (unpublished).

Combined with Yasuda’s work [43] concerning ε-isomorphism for l 6= p, we also obtain
in principal a purely local proof of the above mentioned result by Burns and Flach for
V = Qp(r).

Acknowledgements: I am grateful to Denis Benois and Laurent Berger for a kind ex-
planation of their work in [1]. Also I would like to thank Matthias Flach and Adebisi
Agboola for helpful discussions. I am indebted to Dmitriy Izychev and Ulrich Schmitt
for pointing out a couple of typos. Finally, I am grateful to the anonymous referee for
valuable suggestions which helped to improve the article.

2. Kato’s proof for one dimensional representations

Let p be a prime and K be any unramified (possibly infinite) Galois extension of Qp.
We set Kn := K(µpn) for 0 ≤ n ≤ ∞ and

Γ = G(Qp,∞/Qp) ∼= Z×p .

Recall that the maximal unramified extension Qur
p and the maximal abelian extension

Qab
p of Qp are given as Qp(µ(p′)) and Qp(µ) = Qur

p (µ(p)), where µ(p) and µ(p′) denote
the p-primary and prime-to-p part of µ, the group of all roots of unity, respectively. In
particular, we have the canonical decomposition

G(Qab
p /Qp) = G(Qur

p /Qp)×G(Qp,∞/Qp)

= Ẑ× Z×p ,

under which per definitionem τp corresponds to (φ, 1) (and by abuse of notation also
to its image in G below), where φ := Frobp denotes the arithmetic Frobenius x 7→ xp.
We put

H := HK := G(K/Qp) = < φ >

and

G := G(K∞/Qp) ∼= H × Γ.

Assume that G is a p-adic Lie-group, i.e., H is the product of a finite abelian group of
order prime to p with a (not necessarily strict) quotient of Zp. By

Λ := Λ(G) := Zp[[G]]
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we denote as usual the Iwasawa algebra of G. Also we write Ẑurp for the ring of Witt

vectors W (Fp) with its natural action by φ and we set

(2.2) Λ̃ = Λ⊗̂ZpẐurp = Ẑurp [[G]].

By
Tun := Λ](1)

we denote the free Λ-module of rank one with the following Galois action

χun : GQp → Λ×, σ 7→ [Tun, σ] := σ̄−1κ(σ),

where ¯ : GQp � G is the natural projection map and κ : GQp � Z×p is the p-cyclotomic
character. Furthermore, we write

U(K∞) := lim←−
L,i

O×L/p
i

for the Λ-module of local units, where L and i run through the finite subextensions of
K∞/Qp and the natural numbers, respectively, and the transition maps are induced by
the norm. Finally we fix once and for all a Zp-basis ε = (εn)n of Zp(1) = lim←−

n

µpn .

Setting Λa = {x ∈ Λ̃|(1⊗ φ)(x) = (a⊗ 1) · x} for a ∈ Λ× = K1(Λ) we obtain

Proposition 2.1. For a = [Tun, τp]−1 = τp there is a canonical isomorphism

Λa ∼=


OK [[Γ]], if H is finite;

lim←−
Qp⊆K′⊆Kfinite, Tr

OK′ [[Γ]], if H is infinite.

as Λ-modules and all modules are free of rank one.

Proof. We first assume H =< τp > to be finite of order d and replace Γ by a finite

quotient without changing the notation. Then any element x ∈ Λ̃ = Ẑurp [Γ][H] can be

uniquely written as
∑d−1

i=0 aiτ
i
p with ai ∈ Ẑurp [Γ] and φ acts coefficient wise on the latter

elements. The calculation

(1⊗ φ)(x)− (τp ⊗ 1)x =

d−1∑
i=0

φ(ai)τ
i
p −

d−1∑
i=0

aiτ
i+1
p

=
d−1∑
i=0

(
φ(ai)− ai−1

)
τ ip

with a−1 := ad−1 shows that x belongs to Λa if and only if φd(ai) = ai and φ−i(a0) = ai

for all i. As Ẑurp
φd=1

= OK , the canonical map

Λa ∼= OK [Γ],
∑

aiτ
i
p 7→ a0,

is an isomorphism of Λ-modules, the inverse of which is

x 7→
∑
h∈H

h⊗ h−1(x)

and which is obviously functorial in Γ, whence the same result follows for the original
(infinite) Γ.
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Now, for a surjection π : H ′′ � H ′ it is easy to check that the trace TrK′′/K′ : OK′′ →
OK′ induces a commutative diagram

(2.3) Λ′′a′′

π

��

∼= // OK′′ [[Γ]]

TrK′′/K′

��
Λ′a′

∼= // OK′ [[Γ]],

whence the first claim follows. From the normal basis theorem for finite fields we obtain
(non-canonical) isomorphisms

OK′ ∼= Zp[HK′ ],

which are compatible with trace and natural projection maps. Indeed, the sets SK′ :=
{a ∈ OK′ |Zp[HK′ ]a = OK′} ∼= Zp[HK′ ]

× are compact, since 1 + Jac(Zp[HK′ ]) for the
Jacobson radical Jac(Zp[HK′ ]) is open in Zp[HK′ ]

×, and thus lim←−
K′

SK′ is non-empty.

Hence the trace maps induce (non-canonical) isomorphisms lim←−
K′

OK′ ∼= Zp[[H]] and

lim←−
K′

OK′ [[Γ]] ∼= Zp[[G]], respectively. �

We now review Coleman’s exact sequence [16, 17], which is one crucial ingredient in
the construction of the ε-isomorphism. Let us first assume that K/Qp is finite.

Then U(K∞) := lim←−
n,i

O×Kn/p
i with Kn := K(µpn) and the following sequence of Λ-

modules is exact

(2.4) 0 // Zp(1)
ι // U(K∞)

Col // OK [[Γ]]
π // Zp(1) // 0,

where

• ι(ε) = ε,
• Col(u) := Colε(u) is defined by the rule

(2.5) L(gu) := (1− ϕ

p
) log(gu) =

1

p
log(

gpu
ϕ(gu)

) = Col(u) · (X + 1)

in OK [[X]] with gu := gu,ε ∈ OK [[X]] the Coleman power series satisfying

gφ
−n

(εn − 1) = un for all n. Here φ is acting coefficientwise on gu = gu(X),
while ϕ : OK [[X]]→ OK [[X]] is induced by X 7→ (X + 1)p− 1 and the action of
φ on the coefficients. Furthermore, the OK-linear action of OK [[Γ]] on OK [[X]]

is induced by γ ·X = (1 +X)κ(γ) − 1.
• π is the composite of OK [[Γ]]→ OK , γ 7→ κ(γ), followed by the trace TrK/Qp :
OK → Zp (and strictly speaking followed by Zp → Zp(1), c 7→ cε).

Using Proposition 2.1 and the isomorphism

Λ[Tun,τp]−1
∼= Tun ⊗Λ Λ[Tun,τp]−1 , a 7→ (1⊗ ε)⊗ a,

we thus obtain an exact sequence of Λ-modules

(2.6) 0 // Zp(1) // U(K∞)
LK,ε // Tun(K∞)⊗Λ Λ[Tun,τp]−1 // Zp(1) // 0 .
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In the end we actually shall need the analogous exact sequence

(2.7) 0 // Zp(1) // U(K∞)
−LK,−ε// Tun(K∞)⊗Λ Λ[Tun,τp]−1 // Zp(1) // 0 .

where we replace ε by −ε everywhere in the construction and where we multiply (only)
the middle map by −1. Note that the maps involving Zp(1) do not change compared
with (2.6).

In order to deal with the case that K/Qp is infinite, ı.e., p∞|[K : Qp], let Qp ⊆ L ⊆
L′ ⊆ K be finite intermediate extensions. We claim that the following diagram
(2.8)

0 // Zp(1) //

NL′∞/L∞
=[L′:L]·

��

U(L∞)
LL′,ε //

NL′∞/L∞
��

Tun(L′∞)⊗Λ Λ[Tun,τp]−1 //

prL′/L

��

// Zp(1)

=

��

// 0

0 // Zp(1) // U(L∞)
LL,ε // Tun(L∞)⊗Λ Λ[Tun,τp]−1 // Zp(1) // 0

commutes, where the norm maps NL′∞/L∞
= NL′/L are induced by NL′n/Ln

for all n,
which on Zp(1) amounts to multiplication by [L′ : L] while NL′∞/L∞

: U(L′∞)→ U(L∞)
is nothing else than the projection on the corresponding inverse (sub)system. Recalling
(2.3) this is equivalent to the commutativity of

(2.9) 0 // Zp(1) //

NL′∞/L∞
=[L′:L]·

��

U(L′∞)
ColL′,ε//

NL′∞/L∞
��

OL′ [[Γ]] //

TrL′/L
��

// Zp(1)

=

��

// 0

0 // Zp(1) // U(L∞)
ColL,ε // OL[[Γ]] // Zp(1) // 0

where TrL′/L : OL′ [[Γ]]→ OL[[Γ]] is induced by the trace on the coefficients. While the
left and right square commute obviously, we sketch how to check this for the middle:

Firstly note that by the uniqueness of the Coleman power series

NL′/L(gu′) = gNL′/L(u′)

for u′ ∈ U(L′∞), whereNL′/L : OL′ [[X]]→ OL[[X]] is defined as f(X) 7→
∏
σ∈G(L′/L) f

σ(X),

where σ acts coefficient wise on f (see the proof of [42, Lem. 2] for a similar argument).
Secondly, one has

L(NL′/L(g)) = TrL′/LL(g)

for g ∈ OL′ [[X]]×, since NL′/L and φ commute. Sofar we have seen that

TrL′/LL(gu′) = L(gNL′/L(u′)),

which implies the claim

TrL′/L(Col(u′)) = Col(gNL′/L(u′))

using the defining equation (2.5) and the compatibility of TrL′/L with the Mahler
transform M : OK [[Γ]]→ OK [[X]], λ 7→ λ · (1 +X).

Taking inverse limits of (2.8) we obtain the exact sequence

(2.10) 0 // U(K∞)
LK,ε // Tun(K∞)⊗Λ Λ[Tun,τp]−1 // Zp(1) // 0.
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Similarly, starting with (2.7) we obtain the exact sequence

(2.11) 0 // U(K∞)
−LK,−ε // Tun(K∞)⊗Λ Λ[Tun,τp]−1 // Zp(1) // 0.

2.1. Galois cohomology. The complex RΓ(Qp,Tun(K∞)) of continuous cochains has
only non-trivial cohomology groups for i = 1, 2:

(2.12) H1(Qp,Tun(K∞)) = lim←−
Qp⊆L⊆K∞finite

H1(L,Zp(1)) = lim←−
L

(L×)∧p

by Kummer theory and

(2.13) H2(Qp,Tun(K∞)) = lim←−
Qp⊆L⊆K∞finite

H2(L,Zp(1)) = Zp

by local Tate-duality; here the sign of the trace map tr : H2(Qp,Tun(K∞)) ∼= Zp is
normalised according to [26, Ch. II, §1.4] as follows: if θ ∈ H1(Qp,Λ) denotes the

character GQp
w // Ẑ canon // Λ , where w is the map which sends Frobp to 1 and the

inertia subgroup to 0, then we have a commutative diagram

(2.14) Q×p

δ
��

v // Z canon // Zp

H1(Qp,Zp(1))
−∪θ // H2(Qp,Zp(1)),

∼= tr

OO

where v denotes the normalised valuation map and δ is the Kummer map. Furthermore,
the first isomorphism (2.12) induces

-: a canonical exact sequence

(2.15) 0 // U(K∞) // H1(Qp,Tun(K∞))
−v̂ // Zp // 0,

if K/Qp is finite, v̂ being induced from the valuation maps vL : L× → Z (the
sign before v̂ will become evident by the descent calculation (2.54)),

-: an isomorphism

(2.16) U(K∞) ∼= H1(Qp,Tun(K∞)),

if p∞|[K : Qp].

2.2. Determinants. Now we assume that K/Qp is infinite. Then

G ∼= G′ ×∆,

where ∆ is a finite abelian group of order d prime to p and G′ ∼= Z2
p. Thus

Λ(G) = Zp[∆][[Z2
p]]

is a product of regular, hence Cohen-Mac Caulay rings. Setting O := Zp[µd] we have

Λ(G) ⊆ ΛO(G) =
∏

χ∈IrrQp (∆)

ΛO(G′)eχ,
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where eχ denote the idempotents corresponding to χ, while IrrQp(∆) denotes the set of

Qp-rational characters of ∆. Since regular rings are normal - or by Wedderburn theory
-, it follows that there is a product decomposition into local regular integral domains

Λ(G) =
∏

χ∈IrrQp(∆)

ΛOχ(G′)eχ,

where now IrrQp(∆) denotes the set of Qp-rational characters and Oχ is the ring of
integers of Kχ := EndZp[∆](χ).

For the various rings R showing up like Λ(G) for different G, we fix compatible determi-
nant functors dR : Dp(R)→ PR from the category of perfect complexes of R-modules
(consisting of (bounded) complexes of finitely generated R-modules, quasi-isomorphic
to strictly perfect complexes, i.e., bounded complexes of finitely generated projective
R-modules) into the Picard category PR with unit object 1R = dR(0), see Appendix
B for the yoga of determinants used in this article.

Lemma 2.2. For all r ∈ Z there exists a canonical isomorphism

1Λ

canZp(r)// dΛ(Zp(r)).

Remark 2.3. The proof will show that the same result holds for G ∼= Zkp ×∆, k ≥ 2
and any Λ(G)-module M of Krull codimension at least 2.

Proof. Since

ExtiΛ(G)(Zp(r),Λ(G)) ∼= ExtiΛ(G′)(Zp(r),Λ(G′)) = 0

for i 6= k(= 2) we see that the codimension of Zp(r) equals k + 1− 1 = k ≥ 2. Setting
M = Zp(r) we first show that the class [M ] in G0(Λ) = K0(Λ) vanishes, i.e., there
exists an isomorphism c0 : 1 ∼= d(M) by the definition of PR in [23]. Since

K0(Λ) =
⊕
χ

K0(ΛOχ(G′)) ∼=
⊕
χ

Z,

where the last map is given by the rank, the claim follows, because eχM are torsion
ΛOχ(G′)-modules. By the knowledge of the codimension we have Mp = 0 for all prime
ideals p ⊂ Λ of height at most 1. In particular, we obtain canonical isomorphisms

cp : 1Λp
∼= dΛp(Mp).

Since Mor(1Λp ,dΛp(Mp)) is a (non-empty) K1(Λp)-torsor, there exist unique λp ∈ Λ×p =
K1(Λp) such that

cp = (c0)p · λp,
where (c0)p = Λp ⊗Λ c0. Now let q = qχ be a prime of height zero corresponding to
χ ∈ IrrQp(∆). Then

cq = Λq ⊗Λp cp

= Λq ⊗Λ c0 · λp = (c0)qλp

for all prime ideals p ⊃ q of height one, whence

λp = λq.
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Thus

λq ∈
⋂

p⊃q,ht(p)=1

Λ×p = ΛOχ(G′)×

(ΛOχ(G′) being regular, i.e.,
⋂

p⊃q,ht(p)=1 Λp = ΛOχ(G′)) and

canM := (c0 · λqχ)χ : 1Λ → dΛ(M)

is unique and independent of the choice of c0. Here we used the canonical decomposition
K1(Λ(G)) ∼=

⊕
χK1(ΛOχ(G′)). �

Now we shall finally define the ε-isomorphism for the pair (Λ(G),Tun) :

(2.17) εΛ(Tun) := εΛ,ε(Tun) : 1Λ → dΛ(RΓ(Qp,Tun))dΛ(Tun ⊗Λ Λτp) :

Since Λ is regular we obtain by property B.h) in the Appendix

dΛ(RΓ(Qp,Tun))−1 ∼= dΛ(H1(Qp,Tun))dΛ(H2(Qp,Tun))−1

∼= dΛ(U(K∞))dΛ(Zp)−1

∼= dΛ(Tun ⊗Λ Λτp)dΛ(Zp(1))−1dΛ(Zp)−1

∼= dΛ(Tun ⊗Λ Λτp),

where we used (2.13), (2.16) in the second equality, (2.11),i.e., in particular the map
−LK,ε−1 (sic!) and the regularity in the third, while the identifications canZp(1) and
canZp in the last step. This induces (2.17).

In the spirit of [23] this can be reformulated in a way that also covers non-commutative

rings Λ later. For any a ∈ K1(Λ̃) define

K1(Λ)a := {x ∈ K1(Λ̃)|(1⊗ φ)∗(x) = a · x},

which is non-empty by [23, prop. 3.4.5]. If Λ is the Iwasawa-algebra of an abelian p-adic

Lie-group, i.e., K1(Λ̃) = Λ̃×, this implies in particular that Λa ∩ Λ̃× = K1(Λ)a 6= ∅,
whence we obtain an isomorphism of Λ̃-modules

(2.18) Λa ⊗Λ Λ̃ ∼= Λ̃, x⊗ y 7→ x · y.

Thus, one immediately sees, that the map

U(K∞)→ Tun ⊗Λ Λτp ⊆ Tun ⊗Λ Λ̃

extends to an exact sequence of Λ̃-modules

(2.19) 0 // U(K∞)⊗Λ Λ̃ // Tun ⊗Λ Λ̃ // Ẑurp (1) // 0,

which in fact is canonically isomorphic to the base change of (2.10) from Λ- to Λ̃-

modules. Therefore base changing (2.17) by Λ̃ ⊗Λ − and using (2.18) (tensored with
Tun(K∞)) we obtain

(2.20) ε′Λ(Tun) := ε′Λ,ε(Tun) : 1
Λ̃
→ dΛ(RΓ(Qp,Tun))

Λ̃
dΛ(Tun)

Λ̃
,

which actually arises as base-change from some

ε0 : 1Λ → dΛ(RΓ(Qp,Tun(K∞))dΛ(Tun(K∞))



10 OTMAR VENJAKOB

plus a twisting by an element δ ∈ K1(Λ)τp , i.e.,

ε′Λ(Tun) ∈ Mor(1Λ,dΛ(RΓ(Qp,Tun(K∞))dΛ(Tun(K∞)))×K1(Λ) K1(Λ)τp .

Indeed, fixing an isomorphism ψ : Λ ∼= Λτp (cf. Proposition 2.1) sending 1 to δ, (2.18)
implies that δ ∈ K1(Λ)τp and the claim follows from the commutative diagram

Tun ⊗Λ Λ̃
Tun⊗δ−1

// Tun ⊗Λ Λ̃

Tun ⊗Λ Λτp
Tun⊗ψ−1

//
?�

OO

Tun ⊗Λ Λ
?�

OO

( ε′Λ(Tun) equals δ times the base change of ε0 := (Tun ⊗ ψ−1) ◦ εΛ(Tun)).

2.3. Twisting. We recall the following definition from [23, §1.4].

Definition 2.4. A ring R is of

(type 1): if there exists a two sided ideal I of R such that R/In is finite of order
a power of p for any n ≥ 1 and such that R ∼= lim←−

n

R/In.

(type 2): if R is the matrix-algebra Mn(L) of some finite extension L over Qp

and some dimension n ≥ 1.

By lemma 1.4.4 in (loc. cit.) R is of type 1 if and only if the defining condition above
holds for the Jacobson ideal J = J(R). Such rings are always semi-local and R/J is a
finite product of matrix algebras over finite fields.

Now let R be a commutative ring of type 1 and let T = Tχ be a free R-module of rank
one with Galois action given by

χ = χT : GQp → R×

which factors through G. By χ̃T we denote the induced ring homomorphism Λ(G)→ R.
Furthermore let Y = Yχ be the (R,Λ(G))-bimodule which is R as R-module and where
Λ(G) is acting via

χY := χ̃−1
T χcyc : Λ(G)→ R

(from the right) where

χcyc : Λ(G)→ Zp → R

is induced by the cyclotomic character and the unique ring homomorphism Zp → R.
Then the map

Y ⊗Λ(G) Tun
∼= // T, y ⊗ t 7→ y · χY (t),

is an isomorphism of R-modules which is Galois equivariant, where the Galois action
on the tensor product is given by σ(y ⊗ t) = y ⊗ σ(t) for σ ∈ GQp .

Let R̃ and Ra be defined in the same way as for Λ. Then, using the isomorphisms

Y ⊗Λ dΛ(RΓ(Qp,Tun)) ∼= dR(RΓ(Qp, Y ⊗Λ Tun)) ∼= dR(RΓ(Qp,T))

by [23, 1.6.5] and

R⊗Λ Λa ∼= Rχ(a),
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where χ : Λ→ R denotes a continuous ring homomorphism, we may define the following
ε-isomorphisms.

Definition 2.5. In the above situation we set

εR(T) := εR,ε(T) := Y ⊗Λ εΛ,ε(Tun) : 1R → dR(RΓ(Qp,T))dR(T⊗R Rχ(τp))

and
ε′R(T) := ε′R,ε(T) := Y ⊗Λ ε

′
Λ,ε(Tun) : 1

R̃
→ dR(RΓ(Qp,T))

R̃
dR(T)

R̃
.

By definition we have the following important twist invariance

(2.21) Y ′ ⊗R εR(T) = εR′(T′) and Y ′ ⊗R ε′R(T) = ε′R′(T
′)

for any (R′, R)-bimodule Y ′ which is projective as R′-module and satisfies Y ′⊗RT ∼= T′.
Here R and R′ denote commutative rings of type 1 or 2. Indeed, to this end the
definition extends to all pairs (R,T) where R is a (not necessarily commutative) ring
of type 1 or 2 and T stands for a projective R-module such that there exists a (R,Λ)-
bimodule Y which is projective as R-module and such that T ∼= Y ⊗Λ Tun. In this
context we denote by [T, σ], σ ∈ GQp , the element in K1(R) induced by the action of

GQp on T; note that this induces a homomorphism [T,−] : G(Qab
p )→ K1(R).

Example 2.6. Let ψ : GF → Z×p be a Grössencharacter of an imaginary quadratic field
F such that p is split in F and assume that its restriction to GFν , ν a place above p,
factors through G. We write Tψ for the free rank one Λ(G)-module with Galois action
given by σ(λ) = λσ̄−1ψ(σ). Then we also write εΛ(ψ) for εΛ(Tψ).

2.4. The ε-conjecture. We fix K/Qp infinite and recall that G = G(K∞/Qp) as well
as Λ = Λ(G) and ΛO = ΛO(G) for O = OL the ring of integers of some finite extension
L of Qp. If χ : G→ O×L denotes any continuous character such that the representation

Vχ := L(χ),

whose underlying vector space is just L and whose GQp-action is given by χ, is de
Rham, hence potentially semistable by [37] (in this classical case) or by [3] (in general),
then we have

L⊗OL ε
′
OL(Tχ) = ε′L(Vχ)

by definition. The ε-isomorphism conjecture by Fukaya and Kato in [23, conjecture
3.4.3.] states that

(2.22) ε′L(Vχ) = ΓL(Vχ) · εL,ε,dR(Vχ) · θL(Vχ),

where, for any de Rham p-adic representation V of GQp ,

a) ΓL(V ) :=
∏

Z Γ∗(j)−h(−j) with h(j) = dimL gr
jDdR(V ) and

Γ∗(j) =

{
(−1)j(−j)!−1, j ≤ 0;
Γ(j), j > 0,

denotes the leading coefficient of the Γ-function,

b) the map
εdR(V ) := εL,ε,dR(V ) : 1

L̃
→ d

L̃
(V )d

L̃
(DdR(V ))−1,

with L̃ := Q̂ur
p ⊗Qp L is defined in [23, prop. 3.3.5]. We shall recall it after the proof of

Lemma A.5,



12 OTMAR VENJAKOB

c) θL(V ) is defined as follows: Firstly, RΓf (Qp, V ) is defined as a certain subcomplex of
the local cohomology complex RΓ(Qp, V ), concentrated in degree 0 and 1, whose image
in the derived category is isomorphic to

RΓf (Qp, V ) ∼= [ Dcris(V )
(1−ϕp,1)// Dcris(V )⊕DdR(V )/D0

dR(V ) ](2.23)

Here ϕp denotes the usual Frobenius homomorphism and the induced map t(V ) :=
DdR(V )/D0

dR(V )→ H1
f (Qp, V ) is the exponential map expBK(V ) of Bloch-Kato, where

we write Hn
f (Qp, V ) for the cohomology of RΓf (Qp, V ). Now

(2.24) θL(V ) : 1L → dL(RΓ(Qp, V )) · dL(DdR(V ))

is by definition induced from ηp(V ) · (ηp(V ∗(1))∗) (see Remark B.1 for the notation) -
with

ηp(V ) : 1L → dL(RΓf (Qp, V ))dL(t(V )),(2.25)

arising by trivializing Dcris(V ) in (2.23) by the identity - followed by an isomorphism
induced by local Tate-duality

(2.26) RΓf (Ql, V ) ∼=
(
RΓ(Ql, V

∗(1))/RΓf (Ql, V
∗(1))

)∗
[−2]

and using D0
dR(V ) = t(V ∗(1))∗.

More explicitly, θp(V ) is obtained from applying the determinant functor to the follow-
ing exact sequence

0 // H0(Qp, V ) // Dcris(V ) // Dcris(V )⊕ t(V )
expBK(V )// H1(Qp, V ) //

expBK(V ∗(1))∗// Dcris(V
∗(1))∗ ⊕ t(V ∗(1))∗ // Dcris(V

∗(1))∗ // H2(Qp, V ) // 0

which arises from joining the defining sequences of expBK(V ) with the dual sequence
for expBK(V ∗(1)) by local duality (2.26).

Remark 2.7. a) The ε-conjecture may analogously be formulated using εR(T) instead
ε′R(T). In the following we will amply switch between the two versions.

b) Since by definition of εOL(Tχ) we have

L⊗OL ε
′
OL(Tχ) = L⊗OL

(
Yχ ⊗Λ ε

′
Λ(Tun)

)
= (L⊗OL Yχ)⊗Λ ε

′
Λ(Tun)

(2.22) amounts to showing that

(2.27) L⊗Λ εΛ(Tun) = εL(Vχ)

holds, where Λ acts on L via χ−1χcyc : Λ(G) → OL ⊆ L. Once we have shown (2.27)
for all possible χ as above, it follows immediately by twisting that e.g. εΛ(TK∞(T )) for
T = Zp(η)(r) as below satisfies the descent property

Vρ ⊗Λ εΛ(TK∞(T )) = εL(V (ρ∗))

with V (ρ∗) := V ⊗Qp Vρ∗ for all one-dimensional representation Vρ arising from some

continuous ρ : G→ O×L and its contragredient representation Vρ∗ .
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Note that by [37] any Vχ as above is of the form

W = L(ηρ)(r) = Ltρη,r,

where r is some integer, η : G → O×L is an unramified character and ρ : G �
G(K ′m/Qp)→ O×L denotes an Artin-character for some finite subextension K ′ of K/Qp

and with m = a(ρ) chosen minimal, i.e., pa(ρ) is the p-part of the conductor of ρ.

In the following we fix η and r and we set T := Zp(η)(r), V := T ⊗Zp Qp and

(2.28) TK∞ = TK∞(T ) = Λ] ⊗Zp T,

the free Λ-module on which σ ∈ GQp acts as σ̄−1ηκr(σ).

Now we are going to make the map (2.24) explicit. First we describe the local coho-
mology groups:

(2.29) H0(Qp,W ) =

{
L, if r = 0, ρη = 1I;
0, otherwise.

By local Tate duality we have

(2.30) H2(Qp,W ) ∼= H0(Qp,W
∗(1))∗ =

{
L, r = 1, ρη = 1I;
0, otherwise.

From the local Euler-Poincaré-characteristic formula one immediately obtains

(2.31) dimL H1(Qp,W ) = dimL H1(Qp,W
∗(1)) =

{
2, r = 0 or 1, ρη = 1I ;
1, otherwise.

Following the same reasoning as in [2, lem. 1.3.1.] one sees that

H1
f (Qp,W ) ∼=

(
H1(Qp,W

∗(1))/H1
f (Qp,W

∗(1))
)∗

=
H1(Qp,W ), r ≥ 2, or r = 1 and ρη 6= 1I;
im
(
U(Qp)⊗Zp Qp → H1(Qp,Qp(1))

)
, r = 1, ρη = 1I;

H1(Fp,Qp) r = 0, ρη = 1I;
0, r ≤ −1, or r = 0 and ρη 6= 1I.

where the map in the second line is the Kummer map. Hence we call the cases r =
0 or 1, ρη = 1I exceptional and all the others generic.

For the tangent space we have by (A.61)

(2.32) t(W ) =

{
DdR(W ) = L, r > 0;
0, r ≤ 0.

and

(2.33) t(W ∗(1)) =

{
0, r > 0;
DdR(W ∗(1)) = L, r ≤ 0.

while

(2.34) Dcris(W ) =

{
0, a(ρ) 6= 0;
Leρη,r, otherwise,

with Frobenius action given as φ(eρη,r) = p−rρη(τ−1
p )eρη,r.
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2.4.1. The case r ≥ 1. In this case we have ΓL(W ) = Γ(r)−1 = (r − 1)!−1 and
H0(Qp,W ) = 0, whence

(2.35) 1− φ : Dcris(W )→ Dcris(W )

and

(2.36) exp(W ) : DdR(W ) ∼= H1
f (Qp,W )

are bijections. Thus, combined with the exact sequences
(2.37)

0 // H1
f (Qp,W

∗(1))∗
exp(W ∗(1))∗ // Dcris(W

∗(1))∗
1−φ∗// Dcris(W

∗(1))∗ // H2(Qp,W ) // 0

and

0 // H1
f (Qp,W ) // H1(Qp,W ) // H1

f (Qp,W
∗(1))∗ // 0

they induce the following isomorphism corresponding to θL(W )−1 :

dL(DdR(W ))→ dL(RΓ(Qp,W ))−1.

In the generic case it decomposes as

dL(exp(W )) : dL(DdR(W ))→ dL(H1(Qp,W )) = dL(RΓ(Qp,W ))−1

times
det(1− φ∗|Dcris(W

∗(1))∗)

det(1− φ|Dcris(W ))
: 1L → 1L,

which equals

(2.38)
det(1− φ|Dcris(W

∗(1)))

det(1− φ|Dcris(W ))
=

{
1−pr−1ρη(τp)

1−p−rρη(τ−1
p )

, if a(ρ) = 0;

1, otherwise.

Now let r = 1 and ρη = 1I, i.e., we consider the exceptional case W = Qp(1). As now
det(1 − φ|Dcris(W

∗(1))) = 0 and the two occurrences of Dcris(W
∗(1))∗ in (2.37) are

identified via the identity, the map θL(W )−1 is also induced by (2.35),(2.36) together
with the (second) exact sequence in the following commutative diagram

(2.39) 0 // Z×p ⊗Qp

∼= δ

��

// Q̂×p ⊗Qp

δ∼=
��

−v̂⊗Qp // Qp
// 0

0 // H1
f (Qp,Qp(1)) // H1(Qp,Qp(1)) // H2(Qp,Qp(1))

Tr∼=

OO

// 0,

where the first two vertical maps δ are induced by Kummer theory, v denotes the
normalised valuation map and the dotted arrow is defined by commutativity: I.e.,
θL(W )−1 arises from

(2.40) dQp(DdR(Qp(1)))
expQp(1) // dQp(H

1
f (Qp,Qp(1))) ∼= dQp(RΓ(Qp,W ))−1

times

(2.41) det(1− φ|Dcris(Qp(1))) = (1− p−1).

Combining (2.39), (2.40) and (2.41) this can rephrased as follows:
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Proposition 2.8. The map θ(Qp(1)) is just induced by the single exact sequence
(2.42)

0 // t(Qp(1)) ∼= Qp

(1−p−1)−1 expQp(1)// H1(Qp,Qp(1))
−v̂⊗Qp// H2(Qp,Qp(1)) // 0.

Proof. Since t(Qp) = 0, it follows directly from its definition as connecting homomor-
phism that

expQp : Qp = Dcris(Qp)→ H1
f (Qp,Qp) ⊆ H1(Qp,Qp)

sends α ∈ Qp to the character χα : GQp → Qp, g 7→ (g − 1)c, where c ∈ Q̂nr
p satisfies

(1 − ϕ)c = α, i.e., χα(φ) = −α. As noted in [2, lem. 1.3.1], we thus may identify
H1
f (Qp,Qp) = H1(Fp,Qp). Identifying the copies of Dcris(Qp) (in the dual of (2.37))

gives rise to a map

ψ : Qp = H0(Qp,Qp)→ H1
f (Qp,Qp), α 7→ χα.

By local Tate duality

H1(Qp,Qp(1))/H1
f (Qp,Qp(1)) ×

ψ∗

��

H1
f (Qp,Qp) // H2(Qp,Qp(1)) ∼= Qp

H2(Qp,Qp(1)) × H0(Qp,Qp) //

ψ

OO

H2(Qp,Qp(1)) ∼= Qp

we obtain for the dual map ψ∗ using the normalisation (2.14)

tr(ψ∗(δ(p)) = tr(δ(p) ∪ χ1) = χ1(φ) = −1.

Thus the dotted arrow in (2.39) being ψ∗ this diagram commutes as claimed. �

2.4.2. The case r ≤ 0. This case is just dual to the previous one replacing W by W ∗(1).

2.5. The descent. Let K be infinite. In order to describe the descent of LK,ε−1 in
(2.10) we set

(2.43) LT := LT,ε−1 := Y ⊗Λ LK,ε−1 ,

if the projective left Λ′-module Y (with commuting right Λ-module structure) satisfies
Y ⊗Λ Tun ∼= T as Λ′-module. As LK,ε−1 is the crucial ingredient in the definition of
ε′Λ(T), the following descent diagram will be important:

For fixed ρ as before we choose K ′ ⊆ K and n ≥ max{1, a(ρ)} such that ρ factorises
over Gn := G(K ′n/Qp). Setting Λ′ := Qp[Gn] and V ′ := Qp[Gn]] ⊗ Qp(η)(r) we first
note that

Hi(Qp, V
′) ∼= Hi(K ′n,Qp(η)(r))

by Shapiro’s Lemma. Also, let Y ′ be the (Λ′,Λ)-bimodule such that Y ′ ⊗Λ Tun ∼= V ′.
We write eχ := 1

#Gn

∑
g∈Gn χ(g−1)g for the usual idempotent which induces a canonical

decomposition Λ′ ∼=
∏
Lχ into a product of finite extensions Lχ of Qp. In particular,

for L = Lρ we have W ∼= eρ−1V ′ = Lρ(ρη)(r).
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Then, for r ≥ 1 and with Γ(V ′) :=
⊕

χ Γ(eχV
′), we have a commutative diagram

Y ′ ⊗Λ H1(Qp,Tun)

prn

��

−LV ′=−Y ′⊗ΛLK,ε−1
// Y ′ ⊗Λ Tun ⊗Λ Λ[Tun,τ−1

p ]

∼= prn

��
H1(K ′n,Qp(η)(r)) DdR(V ′)

Γ(V ′)−1exp′Voo V ′ ⊗Λ′ (Λ
′)[V ′,τ−1

p ]
oo

of Λ′-modules as will be explained in the Appendix, Proposition A.6.

Applying the exact functor Vρ∗ ⊗Λ′ − leads to the final commutative descent diagram
- at least for W 6= Qp(1) -
(2.44)

Y ′′ ⊗Λ H1(Qp,Tun)

prn

��

−LW=−Y ′′⊗ΛLK,ε−1
// Y ′′ ⊗Λ Tun ⊗Λ Λ[Tun,τ−1

p ]

∼= prn

��
H1(Qp,W ) DdR(W )

Γ(W )−1expWoo W ⊗L L[W,τ−1
p ]

det(1−ϕ|Dcris(W∗(1)))

det(1−ϕ|Dcris(W ))
·εL,ε,dR(W )−1

oo

where Y ′′ := Vρ∗ ⊗Λ′ Y
′ = Vρ∗ ⊗Λ Y is a (L,Λ)-bimodule. For W = Qp(1) the Euler

factor in the nominator as well as the map pr0 become zero, therefore we shall instead
apply a direct descent calculation in Lemma 2.9 using semisimplicity and a Bockstein
homomorphism.

For the descent we need two ingredients:

• the long Tor-exact sequence by applying Y ′′ ⊗Λ(G) − to the defining sequence
(2.10) for −LK,ε−1 and
• the convergent cohomological spectral sequence

(2.45) Ei,j2 := TorΛ
−i(Y

′′, Hj(Qp,Tun))⇒ Hi+j(Qp,W ),

which is induced from the isomorphism

Y ′′ ⊗L RΓ(Qp,Tun) ∼= RΓ(Qp, Y
′′ ⊗Λ Tun),

proved in [23] and using W ∼= Y ′′ ⊗ Tun,

together with the fact [40] that the determinant functor is compatible with both. Since
for T = T(T ) := Λ] ⊗Zp T

∼= Y ⊗Λ Tun

(2.46) Hi(Qp,T) ∼=


T, if i = 0 and r = 0, η = 1I;
H1(Qp,T) 6= 0, if i = 1;
T (−1), if i = 2 and r = 1, η = 1I;
0, otherwise.

we obtain for r ≥ 1 the following exact sequence of terms in lower degree

(2.47) 0 // TorΛ
1 (Y ′′,H1(Qp,Tun)) // H0(Qp,W ) // TorΛ

2 (Y ′′,H2(Qp,Tun))

// Y ′′ ⊗Λ H1(Qp,Tun) // H1(Qp,W ) // TorΛ
1 (Y ′′,H2(Qp,Tun)) // 0
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and

TorΛ
2 (Y ′′,H1(Qp,Tun)) = 0 and Y ′′ ⊗Λ H2(Qp,Tun) ∼= H2(Qp,W )

or, as Y ′′ ⊗L
Λ RΓ(Qp,Tun) ∼= Vρ∗ ⊗L

Λ (Y ⊗Λ RΓ(Qp,Tun)) ∼= Vρ∗ ⊗L
Λ RΓ(Qp,T), which is

canonically isomorphic to

(2.48) 0 // TorΛ
1 (Vρ∗ ,H

1(Qp,T)) // H0(Qp,W ) // TorΛ
2 (Vρ∗ ,H

2(Qp,T))

// Vρ∗ ⊗Λ H1(Qp,T) // H1(Qp,W ) // TorΛ
1 (Vρ∗ ,H

2(Qp,T)) // 0

and

TorΛ
2 (Vρ∗ ,H

1(Qp,T)) = 0 and Vρ∗ ⊗Λ H2(Qp,T) ∼= H2(Qp,W ).

In the generic case the spectral sequence boils down to the following isomorphism

Y ′′ ⊗Λ H1(Qp,Tun) ∼= H1(Qp,W ).(2.49)

Considering the support of Zp(1) one easily sees that TorΛ
i (Y ′′,Zp(1)) = 0 for all

i ≥ 0. Hence the long exact Tor-sequence associated with (2.10) combined with (2.16)
degenerates to

(2.50) Y ′′ ⊗Λ H1(Qp,Tun)
−LW
∼=

// W ⊗L L[W,τp]−1

while for all i ≥ 0

(2.51) TorΛ
i (Y ′′,H2(Qp,Tun)) = TorΛ

i (Y ′′,Zp) = 0.

Thus the conjectured equation (2.22) holds by (2.44), (2.49), (2.50) and the definition
(2.17) with −LK,ε−1 .

For the exceptional case W = Zp(1) we set R = Λ(Γ)p, where p denotes the aug-
mentation ideal of Λ(Γ) and recall that R is a discrete valuation ring with uniformis-
ing element π := 1 − γ0, where γ0 is a fixed element in Γ, which is sent to 1 under

Γ
κ // Z×p

logp // Zp , and residue field R/π = Qp. The commutative diagram of ho-

momorphisms of rings

Λ = Λ(G)

��

// Λ(Γ)

��

// R

��
Zp // Zp // Qp

induces with Y ′′ := R/π

RΓ(Qp,Qp(1)) ∼= Y ′′ ⊗L
Λ RΓ(Qp,Tun(K∞))(2.52)

∼= Qp ⊗L
Λ(Γ)

(
Λ(Γ)⊗L

Λ RΓ(Qp,Tun(K∞))
)

∼= Qp ⊗L
R R⊗Λ(Γ) ⊗L

ΛRΓ(Qp,Tun(Qp,∞))

∼= Qp ⊗L
R RΓ(Qp,Tun(Qp,∞))p.

In particular, the descent calculation factorises over the cyclotomic level, i.e.,

ε′Qp(Qp(1)) = R/π ⊗R ε′R(R⊗Λ(Γ) Tun(Qp,∞))
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is induced by ε′R(R⊗Λ(Γ) Tun(Qp,∞)) which in turn is induced by the localisation at p
of the exact sequences (all for K = Qp) (2.6)

(2.53) U(Qp,∞)p ∼=

−LTun(Qp,∞)p // Tun(Qp,∞)p ⊗R R[Tun,τp]−1

(this arises as long exact Tor-sequence from (2.10)) and (2.15)
(2.54)

0 // U(Qp,∞)p // H1(Qp,Tun(Qp,∞))p
−v̂ // Qp

∼= H2(Qp,Tun(Qp,∞))p // 0.

The latter one arises from an analogue of the spectral sequence (2.45) above - which
gives with H = G(K∞/Qp,∞) an exact sequence

0 // H1(Qp,Tun(K∞))H // H1(Qp,Tun(Qp,∞)) // H2(Qp,Tun(K∞))H // 0,

and

H2(Qp,Tun(K∞))H = H2(Qp,Tun(Qp,∞)),

- combined with (2.13) and an identification of H2(Qp,Tun(K∞))H = Zp with
H2(Qp,Tun(K∞))H = Zp induced by the base change of canZp . Indeed, it is easy

to check that the long exact H-homology (= TorΛ
i (Λ(Γ),−)) sequence associated with

(2.10) recovers (2.6), in particular H1(Qp,Tun(K∞))H ∼= U(K∞)H ∼= U(Qp,∞). More-
over, the composite

β̃ : H1(Qp,Tun(Qp,∞))→ H2(Qp,Tun(K∞))H = H2(Qp,Tun(K∞))H = H2(Qp,Tun(Qp,∞))

is via restriction and taking G(KH
′
∞ /Qp,∞)-invariants by construction induced by the

Bockstein homomorphism β associated to the exact triangle in the derived category

RΓ(Qp,Tun(K∞))
1−h0 // RΓ(Qp,Tun(K∞)) // RΓ(Qp,Tun(KH

′
∞ )),

where H′ is the maximal pro-p quotient of H and h0 is the image of φ. By [21, lem.
5.9] (and the argument following directly afterwards using the projection formula for

the cup product) it follows that β̃ is given by the cup product θ ∪ − where

θ : GQp,∞ � H′ ∼= Zp
is the unique character such that h0 is sent to 1 under the second isomorphism. Using
our above convention of the trace map (2.14) one finds according to [26, ch. II, §1.4.2]
that the above composite equals −v̂. Indeed

tr(β̃(δ(p))) = tr(θ ∪ δ(p)) = −θ(φ) = −θ(h0) = −1.

Now consider the element

u := (1− ε−1
n )n ∈ lim←−

n

(Qp(µpn)×)∧ ∼= H1(Qp,Tun(Qp,∞))

and its image up in H1(Qp,Tun(K∞))p.

Lemma 2.9. H1(Qp,Tun(K∞))p ∼= Rup is a free R-module of rank one and LTun(Qp,∞)p
induces modulo π an canonical isomorphism

(2.55) t(Qp(1)) U(Qp,∞)p/π
−LQp(1)oo // Qp

// H1(Qp,Tun(K∞))p/π
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which sends (1− p−1)e ∈ Qpe = t(Qp(1)) to ū, the image of up (but which is of course
not induced by the map U(Qp,∞)p → H1(Qp,Tun(K∞))p as the latter map becomes
trivial modulo π !).

Proof. First note that ū is mapped under the natural inclusion H1(Qp,Tun(Qp,∞))p/π ⊆
H1(Qp,Qp(1)) to the image of p under the isomorphism (Q×p )∧⊗Qp

∼= H1(Qp,Qp(1)) of

Kummer theory, because p is the image of the elements 1− ε−1
n under the norm maps.

In particular, ū is nonzero. By (2.15) the element uγ0−1 belongs to U(Qp,∞). In order

to calculate the image of the class uγ0−1 of uγ0−1
p modulo π under −LQp(1) we note that

g(X) = guγ0−1,−ε(X) =
(1 +X)κ(γ0) − 1

X
≡ κ(γ0) mod (X),

whence we obtain from setting X = 0 in −(2.5) that

−(1− p−1) = −(1− p−1) log(κ(γ0)) = −Col−ε(u
γ0−1) · 1

equals the image of uγ0−1 in Qp = R/π ⊗Λ(Γ) Tun(Qp,∞) ⊗Λ(Γ) Λ(Γ)[Tun,τp]−1 under

−LQp(1). In particular, uγ0−1 is a basis of U(Qp,∞)p/π, which is mapped to zero in

H1(Qp,Tun(Qp,∞))p/π, whence the long exact Tor-sequence associated with (2.54) in-
duces the isomorphisms

H1(Qp,Tun(Qp,∞))p/π
−v // Qp , ū 7→ −1, as v(p) = 1,

and

Qp
// U(Qp,∞)p/π , 1 7→ uγ0−1,

where the latter formula follows from the snake lemma. By the first isomorphism and
Nakayama’s lemma the first statement is proven and therefore

H1(Qp,Tun(Qp,∞))p[π] = U(Qp,∞)p[π] = 0.

The second claim follows now from the composition of these isomorphisms. �

Finally, the exact triangle in the derived category of R-modules

RΓ(Qp,Tun(Qp,∞))p
1−γ0// RΓ(Qp,Tun(Qp,∞))p // Zp ⊗L

Λ(Γ) RΓ(Qp,Tun(Qp,∞))p //

combined with (2.52) induces the Bockstein map β = θ∪ sitting in the canonical exact
sequence (depending on γ0)
(2.56)

0 // H1(Qp,Tun(K∞))p/π // H1(Qp,Qp(1))

∼=
��

β // H2(Qp,Qp(1)) //

∼=
��

0,

(Q×p )∧ ⊗Qp

logp // Qp

where θ denotes the composite GQp
κ // Z×p

logp // Zp considered as element in H1(Qp,Zp),
see [21, lem. 5.7-9], [11, §3.1] and [10, §5.3] and for the commutativity of the square [26,
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Ch. II,1.4.5]. The right zero in the upper line comes from H3(Qp,Tun(K∞))p[π] = 0.
Combining with (2.55) it follows that ε′Qp(Qp(1)) is induced from the exact sequence

(2.57)

0 // t(Qp(1)) ∼= Qp
(1−p−1)−1im(p)// H1(Qp,Qp(1))

β=logp// H2(Qp,Qp(1)) // 0,

which does not coincide at all with (2.42) (not even up to sign), nevertheless they induce
the same map on determinants: both induce a map

dQp(H
1(Qp,Qp(1)))→ dQp(H

2(Qp,Qp(1)))⊗ dQp(t(Qp(1)) ∼= dQp(Qp)⊗ dQp(Qp)

sending (1−p−1)−1 exp(1)∧−im(p) = (1−p−1)−1im(p)∧exp(1) to 1∧1. This completes
the proof in the exceptional case.

For r ≤ 0 one has symmetric calculations - at least in the generic case - using a descent
diagram analogous to (2.44) except the left map on the bottom being now induced by
the dual Bloch-Kato exponential map Γ(V )exp∗V ∗(1) as indicated in (A.67) (left to the

reader). The exceptional case can be dealt with by using the following duality principle
(generalised reciprocity law) as follows.

Let T be a free R-module of rank one with compatible GQp-action as above. Then

T∗ := HomR(T, R)

is a free R◦-module of rank one - for the action h 7→ h(−)r, r in the opposite ring
R◦ of R - with compatible GQp-action given by h 7→ h ◦ σ−1. Recall that in Iwasawa

theory we have the canonical involution ι : Λ◦ → Λ, induced by g 7→ g−1, which allows
to consider (left) Λ◦-modules again as (left) Λ-modules, e.g. one has T∗(T )ι ∼= T(T ∗)
as (Λ, GQp)-module, where M ι := Λ ⊗ι,Λ◦ M denotes the Λ-module with underlying

abelian group M, but on which g ∈ G acts as g−1 for any Λ◦-module M.

Given ε′R◦,−ε(T∗(1)) we may apply the dualising functor −∗ (compare B.j) in Appendix

B) to obtain an isomorphism

ε′R◦,−ε(T∗(1))∗ : (dR◦(RΓ(Qp,T∗(1)))
R̃◦

)∗(dR◦(T∗(1))
R̃◦

)∗ → 1
R̃◦
,

while the local Tate duality isomorphism [23, §1.6.12]

ψ(T) : RΓ(Qp,T) ∼= RHomR◦(RΓ(Qp,T∗(1)), R◦)[−2]

induces an isomorphism

dR(ψ(T))
R̃

−1
:
(
(dR◦(RΓ(Qp,T∗(1)))

R̃◦
)∗
)−1 ∼=(2.58)

dR(RHomR◦(RΓ(Qp,T∗(1)), R◦))−1

R̃
→ dR(RΓ(Qp,T))−1

R̃

where we use the notation of Remark B.1. Consider the product

ε′R,ε(T) · ε′R◦,−ε(T∗(1))∗ · dR(ψ(T))
R̃

−1
: dR(T(−1))

R̃
∼= dR(T∗(1)∗)

R̃
→ dR(T)

R̃

and the isomorphism T(−1)
·ε // T which sends t⊗ ε⊗−1 to t.

Proposition 2.10 (Duality). Let T be as above such that T ∼= Y ⊗Λ Tun for some
(R,Λ)-bimodule Y, which is projective as R-module. Then

ε′R,ε(T) · ε′R◦,−ε(T∗(1))∗ · dR(ψ(T))
R̃

−1
= dR

(
T(−1)

·ε // T
)
R̃
.
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Proof. First note that the statement is stable under applying Y ′⊗R− for some (R′, R)-
bimodule Y ′, which is projective as a R′-module by the functoriality of local Tate
duality and the lemma below. Thus we are reduced to the case (R,T) = (Λ,T(T ))
where T = Zp(r)(η) is generic. Since the morphisms between dR(T(−1))

R̃
and dR(T)

R̃

form a K1(Λ̃)-torsor and the kernel

SK1(Λ̃) := ker

K1(Λ̃)→
∏

ρ∈Irr(G)

K1(L̃ρ)

 = 1

is trivial, as G is abelian, it suffices to check the statement for all (L, V (ρ)), which
is nothing else than the content of [23, prop. 3.3.8]. Here Irr(G) denotes the set of
Qp-valued irreducible representations of G with finite image. �

Lemma 2.11. Let Y be a (R′, R)-bimodule such that Y ⊗RT ∼= T′ as (R′, GQp)-module
and let Y ∗ = HomR′(Y,R

′) the induced (R′◦, R◦)-bimodule. Then there is a natural

(i) equivalence of functors

Y ⊗R HomR◦(−, R◦) ∼= HomR′◦(Y
∗ ⊗R◦ −, R′◦)

on P (R◦).
(ii) isomorphism Y ∗ ⊗R◦ T∗ ∼= (T′)∗ of (R′◦, GQp)-modules.

Proof. This is easily checked using the adjointness of Hom and ⊗. �

Proposition 2.12 (Change of ε). Let c ∈ Z×p and let σc be the unique element of the

inertia subgroup of G(Qab
p /Qp) such that σc(ε) = cε (in the Zp-module Zp(1), whence

written additively). Then
ε′R,cε(T) = [T, σc]ε′R,ε(T)

Proof. As in the proof of Proposition 2.10 this is easily reduced to the pairs (L, V (ρ)),
for which the statement follows from the functorial properties of ε-constants [23, §3.2.2(2)].

�

Altogether we have proven the following

Theorem 2.13 (Kato, ε-isomorphisms). Let T be such that T ∼= Y ⊗ΛTun as (R,GQp)-
module for some (R,Λ)-bimodule Y which is projective as R-module, where Λ = Λ(G)
with G = G(L/Qp) for any L ⊆ Qab

p . Then the epsilon isomorphism ε′R(T) exists
satisfying the twist-invariance (2.21), the descent property (2.22), the “change of ε”
relation 2.12 and the duality relation in 2.10. In particular ε′Λ(T) exists for all pairs
(Λ,T), with T ∼= Λ one-dimensional (free) as Λ-module.

Proof. For G a two-dimensional p-adic Lie group this has been shown explicitly above.
The general case follows by taking limits. �

We shortly indicate how this result implies the validity of a local main conjecture in
this context. Here again we restrict to the universal case Tun, but we want to point
out that similar statements hold for general T as in the above theorem by the twisting
principle, in particular it applies to TE for the local representation given by a CM
elliptic curve as in Example 3.1 below.
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In the situation of section 2.2 - in particular G is a two-dimensional p-adic Lie group -
let

S := {λ ∈ Λ | Λ/Λλ is finitely generated over Λ(G(K∞/Qp,∞))}
denote the canonical Ore set of Λ (see [14]) and similarly S̃ the canonical Ore set

of Λ̃. Fix an element u of U(K∞) = H1(Qp,Tun(K∞)) such that the map Λ →
H1(Qp,Tun(K∞)), 1 7→ u, becomes an isomorphism after base change to Λ̃

S̃
(such “gen-

erators” exist according to (2.19) and Proposition 2.1). Then, setting L = −LK,ε−1 ,

ε′Λ(Tun) : 1
Λ̃
→ dΛ(RΓ(Qp,Tun))

Λ̃
dΛ(Tun)

Λ̃
,

induces a map

(2.59) 1
Λ̃
→ dΛ(H1(Qp,Tun)/Λu)−1

Λ̃
dΛ(H2(Qp,Tun))

Λ̃
dΛ(Tun/L(u))

Λ̃
,

such that its base change followed by the canonical trivialisations (all arguments on the

right hand side are S̃-torsion modules!)

1
Λ̃
S̃
→ dΛ(H1(Qp,Tun)/Λu)−1

Λ̃
S̃

dΛ(H2(Qp,Tun))
Λ̃
S̃
dΛ(Tun/ΛL(u))

Λ̃
S̃

∼=

d
Λ̃
S̃
(Ẑurp )d

Λ̃
S̃
(Ẑurp (1))→ 1

Λ̃
S̃

equals the identity in Aut(1
Λ̃
S̃
) = K1(Λ̃

S̃
) by Lemma 2.2. Let Eu be the element in

K1(Λ̃
S̃

) such that

L(u) = E−1
u · (1⊗ ε).

Consider the connecting homomorphism ∂ in the exact localisation sequence

K1(Λ̃) // K1(Λ̃
S̃

)
∂ // K0(S̃-tor) // 0,

where S̃-tor denotes the category of finitely generated Λ̃-modules which are S̃-torsion.
Then we obviously have

∂(Eu) = −[Tun/ΛL(u)] = [H2(Qp,Tun)]− [H1(Qp,Tun)/Λu]

in K0(S̃-tor). Moreover one can evaluate Eu at Artin characters ρ of G as in [14] and
derive an interpolation property for E(ρ) from Theorem 2.13 by the techniques of [23,
lem. 4.3.10]; this will be carried out in [35]. These two properties build the local main
conjecture as suggested by Fukaya and Kato in a much more general, not necessarily

commutative setting. Kato (unpublished) has shown that Λ̃
S̃
⊗Λ U(K∞) ∼= Λ̃

S̃
does

hold in vast generality for p-adic Lie extensions.

3. The semi-local case

Let F∞/Q be a p-adic Lie extension with Galois group G and ν be any place of F∞
above p such that Gν = G(F∞,ν/Qp) is the decomposition group at ν. For any free
Zp-module T of finite rank with continuous Galois action by GQ we define the free
Λ(G)-module

T := T(T )F∞ := Λ(G)\ ⊗Zp T

with the usual diagonal GQ-action. Similarly, we define the free Λ(Gν)-module

Tloc := Λ(Gν)\ ⊗Zp T
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with the usual diagonal GQp-action. Then we have the following canonical isomorphism
of (Λ(G), GQp)-bimodules

T ∼= Λ(G)⊗Λ(Gν) Tloc.

Thus we might define

εΛ(G)(Qp,T) := Λ(G)⊗Λ(Gν) ε
′
Λ(Gν)(T

loc) : 1
Λ̃(G)

→ dΛ(G)(RΓ(Qp,T))
Λ̃(G)

dΛ(G)(T)
Λ̃(G)

.

Now let ρ : G→ GLn(OL) be a continuous map and ρν its restriction to Gν , where L
is a finite extension of Qp. By abuse of notation we shall also denote the induced ring
homomorphisms Λ(G) → Mn(OL) and Λ(Gν) → Mn(OL) by the same letters. Since
we have a canonical isomorphism

Ln ⊗ρ,Λ(G) T ∼= Ln ⊗ρν ,Λ(Gν) Tloc

of (L,GQp)-bimodules, we obtain

Ln ⊗ρ,Λ(G) εΛ(G)(Qp,T) =

Ln ⊗ρν ,Λ(Gν) ε
′
Λ(Gν)(T

loc) : 1
L̃
→ dL(RΓ(Qp, V (ρ∗)))

L̃
dL(V (ρ∗))

L̃
,

where V = T ⊗Zp Qp.

Example 3.1. Let E be a elliptic curve defined over Q with CM by the ring of
integers of an imaginary quadratic extension K ⊆ F∞ of Q and let ψ denote the
Grössencharacter associated to E. Then TE ∼= IndKQ Tψ, which is isomorphic to Tψ⊕Tψc
as representation of GK . Here Tψ equals Zp on which GQ acts via ψ, while ψc is the
conjugate of ψ by complex multiplication c ∈ G(K/Q).

Assuming Kν = Qp and setting TE := T, TlocE := Tloc for T = TE as well as Tψ :=

Λ(G)\ ⊗Zp Tψ, Tlocψ := Λ(Gν)\ ⊗Zp Tψ we obtain

TE ∼= Tψ ⊕ Tψc
as (Λ(G), GK)-modules and hence

εΛ(G)(Qp,TE) = εΛ(G)(Qp,Tψ)εΛ(G)(Qp,Tψc)

= Λ(G)⊗Λ(Gν)

(
εΛ(Gν)(Qp,Tlocψ )εΛ(Gν)(Qp,Tlocψc )

)
.

If F is a number field and F∞ a p-adic Lie-extension of F again with Galois group G,
then, for a place p above p and a projective Λ(G)-module T with continuous GFp-action
we define a corresponding ε-isomorphism

εΛ(G)(Fp,T) : 1
Λ̃(G)

→ dΛ(G)(RΓ(Fp,T))
Λ̃(G)

dΛ(G)(T)
[Fp:Qp]

Λ̃(G)

to be induced from

εΛ(G)(Qp,Z[GQp ]⊗Z[GFp ] T) :

1
Λ̃(G)

→ dΛ(G)(RΓ(Qp,Z[GQp ]⊗Z[GFp ] T))
Λ̃(G)

dΛ(G)(Z[GQp ]⊗Z[GFp ] T)
Λ̃(G)

.

Finally we put

εΛ(F ⊗Q Qp,T) = εΛ(Qp,
⊕
p|p

Z[GQp ]⊗Z[GFp ] T) =
∏
p|p

εΛ(Fp,T),

where p runs through the places of F above p.
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4. Global functional equation

In this section we would like to explain the applications addressed in the introduction.
In the same setting as in Example 3.1 we assume that p is a prime of good ordinary
reduction for the CM elliptic curve E and we set F∞ = Q(E(p)), as well as G =
G(F∞/Q) and Λ := Λ(G). We write M = h1(E)(1) for the motive attached to E and
set εp,Λ(M) = εΛ(Qp,TE). Using [43] one obtains similarly ε-isomorphisms over Ql,
l 6= p which we call analogously εl,Λ(M). Finally, one can define ε∞,Λ(M) also at the
place at infinity, see [23, conj. §3.5] or - with a slightly different normalisation - at the
end of [39, §5], we choose the latter one. Let S be the finite set of places of Q consisting
of p,∞ as well as the places of bad reduction of M.

Now, according to the Conjectures of [23] there exists a ζ-isomorphism

ζΛ(M) := ζΛ(TE) : 1Λ → dΛ(RΓc(U,TE))−1

which is the global analogue of the ε-isomorphism concerning special L-values (at mo-
tivic points in the sense of [22]) instead of ε- and Γ-factors; here RΓc(U,TE) denotes the
perfect complex calculating étale cohomology with compact support of TE with respect
to U = Spec(Z) \ S. Good evidence for the existence of ζΛ(M) is given in (loc. cit.)
although Flach concentrates on the commutative case, i.e., he considers Λ(G(F∞/K))
instead of Λ(G); from this the non-commutative version probably follows by similar
techniques as in [7], but as a detailed discussion would lead us too far away from the
topic of this article, we just assume the existence here for simplicity. Then we obtain
the following

Theorem 4.1. There is the functional equation

ζΛ(M) = (ζΛ(M)∗)−1 ·
∏
v∈S

εv,Λ(M).

This result is motivated by [23, conj. 3.5.5], for more details see [39, thm. 5.11], compare
also with [9, section 5]. Observe that we used the self-duality M = M∗(1) of M here.

Finally we want to address the application towards the descent result with Burns men-
tioned in the introduction. If ω denotes the Neron differential of E, we obtain the usual
real and complex periods Ω± =

∫
γ±
ω by integrating along pathes γ± which generate

H1(E(C),Z)±. We set R = {q prime, |j(E)|q > 1}∪{p} and let u,w be the roots of the
characteristic polynomial of the action of Frobenius on the Tate-module TE of E

1− apT + pT 2 = (1− uT )(1− wT ), u ∈ Z×p .

Further let pfp(ρ) be the p-part of the conductor of an Artin representation ρ, while

Pp(ρ, T ) = det(1 − Frob−1
p T |V Ip

ρ ) describes the Euler-factor of ρ at p. We also set

d±(ρ) = dimC V
±
ρ and denote by ρ∗ the contragredient representation of ρ. By ep(ρ)

we denote the local ε-factor of ρ at p. In the notation of [38] this is ep(ρ, ψ(−x), dx1)
where ψ is the additive character of Qp defined by x→ exp(2πix) and dx1 is the Haar
measure that gives volume 1 to Zp. Moreover, we write R∞(ρ∗) and Rp(ρ

∗) for the
complex and p-adic regulators of E twisted by ρ∗. Finally, in order to express special
values of complex L-functions in the p-adic world, we fix embeddings of Q̄ into C and
Cp, the completion of an algebraic closure of Qp.
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In [7, thm. 2.14] we have shown that as a consequence of the work of Rubin and Yager
there exists LE ∈ K1(ΛZp(G)S) satisfying the interpolation property

LE(ρ) =
LR(E, ρ∗, 1)

Ω
d+(ρ)
+ Ω

d−(ρ)
−

ep(ρ)
Pp(ρ, u

−1)

Pp(ρ∗, w−1)
u−fp(ρ)

for all Artin representations ρ of G. Moreover the (slightly non-commutative) Iwasawa
Main Conjecture (see [14] or Conjecture 1.4 in loc. cit.) is true supposed the MH(G)-
Conjecture (see [14] or Conjecture 1.2 in loc. cit.) holds; for CM elliptic curves this
conjecture is actually equivalent to the vanishing of the cyclotomic µ-invariant of E. In
[12, Conj. 7.4/9, Prop. 7.8] a refined Main Conjecture has been formulated requiring
the following p-adic BSD-type formula:

At each Artin representation ρ of G (with coefficients in L) the leading term L∗E(ρ) of
LE (as defined in [11]) equals

(4.60) (−1)r(E)(ρ∗) L∗R(E, ρ∗)Rp(ρ
∗)

Ω
d+(ρ)
+ Ω

d−(ρ)
− R∞(ρ∗)

ep(ρ)
Pp(ρ, u

−1)

Pp(ρ∗, w−1)
u−fp(ρ)

where L∗R(E, ρ∗) is the leading coefficient at s = 1 of the L-function LR(E, ρ∗, s) ob-
tained from the Hasse-Weil L-function of E twisted by ρ∗ by removing the Euler factors
at R. Here the number r(E)(ρ∗) is defined in [12, (51)] (with M = h1(E)(1)) and equals

dimCp(eρ∗(Cp ⊗Z E(Kker(ρ)))) if the Tate-Shafarevich group X(E/F
ker(ρ)
∞ ) is finite.

We write X(E/F∞) for the Pontriagin dual of the (p-primary) Selmer group of E over
F∞.

Theorem 4.2. Let F be a number field contained in F∞ and assume

(i) the MH(G)-Conjecture,
(ii) that LE satisfies the refined interpolation property (4.60),

(iii) that X(E/F∞) is semisimple at all ρ in Irr(GF/Q) in the sense of [11, def.
3.11].

Then the ‘p-part’ of the ETNC for (E,Z[G(F/Q)]) is true. If, moreover, the Tate-
Shafarevich group X(E/F ) of E over F is finite, then it implies the ‘p-part’ of a Birch
and Swinnerton-Dyer type formula (see, for example, [39, §3.1]).

For more details on the ‘p-part’ of the Equivariant Tamagawa Number Conjecture
(ETNC) and the proof of this result, which uses the existence of (1.1) as shown in this
paper, see [12, thm. 8.4]. Note that due to our semisimplicity assumption combined
with [12, rem. 7.6, prop. 7.8] the formula (4.60) coincides with that of [12, Conj. 7.4].
Also Assumption (W) of thm. 8.4 is valid for weight reasons. Finally we note that by
[11, lem. 3.13, 6.7] X(E/F∞) is semisimple at ρ if and only if the p-adic height pairing

hp(Vp(E)⊗ ρ∗) : H1
f (Q, Vp(E)⊗ ρ∗)×H1

f (Q, Vp(E)⊗ ρ)→ L

from [31, §11] (see also [36] or [32]) is non-degenerate, where Vp(E) = Qp ⊗ TE is the
usual p-adic representation attached to E. As far as we are aware, the only theoretical
evidence for non-degeneracy is a result of Bertrand [6] that for an elliptic curve with
complex multiplication, the height of a point of infinite order is non-zero. Computa-
tionally, however, there has been a lot of work done recently by Stein and Wuthrich
[41].
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Appendix A. p-adic Hodge theory and (ϕ,Γ)-modules

As before in the local situation K denotes a (finite) unramified extension of Qp. Let
η : GQp → Z×p (here Z×p can also be replaced by O×L , but for simplicity of notation
we won’t do that in this exposition) be an unramified character and let T0 be the free
Zp-module with basis tη,0 such that σ ∈ GQp acts via σtη,0 = η(σ)tη,0. More generally,
for r ∈ Z, we consider the GQp-module

T := T0(r),

free as a Zp-module with basis tη,r := tη,0 ⊗ ε⊗r, where ε = (εn)n denotes a fixed
generator of Zp(1), i.e., εpn = εn−1 for all n ≥ 1, ε0 = 1 and ε1 6= 1. Thus we have
σ(tη,r) = η(σ)κr(σ)tη,r, where κ : GQp → Z×p denotes the p-cyclotomic character.
Setting V := Qp ⊗ T = V0(r) we obtain for its de Rham filtration

(A.61) Di
dR(V ) =

{
DdR(V ) ∼= Keη,r, i ≤ −r;
0, otherwise.

where eη,r := at−r ⊗ tη,r with a unique a = aη ∈ Ẑurp
×
, such that τp(a) = η−1(τp)a, see

[37, thm. 1, p. III-31]. Here as usual t = log[ε] ∈ Bcris ⊆ BdR denotes the p-adic period
analogous to 2πi. Furthermore we have

Dcris(V ) = Keη,r

with

ϕ(eη,r) = p−rη−1(τp)eη,r.

If η is trivial, we also write tr and er for tη,r and eη,r, respectively.

Now consider the OK-lattices

M0 := OKeη,0 = (Ẑurp ⊗Zp T0)GK ⊆ Dcris(V0)

and

M := (t−r ⊗ ε⊗r)M0 = OKeη,r ⊆ Dcris(V ).

Using the variable X = [ε]− 1 we have t = log(1 +X) and on the rings

OK [[X]] ⊆ B+
rig,K := {f(X) =

∑
k≥0

akX
k|ak ∈ K, f(X) converges on {x ∈ Cp||x|p < 1}}

we have the following operations: ϕ is induced by the usual action of φ on the coefficients
and by ϕ(X) := (1+X)p−1, while γ ∈ Γ acts trivially on coefficients and by γ(X) = (1+

X)κ(γ)−1; letting HK = G(K/Qp) act just on the coefficients we obtain a Λ(G)-module
structure on OK [[X]]. Moreover, ϕ has a left inverse operator ψ uniquely determined
via ϕ ◦ ψ(f) = 1

p

∑
ζp=1 f(ζ(1 + X) − 1). The differential operator D := (1 + X) d

dX

satisfies

(A.62) Dϕf = pϕDf and Dγf = κ(γ)γDf

It is well-known [33, lem. 1.1.6] that D induces an isomorphism of OK [[X]]ψ=0. Fur-
thermore, setting ∆if := Dif(0) for f ∈ OK [[X]]ψ=0, we have an exact sequence (loc.
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cit., §2.2.7, (2.1))

0 // tr ⊗Dcris(V )ϕ=p−r // (B+
rig,K ⊗K Dcris(V ))ψ=1 1−ϕ //

(A.63)

(B+
rig,K)ψ=0 ⊗K Dcris(V )

∆r // (Dcris(V )/(1− prϕ))(r) // 0

where ϕ (and ψ) acts diagonally on B+
rig,K ⊗K Dcris(V ), while D operates just on the

first tensor-factor. We set

DM := OK [[X]]ψ=0 ⊗OK M,

while by

D(T ) = (A⊗Zp T )GK∞

we denote the (ϕ,Γ)-module attached to T, where the definition of the ring A together
with its ϕ- and Γ-action can be found e.g. in [4]. Here we only recall that A+

K
∼= OK [[X]]

and AK ∼= (OK [[X]][ 1
X ])∧p-adic is the p-adic completion of the Laurent series ring.

Remark A.1. (i) Let η be non-trivial. From [4, thm. A.3] and its proof one sees
immediately that for the Wach-module N(T0) which according to (loc. cit.,
prop. A.1) equals OK [[X]] ⊗OK M0, the natural inclusion N(T0) ↪→ AK ⊗A+

K

N(T0) induces an isomorphism

(OK [[X]]⊗OK M0)ψ=1
∼= // N(T0)ψ=1

∼= //
(
AK ⊗A+

K
N(T0)

)ψ=1 ∼= D(T0)ψ=1 .

(ii) If η is trivial, one has similarly N(Zp) = A+
K = OK [[X]] by (loc. cit., prop.

A.1), whence N(Zp(1)) = X−1A+
K ⊗ t1 = X−1OK [[X]] ⊗ t1 by the usual twist

behaviour of Wach modules. We obtain

D(Zp(1))ψ=1 ∼= N(Zp(1))ψ=1 = (X−1OK [[X]]⊗t1)ψ=1 = ZpX−1⊗t1⊕(OK [[X]]⊗t1)ψ=1,

but N(Zp)ψ=1 6∼= D(Zp)ψ=1 according to (loc. cit., prop. A.3).

We define D̃(Zp(r))ψ=1 = (OK [[X]] ⊗ tr)ψ=1 and D̃(T )ψ=1 = D(T )ψ=1 for non-trivial
η and obtain a canonical isomorphism

(A.64) (OK [[X]]⊗OK M)ψ=pr ∼= D̃(T )ψ=1

induced by multiplication with tr :

f(X)⊗ (oat−r ⊗ tη,r) 7→ f(X)oa⊗ tη,r,

where o ∈ OK and a is as before.

Setting TK∞ := TK∞(T ) := Λ(G(K∞/Qp))
] ⊗Zp T we recall that there is a canonical

isomorphism due to Fontaine

(A.65) D(T )ψ=1 ∼= H1(Qp,TK∞),

which e.g. is called {h1
Kn,V

}n in [4] and its inverse Log∗T ∗(1) in [13, rem. II.1.4].
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I am very grateful to Denis Benois for parts of the proof of the following proposition,
which has been stated in a slightly different form, but without proof1, in [33, prop.
4.1.3].

Proposition A.2. (i) There is a canonical exact sequence of OK-modules

0 // 1⊗Mϕ=p−r // (OK [[X]]⊗OK M)ψ=pr // DM
∆M,r // M/(1− prϕ)M // 0,

where the map in the middle is up to twisting induced by 1 − ϕ, see the first
diagram in the proof below.

(ii) Assume that η is non-trivial. Then, using the isomorphisms (A.64) and (A.65)
we obtain the following commutative diagram of Λ(G)-modules, in which the
maps C(TK∞) (= (D−r⊗t−r)(1−ϕ)) and L0(TK∞) are defined by the property
that the rows become isomorphic to the exact sequence in (i)

0 // D(T )ϕ=1

∼=
��

// D(T )ψ=1
C(TK∞ )

//

∼=Log∗T∗(1)

��

DM
=

��

∆M,r // M/(1− prϕ)M

=

��

// 0

0 // H1(Qp,TK∞)tors // H1(Qp,TK∞)
L0(TK∞ )

// DM
∆M,r // M/(1− prϕ)M // 0.

(iii) The sequence (2.15) can be interpreted in terms of (ϕ,Γ)-modules by the fol-
lowing commutative diagram

0 // U(K∞)

Dlog g−∼=
��

δ // H1(Qp,Tun) ∼= lim←−
n

K̂×n

∼=
��

−v̂ // Zp // 0

0 // D̃(Zp(1))ψ=1 // D(Zp(1))ψ=1 // Zp // 0,

where δ denotes the Kummer map and v̂ is induced from the normalized val-
uation map. Furthermore, we obtain again a commutative diagram of Λ(G)-
modules, in which the maps C(TK∞) (= (D−r⊗ t−r)(1−ϕ)) and L0(TK∞) are
defined by the property that the rows become isomorphic to the exact sequence
in (i)

0 // D̃(Zp(r))ϕ=1 // D̃(Zp(r))ψ=1
C(TK∞ )

// DM
∆M,r // M/(1− prϕ)M // 0

0 // Zp(r) //

∼=

OO

U(K∞)(r − 1)

∼= Dlog g−

OO

L0(TK∞ )
// DM

∆M,r // Zp(r)

∼=

OO

// 0.

Hence, using the map M⊗ e1 : OK [[Γ]]
∼= // DM , λ 7→ λ · (1+X)⊗e1, where

M denotes the Mahler (or p-adic Mellin) transform [15, thm. 3.3.3], the lower
sequence can be canonically identified with Coleman’s exact sequence (2.4):
L0(TK∞) = (M⊗ e1) ◦ Colε.

1As twisting with the cyclotomic character starting from Qp(1) only recovers the representations
V = Qp(r), the general case with V0 being non-trivial is not covered.
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Proof. The exactness in (i) for M0 can be checked as follows. Let f(X) ⊗ eη,0 be in

DM0
∆M0,0

=0, i.e., f(0)eη,0 = (1 − ϕ)b for some b ∈ M0. Hence (f(X) − f(0)) ⊗ eη,0 =
Xg(X)⊗ eη,0 for some g ∈ OK [[X]] and

F ′ := (1− ϕ)−1(Xg(X)⊗ eη,0) :=
∑
i≥0

ϕi(Xg(X)⊗ eη,0) ∈ OK [[X]]⊗M0

is a well-defined element. Setting F := F ′ + b we have (1 − ϕ)F = f(X) ⊗ eη,0 as
desired. Now exactness follows from (A.63). The general case follows from the following
commutative “twist diagram” of OK-modules

0 // 1⊗Mϕ=p−r

∼=1⊗(tr⊗ε⊗−r)
��

// (OK [[X]]⊗OK M)ψ=pr

∼=1⊗(tr⊗ε⊗−r)
��

// DM
∼=Dr⊗(tr⊗ε⊗−r)
��

∆M,r // M/(1− prϕ)M

∼=tr⊗ε⊗−r
��

// 0

0 // 1⊗Mϕ=1
0

// (OK [[X]]⊗OK M0)ψ=11−ϕ // DM0

∆M0,0// M0/(1− prϕ)M0
// 0.

Item (ii) is clear by the fact that D(T ) = AK · a⊗ tη,r, which can either be calculated
directly or deduced from the above remark. The statement about the torsion (first
vertical isomorphism) follows from [18, thm. 5.3.15].

For (iii) first note that by [13, prop. V.3.2 (iii)] we have a commutative diagram

U(K∞)

δ ((

Υ // D(Zp(1))ψ=1

Log∗Qp
��

D(Zp)ψ=1(1)

H1(Qp,TK∞(Zp(1)))

where Υ maps u to Dgu
gu
⊗t1 = D log gu⊗t1. The statements concerning the first diagram

follow easily, see also [18, §7.2]. The second diagram follows as above. By construction
the composite

U(K∞)→ D(Zp(1))ψ=1 → DM

maps u = (un)n to(
D−1(1− ϕ)D log gu

)
⊗ e1 =

(
(1− p−1ϕ) log gu

)
⊗ e1

= (1− ϕ) (log gu ⊗ e1)

= L(gu)⊗ e1

= Col(u) · (1 +X)⊗ e1,

where L has been defined in (2.5). This implies the last statement. �

Now let K be again a finite extension of degree dK over Qp. For a uniform treatment
we define

H̃1(Qp,TK∞(T )) :=

{
H1(Qp,TK∞(T )), if η 6= 1I;
U(K∞)(r − 1), if T = Zp(r).
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Setting HM := {F ∈ B+
rig,K ⊗OK M |(1 − ϕ)f ∈ DM}, using [4, thm. II.11] and the

commutativity of the following diagram

HM

Dr⊗(tr⊗ε⊗−r)
��

1−ϕ // D∆M,r=0
M

Dr⊗(tr⊗ε⊗−r)
��

(OK [[X]]⊗OK M0)ψ=1 1−ϕ // D∆M0,0
=0

M0

we see that the map L0(TK∞) coincides with the “inverse” of Perrin-Riou’s large expo-

nential map ΩT,r : D∆M,r=0
M → D(T )ψ=1/THK (∼= H1(Qp,TK∞)/THK ) in [34] (respec-

tively (−1)r−1 times the one in [33]), which sends f to (Dr ⊗ tr)F, where F ∈ HM
satisfies (1− ϕ)F = f. Here “Dr ⊗ tr” denotes the composite

HM
Dr⊗(tr⊗ε⊗−r)// (OK [[X]]⊗OK M0)ψ=1

1⊗(t−r⊗ε⊗r) // (OK [[X]]⊗OK M)ψ=pr tr // D(T )ψ=1

and corresponds to the operator ∇r−1 ◦ . . . ◦ ∇0 in [4] for r ≥ 1. In particular, by [4,
thm. II.10/13] we obtain the following descent diagram for r, n ≥ 1, where the maps
ΞM,n = ΞεM,n are recalled below (A.71)

(A.66) H̃1(Qp,TK∞(T ))

prn

��

L0(TK∞ (T ))
// DM

ΞM,n

��
H1(Kn, V ) Kn

∼= DdR,Kn(V ),
(−1)r−1(r−1)!expKn,Voo

while for r ≤ 0

(A.67) H̃1(Qp,TK∞(T ))

prn

��

L0(TK∞ (T ))
// DM

ΞM,n

��
H1(Kn, V )

(−r)!exp∗
Kn,V ∗(1) // Kn

∼= DdR,Kn(V ).
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Remark A.3. In particular, for T = Zp(1) we have the following commutative descent
diagram for n ≥ 1

U(K∞)

prn

��

L0(TK∞ (Zp(1)))
// DM

Ξn

��
Qp ⊗Zp Un

δ

''

Kn
∼= DdR,Kn(Qp(1)),

expKn,Qp(1)

uu

expoo

H1(Kn,Qp(1))

where exp denotes the usual p-adic exponential (series), while Ξn maps ((1−p−1ϕ) log gu)⊗
e1 to log gφ

−n
u (εn − 1) = log un.

In order to arrive at a morphism

L(TK∞(T )) : H̃1(Qp,TK∞(T ))→ TK∞(T )⊗Λ Λ[T(T ),τp]−1 ,

where [T, τp]−1 = τpη
−1(τp), generalising LK,ε in (2.6), we compose L0(TK∞(T )) with

the following canonical isomorphisms

(A.68) DM = OK [[X]]ψ=0 ⊗OK M OK [[Γ]]⊗OK M∼=
ΨMoo

∼=
ΘM // TK∞ ⊗Λ Λ[T,τp]−1 ,

where the left one ΨM (λ⊗m) = λ · (1 +X)⊗m is induced by M, while the right one
is given by

ΘM (λ⊗ (at−r ⊗ tη,r)) = (1⊗ tη,r)⊗ (

dK−1∑
i=0

τ ip ⊗ η−i(τp)φ−i(λa))

= (1⊗ tη,r)⊗ (
∑
i

τ ip ⊗ φ−i(λ)a).

Similarly to the original Coleman map Col in (2.4) the homomorphisms C(TK∞),
L0(TK∞) and L(TK∞) are norm compatible when enlarging K within Qur

p . Thus, by
taking inverse limits we may and do define them also for infinite unramified extensions
K of Qp. Then we have the following twist and descent properties:

Lemma A.4. Let K ′ ⊆ K be (possibly infinite) unramified extensions of Qp and Y a
(Λ(G(K ′∞/Qp)),Λ(G(K∞/Qp))-module such that Y ⊗Λ(G(K∞/Qp)) TK∞(T ) ∼= TK′∞(T ′)

as Λ(G(K ′∞/Qp))-module with compatible GQp-action. Then

Y ⊗Λ(G(K∞/Qp)) L0(TK∞(T )) = L0(TK′∞(T ′))

and
Y ⊗Λ(G(K∞/Qp)) L(TK∞(T )) = L(TK′∞(T ′)).

In particular, L(TK′∞(T )) = LTK′∞ (T ),ε in (2.43).
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Proof. The proof can be parted into a twist-statement, where K ′ = K and T ′ ∼=
T ⊗Zp T

′′, such that GQp acts diagonally on the tensor product and T ′ is rank one
Zp-representation of G, and a descent statement. One first proves the twist-statement
for T ′′/pn, n fix, and all finite subextensions K ′ of K, such that G(K/K ′) acts trivially
on T ′′/pn. Afterwards one takes limits over K ′ obtaining the twist-statement for T ′′/pn.
Then, taking the projective limit with respect to n (see [5] for the correct behaviour
of (ϕ,Γ)-modules under such limits) one shows the full twist-statement (compare with
the well-known twisting for Hi

IW ). The descent-statement then follows easily from the
norm-compatibility and the fact that the twisted analogue of the exact sequence (2.10)

0 // H̃1(Qp,TK∞(T ))
L(TK∞ )

// TK∞(T )⊗Λ Λ[T(T ),τp]−1 // T // 0

recovers (for finite extension K ′ of Qp) the exact sequence

0 // TG(K/K′) // H̃1(Qp,TK′∞(T ))
L(TK′∞ )

// TK′∞(T )⊗Λ Λ[T(T ),τp]−1 // T // 0

by taking G(K/K ′)-coinvariants. In more detail the unramified twist (the cyclotomic
twist being well-known): Assume that η factorises over G(K/Qp), i.e., a = aη ∈ O×K ,
and let N := OKer ⊆ Dcris(Qp(r)) be the lattice associated to Qp(r). Then we have
the following commutative diagram of Λ-modules(
OK [[X]]ψ=0 ⊗OK N

)
⊗Zp T0

a−1⊗a⊗1
��

(OK [[Γ]]⊗N)⊗Zp T0

a−1⊗a⊗1

��

ΨN⊗T0oo ΘN⊗T0// Λ⊗Λ,f T(Zp(r))⊗ Λτp

ϑ⊗f̃
��

OK [[X]]ψ=0 ⊗OK M OK [[Γ]]⊗M ΘM //ΨMoo T(T )⊗Λ Λτpη(τp)−1 ,

where in the top line the Λ-action is induced by the diagonal G-action and via left
multiplication on Λ, respectively,

ΘN ⊗ T0(λ⊗ (t−r ⊗ tr)⊗ tη,0) = 1⊗ 1⊗ tr ⊗
∑
i

τ ip ⊗ φ−i(λ)

and f̃ := f ⊗ 1 on Λ⊗̂Ẑurp is induced by f : Λ→ Λ, g 7→ η(g)−1g, while

ϑ : Λ⊗Λ,f T(Zp(r))→ T(T ), a⊗ (b⊗ tr) 7→ af(b)⊗ tη,r.
Here Λ ⊗Λ,f − indicates that the tensor product is formed with respect to f. Also we
have the commutative diagram

D(Zp(r))ψ=1 ⊗ T0

∼=
��

C(TK∞ (Zp(r)))
//
(
OK [[X]]ψ=0 ⊗OK N

)
⊗Zp T0

a−1

��
D(T )ψ=1

C(TK∞ (T ))
// OK [[X]]ψ=0 ⊗OK M.

�

As in section 2.5 we set Λ′ = Qp[Gn].

Lemma A.5. There are natural isomorphisms

(i) ΣM,n : K ′n ⊗M = K ′n(at−r ⊗ tr,η) ∼= DdR(V ′) of Λ′-modules,
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(ii) 1⊗ ΣM,n : Vρ∗ ⊗Λ′ K
′
n ⊗M ∼= Vρ∗ ⊗Λ′ DdR(V ′) ∼= DdR(W ) of L-vector spaces,

Proof. The canonical isomorphism (which makes explicit the general formula (IndHG (B⊗
V )) ∼= (B ⊗ IndV ))

Qp[GQp ]⊗Qp[GK′n
]

(
BdR ⊗Qp Qp(η)(r)

) ∼= BdR ⊗Qp Qp[Gn]] ⊗Qp Qp(η)(r),

which maps g ⊗ a⊗ b to ga⊗ ḡ−1 ⊗ gb with g ∈ GQp induces the isomorphism (via the

general isomorphism NH ∼= (IndHGN)G, n 7→
∑

ḡ∈G/H g ⊗ n
)

K ′n · (at−r ⊗ tr,η) = (BdR ⊗Qp(η)(r))
GK′n ∼= DdR(V ′),

which maps x · at−r ⊗ tr,η to∑
g∈Gn

g(xat−r)⊗ g−1 ⊗ gtr,η =
∑
g∈Gn

g(x)at−r ⊗ g−1 ⊗ tr,η.

Putting eη,r := at−r ⊗ tr,η we similarly obtain the isomorphism in (ii) sending

l ⊗ x⊗ eη,r 7→
∑
g∈Gn

g(x)at−r ⊗ ρ(g)l ⊗ tr,η,

where this element is regarded in BdR⊗QpW = BdR⊗Qp L⊗Qp Qp(η)(r). Alternatively
we can read it in (BdR ⊗Qp L)⊗LW as

(A.69) #Gnat
−reρ∗(x)l ⊗ tρη,r.

�

Any embedding σ : Lρ → Qp induces a map Aρ := Qnr
p ⊗Qp Lρ → Qp, x⊗ y 7→ xσ(y),

also called σ.

Consider the Weil group W (Qp/Qp), which fits into a short exact sequence

1 // I // W (Qp/Qp)
v // Z // 0,

and let D be the linearised W (Qp/Qp)-module associated to Dpst(W ) = Aρeη,r(ρ), i.e.,

g ∈W (Qp/Qp) acts as goldϕ
−v(g) or explicitly via the character

χD(g) := ρ(g)η(τp)
v(g)prv(g).

For an embedding σ we write D̄σ := Qp⊗Aρ,σD ∼= Qpeη,r(ρ
σ), where σ acts coefficient-

wise on ρ. If n ≥ 0 is minimal, such that G(Qp/Qnr
p (µ(pn)) acts trivial on D̄σ, then by

property (3) and (7)2 in [23, §3.2.2] we obtain for the epsilon constant attached to D̄σ

(see (loc. cit.))
ε(D̄σ,−ψ) = 1,

2Apparently, the formula in (7) in (loc. cit.) is not compatible with Deligne as claimed: Deligne

identifies W (Qp/Qp) via class field theory with Q×p by sending the geometric Frobenius automorphism
to p, which induces by a standard calculation applied to definition (3.4.3.2) for epsilon constants of
quasi-characters of Q×p in [20] (see e.g. [24, §8.5 between (4a) and (4b)]) the formula

ε(Vχ, ψ) = χ(τp)
−n

∑
σ∈Γn

χ(σ)−1σεn,

while in (loc. cit.) the factor is just χ(τp)
n. Here χ : W (Qp/Qp) → E× is a character which gives the

action on the E-vector space Vχ.
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if n = 0, while for n ≥ 1

ε(D̄σ,−ψ) = ε(D̄∗σ(1), ψ)−1

=

(ρση(τp)p
r−1)n

∑
γ∈Γn

ρσ(γ)γ · εn

−1

=
(
(ρση(τp)p

r−1)nτ(ρσ, εn)
)−1

.

Here Γn := G(Kn/K), ψ : Qp → Q̄p
×

corresponds to the compatible system (εn)n, i.e.
ψ( 1

pn ) = εn, and D̄∗σ(1) denotes the linearised Kummer dual of D̄σ, i.e.,

χD̄∗σ(1)(g) = ρσ(g)−1η(τp)
−v(g)p−(r−1)v(g),

while

τ(ρσ, εn) :=
∑
γ∈Γn

ρσ(γ)γ · εn = #Γne
Γn
ρ∗ εn

denotes the usual Gauss sum. Furthermore

εL(D,−ψ) =
(
ε(D̄σ,−ψ)

)
σ
∈
∏
σ

Q×p ∼= (Qp ⊗Qp L)× ⊆ (BdR ⊗Qp L)×

is the ε-element as defined in [23, §3.3.4]. We may assume that L contains Qp(µpn);
then εL(D,−ψ) can be identified with

1⊗ (ρη(τp)p
r−1)−nτ(ρ, εn)−1.

Hence the comparison-isomorphism renormalised by εL(D,−ψ)

εL,−ε,dR(W )−1 : W ⊗ L[W,τ−1
p ] → DdR(W ) ⊆ BdR ⊗Qp L⊗LW,

is explicitly given as

(A.70) x⊗ l 7→ εL(D,−ψ)−1(−t)rl ⊗ x = (−1)r(ρη(τp)p
r−1)nτ(ρ, εn)trl ⊗ x,

where εL(D,−ψ)−1(−t)rl is considered as an element of BdR ⊗Qp L.

In order to deduce the descent diagram (2.44) from (A.66), for n ≥ 1, we have to add
a commutative diagram of the following form

DM

ΞM,n
��

// TK∞ ⊗Λ Λ[T,τp]−1

Y⊗Λ−
��

Kn ⊗M ∼= DdR,Kn(Qp(η)(r))/Dcris(Qp(η)(r))ϕ=1 V ′ ⊗Λ′ (Λ
′)[V ′,τ−1

p ],
oo

where

(A.71) ΞM,n(f) = ΞεM,n(f) = p−n(φ⊗ ϕ)−n (F ) (εn − 1) = p−n(ϕ⊗ ϕ)−n (F ) (0)

with F ∈ HM such that (1− ϕ)F = f = f̃ ⊗ eη,r (recall that ϕ acts as ϕ⊗ ϕ here) on

DM∆=0 and more generally modDcris(Qp(η)(r))ϕ=1 (recall that Dcris(Qp(η)(r))ϕ=1 = 0
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in the generic case)

ΞM,n(f) = p−n

(
n∑
k=1

(φ⊗ ϕ)−k (f(εk − 1)) + (1− φ⊗ ϕ)−1 (f(0))

)

= p−n

(
n∑
k=1

pkrη(τp)
kf̃φ

−k
(εk − 1) + (1− p−rη(τp)

−1φ)−1f̃(0)

)
⊗ eη,r

(see [1, Lem. 4.9], where f(0) is considered in Dcris(V ) and hence the last summand
above equals (1 − ϕ)−1f(0) there by the φ-linearity of ϕ.). Here, for any H(X) =

H̃(X)⊗ e ∈ B+
rig,K ⊗OK M we consider H(εk − 1) = H̃(εk − 1)⊗ e, k ≤ n, as element

in Kn ⊗OK M, on which φ⊗ ϕ acts naturally.

First we note that for n ≥ 1 we have a commutative diagram

(A.72) DM

ΞM,n
��

OK [[Γ]]⊗M

prn⊗id
��

ΨMoo ΘM // TK∞ ⊗Λ Λ[T,τp]−1

Y⊗Λ−
��

Kn ⊗OK M/Dcris(Qp(η)(r))ϕ=1 K[Γn]⊗M
ΨM,noo // V ′ ⊗Λ′ (Λ

′)[V ′,τ−1
p ],

where

ΨM,n(µ⊗ eη,r) = Ψε
M,n(µ⊗ eη,r)

= p−n

(
n∑
k=1

ε
φ−k(µ)
k ⊗ ϕ−k(eη,r) + (1− φ⊗ ϕ)−1(1µ ⊗ eη,r)

)
(A.73)

=

(
n∑
k=1

pkr−nη(τp)
kε
φ−k(µ)
k + p−n(1− p−rη(τp)

−1φ)−1(1µ)

)
⊗ eη,r

modulo Dcris(Qp(η)(r))ϕ=1. Here φ acts coefficient-wise on K[Γn] and 1µ is the same
as the image of µ under the augmentation map OK [Γn]→ OK .

Proposition A.6. (i) For n ≥ max{1, a(ρ)} and W 6= Qp(1), the following dia-
gram is commutative:

Vρ∗ ⊗Qp[Gn] Kn ⊗M

1⊗ΣM,n

��

Vρ∗ ⊗Qp[Gn] K[Γn]⊗M
1⊗ΨM,noo 1⊗ΘM,n// Vρ∗ ⊗Qp[Gn] V

′ ⊗Qp[Gn] Λ′
[V ′,τ−1

p ]

∼=

��
Vρ∗ ⊗Qp[Gn] DdR(V ′) ∼= DdR(W ) DdR(W )

ΦWoo W ⊗L L[W,τ−1
p ]

,
(−1)rεL,−ε,dR(W )−1

oo

where

ΦW :=

{
idDdR(W ), if a(ρ) 6= 0;
det(1−ϕ|Dcris(W ∗(1)))

det(1−ϕ|Dcris(W )) , otherwise.

(ii) For W 6= Qp(1) the diagram (2.44) commutes.

Proof. Let b denote a normal basis of OK , i.e., OK = Zp[H̄]b with H̄ = G(K/Qp),
which can be lifted from the residue field, K being unramified, and e := eη,r. Then
1⊗ b⊗e = 1⊗eρ∗b⊗e is a basis of Vρ∗⊗Qp[Gn]K[Γn]⊗M as L-vector space (in general
ρ(g) does not lie in K, but using Vρ∗ ⊗Qp[Gn]K[Γn] ∼= Vρ∗ ⊗L[Gn]L[Gn]⊗Qp[Gn]K[Γn] ∼=
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Vρ∗ ⊗L[Gn] (L ⊗Qp K[Γn]) one can make sense of it). We calculate (going clockwise in
the above diagram)

1⊗ΘM,n(1⊗ b⊗ e)

= 1⊗ (1⊗ tη,r)⊗
dK−1∑
i=0

τ ip ⊗ φ−i(b)a (⊆ Vρ∗ ⊗Qp[Gn] V
′ ⊗Qp[Gn] Λ′

[V ′,τ−1
p ]

)

= tρη,r ⊗
dK−1∑
i=0

ρ(τp)
−iρ∗(φ−i(b))a (⊆W ⊗L L[W,τ−1

p ])

= tρη,r ⊗
dK−1∑
i=0

ρ(τp)
−iφ−i(b)a

= tρη,r ⊗ ς(ρ, b)a

with

ς(ρ, b) :=

dK−1∑
i=0

ρ(τp)
−iφ−i(b) = dKe

H̄
ρ∗b

a Gauss-like sum, where eH̄ρ∗ = 1
#H̄

∑
h∈H ρ(h)h. This element is sent by (−1)rεL,−ε,dR(W )

to
(A.74)

(−1)rεL(D,−ψ)−1(−t)−rς(ρ, b)a⊗ tρη,r = pmr−m(ρη)(τmp )τ(ρ, εm)ς(ρ, b)at−r ⊗ tρη,r
in DdR(W ), where we used (A.70) with m = a(ρ).

Now we determine the image of 1⊗ b⊗ e = 1⊗ eρ∗b⊗ e anti-clockwise. First note that

the idempotent eρ∗ decomposes as eΓn
ρ∗ · eH̄ρ∗ .

Hence, for n ≥ a(ρ) ≥ 1, where pa(ρ) denotes the conductor of ρ restricted to Γn, we
have

(1⊗ΨM,n)(1⊗ b⊗ e) = 1⊗ eρ∗ΨM,n(b⊗ e)
= 1⊗ pnr−nη(τp)

nφ−n(eH̄ρ∗b)e
Γn
ρ∗ · εn ⊗ e

= 1⊗ pnr−nη(τp)
nρ∗(τ−np )eH̄ρ∗be

Γn
ρ∗ · εn ⊗ e

= 1⊗ pnr−n

#Gn
(ρη)(τnp )ς(ρ, b)τ(ρ, εn)⊗ e,

where we use the explicit formula (A.73) and the well-known fact about Gauss sums
(see e.g. [10, lem. 5.2])

eΓn
ρ (εk) =

 eΓn
ρ (εk), if a(ρ) = k;

(1− p)−1, if a(ρ) = 0 and k = 1;
0, otherwise,

where we assume k ≤ n. Now from (A.69) we see that ΣM,n sends this element, which
already “lies in the right eigenspace” to

at−rpnr−n(ρη)(τnp )τ(ρ, εn)ς(ρ, b)⊗ tρη,r = pnr−n(ρη)(τnp )τ(ρ, εn)ς(ρ, b)at−r ⊗ tρη,r,
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i.e., to the same element as in (A.74), whence the result follows, if a(ρ) 6= 0.

Now assume that a(ρ) = 0, i.e., ρ|Γn, the restriction to Γn, is trivial. Setting n = 1 we
then have

(1⊗ΨM,1)(1⊗ b⊗ e) = 1⊗ΨM,1(eρ∗b⊗ e)

= 1⊗
(
pr−1η(τp)ε

φ−1(eρ∗b)
1 + p−1(1− p−rη(τp)

−1φ)−1(eH̄ρ∗b)
)
⊗ e

= 1⊗
(
pr−1η(τp)φ

−1(eH̄ρ∗b)e
Γ1
ρ∗ · ε1 + p−1(1− p−rρη(τp)

−1)−1(eH̄ρ∗b)
)
⊗ e

= 1⊗
(
pr−1ρη(τp)(1− p)−1 + p−1(1− p−rρη(τp)

−1)−1
) ς(ρ, b)

dK
⊗ e

= 1⊗
(

1− pr−1ρη(τp)

1− p−rρη(τ−1
p )

)
ς(ρ, b)

dK(p− 1)
⊗ e,

which is sent under ΣM,1 to(
det(1− ϕ|Dcris(W

∗(1)))

det(1− ϕ|Dcris(W ))

)
ς(ρ, b)at−r ⊗ tρη,r,

while (A.74) becomes just
ς(ρ, b)at−r ⊗ tρη,r.

Upon replacing ε by −ε = ε−1 (we have used both the additive and multiplicative
notation!) the second statement follows from the diagrams (A.66), (A.72) and the one
in (i) diagram combined with the isomorphism (A.68) and Lemma (A.4). �

Appendix B. Determinant functors

In this appendix we recall some details of the formalism of determinant functors intro-
duced by Fukaya and Kato in [23] (see also [39]).

We fix an associative unital noetherian ring R. We write B(R) for the category of
bounded complexes of (left) R-modules, C(R) for the category of bounded complexes
of finitely generated (left) R-modules, P (R) for the category of finitely generated projec-
tive (left) R-modules, Cp(R) for the category of bounded (cohomological) complexes of
finitely generated projective (left) R-modules. By Dp(R) we denote the category of per-
fect complexes as full triangulated subcategory of the derived category Db(R) of B(R).
We write (Cp(R), quasi) and (Dp(R), is) for the subcategory of quasi-isomorphisms of
Cp(R) and isomorphisms of Dp(R), respectively.

For each complex C = (C•, d•C) and each integer r we define the r-fold shift C[r] of C

by setting C[r]i = Ci+r and diC[r] = (−1)rdi+rC for each integer i.

We first recall that there exists a Picard category CR and a determinant functor dR :
(Cp(R), quasi)→ CR with the following properties (for objects C,C ′ and C ′′ of Cp(R))

B.a) CR has an associative and commutative product structure (M,N) 7→ M · N
(which we often write more simply as MN) with canonical unit object 1R =
dR(0). If P is any object of P (R), then in CR the object dR(P ) has a canonical
inverse dR(P )−1. Every object of CR is of the form dR(P )·dR(Q)−1 for suitable
objects P and Q of P (R).
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B.b) All morphisms in CR are isomorphisms and elements of the form dR(P ) and
dR(Q) are isomorphic in CR if and only if P and Q correspond to the same
element of the Grothendieck group K0(R). There is a natural identification
AutCR(1R) ∼= K1(R) and if MorCR(M,N) is non-empty, then it is a K1(R)-
torsor where each element α of K1(R) ∼= AutCR(1R) acts on φ ∈ MorCR(M,N)

to give αφ : M = 1R ·M
α·φ−−→ 1R ·N = N .

B.c) dR preserves the product structure: specifically, for each P and Q in P (R) one
has dR(P ⊕Q) = dR(P ) · dR(Q).

B.d) If C ′ → C → C ′′ is a short exact sequence of complexes, then there is a
canonical isomorphism dR(C) ∼= dR(C ′)dR(C ′′) in CR (which we usually take
to be an identification).

B.e) If C is acyclic, then the quasi-isomorphism 0→ C induces a canonical isomor-
phism 1R → dR(C).

B.f) For any integer r one has dR(C[r]) = dR(C)(−1)r .
B.g) the functor dR factorises over the image of Cp(R) in Dp(R) and extends

(uniquely up to unique isomorphisms) to (Dp(R), is). Moreover, if R is reg-
ular, also property B.d) extends to all distinguished triangles.

B.h) For each C in Db(R) we write H(C) for the complex which has H(C)i = H i(C)
in each degree i and in which all differentials are 0. If H(C) belongs to Dp(R)
(in which case one says that C is cohomologically perfect), then C belongs to
Dp(R) and there are canonical isomorphisms

dR(C) ∼= dR(H(C)) ∼=
∏
i∈Z

dR(H i(C))(−1)i .

(For an explicit description of the first isomorphism see [28, §3] or [8, Rem.
3.2].)

B.i) If R′ is another (associative unital noetherian) ring and Y an (R′, R)-bimodule
that is both finitely generated and projective as an R′-module, then the functor
Y ⊗R − : P (R)→ P (R′) extends to a commutative diagram

(Dp(R), is)

Y⊗L
R−
��

dR // CR
Y⊗R−
��

(Dp(R′), is)
dR′ // CR′

In particular, if R → R′ is a ring homomorphism and C is in Dp(R), then we
often simply write dR(C)R′ in place of R′ ⊗R dR(C).

B.j) Let R◦ be the opposite ring of R. Then the functor HomR(−, R) induces an
anti-equivalence between CR and CR◦ with quasi-inverse induced by
HomR◦(−, R◦); both functors will be denoted by −∗. This extends to give
a diagram

(Dp(R), is)

RHomR(−,R)

��

dR // CR
−∗
��

(Dp(R◦), is)
dR◦ // CR◦
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which commutes (up to unique isomorphism); similarly we have such a com-
mutative diagram for RHomR◦(−, R◦).

For the handling of the determinant functor in practice the following considerations are
quite important:

Remark B.1. (i) For objects A,B ∈ CR we often identify a morphism f : A→ B with
the induced morphism

1R A ·A−1
f ·idA−1 // B ·A−1.

Then for morphisms f : A→ B and g : B → C in CR, the composition g ◦ f : A→ C is
identified with the product g ·f : 1R → C ·A−1 of g : 1R → C ·B−1 and f : 1R → B ·A−1.
Also, by this identification a map f : A → A corresponds uniquely to an element in
K1(R) = AutCR(1R). Furthermore, for a map f : A → B in CR, we write f : B → A

for its inverse with respect to composition, while f−1 =: idB−1 · f · idA−1 : A−1 → B−1

for its inverse with respect to the multiplication in CR, i.e. f · f−1 = id1R . Obviously,

for a map f : A → A both inverses f and f−1 coincide if all maps are considered as
elements of K1(R) as above.

Convention: If f : 1 → A is a morphism and B an object in CR, then we write

B
· f // B ·A for the morphism idB · f. In particular, any morphism B

f // A can

be written as B
· (idB−1 · f)

// A .

(ii) The determinant of the complex C = [P0
φ→ P1] (in degree 0 and 1) with P0 = P1 =

P is by definition dR(C)
def

1R and is defined even if φ is not an isomorphism (in

contrast to dR(φ)). But if φ happens to be an isomorphism, i.e. if C is acyclic, then

by e) there is also a canonical map 1R
acyc// dR(C) , which is in fact nothing else then

1R dR(P1)dR(P1)−1
d(φ)−1·idd(P1)−1

// dR(P0)dR(P1)−1 dR(C)

(and which depends in contrast to the first identification on φ). Hence, the composite

1R
acyc// dR(C)

def
1R corresponds to dR(φ)−1 ∈ K1(R) according to the first remark.

In order to distinguish the above identifications between 1R and dR(C) we also say that

C is trivialized by the identity, when we refer to dR(C)
def

1R (or its inverse with

respect to composition). For φ = idP both identifications agree obviously.

We end this section by considering the example where R = K is a field and V a
finite dimensional vector space over K. Then, according to [23, 1.2.4], dK(V ) can be

identified with the highest exterior product
∧top V of V and for an automorphism

φ : V → V the determinant dK(φ) ∈ K× = K1(K) can be identified with the usual
determinant detK(φ). In particular, we identify dK = K with canonical basis 1. Then

a map 1K
ψ // 1K corresponds uniquely to the value ψ(1) ∈ K×.
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Remark B.2. Note that every finite Zp-module A possesses a free resolution C, i.e.

dZp(A) ∼= dZp(C)−1 = 1Zp . Then modulo Z×p the composite 1Qp
acyc// dZp(C)Qp

def
1Qp

corresponds to the cardinality |A|−1 ∈ Q×p .
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13. F. Cherbonnier and P. Colmez, Théorie d’Iwasawa des représentations p-adiques d’un corps local,
J. Amer. Math. Soc. 12 (1999), no. 1, 241–268. A, A

14. J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob, The GL2 main conjecture for elliptic
curves without complex multiplication, Publ. Math. IHES. 101 (2005), no. 1, 163 – 208. 2.5, 2.5, 4

15. J. Coates and R. Sujatha, Cyclotomic fields and zeta values, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2006. (iii)

16. R. F. Coleman, Division values in local fields, Invent. Math. 53 (1979), no. 2, 91–116. 2
17. , Local units modulo circular units, Proc. Amer. Math. Soc. 89 (1983), no. 1, 1–7. 2
18. P. Colmez, Fontaine’s rings and p-adic l-functions, Notes d’un cours donné à l’université de Ts-
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