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Abstrakt

In dieser Masterarbeit wird die Konstruktion eines p-adischen Maßes, das arithmetische In-

formationen über die L-Funktion einer elliptischen Kurve verkörpert, erklärt und bewiesen.

Wir folgen der Arbeit [7] von Katz. Dabei werden Konzepte der Geometrie und Zahlentheorie

besprochen, die für diese Konstruktion wichtig sind.

Abstract

In this thesis, we describe and prove Katz’s construction of a p-adic measure that provides

arithmetic information about the L-function associated to an elliptic curve. We follow Katz’

paper [7]. A number of concepts from geometry and number theory necessary for this con-

struction are introduced and explained.
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Chapter 1

Introduction

Elliptic curves are among the most interesting objects of study in algebraic geometry and

number theory. Being smooth, projective curves, they are ‘nice’ objects in that they satisfy

the conditions of many important theorems, and their points have a natural structure of an

abelian group, which is of arithmetic interest. In the case of an elliptic curve E over a number

field F , it is known that the group E(F ) of F -rational points is fiinitely generated - this is

the Mordell-Weil theorem (see [20], chapter VIII). Explicitly, we have

E(F ) = Zr × Etors

for a finite torsion group Etors. It turns out that Etors is not terribly difficult to describe,

but determining the rank r is extremely hard. No general procedure for finding r is known;

however, a simple description has been conjectured, which we now describe.

The Birch and Swinnerton-Dyer (BSD) conjecture relates the rank r of the Mordell-

Weil group E(F ) as well as other arithmetic data of E to the order of a special complex-

analytic function L(E, s) associated to E at the value s = 1. To be precise, it is claimed that

the Taylor expansion of L(E, s) around s = 1 is given by

L(E, s) =
1

(#Etors)2
·#XE/F ·RE/F · ΩE/F ·

∏
p|N

cp(s− 1)r + [higher order terms],

where XE/F denotes the Tate-Shafarevich group of E over F ; RE/F is the regulator, the

determinant of an r× r-matrix whose entries are given by the bilinear ‘height’ pairing applied

to a system of generators of E(F ); ΩE/F is the smallest positive real period of E; and the cp

are the Tamagawa numbers.

The BSD conjecture does not seem to be near any resolution. Indeed, a number of weaker

subproblems are considered highly difficult; for example, except for certain special cases, it
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is not even known that #XE/F is finite. In fact, the conjecture has been popularized by its

inclusion in the Millennium Prize problems of the Clay Mathematics Institute, a compilation

of seven problems widely considered to be among the most difficult and influential open prob-

lems in the field; six remain unsolved at this time.

The focus of this thesis is solely on the left-hand side of the conjecture; that is, the leading

Taylor coefficient of the L-function L(E, s) . An immediate difficulty is that the sum defin-

ing L(E, s) does not converge at s = 1; however, it is known that L(E, s) may be extended

analytically to all of C. According to the conjecture, up to a controllable factor it should be

an algebraic number, and so to understand it, it should be enough to understand it locally,

at all primes. In this way we are led to look at p-adic functions that interpolate the values of

L(E, s). We will focus on elliptic curves E with complex multiplication; under this hypothesis,

L(E, s) is better understood.

An equivalent problem is that of finding a p-adic measure whose moments interpolate

the values of L(E, s). Several approaches exist in the literature, including the elliptic units

popularized by Coates and Wiles in [1]. Here, we follow a different construction due to Katz

[8], in which the p-adic measure to be found, thought of as a formal power series by Iwasawa

theory, is constructed via Serre-Tate theory for moduli spaces. No known approach is valid

for primes p that do not split in the field by which E has complex multiplication, but Katz’

argument seems to provide some information in that case as well.
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Chapter 2

Review of algebraic geometry

It seems convenient to collect a number of the definitions and basic results in algebraic geome-

try that we will frequently need and to reproduce them here for easier reference. This chapter

is not intended to offer much intuition on this subject. Most of the material is sourced from

Hartshorne’s book [6].

2.1 Sheaves

Definition 1. Let X be a topological space and C be a category (standard examples for C

will be the categories of sets, abelian groups, commutative rings or modules over a ring). A

presheaf F on X with values in C consists of the data

F(U) ∈ Ob(C), U ⊆ X open

and C-morphisms

ResUV : F(U)→ F(V ), V, U ⊆ X open, V ⊆ U

such that ResUU = idU for each U , and for open sets W ⊆ V ⊆ U , ResUW = ResVW ◦ ResUV .

Elements of F(U) are called sections of F over U ; elements of F(X) are called global sec-

tions of F .

We will also use the notation Γ(U,F) := F(U) and for s ∈ F(U), s|V := ResUV (s).

F is called a sheaf if it satisfies the following local compatibility properties: let U,Ui,

i ∈ I be open subsets of X with U = ∪i∈IUi.
(i) If s, t ∈ F(U) with s|Ui = t|Ui for every i, then s = t.

(ii) If we are given si ∈ F(Ui), i ∈ I such that for every i, j ∈ I, si|Ui∩Uj = sj |Ui∩Uj , then

there is a section s ∈ F(U) with s|Ui = si ∀i ∈ I.
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A morphism of presheaves ϕ : F → G is a collection of C-morphisms ϕ|U : F(U)→ G(U)

that respect restriction: for open subsets V ⊆ U , we have a commutative diagram

F(U) G(U)

F(V ) G(V )

ϕ|U

ResUV ResUV

ϕ|V

A morphism of sheaves is a morphism of presheaves between two sheaves.

Definition 2. Let F be a presheaf on X. The sheafification F+ is a sheaf on X with a

morphism ψ : F → F+ satisfying the following universal property: any morphism ϕ : F → G
to a sheaf G extends uniquely to a morphism ϕ+ : F+ → G, i.e. such that ϕ = ϕ+ ◦ ψ.
The sheafification of any presheaf exists and is unique up to unique isomorphism (see [6]

II.1.2).

Let ϕ : F → G be a morphism of sheaves. Then the kernel of ϕ, given by Ker(ϕ)(U) :=

Ker(ϕ|U ) defines a sheaf on X. In general, the analogous constructions with Im(ϕ|U ) or

Coker(ϕ|U ) only give presheaves; we take Im(ϕ) and Coker(ϕ) to be their respective sheafifi-

cations.

Given a point x ∈ X and a sheaf F on X, we therefore have ‘information’ F(U) about any

open neighborhood U of x in X. By taking limits (in an algebraic sense), we get information

about x itself:

Definition 3. The stalk of a presheaf F at x is

Fx := lim−→
x∈U
F(U).

Elements of Fx may be thought of as tuples (s, U), x ∈ U , s ∈ F(U) modulo the equivalence

(s, U) ≡ (t, V ) :⇔ s|U∩V = t|U∩V .

Proposition 2.1.1. A morphism ϕ : F → G of sheaves is injective / surjective (i.e. Ker(ϕ) =

0 or Coker(ϕ) = 0) if and only if, for every x ∈ X, the induced map ϕx : Fx → Gx is injective

/ surjective.

Proof. See [6] II.1
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Definition 4. Let f : X → Y be a continuous map between topological spaces. Let F be a

sheaf on X. Then f induces a sheaf on Y , the direct image of F , given by

f∗F(V ) = F(f−1(V )).

Also, if G is a sheaf on Y , then f induces a sheaf on X, the inverse image, which is the

sheafification of the presheaf

U 7→ lim−→
f(U)⊆V

G(V ),

where V runs through the open subsets of Y that contain f(U) - this definition is necessarily

more complicated, because f(U) is not generally open in Y for an open U of X.

Both the direct and inverse image are functorial. They are related by the adjunction

Hom(f−1G,F) = Hom(G, f∗F);

that is, the inverse image functor is the left adjoint of the direct image functor.

2.2 Schemes

A locally ringed space (X,OX) is a topological space X equipped with a sheaf of com-

mutative rings OX such that for any point x ∈ X, the stalk OX,x at x is a local ring. A

morphism

(ϕ,ϕ#) : (X,OX)→ (Y,OY )

between locally ringed spaces is a tuple consisting of a continuous map ϕ : X → Y and a

sheaf morphism ϕ# : OY → OX whose induced maps on stalks

ϕ#
x : OY,ϕ(x) → OX,x, x ∈ X

are homomorphisms that map the maximal ideal at ϕ(x) onto the maximal ideal at x.

For example, given a ring R, we construct its spectrum as a locally ringed space SpecR =

(X,OX), where X is the space of prime ideals of R, together with the Zariski topology,

given by

V ⊆ X closed ⇔ V = {p : p|a} for an ideal a ≤ R.

The sheaf OX , called the structure sheaf of SpecR, is determined on the following basis of

the topology of X:

OX
(
D(f)

)
:= OX

(
X\V ((f))

)
:= Rf = { a

fn
: a ∈ R}, f ∈ R.
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More generally, any locally ringed space that is isomorphic to the spectrum of a ring is

called an affine scheme. A scheme is a locally ringed space that is locally affine; that is, a

space (X,OX) with an open cover X = ∪i∈IUi such that (Ui,OX |Ui) is an affine scheme for

every i.

Example: Let R =
⊕

n∈N0
Rn be a graded ring. We define the scheme ProjR = (X,OX),

where X is the space of homogeneous ideals that do not contain
⊕

n>0Rn, together with the

topology

V ⊆ X closed ⇔ V = {p ∈ X : p|a} for some homogeneous ideal a.

The structure sheaf is again defined on a basis of the topology: for f homogeneous of degree

n > 0, let D+(f) := X\V ((f)) and we set

OX(D+(f)) := R(f) = (degree 0 part of Rf ).

Any scheme that is isomorphic to ProjR for some graded ring R is called projective. For

example, if R = C[X0, ..., Xn], then ProjR is projective n-space. More generally, for any

commutative unital ring R, we define

PnR := ProjR[X0, ..., Xn]

with the natural grading by polynomial degrees.

Definition 5. A scheme X is called

(i) connected, irreducible, n-dimensional (n ∈ N), or quasicompact if this is true for the

underlying topological space X;

(ii) locally Noetherian if it admits an open cover by spectra of noetherian rings, and

Noetherian, if it is both locally Noetherian and quasicompact;

(iii) reduced if OX(U) is a reduced ring (contains no nilpotent elements other than 0) for

every open subset U ⊆ X;

(iv) integral if it is irreducible and reduced; equivalently, if OX(U) is an integral domain for

every open U ⊆ X.

Morphisms of schemes are just morphisms of locally ringed spaces between schemes.

The point of view of schemes as functors described below will be important:

Definition 6. Let X and S be schemes. The S-valued points of X are morphisms P : S →
X. The set of S-valued points of X is denoted X(S). Given a morphism g : S → T , g induces

a map

X(g) : X(T )→ X(S), Q 7→ Q ◦ g.
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Definition 7. Let f : X → SpecK be a morphism of schemes for some field K. The

K-rational points of X are the points x ∈ X with residue field κ(x) := OX,x/mx
∼= K.

Lemma 2.2.1. Let f : X → SpecK be a scheme over a field K. The closed K-rational points

of X correspond to the K-valued points P : SpecK → X with f ◦ P = id.

Proof. Let P be any such K-valued point and consider its image x = Im(P ) ∈ X. Let

U = SpecR be an open affine neighborhood of x. Then P is induced by a ring homomorphism

ϕ : R → K that is surjective (since f ◦ P = id) and the ideal x of R is kerϕ. Therefore, x is

a closed point with residue field R/x ∼= K.

In the other direction, let x ∈ X be a closed K-rational point and take an open affine

neighborhood SpecR, such that x is a maximal ideal of R with R/x ∼= K. The surjective

map ϕ : R → K induces a K-valued point P : SpecK → SpecR → X with P ((0)) = x, and

f ◦ P = id.

To make the concept of ‘base change’ in the category of schemes explicit, we define the

fiber product:

Definition 8. Let X,Y, S be schemes and f : X → S, g : Y → S morphisms. The fiber

product of X and Y over S is a scheme Z = X ×S Y together with morphisms p : Z → X

and q : Z → Y such that the diagram

Z X

Y S

p

q f

g

commutes and satisfies the following universal property: for any commutative diagram of

schemes

T X

Y S

u

v f

g

there is a unique morphism ψ : T → Z of schemes such that
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Z

T

X

Y S

p

q f

g

ψ

commutes.

Fiber products exist in the category of schemes; if X = SpecA, Y = SpecB and S =

SpecR are affine schemes, then their fiber product is given by X ×S Y = SpecA⊗R B. The

morphism q as above is called the base change of f from S to Y along g. Importantly, for

any scheme T over S, there is a bijection of sets

X ×S Y (T ) 7→ X(T )× Y (T ), P 7→ (prX ◦ P, prY ◦ P ).

In particular, for any morphism f : X → S, the universal property of X ×S X gives us a

morphism

∆X/S : X → X ×S X,

the diagonal morphism ofX over S, corresponding to the tuple ofX-valued points (idX , idX)

on X.

Without giving much detail or intuition, we define a number of properties of morphisms:

Definition 9. A morphism ϕ : X → Y of schemes is called

(i) quasicompact if there is an affine cover Y = ∪i∈ISpecRi such that ϕ−1(SpecUi) is

quasicompact for all i;

(ii) locally of finite type if there is an affine cover as above such that ϕ−1(SpecRi) is a

union of spectra of finitely generated Ri-algebras for all i;

(iii) of finite type if it is quasicompact and locally of finite type;

(iv) affine if there is an affine cover as above such that ϕ−1(SpecRi) is affine for all i;

(v) finite if there is an affine cover as above such that ϕ−1(SpecRi) is isomorphic to the

spectrum of an Ri-algebra that is finitely generated as an Ri-module;

(vi) a closed immersion if it is a homeomorphism onto its image, its image is closed in Y ,

and ϕ# is surjective;

(vii) separated if ∆X/Y : X → X ×Y X is a closed immersion;

(viii) universally closed if, for any morphism f : Z → Y , the base change X ×Y Z → Z of

ϕ along f is a closed map;
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(ix) proper if it is separated, universally closed and of finite type;

(x) flat if the induced map on stalks ϕP : OY,f(P ) → OX,P is flat, i.e. makes OX,P a flat

OY,f(P )-module.

Definition 10. A closed subscheme of a scheme X is a scheme Z where there is a closed

immersion i : Z ↪→ X. We call Ker(i#) the ideal sheaf associated to Z. Conversely, given a

sheaf of ideals I; i.e. where I(U) ≤ OX(U) for every open U is an ideal, we can associate a

closed subscheme Z as the support of OX/I with structure sheaf OX/I.

2.3 Sheaves of modules

Definition 11. Let (X,OX) be a scheme. An OX-module, or sheaf of OX -modules, is a

sheaf F of abelian groups on X such that for any open set U ⊆ X, F(U) has the structure of

an OX(U)-module, and that for V ⊆ U , the restriction map ResUV of F is a homomorphism

of OX(U)-modules - where F(V ) inherits the structure of an OX(U)-module via the ring

homomorphism OX(U)→ OX(V ).

A morphism ϕ : F → G of OX -modules is a morphism of sheaves such that for any open

subset U ⊆ X, the map F(U)→ G(U) induced by ϕ is a homomorphism of OX(U)-modules.

If F and G are sheaves of modules on (X,OX), we define their tensor product as the

sheafification of the presheaf

U 7→ F(U)⊗OX(U) G(U),

which we denote by F ⊗OX G. We also define

Hom(F ,G)(U) := HomOX |U (F|U ,G|U ).

Definition 12. An OX -module F is called locally free if there is an affine cover {Ui}i∈I of

X such that F|Ui ∼=
⊕

j∈Ji OX |Ui for some index set Ji for every i ∈ I; in this case, the rank

of F on Ui is the cardinality of Ji. If F is locally free and everywhere of rank 1, we call it an

invertible sheaf.

The suggestive name ‘invertible sheaf’ is appropriate in the following sense: if L is an

invertible sheaf, define L−1 := Hom(L,OX); then the natural morphism L ⊗OX L−1 → OX is

an isomorphism.

Example: Let X = SpecR be an affine scheme and M an R-module. Then M induces

an OX -module M̃ via

M̃
(
D(f)

)
:= Mf := M ⊗R Rf = {m

fn
: m ∈M, n ∈ N}, f ∈ R.
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Generally, if (X,OX) is a sheaf and F is an OX -module that is of the form M̃i/Ui on an affine

cover X = ∪i∈IUi, we call F quasicoherent. If the Mi are such that all submodules are

finitely presented over Ri, we call F coherent; in the case that X is Noetherian, it is enough

to require that Mi is finitely generated.

2.4 Sheaf cohomology

Let X be a scheme. We can consider ‘taking global sections’ to be a functor Γ(X,−), de-

fined on, for example, the category of abelian sheaves, of OX -modules or of quasicoherent

OX -modules, and mapping to the category of abelian groups, or to Γ(X,OX)-modules, re-

spectively. In all cases, Γ(X,−) is right-exact. It is known ([6], III.2) that all of the above

categories have enough injective objects; that is, for any object A, there exists an exact

sequence

0→ A→ I0 → I1 → ...

with injective objects I•.

Definition 13. Let F be an abelian sheaf on X. The cohomology groups of F are the

right-derived functors of Γ(X,−) at F ; that is, we take any injective resolution

0→ F → I•

and set

Hk(X,F) := RkΓ(X,F) = Hk(Γ(X, I•)).

By standard arguments of homological algebra, this is independent up to isomorphism of

the choice of I•.

There are other ways of computing sheaf cohomology than by finding an injective resolu-

tion. For example, we define the Godement resolution: for any sheaf F on a scheme X, define

the sheaf

G(F)(U) :=
∏
x∈U
Fx, U ⊆ X open.

There is a natural morphism d0 : F → G(F). Now define G0 := G(F) and for k > 0,

Gk := G(Coker(dk−1)), dk : Gk−1 → Gk.

Then the cohomology of F can be computed as the cohomology of the complex G•.

Another construction, more adapted to computation, is the Čech complex.
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Definition 14. Let U = (Ui)
n
i=1 be a finite cover of X by open subsets. Let Ip be the set of

all subsets of {1, ..., n} having p+ 1 elements, and for J ∈ Ip define XJ := ∩i∈JUi. We define

Čp(U ,F) :=
∏
J∈Ip

F(UJ)

together with the coboundaries

dp : Čp−1(U ,F)→ Čp(U ,F), (sJ)J∈Ip−1 7→
( p∑
i=0

(−1)isJ\{ji}

)
J={j0<...<jp}∈Ip

.

This gives us a cochain complex

Č0(U ,F) −→ Č1(U ,F) −→ Č2(U ,F) −→ ...

called the Čech complex. The cohomology groups Ȟk(U ,F) := Hk(Č•(U ,F)) are called

the Čech cohomology of F with respect to the cover U .

Čech cohomology is usually much easier to calculate than sheaf cohomology via derived

functors as above. However, they do not give the same results in general - we need for the

scheme X and sheaf F to be ‘nice enough’. To be precise, we have the following comparison

result:

Theorem 2.4.1. Let X be a noetherian, separated scheme and U a finite cover of X by

open affine sets. Let F be a quasicoherent sheaf of OX-modules. Then there are natural

isomorphisms, functorial in F :

Ȟp(U ,F)
∼−→ Hp(X,F), p ≥ 0.

Proof. See [6] III.4.5

2.5 Algebraic curves

Let K be an algebraically closed field.

Definition 15. An algebraic curve C/K is a one-dimensional projective variety over K.

Its genus is

g := dimKH
1(C,OC).

Recall that the term variety means that C is integral and separated and the implied map

C → SpecK is of finite type. Classically, C can be thought of as the locus of zeros of some

homogeneous polynomial P (x, y, z) in three variables.
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The function field K(C) of C is the field of fractions of Γ(U,OC) for any open affine

subset U ⊆ C; these are all isomorphic. It is known ([6] I.6) that there is an antiequivalence

of categories(
algebraic curves overK

with surjective morphisms

)
↔

(
field extensions of K of transcendence degree 1

with field homomorphisms fixingK

)
.

Here, a curve C is mapped to its function field K(C), and a morphism ϕ : C1 → C2 is mapped

to

ϕ∗ : K(C2)→ K(C1), f 7→ f ◦ ϕ;

where f ∈ K(C) is interpreted as a function f : C → K. The degree, separability degree

and inseparability degree of ϕ are defined as the respective degree of the field extension

K(C1)/ϕ∗K(C2).

Of course, any morphism of curves over a field of characteristic 0 must be separable.

In characteristic p > 0, any extension of fields can be factored into a separable and purely

inseparable extension, and so this carries over to morphisms of curves:

Lemma 2.5.1. Let ϕ : C1 → C2 be a morphism of curves over a field of characteristic p > 0.

Then ϕ factors as Frobq◦ψ, where q = degi(ϕ), Frobq is the q-th power Frobenius map coming

from the Frobenius x 7→ xq on K(C1), and ψ is separable.

Proof. Let L be the separable closure of ϕ∗K(C2) in K(C1), such that we have the tower of

extensions

K(C1)/L/ϕ∗K(C2)

where K(C1)/L is purely inseparable, [K(C1) : L] = q and L/ϕ∗K(C2) is separable. It

follows that K(C1)q is contained in L, and since [K(C1) : L] = q = [K(C1) : K(C1)q], we

have L = K(C1)q. The inclusions

ϕ∗K(C2) −→ K(C1)q −→ K(C1)

correspond to morphisms

C1
Frobq−→ C1

ψ−→ C2

that combine to give ϕ.
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Chapter 3

Elliptic Curves

3.1 Elliptic curves over fields

Let K = K be an algebraically closed field.

Definition 16. An elliptic curve over K is a smooth curve f : E → SpecK over K of genus

1, together with a distinguished K-rational point O.

For any subfield L ⊂ K, we define E(L) to be the set of L-rational points of E.

The study of elliptic curves is actually much more explicit than this definition suggests.

One can show using the Riemann-Roch theorem that elliptic curves are exactly the projective

varieties given by a Weierstrass equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

with elements ai ∈ K and nonsingular discriminant; that is, E(K) is the locus of solutions of

this equation in projective space P2
K . If we assume that charK 6= 2, 3 (which greatly simplifies

calculations), this can be manipulated to an equation of the form

E : Y 2Z = X3 + pXZ2 + qZ3

with p, q ∈ K. Letting x = X
Z and y = Y

Z be dehomogenized coordinates, we will also write

this as

E : y2 = x3 + px+ q;

the locus of solutions is then E(K)\O, with O given in projective coordinates by [0 : 1 : 0].

Definition 17. (i) The discriminant of the Weierstrass equation y2 = x3 + px+ q is

∆(p, q) := −16(4p3 + 27q2).
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(ii) The j-invariant of the Weierstrass equation y2 = x3 + px+ q with ∆(p, q) 6= 0 is

j(p, q) :=
1728 · 4p3

4p3 + 27q2
.

The Weierstrass equation describing a given elliptic curve is not unique, and neither is the

discriminant. However, the j-invariant lives up to its name:

Theorem 3.1.1. Two Weierstrass equations define isomorphic elliptic curves if and only if

they have the same j-invariant.

Proof. See [20] III.1.4

One fundamental aspect of elliptic curves is their group law. There is a natural way of

adding two points on an elliptic curve to give a third that makes E(K) an abelian group with

neutral element O.

Definition 18. The Weil divisors on an elliptic curve E are elements

D =
∑

P∈E(K)

nP · (P ) ∈
⊕

P∈E(K)

Z.

The degree of a divisor D =
∑

P nP · (P ) is

degD :=
∑

P∈E(K)

nP .

The divisors of degree 0 over K form a subgroup that we denote Div0(E). A divisor is

principal if it is of the form

div f :=
∑

P∈E(K)

ordP (f) · (P )

for some rational function f ∈ K(E) := Γ(E,Quot(OE)).

It is known that divK(E) ⊆ Div0
K(E). ([20] III.3.1). We define the degree 0 divisor

class group

Pic0(E) := Div0(E)/Im(div).

Theorem 3.1.2. The map

κ : E(K)→ Pic0(E), P 7→ [(P )− (O)]

is a bijection of sets. The group law on Pic0(E) induces a group law on E(K). If K/L is a

field extension, then the L-rational points E(L) form a subgroup of E(K).

Proof. See [20], III.3.4
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3.2 Elliptic functions and elliptic curves over C

The most important case for us will be that of elliptic curves over the base field C - by fixing

a complex embedding, the results will be applicable to elliptic curves over number fields. This

theory has a strong connection to complex analysis. We will show that elliptic curves over C
are essentially the quotient spaces of C by lattices, and that the rational functions on elliptic

curves correspond to meromorphic and doubly periodic functions.

In this section, we fix a lattice Λ and generating periods ω1, ω2 ∈ C, i.e. Λ = Zω1 ⊕ Zω2,

and ω1 and ω2 are linearly independent over R.

Definition 19. An elliptic function is a meromorphic function f : C→ C ∪ {∞} which is

periodic with respect to Λ:

∀ω ∈ Λ, ∀z ∈ C : f(z + ω) = f(z).

Immediate examples of elliptic functions are the constant functions. One promising ap-

proach to giving non-trivial examples is the series

Ek(z) :=
∑
ω∈Λ

1

(z + ω)k
(k ≥ 3);

these converge absolutely and uniformly on compact subsets of C\Λ, and the periodicity is

clear. Uniform convergence implies that they can be differentiated by terms, so we get

d

dz
Ek(z) = −kEk+1(z) ∀k ≥ 3.

Difficulties arise in the cases k = 1 and k = 2, because the series no longer converges absolutely.

We define another series to take the role of E2:

Definition 20. The Weierstrass ℘-function is an elliptic function defined by the series

℘(z) :=
1

z2
+

∑
ω∈Λ\{0}

( 1

(z + ω)2
− 1

ω2

)
.

It follows that ℘′(z) = − 2
z3
−
∑

ω 6=0
2

(z+ω)3
= −2E3(z).

These functions are essentially the only elliptic functions. We will make this statement precise

soon; for now, we prove some results about elliptic functions.

Lemma 3.2.1. (i) Any holomorphic elliptic function is constant.

(ii) An elliptic function f has finitely many poles modulo Λ, and it holds
∑

z∈C/Λ Res(f ; z) = 0

for any set of their representatives.
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Proof. (i) Let f be holomorphic and elliptic. By continuity, f is bounded on the convex hull

M of 0, ω1, ω2 and ω1 +ω2, and by periodicity it is bounded everywhere. Liouville’s theorem

implies that f is constant.

(ii) The set of poles of f is discrete, and therefore finite on the compact set M . The residue

theorem gives ∑
z∈M

Res(f ; z) =
1

2πi

∫
∂M

f(w)dw

=
1

2πi

(∫ ω1

0
f(w)dw +

∫ ω1+ω2

ω1

f(w)dw +

∫ ω2

ω1+ω2

f(w)dw +

∫ 0

ω2

f(w)dw
)
,

where the integrals are taken over each line segment, respectively; substituting w for w − ω2

in the third integral and w − ω1 in the fourth, we find∫ ω2

ω1+ω2

f(w)dw =

∫ 0

ω1

f(w − ω2)dw = −
∫ ω1

0
f(w)dw

and so the third and first integrals cancel each other; similarly, the fourth and second integrals

cancel each other, so the sum of all is zero.

The following result follows:

Proposition 3.2.2. (i) Any elliptic function w.r.t. a lattice Λ without poles in C\Λ is a

finite linear combination of 1, ℘ and Ek, k ≥ 3.

(ii) Any even elliptic function w.r.t. Λ without poles in C\Λ is a polynomial in ℘.

Proof. (i) Note that ℘(z)− 1
z2

and Ek(z)− 1
zk

(k ≥ 3) have removable singularities in 0. Now

let f(z) be an elliptic function which is holomorphic on C\Λ, and write it as a Laurent series

f(z) =
∑∞

k=−N akz
k centered at 0. (ii) of the above lemma implies that a−1 = Res(f ; z) = 0;

and therefore

f − a−2℘(z)−
N∑
k=3

a−kEk(z)

is a holomorphic elliptic function, i.e. a constant.

(ii) We will use induction on the order of its pole in 0. Since f is even, the order of its pole

must be even. If it is zero, f is constant and the result is trivial. Otherwise, letting 2n denote

the order and a−2n the corresponding coefficient of the Laurent series centered at 0, we see

that f − a−2n℘
n is even and has a pole of lesser order than 2n

(because ℘n(z) =
1

z2n
+ {higher terms})

so it is a polynomial in ℘.

We can now show a general structure theorem with little effort:

Theorem 3.2.3. Every elliptic function w.r.t. Λ is a rational function in ℘ and ℘′.
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Proof. Let f be an even elliptic function; recall that f has only finitely many poles modulo

Λ. If a /∈ Λ is a pole of f , we can multiply f by an appropriate power of ℘(z) − ℘(a) to

get a function with fewer poles; after a short inductive step, we may assume without loss of

generality that f has no poles outside of Λ, and therefore is a polynomial in ℘.

For general f , we have

f(z) =
f(z) + f(−z)

2
+ ℘′(z)

f(z)− f(−z)
2℘′(z)

where f(z)+f(−z)
2 and f(z)−f(−z)

2℘′(z) are even elliptic functions.

The results until now have limited the possibilities for elliptic functions; we now give a

result which guarantees the existence of elliptic functions with certain poles and zeros.

Definition 21. A divisor is an element of the direct sum ⊕z∈C/ΛZ. The divisor associated

to an elliptic function f is

divf =
∑
z∈C/Λ

ord(f ; z)(z).

Theorem 3.2.4. The divisor
∑

z∈C/Λ az(z) comes from an elliptic function if∑
z∈C/Λ

az = 0 and
∑
z∈C/Λ

azz = 0.

Proof. We will construct such a function explicitly. To do this, we introduce the Weierstrass

σ-function, which is defined via an absolutely convergent product

σ(z) := z
∏

ω∈Λ\{0}

(
(1− z

ω
) exp(

z

ω
+

1

2
(
z

ω
)2)
)
.

This follows the method given by the Weierstrass product theorem to construct an entire

function with zeros exactly in the points of Λ. Its logarithmic derivative is

σ′(z)

σ(z)
=

1

z
+
( ∑
ω∈Λ\{0}

1

z + ω
− 1

ω
− z

ω2

)
;

the derivative of this, in turn, is then −℘(z).

For any fixed ω0 ∈ Λ, σ(z+ω0)
σ(z) is entire without zeros, and therefore expressible as exp(h(z))

for some entire function h(z). After some algebraic manipulation we find

h′′(z) =
(σ′(z + ω0)

σ(z + ω0)

)′
−
(σ′(z)
σ(z)

)′
= ℘(z)− ℘(z + ω0) = 0,

so h(z) is a linear polynomial; this implies the addition formula

σ(z + ω0) = C0σ(z)eη0z
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for constants C0 and η0 that depend on ω0.

Choose now fixed representatives zk for the nontrivial components of the given divisor,

and define the function

f(z) :=
∏
k

σ(z − zk)ak .

Then for ω0 ∈ Λ,

f(z + ω0)

f(z)
=
∏
k

Cak0 exp(akη0(z − ak)) =
(
C0 exp(η0z)

)∑ ak
exp(−η0

∑
akzk) = 1.

Thus f is elliptic; and it is easily seen that (f) =
∑

z∈C/Λ az(z).

The proof of 2.2.2(ii) shows that we can express the even function ℘′(z)2 = 4E3(z)2 as a

cubic polynomial in ℘. To construct this, we look at the Laurent series.

Proposition 3.2.5. Denote by G2j, j ≥ 2 the homogeneous Eisenstein series

G2j :=
∑

ω∈Λ\{0}

1

ω2j
.

Then the Laurent expansions of ℘ and Ek at 0 are given by

℘(z) =
1

z2

(
1 +

∞∑
n=2

(2n− 1)G2nz
2n
)

and

Ek(z) =
1

zk

(
1 + (−1)k

∞∑
n=2

(
2n− 1

k − 1

)
G2nz

2n
)
.

Proof. The function ℘(z)− 1
z2

is holomorphic on a neighborhood of 0; successively differenti-

ating gives
dk

dzk
(℘(z)− 1

z2
) = (−1)k(k + 1)!

(
Ek+2(z)− 1

zk+2

)
and evaluating this at zero gives the k-th power series coefficient

1

k!

dk

dzk
(℘(z)− 1

z2
)|z=0 = (−1)k(k + 1)Gk+2;

since Gk = 0 for odd k, the result follows.

The second Laurent series can be obtained similarly, or by successive differentiation of the

first.

Proposition 3.2.6.

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6.
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Proof. From the above Laurent series follows

℘(z)3 =
1

z6

(
1 + 3G4z

4 + 5G6z
5 + ...

)3
=

1

z6
+ 36G4

1

z2
+ 60G6 + ...

and

℘′(z)2 =
4

z6

(
1− 2G4z

4 − 10G6z
6 − ...

)2
=

4

z6
− 24G4

1

z2
− 80G6 − ...

It follows that

℘′(z)2 − 4℘(z)3 + 60G4℘(z) = −140G6 + ...

and being a holomorphic elliptic function, it must be equal to its constant term −140G6.

The numbers 60G4 and 140G6 will appear often. They are called Weierstrass invariants

and denoted by g2 and g3, respectively.

The differential equation satisfied by ℘ bears a strong resemblance to the Weierstrass

equation defining an elliptic curve. In fact, it defines the structure of an elliptic curve on the

torus C/Λ. We will describe this soon: first, it needs to be observed that the discriminant of

that Weierstrass equation will be nonzero.

Lemma 3.2.7. The zeros of 4X3 − g2X − g3 are distinct, and given by ℘(ω1
2 ), ℘(ω2

2 ) and

℘(ω1+ω2
2 ).

Proof. This is because

℘′(
ω1

2
) = −℘′(−ω1

2
) = −℘′(ω1

2
),

since ℘′ is an odd elliptic function, and therefore ℘′(ω1
2 ) = 0. ω2

2 and ω1+ω2
2 are analogous.

These zeros are distinct: assume without loss of generality that ℘(ω1
2 ) = ℘(ω2

2 ) =: c ∈ C. We

have

0 =
∑
z∈C/Λ

Res(
℘′

℘− c
; z) =

∑
z∈C/Λ

ord(℘− c; z) ≥ 2

since ℘−c has only one pole modulo Λ, of order 2 in z = 0, and a zero of order at least 2 in both
ω1
2 and ω2

2 (because ℘′(ωi2 ) = 0), which are distinct modulo Λ. This is a contradiction.

Theorem 3.2.8. Let EΛ be the projective elliptic curve

EΛ : Y 2Z = 4X3 − g2XZ
2 − g3Z

3.

Then the map

ψ : C/Λ→ EΛ, z + Λ 7→ [℘(z) : ℘′(z) : 1], 0 + Λ 7→ [0 : 1 : 0]

is an analytic isomorphism of Riemann surfaces. Under ψ, the group law on EΛ corresponds

to addition on C/Λ, and rational functions from EΛ to C correspond to elliptic functions with

respect to Λ.
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Proof. EΛ inherits the structure of a Riemann surface with respect to the atlas

P = [x : y : 1] 7→ x if
dy2

dy
= 2y 6=, 0

P = [x : y : 1] 7→ y if
d(4x3 − g2x− g3)

dx
= 12x2 − g2 6= 0,

O = [0 : 1 : 0] 7→ 0.

The structure on C/Λ is defined in the obvious way. ψ is analytic outside of 0 ∈ C/Λ since

℘ and ℘′ are analytic outside of Λ, and ψ is analytic in 0 because ℘
℘′ has only removable

singularities in Λ.

As a nonconstant map between compact Riemann surfaces, ψ must be a covering map

(i.e. discrete and bicontinuous) of some degree d ≥ 0, which means that the fiber over any

point of EΛ contains exactly d elements. From the commutative diagram

C/Λ

P1(C)

EΛ

ψ

℘

x

where ℘ is a covering map of degree 2 as it is an elliptic function of order 2, and the coordinate

function x is a covering map of degree 2; it follows that ψ has degree one and is therefore an

isomorphism.

Under ψ, the rational functions on EΛ correspond to the rational functions in ℘ and ℘′,

which are exactly the elliptic functions (or rather, the meromorphic functions on C/Λ).

For the final statement, let z1 and z2 ∈ C/Λ be arbitrary and find an elliptic function f

whose divisor is given by

divf = (z1 + z2)− (z1)− (z2) + (0).

Let ψ∗ : C(EΛ)→ C(C/Λ) be the isomorphism on function fields induced by ψ; then ψ∗R = f

for some rational function R on EΛ and it holds

divR = (ψ(z1 + z2))− (ψ(z1))− (ψ(z2)) + (ψ(0)).

Since the latter is a principal divisor, and it holds that∑
P

nP (P ) principal divisor =⇒
⊕
P

nPP = O,

it follows that ψ(z1 + z2) = ψ(z1)⊕ ψ(z2).
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Remark: ψ maps the natural differential dz = d℘(z)
℘′(z) to dx

y . We can recover Λ as the

lattice of values
∫
γ
dx
y , where γ ∈ π(EΛ) is an element of the topological fundamental group.

We have now constructed a large class of elliptic curves over C. In fact, any such curve

is isomorphic to a EΛ for an appropriately chosen lattice Λ. The proof of this will take some

additional effort. Motivated by the case of the CΛ, we make the following definition:

Definition 22. The j-function is defined on lattices Λ by

j(Λ) :=
1728g3

2

g3
2 − 27g2

3

.

If we replace Λ by a scalar multiple zΛ, z ∈ C×, it remains the same:

j(zΛ) =
1728(z−4g2)3

(z−4g2)3 − 27(z−6g3)2
= j(Λ).

By multiplying Λ with either 1
ω1

or 1
ω2

, as appropriate, we can obtain a lattice of the form

Z⊕ Zτ with Im[τ ] > 0; we then define

j(τ) := j(Z⊕ Zτ).

It is therefore clear that j(τ + 1) = j(τ) and j(−τ−1) = j(τ).

Lemma 3.2.9. Let H = {z ∈ C : Im[z+ > 0}. Then j : H→ C is surjective.

Proof. j is holomorphic, since g3
2−27g2

3 has no zeros; this is up to a factor of 16 the discriminant

of 4X3− g2X − g3, which we saw previously to have distinct roots for every lattice in C. The

open mapping theorem implies that j(h) is open.

One can show that j(τ) is unbounded as Im(τ) becomes large; indeed, its Fourier series is

given by

j(τ) = q−1 + 744 + 196884q + ... (q = e2πiτ ).

] If (wk), wk = j(zk), is any convergent sequence in j(H), then the Im(zk) must be bounded;

therefore, we can choose representatives for these in a shortened fundamental domain {τ ∈
H : |τ | ≥ 1, |Re(τ)| ≤ 1, |Im(τ) ≤ M}. This is a compact set, and so (zk) has a converging

subsequence; if its limit is denoted z, then we have j(z) = limk→∞wk ∈ j(H).

Therefore, j(H) is both open and closed in C; as it is nonempty, it must be all of C.

Theorem 3.2.10. Every elliptic curve over C is isomorphic over C to a curve of the form

EΛ.
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Proof. Let

E : Y 2 = X3 + aX + b

be a given Weierstrass equation. Then we can find a lattice Λ in C such that j(E) = j(Λ),

which is the j-invariant of j(EΛ) by construction. Therefore, C is isomorphic to EΛ over

C.

Theorem 3.2.11. Two elliptic curves EΛ1 and EΛ2 are isomorphic over C if and only if the

lattices Λ1 and Λ2 are homothetic, that is,

∃α ∈ C× : Λ1 = αΛ2.

Proof. If the lattices are homothetic, then they have the same j-invariant; this implies that

the curves EΛ1 and EΛ2 are isomorphic. On the other hand, if EΛ1 and EΛ2 are isomorphic,

then C/Λ1 and C/Λ2 are analytically isomorphic as Riemann surfaces; this is induced by an

analytic map g : C→ C such that

∀ω ∈ Λ1, ∀z ∈ C : g(z + ω)− g(z) ∈ Λ2.

Since Λ2 is discrete, g(z+ω)− g(z) must be constant for fixed ω; thus g′(z) is a holomorphic

elliptic function, and is therefore a constant α−1. We find Λ1 = αΛ2.

Similarly, it may be seen that two curves EΛ1 and EΛ2 are isogenous, i.e. there exists a

nonconstant morphism ϕ : EΛ1 → EΛ2 sending O to O, if and only if there exists α ∈ C with

Λ1 ⊆ αΛ2.

3.3 Reduction

Consider a field K with a discrete valuation v : K× → Z; this extends uniquely to a valuation

v : K → Q on a fixed algebraic closure of K. Let OK := {x ∈ K : v(x) ≥ 0} be the valuation

ring of v and m its maximal ideal. Assume in the following that the residue field k := R/m is

perfect.

An elliptic curve E/K is given by a Weierstrass equation, and this choice is not unique. By

an appropriate change of variables, we may choose a Weierstrass equation with coefficients in

R. Any such change of variables will change the discriminant by a power of 12 and therefore

its valuation by a multiple of 12; see [20] III.1.3.

Definition 23. The R-scheme f : X ↪→ P2
R → SpecR defined by this Weierstrass equation

over R is called a model for E. If v(∆) is minimal among all models, it is called a minimal

model. The special fiber

Ẽ := f−1(m) = X ×SpecR Spec k
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is called the reduction of E at v.

The reduction of E at any valuation of K remains a projective curve of genus 1. In general,

it may not be non-singular; however, it has at most one singularity:

Lemma 3.3.1. Let X/k be the projective variety given by a Weierstrass equation. Then X

has at most one singularity.

Proof. For simplicity assume that char k 6= 2, 3; then, X is given by an equation of the form

X : y2 = x3 + px+ q.

At any singularity of X, both partial derivatives must vanish; that is, 2y = 3x2 + p = 0.

It follows that y = 0 and x is a double root of x3 + px + q; there can be at most one such

point.

At any singular point (x0, y0) of X, the equation f(x, y) = y2 − x3 − px− q is given by a

Taylor expansion

f(x, y)− f(x0, y0) =
(

(y − y0)− α(x− x0)
)(

(y − y0)− β(x− x0)
)
− (x− x0)3

for some α, β ∈ K. The tangent lines to X in (x0, y0) are given by

y − y0 = α(x− x0), y − y0 = β(x− x0).

We distinguish four cases:

Definition 24. Let E/K be an elliptic curve and v a discrete valuation of K.

(i) E has good reduction at v if Ẽ is nonsingular - i.e. an elliptic curve over k.

(ii) E has additive reduction at v if it has a singularity and α = β.

(iii) E has split multiplicative reduction at v if it has a singularity and α 6= β, α, β ∈ K.

(iv) E has non-split multiplicative reduction at v if it has a singularity and α 6= β,

α, β /∈ K.

Example: Over Q, no elliptic curve can have good reduction at every prime p - because no

Weierstrass equation with integer coefficients can be given such that the discriminant is a

unit.

Proposition 3.3.2. (i) Let E be an elliptic curve over K and v a valuation. Then there is a

finite extension L/K such that E ×K L has either good or split multiplicative reduction over

L at vL, the valuation of L extending K.

(ii) If E has good or multiplicative reduction at v and L/K is a finite extension of fields, then

E ×K L has good or multiplicative reduction, respectively, at vL.
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Proof. See [20] VII.5.4

We say that E has potential good or potential multiplicative reduction at v if there

is E×K L has good or multiplicative reduction at vL for some finite extension L/K. There is

a simple criterion for potential good reduction:

Proposition 3.3.3. E has potential good reduction at v if and only if v(j(E)) ≥ 0.

Proof. See [20] Silverman VII.5.5

Isogenies are respected by (good) reduction:

Proposition 3.3.4. Let E1 and E2 be two elliptic curves over K with good reduction at p.

Then

Hom(E1, E2)→ Hom(Ẽ1, Ẽ2), ϕ 7→ ϕ̃

is injective, and for any isogeny ϕ : E1 → E2, degϕ = deg ϕ̃.

Proof. See [19] II.4.4

3.4 Elliptic curves as S-schemes

In the most general case, we can consider elliptic curves not necessarily defined over a field,

but rather over an arbitrary ring; or, even more generally, over an arbitrary scheme.

Definition 25. Let S be a scheme. An elliptic curve over S is a scheme E, together with a

proper, smooth morphism f : E → S and a closed immersion O : S → E, such that f ◦O = idS

and that all fibers

Es := E ×S Spec k(s), s ∈ S

are geometrically connected (i.e. connected over the algebraic closure) curves of genus 1 over

k(s).

In the case that S = SpecK for some algebraically closed field K, this generalizes the

classical definition. Morally, we may think of E as a family of elliptic curves Es, parameter-

ized by the points of S - this is the point of view of deformation theory.

Perhaps surprisingly, if S = SpecR is affine, where R is noetherian and without nontrivial

nilpotents or idempotents, any elliptic curve E over S is given by a Weierstrass equation with

coefficients in R; that is, there are elements a1, a3, a2, a4, a6 ∈ R with

E = Proj
(
R[X,Y, Z]/(Y 2Z + a1XY Z + a3Y Z

2 −X3 − a2X
2Z − a4XZ

2 − a6Z
3)
)

;
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we write this as

E : Y 2 + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3.

As in the case of elliptic curves over a field, one shows this by applying a relativized version

of the Riemann-Roch theorem.

Continuing the analogy, as elliptic curves over fields have a group structure, elliptic curves

over schemes have the structure of a group scheme. First, we recall a definition:

Definition 26. A group scheme G over S is an S-scheme f : G → S together with

morphisms µ : G×S G→ G, e : S → G and i : G→ G satisfying

(i) µ is associative; that is, µ ◦ (µ×S idG) = µ ◦ (idG ×S µ) as maps from G×S G×S G to G;

(ii) e is the identity section; that is, µ ◦ (idG ×S e) and µ ◦ (e ×S id) are the canonical

isomorphisms G×S S → G and S ×S G→ G;

(iii) µ ◦ (i×S idG) ◦∆G/S = µ ◦ (idG ×S i) ◦∆G/S = e ◦ f as a morphism G→ G.

A group scheme structure on a scheme G is equivalent to giving a group structure on the

sets G(T ) that is functorial in the S-scheme T .

Theorem 3.4.1. Any elliptic curve E/S is a group scheme. This is given by the following

data: for any S-scheme T and points P,Q,R ∈ E(T ), P + Q = R if and only if for the

invertible sheaves O(P ),O(Q),O(R) corresponding to P,Q,R as Cartier divisors, there exists

an invertible sheaf L on T with

O(P )⊗O(Q)⊗O(∞)−1 ∼= O(R)⊗ f∗T (L)

as sheaves on E ×S T.

In other words, E(T ) receives the group structure of the relative Picard group

Pic(0)(E ×S T/T ).

Proof. See [10], 2.1.2.
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Chapter 4

Differentials and de Rham

cohomology

4.1 Review of spectral sequences

Let C be an abelian category.

Definition 27. A spectral sequence in C is a collection of objects Ep,qr of C, p, q ∈ Z,

r ≥ r0 for some integer r0, together with boundary morphisms dr : Ep,qr → Ep−r,q+r−1
r

satisfying dr ◦ dr = 0, and such that

Ep,qr+1 = Ker[Ep,qr
dr−→ Ep−r,q+r−1

r ]/Im[Ep+r,q−r+1
r

dr−→ Ep,qr ];

i.e. Er+1 is the homology of Er.

The following construction of a spectral sequence will be especially important. Let

C• : ...→ C−1 → C0 → C1 → ...

be a filtered cochain complex over C (that is, a filtered object in the category of cochain

complexes over C) with filtration

... ↪→ Fn(C•) ↪→ ... ↪→ F 1(C•) ↪→ F 0(C•) = C

compatible with the boundary d of C•; that is, d(F k(C•)(n)) ↪→ F k(C•)(n+1).

We define

Ep,q0 := F p(C•)(p+q)/F p+1(C•)(p+q),

and for r ≥ 1,

Zp,qr := KerF p(C•)(p+q) dp,q0−→ C(p+q+1) � F p+r(C•)(p+q+1)
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and

Bp,q
r := F p(C•)(p+q) ∩ ImF p−r+1(C•)

dp,q−r0−→ C(p+q),

and finally

Ep,qr := Zp,qr /
(
Bp,q
r + Zp,qr−1

)
;

if we set Zp,q−1 := Zp,q0 , this also agrees with the previous definition of E0. Together with the

boundary map dr : Ep,qr → Ep+r,q−r+1
r , the restriction of the boundary map of C•, this forms

the spectral sequence associated to C•.

Definition 28. A spectral sequence Ep,qr abuts to a double complex E∞ (written Er ⇒ E∞)

if, for every pair (p, q), there exists an integer r0 so that for all r ≥ r0, both boundaries

dp−r,q+r−1
r and dp,qr are zero; in this case, the sequence (Ep,qr )p,q stabilizes and we take Ep,q∞ =

Ep,qr for large enough r.

Consider now an additive functor G : C → C′ between abelian categories, and assume that

C has enough injectives.

Lemma 4.1.1. Let A be a finitely filtered object of C with filtration F k(A), k ≥ 0. Then A

admits an injective resolution A → I•, where I• is a finitely filtered complex with filtration

F k(I•), k ≥ 0 and such that F k(I•) is an injective resolution of F k(A) for every k.

Proof. This is 13.6.2 in EGA 3 ([4]).

Fix any such injective resolution A → I•. Then G(A) → G(I•) also satisfies the above

lemma, where the filtration is given by F k(G(I•)) := G(F k(I•)). We may consider the spectral

sequence Ep,qr associated to the complex G(A)→ G(I•). This is independent of the injective

resolution and is called the spectral sequence of G relative to A.

It holds that Ep,qr abuts to the cohomology RqG(A) of G(A), the filtration being given by

F p(RqG(A)) = ImRqG(F p(A)) −→ RqG(A)],

and the E1 terms are calculated as Ep,q1 = Rp+qG(grp(A)), where grp(A) = F p(A)/F p+1(A)

is the p-th associated graded object.

Another important example of spectral sequences are those that arise from double com-

plexes. Let C•,• be a collection of objects of C together with differentials

dqI : Cp,q −→ Cp−1,q, dpII : Cp,q −→ Cp,q−1

satisfying dI ◦ dII + dII ◦ dI = 0. Then we may define the total complex T • := Tot(C•,•)

given by Tn =
⊕

p+q=nC
p,q and whose differential is given by dI +dII . There are two natural

29



filtrations of Tot(C•,•):

F kI (T •) :=
⊕
p+q=n
p≥k

Cp,q, F kII(T
•) :=

⊕
p+q=n
q≥k

Cp,q,

and these filtrations induce spectral sequences IEp,qr and IIEp,qr . Both abut to the cohomology

of T ; that is,
IEp,qr ⇒ Hp+q(T ), IIEp,qr ⇒ Hp+q(T ),

although in general do not give the same filtration on H•(T ).

4.2 Differentials

To define differentials on schemes, it is useful to first define them on affine schemes - or rather,

on rings. Let f : R → A be a morphism of commutative unital rings; via f , we understand

elements of R as elements of A.

Definition 29. The module Ω1
A/R of 1-forms on A is the A-module generated by symbols

da, a ∈ A modulo the relations

d(a+ b) = da+ db, d(ab) = adb+ bda, dr = 0

for a, b ∈ A and r ∈ R.

By construction, the obvious map d;A −→ Ω1
A/R is a derivation. It is universal in the

following sense: given any derivation D : A −→M in another A-module M , there is a unique

homomorphism ψ : Ω1
A/R −→M of A-modules satisfying D = ψ ◦ d.

For any n ≥ 1, we define the module of n-forms as the n-fold exterior product

Ωn
A/R := ∧nΩ1

A/R.

The map d : A→ Ω1
A/R induces morphisms

d(n) : Ωn
A/R −→ Ω

(n+1)
A/R , a · dx1 ∧ ... ∧ dxn 7→ da ∧ dx1 ∧ ... ∧ dxn.

Since d1 = 0, it is clear that d(n+1) ◦ d(n) for every n, so this gives a cochain complex

Ω•A/R : 0 −→ A
d0

−→ Ω1
A/R

d1

−→ Ω2
A/R

d2

−→ ...

called the (algebraic) de Rham complex of A/R. The modules

Hn
dR(A) := Hn(Ω•A/R) = Ker[d(n)]/Im[d(n−1)]

are called the de Rham cohomology modules of A; here d0 = d and d−1 = 0.

Now let f : X → S be a morphism of schemes.
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Definition 30. There is a unique quasicoherent OX -module on X, denoted by Ω1
X/S , such

that for any open affine subsets V ⊆ S, U ⊆ f−1(V ) and for any x ∈ U ,

Ω1
X/S |U ∼= (Ω1

OX(U)/OV (V ))
∼ and (Ω1

X/S)x ∼= Ω1
OX,x/OS,f(x) .

Ω1
X/S is called the sheaf of 1-forms of X over S.

As before, we define the sheaf of n-forms as Ωn
X/S := ∧nΩ1

X/S ; that is, the sheaf associated

to the presheaf

U 7→ ∧nΓ(U,Ω1
X/S).

Together with the exterior differentials d(n) : Ω
(n)
X/S −→ Ω

(n+1)
X/S this gives the algebraic de

Rham complex

Ω•X/S : 0 −→ OX −→ Ω1
X/S −→ Ω2

X/S −→ ...

of sheaves of OX -modules.

The cohomology objects of this complex are sheaves of OX -modules. To get modules in

the classical sense, we instead take the hypercohomology - that is, we form the total complex

Tot
(
Cp(Ωq

X/S)
)(n)

p,q≥0
:=

⊕
p+q=n

Cp(Ωq
X/S),

where C•(Ωq
X/S) is the Godement resolution, and take its cohomology. We define

Hn
dR(X/S) := Hn(Ω•X/S) = Hn(Tot(C•(Ω•X/S))).

In view of the functor f∗ : Mod(OX)→ Mod(OS), we are taking the hyperderived functors

Hn
dR(X/S) = Rnf∗Ω•X/S .

There are natural spectral sequences IEp,qr and IIEp,qr that abut to H•dR(X/S) - those associ-

ated to the double complex Γ(X,Cp(Ωq
X/S)). The E1-terms are given by

IEp,q1 = Hq(Cp,•), IIEp,q1 = Hp(C•,q).

We call IEr and IIEr the Hodge to de Rham spectral sequences. They are useful for

computation - in several important cases (for example, smooth varieties over an algebraically

closed field of characteristic 0), they degenerate at E1.
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4.3 Differentials on an elliptic curve

We now calculate the de Rham cohomology of an elliptic curve f : E → S, where S = SpecR

is affine noetherian. The above considerations are more difficult than necessary: since E is

well-behaved, we can use Čech cohomology instead of taking Godement resolutions.

Recall that E is given by a Weierstrass equation

E : Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3;

it is convenient (though not necessary) to assume that 6 is invertible in R, in which case we

can take a Weierstrass equation of the form

E : Y 2Z −X3 − pXZ2 − qZ3.

There is a natural affine cover given by dehomogenization: we take

U = SpecR[x, y]/(y2 − x3 − px− q) and V = SpecR[t, z]/(z − t3 − ptz2 − qz3),

using dehomogenized variables x = X
Z , y = Y

Z , t = X
Y , z = Z

Y . With respect to this cover,

the Čech complexes are quite simple: we only need to consider one intersection U ∩ V , so all

terms Ck, k ≥ 2 vanish. We get the commutative diagram

C0(E,OE) C1(E,OE) 0

C0(E,Ω1
E/S) C1(E,Ω1

E/S) 0

0 0

where we have C0(E,F) = Γ(U,F)×Γ(V,F), C1(E,F) = Γ(U ∩V,F) and C2(E,F) = 0

for F = Ωk
E/S , k = 0, 1, 2, .... Taking hypercohomology, we see that

H0
dR(E/R) = Ker[OE(U)⊕OE(V )→ OE(U ∩ V )⊕ Ω1

E/R(U)⊕ Ω1
E/R(V )]

(sU , sV ) 7→ (sU |U∩V − sV |U∩V ,dsU , dsV );

such tuples are exactly those that glue to global sections, so H0
dR = Γ(E,OE).

We have H1
dR(E/R) = Z1/B1, where

Z1 = Ker[OE(U ∩ V )⊕ Ω1
E/R(U)⊕ Ω1

E/R(V )→ Ω1
E/R(U ∩ V )]

(f, ωU , ωV ) 7→ ωU − ωV − df

and

B1 = Im[OE(U)⊕OE(V )→ OE(U ∩ V )⊕ Ω1
E/R(U)⊕ Ω1

E/R(V )].
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There is an injective map

H0(E,Ω1
E/R)→ H1

dR(E/R)

that is induced by ω 7→ (ω|U , ω|V , 0); this is injective because if (ω|U , ω|V , 0) is a coboundary,

then we have ω|U = dfU , ω|V = dfV and 0 = fU − fV , so the sections fU and fV are equal

on U ∩ V and glue to a global section f ∈ Γ(E,OE) such that ω = df = 0.

We also have a map

H1
dR(E/R)→ H1(E,OE), [(ωU , ωV , f)] 7→ [f ];

this is well-defined because for any de Rham coboundary (ωU , ωV , f) ∈ B1, [f ] = 0 in

H1(E,OE) = OE(U ∩ V )/{f |U∩V − g|U∩V : f ∈ OE(U), g ∈ OE(V )}.

This map is surjective: for any given f , it is possible to adjust df by a regular differential on

V (an element of Ω1
E/R(V )) to get a regular differential on U - this can be done by choosing a

global section ω of Ω1
E/R and considering differentials g ·ω with g ∈ K(E); the Riemann-Roch

theorem guarantees the existence of a g that will work.

Consider now the sequence

0→ H0(E,Ω1
E/R)→ H1

dR(E/R)→ H1(E,OE)→ 0.

This is exact: the composition of the maps is clearly zero, and if (ωU , ωV , fU−fV ) is a cochain

in the kernel of the second map, such that fU ir regular on U and fV regular on V , then it

differs from (ωU − d(fU ), ωV − d(fv), 0) by a coboundary and so is equal to it in H1
dR(E/R).

We have (ωU −dfU )|U∩V −(ωV −dfV )|U∩V = ωU |U∩V −ωV |U∩V −d(fU −fV ) = 0 since we

started with an element of the kernel; so ωU and ωV come from a global section ω ∈ Ω1
E/R(E),

and (ωU , ωV , fU − fV ) is the image of ω.

In particular, H1(E,OE) is a free R-module of rank 1 (the genus of E), and H0(E,Ω1
E/R)

is by Serre duality as well - so H1
dR(E/R) is a free R-module of rank 2.

Finally, we note that H2
dR(E/R) is a free R-module of rank 1. This allows one to make

the following definition:

Definition 31. The de Rham pairing is the perfect, alternating pairing

(−,−)dR : H1
dR(E/R)×H1

dR(E/R)
∧−→ H2

dR(E/R)
Tr−→ R,

where ∧ is the exterior product (i.e. de Rham cup product) and Tr is the trace map of

Grothendieck-Serre duality.
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This can be explicitly given in terms of ‘residue’ morphisms on the points of E. We only

note here that (dx
y ,

xdx
y )dR = 1.

4.4 Connections

Let R be an integral domain and X a smooth scheme over R, F a quasicoherent OX -module.

Definition 32. A connection on F is a morphism

∇ : F → F ⊗OX Ω1
X/R

of sheaves of OX -modules, such that for every open subset U ⊆ X,

(i) ∇U : F(U)→ F(U)⊗OX(U) Ω1
X/R(U) is R-linear;

(ii) For any sections s ∈ OX(U), x ∈ F(U),

∇U (sx) = x⊗ ds+ s∇U (x).

The corresponding concept in differential geometry is also called a ‘covariant derivative’

and may be thought of as a way of transporting, locally or even infinitesimally, information

along the sheaf F in a coherent way.

A section s ∈ F(U) is called horizontal (with respect to ∇) if ∇U (s) = 0.

Any connection ∇ induces morphisms of OX -modules

∇(k) : F ⊗OX Ωk
X/R → F ⊗OX Ωk+1

X/R;

for any open U ⊆ X and sections x ∈ F(U), ω ∈ Ωk
X/R,

∇(k)(x⊗ ω) := x⊗ dω + (−1)k∇(x) ∧ ω,

where if ∇(x) =
∑

i xi ⊗ ωi, ∇(x) ∧ ω :=
∑

i x⊗ (ωi ∧ ω).

Definition 33. The curvature K of a connection is the morphism

K = ∇(1) ◦ ∇ : F → F ⊗OX Ω2
X/R.

We call ∇ integrable if its curvature is everywhere zero.

If ∇ is an integrable connection, it follows that ∇(k+1) ◦ ∇(k) ≡ 0 for every k ≥ 0 and we

get a cochain complex

F ⊗OX Ω•X/R : 0 −→ F ∇−→ F ⊗ Ω1
X/R

∇(1)

−→ F ⊗OX Ω2
X/R −→ ...

The de Rham cohomology of X with coefficients (F ,∇) is defined as the hypercohomology

Hk
dR(X;F ,∇) := Hk(F ⊗OX Ω•X/R).
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4.5 The Gauss-Manin connection

Let π : X → S be a smooth morphism between smooth schemes over R. Then we have the

cotangent sequence

0→ π∗Ω1
S/R → Ω1

X/R → Ω1
X/S → 0

of locally free sheaves of OX -modules; this is always right-exact, and left-exact because π is

smooth. This gives a canonical filtration of complexes

... ⊆ F 2(Ω•X/R) ⊆ F 1(Ω•X/R) ⊆ F 0(Ω•X/R) = Ω•X/R,

where

F k(Ω•X/R) = im[Ω•−kX/R ⊗OX π
∗Ωk

S/R → Ω•X/R].

This is compatible with the exterior product; that is,

F j(Ω•X/R) ∧ F k(Ω•X/R) ⊆ F j+k(Ω•X/R).

The associated graded objects are

grk(Ω•X/R) = F k(Ω•X/R)/F k+1(Ω•X/R) ∼= Ω•−kX/S ⊗OX π
∗Ωk

S/R.

Let Ep,qr be the spectral sequence induced by the (finite) filtration of Ω•X/R; it follows that

Ep,qr ⇒ Rp+qf∗Ω
•
X/R, and that

Ep+q1 = Rp+qf∗(grp(Ω•X/R)) ∼= Ωp
S/R ⊗R

qf∗Ω
•
X/S .

The sheaf Rqf∗Ω
•
X/S is the cohomology (in the usual sense) of the de Rham complex, and will

be called the de Rham cohomology sheaf

HqdR(X/S) := Rqf∗Ω
•
X/S .

Definition 34. The map

∇GM := d0,q
1 : E0,q

1 = HqdR(X/S) −→ Ω1
S/R ⊗OS H

q
dR(X/S) = E1,0

1

is called the Gauss-Manin connection of X/S.

It must be checked that this actually defines a connection - however, linearity is not dif-

ficult, and the product rule also holds. The curvature of ∇GM is d1,q
1 ◦ d

0,q
1 ≡ 0; so ∇GM is

integrable.

The real importance of the Gauss-Manin connection is that it provides a natural way

of defining partial derivatives. Let D ∈ DerR(OS ,OS) be any derivation. By the universal

property of Ω1, this corresponds to a homomorphism of OS-modules D ∈ HomOS (Ω1
S/R,OS).

We can then define

∇D : HqdR(X/S)
∇GM−→ Ω1

S/R ⊗OS H
q
dR(X/S)

D⊗id−→ OS ⊗OS H
q
dR(X/S) ∼= HqdR(X/S).
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Chapter 5

Formal groups

5.1 Formal schemes and formal groups

Definition 35. Let X be a noetherian scheme and Z a closed subscheme with ideal sheaf I.

The formal completion of X along Z is the locally ringed space

(X̂,OX̂) = (Z, lim←−
n∈N
OX/In).

Here,

lim←−
n∈N
OX/In := [U 7→ lim←−

n∈N
OX(U)/In(U)];

this construction also happens to be the inverse limit in the category of sheaves of abelian

groups. Thus, we essentially restricting ourselves with X̂ to the subscheme Z; however,

lim←−OX/I
n may be thought of as giving infinitesimally more ‘information’ about the sur-

roundings of Z than OZ alone.

The formal completion of X is not generally a scheme. It is an example of a different type

of structure that we now describe:

Definition 36. A Noetherian formal scheme (X,OX) is a locally ringed space with a fi-

nite open cover X = ∪i∈IUi such that each (Ui,OX|Ui) is isomorphic to the completion of a

Noetherian scheme Xi along a closed subscheme Yi.

Morphisms of Noetherian formal schemes are morphisms of locally ringed spaces between

Noetherian formal schemes.

Example: Let X be a Noetherian scheme and P a closed point on X. Then the completion

of X along P is given by ({P}, ÔP ), where ÔP is the completion of the local ring OX,P .

36



Definition 37. Let A be a noetherian topological ring that is complete and separated; that

is, there is an open ideal I of A whose powers form a basis of open neighborhoods of 0. The

formal spectrum of A is the formal scheme Spf A, whose topological space consists of the

open ideals of A (equivalently, the prime ideals of A/I), and whose structure sheaf is defined

by

OSpf A = lim←−
n∈N

A/In.

Explicitly, if f ∈ A and D(f) is the set of open prime ideals not containing f , OSpf A

(
D(f)

)
=

Âf is the completion of the local ring Af . Any formal scheme that is isomorphic to the formal

spectrum of a topological ring is called affine.

In analogy to schemes, there is an algebraic characterization of morphisms of formal

schemes that map to an affine formal scheme:

Lemma 5.1.1. Let X be a noetherian formal scheme and Spf A a noetherian affine formal

scheme. Then the morphisms f : X→ Spf A correspond exactly to continuous ring homomor-

phisms A→ Γ(X,OX).

Definition 38. Let X be a noetherian formal scheme. A formal group G over X is a group

object in the category of noetherian formal schemes over X; that is, f : G → X is a formal

scheme equipped with morphisms µ : G×G → G (multiplication), e : S → G (identity) and

i : G→ G (inversion) that satisfy the usual properties. In other words, for any formal scheme

T over X, the morphisms T→ G over X have a group structure that is functorial in T.

A formal group G over an affine scheme SpecR is called smooth (or a formal Lie group)

if there is an isomorphism

G ∼= Spf R[|X1, ..., Xd|]

to the power series ring over R in d variables for some d ≥ 1. We call d the dimension of G.

In any smooth formal group, the multiplication morphism is encoded in certain power

series. For simplicity we adopt the notation R[|X|] := R[|X1, ..., Xd|]. Write G = Spf R[|X|];
then, the multiplication morphism µ : G×G→ G corresponds to a comultiplication

m : R[|X|]→ R[|X|]⊗R R[|X|] ∼= R[|X,Y |];

it is determined by the images of the variables Xi, which are power series Fi ∈ R[|X,Y |]. The

data of these power series is called a formal group law.

Example: (i) Let R be a noetherian ring and Ga := Spf R[X] the additive group scheme over

R - as a functor, it maps an R-formal scheme T to the additive group Γ(T,OT). Indeed, the
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morphisms from T to Ga(R) correspond to ring morphisms from R[X] to Γ(T,OT) that fix

R, and so uniquely to choices of where X maps to. As a group, the image is clearly functorial

in T. The ‘multiplication’ morphism Ga ×R Ga → Ga is given on rings by

R[X]→ R[X]⊗R R[X] ∼= R[X,Y ], X 7→ X ⊗ 1 + 1⊗X 7→ X + Y.

The formal additive group Ĝa is the formal completion of Ga along its identity section

e : SpecR → SpecR[X] (corresponding to the augmentation X 7→ 0); the corresponding

comultiplication is still given by X 7→ X + Y.

(ii) Let Gm := SpecR[X,X−1] be the multiplicative group scheme that maps R-formal

schemes T to the group of units Γ(T,OT)×. The multiplication Gm ×R Gm 7→ Gm is given by

R[X,X−1]→ R[X,X−1]⊗R R[X,X−1] ∼= R[X,Y,X−1, Y −1], X 7→ X ⊗X 7→ XY.

The formal multiplicative group Ĝm is the formal completion of Gm along its identity

section e : SpecR → SpecR[X,X−1] (corresponding to X 7→ 1). It is smooth: we have

Gm
∼= Spf R[|X|] by sending X to 1 +X. The multiplication Ĝm×R Ĝm → Ĝm is represented

by

R[|X|]→ R[|X,Y |], X 7→ (1 +X)(1 + Y )− 1 = X + Y +XY.

5.2 Formal group laws

Our goal is to understand the formal group Ê corresponding to an elliptic curve E/R. This

turns out to be a formal group law (this is non-trivial) and it seems easier to study the proper-

ties of Ê via power series. The explicitness allows the proof of a powerful structure theorem of

formal group laws over algebraically closed fields, which will translate to the situation we need.

It will be helpful to fix a notation for multiindices here. Given variables X1, ..., Xn and a

tuple α = (α1, ..., αn) of nonnegative integers, we define

|α| =
n∑
k=1

αk

and

Xα =
n∏
k=1

Xαk
k .

Let R be a commutative ring with a unit. We use the notation

R[|X|] := R[|X1, ..., Xn|]

to denote the ring of formal power series in n variables, as long as the number of variables is

clear or at least unimportant.
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Definition 39. A formal group law of dimension n over R is a tuple G of n power series

G1, ...,Gn ∈ R[|X,Y |]

in 2n variables X1, ..., Xn, Y1, ..., Yn with the following properties:

(i) ∀k : Gk(X, 0) = Gk(0, X) = Xk, and

(ii) Gk(G(X,Y ), Z) = Gk(X,G(Y , Z)).

The formal group law G is commutative if for all k,

(iii) Gk(X,Y ) = Gk(Y ,X).

We call R[|X|] the coordinate ring of G.

Convention: In the following, we tacitly assume that all formal group laws discussed are

commutative. Accordingly, we write X +G Y to be G(X,Y ).

A formal group law is then a set of power series that, under composition with itself, behaves

according to the axioms of a group (without specified elements). In this sense, (i) represents

the existence of a neutral element, (ii) the associative law, and (iii) the commutative law

for abelian groups. It is also clear that the power series associated to formal group schemes

satisfy these conditions. The one axiom missing is the existence of unique inverses; however,

this is implied. First:

Lemma 5.2.1 (Jacobi criterion). Let g(X) be a power series with g(0) = 0. There exists a

power series f ∈ R[|X|] with f(g(X)) = X if and only if

det
( ∂gi
∂Xj

)
ij
∈ R×.

Proposition 5.2.2. Let G(X,Y ) be a formal group. Then there exists a unique tuple of n

power series i1(X), ..., in(X) with the property

G(X, i(X)) = G(i(X), X) = 0.

Proof. For i = 1, ..., n, set gi(X,Y ) := Xi − Fi(X,Y ). It follows

(
∂gi
∂Yj

)|X,Y=0 = −(
∂Fi
∂Yj

)|X,Y=0 = −δij ,

so det( ∂gi∂Yj
|Y=0) ∈ R×. This implies the existence of power series hi(X,Y ) with gi(X,h(X,Y )).

Take i(X) := h(X,X).
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We will also write X −G Y to denote G(X, i(Y )).

We have seen the simplest and arguably most important examples of formal group laws

in the previous section: namely, the additive formal group law

Ga(X,Y ) = X + Y

and the multiplicative formal group law

Gm(X,Y ) = (1 +X)(1 + Y )− 1 = X + Y +XY.

Definition 40. Let F and G be formal group laws of respective dimensions m and n. A

morphism ϕ : F→ G is a tuple of power series

ϕ(X) =
(
ϕ1(X1, ..., Xn), ..., ϕm(X1, ..., Xn)

)
such that ϕk(0) = 0 for all k and that

ϕ
(
X +F Y

)
= ϕ(X) +G ϕ(Y ).

A morphism ϕ of formal group laws induces a homomorphism of coordinate rings

ϕ∗ : R[|X1, ..., Xm|]→ R[|X1, ..., Xn|], Xk 7→ ϕk.

The composition of two morphisms is defined as the composition of the underlying power

series. As usual, ϕ : F→ G is called an isomorphism if there exists a left- and right-inverse

morphism ψ : G→ F.

Example: If R is a field of characteristic 0, we have a familiar-looking isomorphism

Ga → Gm, X 7→
∞∑
n=1

1

n!
Xn = exp(X)− 1.

5.3 Differentials

Let R be a commutative unital ring as above. We can consider the R-module of 1-forms

Ω1
R[|X|]/R, generated by symbols dF , F ∈ R[|X|] with the usual relations.

Lemma 5.3.1. Ω1
R[|X|]/R is a free R-module with basis dX1,...,dXn.

Proof. dX1,...,dXn generate Ω1
R[|X|]/R, because for any f ∈ R[|X|], we have

d(f) =

n∑
k=1

∂f

∂Xk
dXk.

On the other hand, if
∑n

k=1 λkdXk = 0 for any λk ∈ R, it follows d
(∑n

k=1 λkXk

)
= 0 and so∑n

k=1 λkXk ∈ R, so λk = 0 for all k.
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Let f : R[|X1, ..., Xm|] → R[|Z1, ..., Zn|] be a morphism of rings. Then f induces a

morphism of modules

f∗ : Ω1
R[|X|]/R → Ω1

R[|Z|]/R, dXk 7→ d(f(Xk)).

Definition 41. Let G be a formal group law over R. A 1-form

ω =
n∑
k=1

fk(X) dXk ∈ Ω1
R[|X|]/R

is called G-invariant if
n∑
k=1

fk(G(X,Y ))
∂Gk

∂Yj
(X,Y ) = fj(Y )

for each j = 1, ..., n.

In other words, if µ : R[|X|]→ R[|X,Y |] is given by Xk 7→ Gk and we take

i1 : R[|X|]→ R[|X,Y |], Xk 7→ Xk

and

i2 : R[|X|]→ R[|X,Y |], Xk 7→ Yk,

then we are requiring µ∗ω = (i1)∗ω + (i2)∗ω.

Proposition 5.3.2. The G-invariant differentials on R[|X|] form a submodule Ω1
G of Ω1

R[|X|]/R.

There is an isomorphism of R-modules

Ω1
G → Rn,

n∑
k=1

fk(X) dXk 7→ (f1(0), ..., fn(0)).

Proof. Any invariant differential ω = f1 dX1 + ... + fn dXn is uniquely determined by the

values f1(0), ..., fn(0) by

ω =
(
f1(0) ... fn(0)

)(∂Gi

∂Yj
(X, 0)

)−1


dX1

...

dXn

 .

On the other hand, any such differential defined by values f1(0), ..., fn(0) is G-invariant.

In particular, in the case of a one-dimensional formal group we may speak of ‘the’ invariant

differential ω having ω(0) = 1.

Example: The invariant diifferential of Ĝa(X,Y ) = X + Y is ω = dX.

The invariant differential of Ĝm(X,Y ) = X+Y +XY is ω = (1+X)−1 dX =
∑∞

k=0(−X)k dX.

One application of this is the following:
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Proposition 5.3.3. Every one-dimensional, commutative formal group law G over a field K

of characteristic 0 is isomorphic to the additive formal group law Ĝa.

Proof. Let ω = f(X) dX be the invariant differential of G and define the logarithm

`(X) :=

∫
ω =

∫
f(X) dX

as the antiderivative of f with `(0) = 0. This is an isomorphism: the invariance of ω implies

ω(X) = ω(G(X,Y )), and therefore

`(G(X,Y )) = `(X) + g(Y )

for some function g(Y ) - by setting X = 0, we see that g(Y ) = `(Y ).

This implies that ` is a homomorphism. It is an isomorphism by the Jacobi criterion.

5.4 The formal group of an elliptic curve

Let S be a noetherian scheme and f : E → S an elliptic curve with e : R → E its section

‘at infinity’. Via e we understand S as a closed subscheme ∞ ⊆ E. We let Ê be the formal

completion of E along ∞.

Proposition 5.4.1. There is an affine cover S = ∪ni=1Ui, Ui
∼= SpecAi, and isomorphisms

of formal schemes

ÊUi
∼= Spf R[|T |],

where EUi := E ×S Ui, and ÊUi its formal completion along ∞×S Ui. Any such isomorphism

is called a formal parameterization of EUi at ∞, and T a formal parameter.

Proof. We will use the following lemma:

Lemma 5.4.2. Let (X,OX) be a noetherian scheme and (X,F) a closed subscheme on the

same topological space. If (X,F) is affine, then (X,OX) is affine.

Proof. Let X1 := (X,F) be given by the sheaf of ideals I of OX . Since X is noetherian,

I is nilpotent - on a finite cover (Ui)i∈I by affine noetherian schemes, I(Ui) is contained in

the nilradical of OX(Ui), which, being finitely generated, is itself nilpotent. Pick n ≥ 1 with

In = 0. Now let Xk be the closed subscheme corresponding to Ik. By induction on k, it is

enough to show that X2 is affine.

Now consider the affine subscheme ∞ ∼= SpecR of E, with defining ideal sheaf I. The

previous lemma implies that the subschemes ∞n corresponding to In are also affine, iso-

morphic to SpecRn for some rings Rn; the closed immersions ∞ ↪→ ∞n give surjective ring
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homomorphisms Rn → R.

The cokernels Jn := Coker[∞ → ∞n] = (Ker[Rn → R])∼ are locally free OX -modules of

rank n, which can be checked on stalks. By passing to an affine cover Ui of S that trivializes

the Jn, we can find a generator T of J1 whose powers T, ..., T k generate Jk for all k; this

gives isomorphisms Ai[|T |]/(T k) ∼= Ai[T ]/(T k) ∼= Rk and finally Spf A[|T |] ∼= ÊUi .

The application of this that we use will be

Theorem 5.4.3. Let R be a discrete valuation ring, and E/R an elliptic curve. Then there

exists a formal parameterization

Ê ∼= Spf R[|T |]

of E at ∞. In particular, Ê is given by a formal group law ΦE(X,Y ) ∈ R[|X,Y |].

5.5 Formal groups over finite fields

Let K be an separably closed field of characteristic p > 0.

Definition 42. (i) Let F and G be two (one-dimensional commutative) formal groups laws

over K, and f : F→ G a homomorphism. The height h(f) of f is the greatest integer such

that f is a power series in Xph ; the height of the zero map is defined to be ∞.

(ii) Let G be a (one-dimensional commutative) formal group overK. Consider the multiplication-

by-p homomorphism

[p] : G 7→ G.

The height h of G is the height of [p].

Theorem 5.5.1 (Lazard). Two (one-dimensional commutative) formal groups over K are

isomorphic if and only if they have equal height.

Proof. See [5], III.2 Theorem 2.

For example, the height of Gm is 1, because [p] is given by the power series (1 +X)p−1 =

Xp. The height of Ga is ∞, because [p] ≡ 0. By Lazard’s theorem, they are nonisomorphic

over K.

Theorem 5.5.2. Let E be an elliptic curve over K. Then Ê has height either 1 or 2.

Proof. Consider [p] : Ê → Ê, which is induced by multiplication-by-p [p] : E(K)→ E(K) on

the K-rational points of E. This is an isogeny of degree p2, and it is inseparable. The result

follows from the lemma below:
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Lemma 5.5.3. Let 0 6= ϕ : E1 → E2 be an isogeny of elliptic curves over K and f : Ê1 → Ê2

the induced homomorphism of formal group (laws). Then

ph(f) = degi(ϕ).

Proof. It is enough to show this for the cases that ϕ is the q = pr-power Frobenius map or

that f is separable, as all isogenies can be written as a composition of these and both sides

of the claim are multiplicative. However, in the first case, degi(ϕ) = q and f(X) = Xq; in

the second case, choose invariant differentials ω1 on E1 and ω2 on E2, both adapted to the

formal parameter X on Ê1 and Ê2, respectively. We have degi(ϕ) = 1 and ϕ∗ω2 6= 0, so

f ′(0)ω1 = ω2 ◦ f(X) = (ϕ∗ω2)(X) 6= 0 ∈ K[|X|]dX.

It follows that f ′(0) 6= 0 and so h(f) = 0.

If Ê has height two, we call E supersingular; otherwise, we call E ordinary. Of course,

elliptic curves are nonsingular by definition, so supersingular elliptic curves are never singular

- this is only terminology.
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Chapter 6

Complex multiplication

6.1 Preliminary results

Let E be an elliptic curve defined over a subfield F of C. The endomorphisms of E are

isogenies ψ : E(F )→ E(F ). They have the structure of a ring EndF (E): we define

(ψ + φ)(P ) := ψ(P )⊕ φ(P )

and use composition as multiplication.

We always have a map

[ ] : Z→ EndF (E), n 7→ [n]

where [n] is defined by successive addition or subtraction of the identity [1] := id. In many

cases, this map gives us every endomorphism; we are interested here in the cases where it

doesn’t.

Theorem 6.1.1. The endomorphism ring of any elliptic curve E defined over F is isomorphic

to either Z or an order O of an imaginary quadratic number field K. In the latter case, we

say that E has complex multiplication by O.

Proof. See [20] VI.6.1

EndF (E) can be canonically identified with a subring of F : we have an injection

i : EndF (E) ↪→ EndF (ΩE/F (E)) = F, φ 7→ φ∗.

For this reason, we may always assume without loss of generality that K is a subfield in F .

It will make everything easier if we assume now that our elliptic curves with complex

multiplication have it by the full ring of integers OK of K. This is not terribly restrictive; we

cannot assume this up to isomorphism, but at least up to isogeny:
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Lemma 6.1.2. Let E/F be an elliptic curve with complex multiplication by an order O of K.

Then there exists an elliptic curve E′/F with EndF (E′) = OK and an isogeny φ : E → E′

defined over F .

Proof. See [16], 5.3.

The importance of this is that, given an elliptic curve E with complex multiplication by

OK , we can give an isomorphism E ∼= C/Λ := EΛ for some lattice Λ which is fixed by OK .

By multiplying with an appropriate constant, we can replace Λ with a homothetic lattice

contained in K - this is just a fractional ideal of K.

Lemma 6.1.3. Let a 6= (0) be an ideal of OK , where E has complex multiplication by OK .

Denote by E[a] the subgroup of points fixed by every endomorphism of a. Then there is a

natural isomorphism of OK-modules

E[a] ∼= OK/a.

Proof. Let Λ be a fractional ideal of K such that E ∼= C/Λ; then we have

E[a] ∼= a−1Λ/Λ ∼= OK/a.

Proposition 6.1.4. Let ClK be the ideal class group of K. Then ClK acts simply transitively

on the isomorphism classes of elliptic curves defined over F with endomorphism ring OK ,

where the action is given by

[a] · [C/Λ] := [C/(a−1Λ)].

Proof. If we assume that Λ is a nonzero fractional ideal, then a−1Λ is one as well. The action

is well defined, because C/Λ ∼= C/αΛ for any α ∈ OK , and we have

[a] · ([b]) · [C/Λ] = [C/a−1b−1Λ] = [C/(ab)−1Λ] = ([a][b]) · [C/Λ].

To show transitivity, let Λ1 and Λ2 be two nonzero fractional ideals of K; then it follows that

[Λ−1
2 Λ1] · [C/Λ1] = [C/Λ2Λ−1

1 Λ1] = [C/Λ2].

To see that the action is simply transitive, assume that [a] · [C/Λ] = [b] · [C/Λ] for some

fractional ideal Λ. Then a−1Λ and b−1Λ are homothetic, so there is a c ∈ C× such that

a−1Λ = cb−1Λ. In particular,

cab−1Λ = Λ = c−1a−1bΛ.

Since cab−1 and c−1a−1b map Λ to itself, they contain endomorphisms of C/Λ and are there-

fore both contained in OK ; so they both must be equal to OK . It follows that a = cb, and so

c ∈ K and [a] = [b] in ClK .
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6.2 Class field theory

The deep connection between complex multiplication of elliptic curves and global class field

theory compels us to use a number of definitions and theorems from the latter area. We

provide a review of the concepts which will be useful later in this section. Proofs can be found

in [14] or in a number of other textbooks on algebraic number theory.

Let K be a finite field extension of Q. If p is a place of the ring of integers OK , let Kp be

the completion of K at p and vp the associated valuation.

Definition 43. Let L/K be a finite Galois extension of fields, and p an ideal of K which is

unramified in L. Let P be an ideal of L lying over p. Let l and k be the remainder fields of

LP and Kp, respectively. Then we have isomorphisms

G(P) ∼= Gal(LP/Kp) ∼= Gal(l/k),

where G(P) = {σ ∈ Gal(L/K) : σP = P} is the decomposition group of P. The cyclic

group Gal(l/k) is generated by the Frobenius automorphism; its image in Gal(L/K), which

generates G(P), is called the Frobenius element of Gal(L/K) at P, denoted (P, L/K).

Lemma 6.2.1. Use the notation as above. For any σ ∈ Gal(L/K),

(σP, L/K) = σ(P, L/K)σ−1.

Proof. Let x ∈ OL. Then we have

σ(P, L/K)σ−1x ≡ σ(σ−1x)q ≡ xq (mod σP)

where q = #k. This implies that σ(P, L/K)σ−1 is the Frobenius element at σP.

In particular, if L/K is abelian, then the Frobenius elements (P, L/K), P|p, are all equal;

we denote this element by (p, L/K).

Lemma 6.2.2. Let M/L/K be a tower of Galois extensions; let P be a prime of L lying over

p, and Q a prime of M lying over P. Then

(i) (Q,M/K)|L = (P, L/K).

(ii) (Q,M/L) = (Q,M/K)f (P/p).

Proof. One easily shows that in both cases, the elements in question correspond to the Frobe-

nius automorphism on the residue fields.
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Definition 44. Let L/K be a finite abelian extension, and let S be a set of primes of K

containing all those that ramify in L. Let ISK be the subgroup of the ideal group IK generated

by those primes not in S. The Artin reciprocity map is given by

(−, L/K) : ISK → Gal(L/K),
t∏
i=1

pnii 7→
t∏
i=1

(pi, L/K)ni .

The Artin map factors through NL/K(ISL), where ISL is generated by the primes of L lying

over primes in S; this follows from the previous lemma, using the fact that

NL/K(P) = pf(P/p)

for any prime P lying over the prime p of K.

Definition 45. A modulus of K is a function

m : {places of K} → N0

such that m(p) ≥ 0 and m(p) = 0 for almost all p; m(p) ∈ {0, 1} if p is infinite and real; and

m(p) = 0 if p is complex.

We will also write the modulus m as a formal product

m =
∏
p

pm(p).

Given a modulus m, we define the set

S(m) := {p : m(p) > 0}

of primes dividing m, and the group Km,1 of principal (fractional) ideals (x) such that x

is positive under all real embeddings of K, and x − 1 ∈ pm(p) for all finite p. We have

Km,1 ⊆ IS(m).

Cm := I
S(m)
K /Km,1

is called the ray class group of K modulo m.

Theorem 6.2.3 (Artin reciprocity). Let L/K be a finite abelian extension. Then there exists

a modulus m such that S := S(m) contains all primes of K that ramify in L and such that

Km,1 ⊆ Ker(−, L/K), and the Artin map factors to an isomorphism

ISK/(Km,1NL/K(ISL))→ Gal(L/K).
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Theorem 6.2.4 (Takagi existence theorem). Let m be a modulus and S = S(m). Let H be a

congruence subgroup modulo m, i.e.

Km,1 ⊆ H ⊆ ISK .

Then there exists a finite abelian extension L/K such that H = Km,1NL/K(ISL).

By Artin reciprocity, we then have an isomorphism

ISK/H
∼= Gal(L/K).

L is called the class field of H.

In particular, the class field K(m) of Km,1 is called the ray class field modulo m, and the

Artin map induces an isomorphism Cm
∼= Gal(K(m)/K).

Definition 46. The Hilbert class field H of K is the ray class field for the modulus m = 1.

It is therefore the maxmimal unramified abelian extension of K. Artin reciprocity gives an

isomorphism

Cl(K) ∼= Gal(H/K)

where Cl(K) is the ideal class group of K.

Theorem 6.2.5 (Principal ideal theorem). Let a be an ideal of K and let H be the Hilbert

class field of K. Then aOH is a principal ideal.

Theorem 6.2.6 (Chebotarev density theorem). Let L/K be a finite Galois extension and

let C be a conjugacy class in Gal(L/K). Then the set of primes p of K such that C =

{(P, L/K) : P|p} has analytic density |C|/[L : K] in the set of all primes of K.

Here, we say a set of primes T has analytic density δ if

lim
s→1+

∑
p∈T N(p)−s

δ log 1
1−s

= 1.

We now introduce another perspective of class field theory - not in terms of ideals, as

above, but rather in terms of ideles. The ideles of K form a group that captures information

about all completions of K simultaneously and provide a more natural, if less familiar, frame-

work in which the results above may be understood. Importantly, we no longer worry about

ramification of primes and can deal with all abelian extensions (even infinite) simultaneously.

Definition 47. The group of ideles of K is the restricted product

IK := {s = (sp)p ∈
∏
p

K×p : sp ∈ Up for almost all p}.

Here, Up is the ring O×Kp
if p is finite and K×p otherwise.
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The ideles of K form a topological group, where a basis of open sets is given by sets of

the form
∏

p Up, where Up ⊆ K×p is open for all p, and Up = O×p for almost all p. Via

K× ↪→ IK , x 7→ (x)p,

K× becomes a discrete subgroup of IK . The quotient

CK := IK/K
×

is called the idele class group of K.

Definition 48. Let L/K be a finite field extension. The norm map is given by

NL/K : IL → IK , (sP)P 7→ (
∏
P|p

NLP/Kp
sP)p.

There is also a natural map from ideles to ideals, sending s ∈ IK to (s) :=
∏

p p
ordpsp .

Theorem 6.2.7 (Artin reciprocity - ideles). Let Kab be the maximal abelian extension of K.

There is a unique continuous homomorphism (the Artin reciprocity map)

[−,K] : IK → Gal(Kab/K), s 7→ [s,K]

such that for any finite abelian extension L/K and idele s ∈ IL whose ideal (s) is not divisible

by primes that ramify in L,

[s,K]|L = ((s), L/K).

In addition, the following properties hold:

(i) [−,K] is surjective and K× ⊆ Ker[−,K].

(ii) If L/K is a finite abelian extension, then

[s, L]|Kab = [NL/Ks,K] ∀s ∈ IL.

(iii) If p is a prime of K and L/K is abelian and unramified at p, and π is an idele of K

with a uniformizer of Op in its p-th component and units elsewhere, then

[π,K]|L = (p, L/K).

Theorem 6.2.8. Let m be a modulus for K, K(m) the ray class field of K modulo m, and

Um := {s ∈ IK : sp ∈ O×p , sp − 1 ∈ pm(p) for all finite p, sp > 0 for real p},

which is an open subgroup of IK . Then the Artin map factors to an isomorphism

[−,K] : IK/K
×Um

∼−→ Gal(K(m)/K).
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6.3 The main theorem and applications

Let E/F be an elliptic curve over the number field F with complex multiplication by OK ,

given by a choice of Weierstrass equation

E : y2 = x3 + px+ q.

For an automorphism σ ∈ Aut(C/Q), we define a second elliptic curve Eσ by the Weierstrass

model

Eσ : y2 = x3 + σ(p)x+ σ(q).

There is a natural group homomorphism, also denoted by σ:

σ : E(C)→ Eσ(C), (x, y) 7→ (σ(x), σ(y)), O 7→ O.

Additionally, find a fractional ideal Λ ⊆ K such that there is an isomorphism

ξ : C/Λ→ E.

In this setting, we can formulate Shimura’s ‘main theorem’ of complex multiplication:

Theorem 6.3.1. Let s be an idele of K with σ|Kab = [s,K]. Then there is a unique isomor-

phism

ξ′ : C/s−1Λ→ Eσ

which makes the diagram below commutative:

K/Λ Etors

K/s−1Λ Eσtors

σs−1

ξ

ξ′

Here, Etors denotes the torsion subgroup of E(C), and Eσtors is defined similarly.

Proof. See [18], theorem 5.4.

Theorem 6.3.2. (i) j(E) generates the Hilbert class field of K.

(ii) j(E) is an algebraic integer.

Proof. Let σ ∈ Aut(C/K) Then

j(E) = j(E)σ ⇔ E ∼= Eσ ⇔ C/a ∼= C/sa
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for the idele s from the main theorem. This is true iff |sp|p = 1 for all finite places p, and so

s ∈ K×
∏
p-∞

O×p
∏
p|∞

K×

⇔ s ∈ C1
K = NH/KCH = Ker[(−, H/K)]

by global class field theory (note that any p|∞ is a complex place), and therefore if and only

if σ is the identity on H; so we must have j(E) ∈ H.

(ii) See [18], 4.6.

As a corollary, we see that any elliptic curve with complex multiplication has everywhere

potential good reduction - its j-invariant has a non-negative valuation at every prime.

Theorem 6.3.3. There exists a Hecke character ψE : IF → C× , i.e. ψE is a continuous

homomorphism with ψE(F×) = 1), of the idele class group with the following properties:

(i) Let x ∈ IF have norm y = NF/Kx ∈ IK . Then

ψE(x)O = y−1
∞ yO ⊆ C.

(ii) Let x ∈ IF be finite (1 at all archimedean places) and p a prime ideal of K. Then

ψE(x)(y)−1
p ∈ O×p and for P ∈ E[p∞] we have

(x, F ab/F )P = ψE(x)(y)−1
p P.

(iii) For an ideal q of F with Uq = {x ∈ Fq : vq(x) = 0}, ψE(Uq) = 1 if and only if E has

good reduction at q.

Proof. Let σ = (x, F ab/F ) ∈ Gal(F ab/F ). Then we have (y,Kab/K) = σ|Kab , since the Artin

reciprocity symbol commutes with inflation and corestriction. Clearly Eσ = E, and so by

Theorem 1 we have an isomorphism

ξ−1 ◦ ξ′ : C/y−1a→ C/a,

which must be a multiplication by some element z ∈ K× such that zO = yO. We define

ψE(x) := y−1
∞ z.

Then ψE is a well-defined group homomorphism: for x1, x2 ∈ IF with ψE(xi) = y−1
∞ zi we have

by uniqueness in Theorem 1 that ξ−1ξ′x1x2 = ξ−1ξ′x1ξ
−1ξ′x2 which represents multiplication by

z1z2. Condition (i) is immediate. We also see that for any prime p in K, ψE(x)(y)−1
p ∈ O×p

holds.

For any number k ∈ N, we have a commutative diagram from Theorem 1:
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p−kap/ap p−ka/a E[pk]

p−ky−1
p ap/y

−1
p ap p−ky−1a/y−1a E[pk]

∼ ξ

y−1
p y−1 σ

∼ z · ξ

which completes the proof of (ii).

(iii) Let q be a prime in F and p a rational prime with q - (p). For any u ∈ Uq, (u, F ab/F )

acts on Tp(E) via multiplication by ψE(u) (by (ii)). However, Tq := (Uq, F
ab/F ) is the inertia

group of q. By the Neron-Ogg-Shafarevich criterion,

ψE(Uq) = 1⇔ Tq acts trivially on Tp(E)⇔ E has good reduction at p.

Let fE be the conductor of ψE : we will consider ψE as a character on the ideal group by

first mapping ideals p with an element π of order one (ordpπ = 1) to the idele (xp)p with

π in the p-coordinate and 1 elsewhere; then mapping into C as earlier. This is well-defined

(independent of the choice of π) as long as ψE is unramified at p, that is, if ψE(Up) = 1. If

ψE is ramified at p, we set ψE(p) = 0.

By definition, f is then the largest ideal such that ψE can be defined on the ray class group

mod f. In particular, E has good reduction at all primes not dividing f.

Lemma 6.3.4 (ψE on ideals). (i) Let a be an ideal of F coprime to f. Then ψE(a)O =

NF/K(a).

(ii) Let q be an prime ideal of F that is coprime to f, and a an ideal of O that is coprime to

q. Then (q, F (E[a])/F ) = ψE(q).

(iii) If q is an ideal of F at which E has good reduction, and (q) = NF/Q(q), then ψE(q) ∈ K
(understood as an automorphism of E) reduces modulo q to the Frobenius morphism φq.

Proof. (i) and (ii) are immediate from Theorem 3 (i),(ii) following the definition of ψE as a

character of the ideal group.

(iii): Let P ∈ Etors have order prime to q and P its reduction mod q. Then for any prime a

as in (ii)

ψE(q)P = (q, F (E[a])/F )P = ϕqP ,

since the reciprocity symbol gives exactly the Frobenius element. Since endomorphisms are

determined by `-torsion for any prime `, the result follows.

Finally, the reduction of elliptic curves with complex multiplication at a prime of good

reduction can be described in more detail. Recall that in this case, the elliptic curve as
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everywhere potential good reduction, so that by enlarging the field of definition F we can

assume that it has everywhere good reduction.

Theorem 6.3.5. An elliptic curve E/F with complex multiplication by OK has ordinary

reduction at a prime P of F if and only if (p) := P ∩Q splits in K.

Proof. See [12], 13.4 (Theorem 12).
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Chapter 7

The L-function

The theory (and notation) of L-functions begins with Dirichlet. While Euler considered what

is now known as the Riemann zeta function
∑∞

n=1
1
ns and proved a product expansion over the

rational primes, Dirichlet extended this to consider functions of the form
∑∞

n=1
an
ns , an ∈ C.

Series of this type may be thought of as generating functions for the sequence (an), and are

often better behaved when the sequence (an) possesses a natural ‘multiplicative’ structure.

For example, if an is a multiplicative sequence - that is, for any coprime numbers m,n we

have amn = aman - we have the Euler product

∞∑
n=1

an
ns

=
∏

p prime

( ∞∑
k=0

apk

pks

)
as a formal identity; the product on the right as the same convergence properties as the sum

on the left. In the case of a strictly multiplicative sequence - that is, for any m,n we have

amn = aman - the Euler product may be written as

∞∑
n=1

an
ns

=
∏

p prime

1

1− app−s
.

Both Dirichlet series and product representations are commonly used to define special func-

tions - we will mostly consider the latter.

Standard questions include convergence, existence of functional equations, locations of

zeros and poles, and existence of interesting special values - for example, values at integers,

or the behavior of the L-function near its singularities. In the case of L-functions associated

to elliptic curves (the definition is given later), interesting results are known - for example,

an analogy of the Riemann hypothesis shows that all its zeros must have real part 1/2 -

but conjectures remain numerous. In particular, the Birch and Swinnerton-Dyer conjecture

attempts to predict the rank of an elliptic curve over a number field (and other arithmetic

information) in terms of an associated L-function at the point s = 1.
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7.1 The ζ-function

An arithmetic scheme is a scheme X where the natural morphism f : X → SpecZ is of

finite type.

Definition 49. Let X be an arithmetic scheme. We define the zeta function

ζX(s) :=
∏
x∈|X|

1

1−N(x)−s
,

where N(x) is the cardinality of the residue field κ(x) at x, and |X| denotes the set of closed

points of X.

That this is well-defined requires some explanation. First note that the residue fields at x

are always finite: this follows from the following lemma.

Lemma 7.1.1. Let A be a field that is finitely generated as a Z-algebra. Then A is finite.

Proof. If A has characteristic p > 0, this follows from Noether normalization: since A is

0-dimensional, it is finitely generated as a module over Fp and therefore finite. If A has

characteristic 0, then it is a flat Z-module and so SpecA → SpecZ is flat and of finite type.

By exercise III.9.1 in Hartshorne’s book ([6]) it is an open map. However, its image is only

the zero ideal {(0)} ⊆ SpecZ and this is not open - a contradiction.

In particular, if x is a closed point, then f(x) = (p) is a maximal ideal of Z - indeed,

κ(x) is a finite field extension of the residue field κ(f(x)) on Spec Z, and is also a finite field.

Additionally, for any n ∈ N there are only finitely many closed points on each fiber Xp with

residue field of cardinality less than n. To see this, note first that the closed points on Xp are

exactly the closed points on the reduced subscheme (Xp)red, and so it is enough to assume

that Xp is reduced. Now the base change f : Xp → SpecFp is of finite type, hence quasicom-

pact, so by passing to a finite cover we may then assume that Xp is affine. Finally, for every

finite field extension Fq of Fp, Xp(Fq) is finite, being the set of zeros in Fq of finitely many

polynomials in over Fp. Since any closed point x with residue field κ(x) of cardinality pe ≤ q
induces an inclusion map κ(x) → Fq, corresponding uniquely to a morphism SpecK → X,

there can be only finitely many such points.

The zeta function may be represented as a Dirichlet series. For n ∈ N, let an denote the

number of ways to write n =
∏k
i=1N(xi)

vi with closed points xi ∈ |X| and vi ∈ N (for n = 1,

we also consider the empty product); then there is a formal equality

ζX(s) =
∏
x∈|X|

1

1−N(x)−s
=
∞∑
n=1

an
ns
.
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Theorem 7.1.2. For any s ∈ C with Re(s) > dimX, the product ζX(s) converges absolutely.

It describes a holomorphic function without zeros.

Proof. See [15] 1.6

Note also that in the case of convergence, we have a decomposition ζX(s) =
∏
p ζXp(s)

over the fibers of f .

Example: Let X = SpecZ. Then the residue field of x = (p) ∈ |X| is Fp, and we see that

ζX(s) =
∏

p prime

1

1− p−s
=

∞∑
n=1

1

ns

is the Riemann zeta function; this converges for Re(s) > dimZ = 1.

Example: Let X = SpecOK , where K is a number field and OK its ring of integers. Then

ζX(s) =
∏

(0)6=p prime

1

1−NK/Q(p)−s
=
∑

(0)6=a

1

NK/Q(a)s

is the Dedekind zeta function of K; here, a traverses the nonzero ideals of OK . This series

converges for Re(s) > dimOK = 1.

The decomposition of ζX over the fibers Xp implies that it is useful to first study the

positive characteristic; that is, where X is taken as a scheme of finite type over some finite

field Fq, so every residue field is an extension of Fq. For each closed point x ∈ |X| let

deg(x) := [κ(x) : Fq]; that is, N(x) = qdeg(x). Then in a half-plane of convergence, we have

log ζX(s) =
∑
x∈|X|

− log(1−N(x)−s) =
∑
x∈|X|

∞∑
k=1

q−sk·deg(x)

k

=
∞∑
n=1

∑
k·deg(x)

1

k
q−ns =

∞∑
n=1

∑
deg(x)|n

q−ns

n
=
∞∑
n=1

#X(Fqn)

n
q−ns.

This motivates the definition

ZX(T ) := exp
( ∞∑
n=1

#X(Fqn)

n
Tn
)
,

so that ZX(q−s) = ζX(s).

Theorem 7.1.3 (Weil conjectures). Let X be a smooth projective variety over Fq, and set

d := dimX.

(i) (Rationality) ZX(T ) is a rational function in T . In fact, there are integral polynomials
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Pk(T ) ∈ Z[T ], k = 0, ..., 2d, where P0(T ) = 1−T , P2d(T ) = 1−qdT and complex factorizations

Pk(T ) =
∏
j(1− αjkT ), αjk ∈ C such that

ZX(T ) =
P1(T ) · P3(T ) · ... · P2n−1(T )

P0(T ) · P2(T ) · ... · P2n(T )
.

(ii) (Functional equation) Let e =
∑2n

k=0(−1)kdegPk (the Euler characteristic of X); then ZX

satisfies an identity of the form

ZX(q−dT−1) = ±qde/2T eZX(T ).

(iii) (Riemann Hypothesis) For each 1 ≤ k ≤ 2d− 1 and every j, |αjk| = qk/2.

(iv) (Betti numbers) If X is the reduction modulo a prime ideal of a variety Y over a number

field K/Q, then degPk is the k-th Betti number of the complex variety Y ×K SpecC with any

embedding K ↪→ C.

Proof. It would be hopeless to attempt to prove this in the scope of this thesis. The case of

elliptic curves is more elementary, and a proof for this is given in [20] V.2.

In the special case of an elliptic curve E over Fq, the Weil conjectures give us a simple

description of its zeta function. We can realize E as the reduction modulo a prime of some

elliptic curve E′ over a number field, and so the first Betti number is dimCH
1(E′(C)) = 2g = 2.

Therefore, there is an algebraic integer α with

ZE(s) =
(1− αT )(1− αT )

(1− T )(1− qT )
.

We find
∞∑
n=1

#E(Fqn)

n
Tn =

∞∑
n=1

1

n
Tn +

∞∑
n=1

qn

n
Tn −

∞∑
n=1

αn

n
Tn −

∞∑
n=1

αn

n
Tn

and therefore #E(Fqn) = qn − 1− αn − αn. This result is due to Hasse.

By the Riemann hypothesis, we have αα = q. Therefore, we may write the above as

ZE(T ) =
1− aT + qT 2

(1− T )(1− qT )
,

where a = α+ α = q − 1−#E(Fq).

Now take E to be an elliptic curve over the number field K. We have the decomposition

ζE(s) =
∏
p

ζEp(s)

where the product is taken over all primes (0) 6= p of OK . For all but finitely many primes,

the fiber Ep actually defines an elliptic curve over OK/p, and we have found a satisfying
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description of its zeta function above. Otherwise, Ep has a single singularity, and the zeta

function turns out to be

ζEp(s) =
1− aq−s

(1− q−s)(1− q1−s)
,

where a=1 in the case of split multiplicative reduction, a = −1 for non-split multiplicative

reduction, and a = 0 for additive reduction.

Definition 50. The local L-function of E at p is given by

Lp(E, s) := (1− q−s)(1− q1−s)ζEp(s) =

1− apq
−s + q1−2s : good reduction

1− apq
−s : bad reduction.

where ap = q − 1−#Ep(OK/p), 1,−1 or 0 is defined as above.

L(E, s) :=
∏
p

Lp(E, s) =
ζE(s)

ζ(s)ζ(s− 1)

is called the L-function of E.

7.2 L-functions and Galois representations

The L-function associated to an elliptic curve over the number field K is known to arise from a

general construction of L-functions associated to Galois representations; here, one introduces

the Tate module T`, on which Gal(K/K) acts.

Definition 51. Let G be a topological group. A representation of G is a continuous

homomorphism

ρ : G→ GL(V ),

where V is a finite-dimensional vector space over a field K. If H is a subgroup of G, the

invariant subspace V H of V is

V H := {v ∈ V : ρ(h)(v) = v ∀h ∈ H}.

Consider now G = Gal(L/K) where L/K is a finite Galois extension of number fields.

Let p be a nonzero prime of K; recall that for any prime P of L lying over p, the inertia

subgroup I(P/p) consists of those automorphisms σ ∈ G that map σ(P) = P and for which

the induced map σ : OK/P→ OK/P is the identity.

We denote here by FrobP the Frobenius element (P, L/K) of L/K at P; this is the unique

automorphism with

FrobP(x) ≡ xq mod P ∀x ∈ OK
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with q := #OK/p. For any two primes P1 and P2 over p, ρ(P1) and ρ(P2) are conjugates;

therefore, they leave V I(P1/p) = V I(P2/p) =: V I(p) fixed and have equal characteristic polyno-

mials on V I(p). In particular, the characteristic polynomial depends only on the coset Frobp

in Gal(L/K).

Definition 52. The Artin L-function associated to ρ is

L(ρ, s) :=
∏
p

1

det
(

1− ρ(Frobp)NK/Q(p)−s
)
|V I(p)

.

Now let E be an elliptic curve over the number field K. For any prime ` 6= p, we have the

torsion groups E[`n] = Ker[`n].

Lemma 7.2.1. There is an isomorphism E[`n] ∼= Z/`Z× Z/`Z.

20. III.6.4(b)

We then define the Tate module

T`(E) := lim←−E[`n] ∼= lim←−Z/`Z× Z/`Z ∼= Z2
` .

The group Gal(K/K) acts on E[`n]: for an K-valued point P ∈ E[`n] and σ ∈ Gal(K/K),

denote also by σ the morphism σ : SpecK → SpecK, and define σ · P := P ◦ σ. This makes

sense because

[`n] ◦ (σ · P ) = [`n] ◦ (P ◦ σ) = ([`n] ◦ P ) ◦ σ = 0.

The action carries over to an action of Gal(K/K) on T`(E). Define the Q`-vector space

V := T`(E)⊗Q` Q`; then we have a group representation

ρ : Gal(K/K)→ GL(V ) ∼= GL2(Q`).

Definition 53. The L-function we associate to this representation is

L(ρ, s) =
∏
p

1

det
(

1− ρ(Frobp)NK/Q(p)−s
)
|V I(p)

.

This definition is inspired by the preceding theory of Artin L-functions. Since the char-

acteristic polynomial of each Frobp has rational coefficients ([20] V.2.3), we may interpret

L(ρ, s) as a complex-valued function (up to a question of convergence). Remarkably, this is

independent of `; indeed,

Theorem 7.2.2. We have L(ρ, s) = L(E, s); that is, the L-function associated to the Galois

representation ρ is the same as the L-function associated to the arithmetic scheme E.
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Proof. By [20] V.2.3, if E has good reduction at p,

det ρ(Frobp) = q = #OK/p and tr ρ(Frobp) = q + 1−#Ẽ(Fq).

The factor for p then becomes (1− (q + 1−#Ẽ(Fq))q−s + q · q1−2s)−1.

If E has additive reduction, V I(p) = 0, and so the corresponding factor is 1. In the case

of multiplicative reduction, that is, E has a node singularity, V I(p) is one-dimensional; if the

reduction is split - that is, if the two tangent lines are defined over Fq - the Frobenius acts

as the identity and we have a factor 1 − q−s; if the reduction is non-split, the tangents are

defined only over a quadratic extension of Fq and the corresponding factor becomes 1 + q−s.

In particular, we see that the factors corresponding to every p in both L-functions are

equal.

7.3 The L-function and complex multiplication

Generally, the L-function of an elliptic curve defined over OK is equal to the L-function of

an appropriate 2-dimensional representation of Gal(K/K). In the case of complex multipli-

cation, it can actually be factored into L-functions of one-dimensional representations. The

properties of these so-called Hecke L-series are better understood; in turn, this gives a better

understanding of elliptic curves with complex multiplication as opposed to without.

Recall that a Hecke character ψ of a number field F/Q is a continuous homomorphism

ψ : IF → C× from the ideles of F with ψ(F×) = 1. If p is an ideal of F at which ψ

is not ramified, we defined ψ(p) := ψ(x) for an idele x = (xp)p with xq = 1, q 6= p and

xp a uniformizer at p; this is independent of the choice of uniformizer. This is extended

multiplicatively to a character on ideals by defining ψ(p) = 0 if ψ ramifies at p. The Hecke

L-series associated to ψ is

L(ψ, s) =
∏
p

1

(1− ψ(p)NK/Q(p)−s)
;

that is, the Artin L-function associated to the one-dimensional representation ψ.

We give a slightly different definition of conductor here (as opposed to chapter 6) to keep

track of ramification data at infinite places:

Definition 54. The conductor of the Hecke character ψ is the unique ideal f of F and set

of real valuations Ω such that ψ is a primitive character of the ray class group modulo fΩ, i.e.

ψ((x)) = 1⇔ x ∈ 1 + f, v(x) > 0 ∀v ∈ Ω.
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If ψ has conductor fΩ, we have the representation as a Dirichlet series

L(ψ, s) =
∏
p

1

(1− ψ(p)N(p)−s)
=
∑
a

ψ(a)

N(a)s
,

where the sum is taken over all integral ideals a coprime to f; indeed, these are exactly the

ideals for which ψ(a) is nonzero.

Theorem 7.3.1. The L-function L(ψ, s) associated to a Hecke character ψ has an analytic

continuation on all of C and satisfies a functional equation.

Proof. This result is due to Hecke, and an elegant adelic proof that better motivates the

‘gamma factors’ is given in Tate’s doctoral thesis [21]. The functional equation is found by

adding the appropriate Euler factors at the Archimedian places - these involve the usual

Gamma function Γ on C. Assuming ψ is primitive with conductor fΩ,

Λ(ψ, s) = εΛ(ψ−1, 1− s),

where we set Λ(ψ, s) to be

L(ψ, s) · (NF/Q(f)|∆F |)s/2
( ∏
v complex

2Γ(s)

(2π)s

)( ∏
v∈Ω real

Γ((s+ 1)/2)

π(s+1)/2

)( ∏
v/∈Ω real

Γ(s/2)

πs/2

)
,

∆F being the discriminant of F/Q, and the root number ε is a product
∏

p εp satisfying |ε| = 1:

εp =



1 : p <∞ and ψ and K are nonramified at p

1 : p = v is infinite and v /∈ Ω

i =
√
−1 : p = v ∈ Ω is real

ψ(Dp) : ψ is nonramified and F ramified at p

1
NF/Qf

∑
a∈OFp/fp

ψp(a)e2πi·tr(a/d) : ψ is ramified at p

where Dp is the different ideal of Fp/Qp and (d) = Dpfp, and where the trace is understood

as a class Qp/Zp ↪→ Q/Z, so e2πi·tr(a/d) is well-defined. The last case above is a Gauss sum

over the local character ψp of ψE at p.

Theorem 7.3.2. Let E be an elliptic curve defined over F with complex multiplication by

K ⊆ F . Let ψE be the Hecke character associated to E. Then

L(E, s) = L(ψE , s) · L(ψE , s).

Proof. We will show that the factors at each prime of F of both functions are equal. Recall

that E has potential good reduction everywhere, since its j-invariant is integral. Therefore,
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it cannot have multiplicative reduction at any prime.

For any prime p at which E has good reduction, the Euler factor of L(E, s) is 1− apq−s +

q1−2s. By lemma 4.4.3,

ψE(p)ψE(p) = NK/Q(ψE(p)) = NK/QNF/K(p) = q.

Also,

#Ẽ(OK/p) = deg(1− ϕp) = deg(1− ψE(p)),

since ψE(p) reduces to the Frobenius morphism on OK/p. Finally, it follows that

ap = q + 1−#Ẽ(OK/p) = q + 1− (1− ψE(p))(1− ψE(p)) = ψE(p) + ψE(p).

Therefore,

1− ap + q1−2s = (1− ψE(p)qs)(1− ψE(p)qs).

If E has bad (and therefore, additive) reduction at p, the Euler factor of L(E, s) is 1.

Also, ψE must be ramified at p, so the Euler factors of L(ψE , s) and L(ψE , s) at p are both

1.

Combining this with the functional equation for Hecke L-series,

Corollary 7.3.3. Let E/F be an elliptic curve with complex multiplication by K ⊆ F . Then

L(E, s) has an analytic continuation to all of C, and satisfies the functional equation

Λ(E, s) = εΛ(E, 2− s),

where

Λ(E, s) = (NF/Q(f) · |∆F |)s(2π)−s[F :Q]Γ(s)[F :Q]L(E, s)

and f is the conductor of ψE; and ε ∈ {±1}.

Proof. ψE and ψE are Hecke characters with the same conductor f, where F has no real

embeddings and [F : Q]/2 complex embeddings. Consider also that because, for ideals a

coprime to f,

ψE(a)ψE(a) = NK/QψE(a) = NF/Q(a),

it follows that ψE = ψ−1
E ·NF/Q; so for Re(s) appropriately large,

L(ψE , s) =
∑
a

ψE(a)

NF/Q(a)s
=
∑
a

ψ−1
E (a)

NF/Q(a)s−1
= L(ψ−1

E , s− 1).

Therefore,

Λ(E, s) = (NF/Q(f) · |∆F |)s(2π)−s[F :Q]Γ(s)[F :Q]L(ψE , s)L(ψ−1
E , s− 1)
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= Λ(ψE , s)Λ(ψ−1
E , s− 1)(NF/Q(f) · |∆F |)1/2(

Γ(s)

8πΓ(s− 1)
)
1
2

[F :Q]

= ε(ψE)ε(ψ−1
E )(−1)[F :Q]/2︸ ︷︷ ︸

=:ε

Λ(ψ−1
E , 1− s)Λ(ψE , 2− s)(NF/Q(f) · |∆F |)1/2(

Γ(2− s)
8πΓ(1− s)

)[F :Q]/2

= εL(ψE , 2− s)L(ψ−1
E , 1− s)(NF/Q(f) · |∆F |)2−s(2π)(2−s)[F :Q]Γ(2− s)[F :Q]

= εΛ(E, 2− s),

where ε = (−1)[F :Q]/2
∏

p(εp(ψ)εp(ψ
−1)) is an element of norm 1 and may be seen to be

invariant under complex conjugation; therefore ε ∈ {±1} as claimed.
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Chapter 8

p-adic interpolation

Let p be a rational prime. We may consider a sequence of p-adic numbers (fn)n∈Z as a function

f : Z→ Qp, and ask whether it can be extended to a continuous p-adic function f ′ : Zp → Qp;

this is called p-adic interpolation. It is not difficult to give conditions for the existence and

uniqueness of such a function:

Theorem 8.0.1. Let f : Z→ Qp be a function. f extends to a continuous function

f ′ : Zp → Qp

if and only if f is bounded and uniformly continuous; that is,

∀ε > 0 ∃δ > 0 ∀x, y ∈ Z : |x− y|p < δ ⇒ |f(x)− f(y)|p < ε,

or equivalently,

∀a ∈ N ∃b ∈ N ∀x, y ∈ Z : x ≡ y (mod pb)⇒ f(x) ≡ f(y) (mod pa).

In this case, the extension f ′ is unique.

Proof. The uniqueness follows immediately from the fact that Z is a dense subset of Zp.
It is clear that the conditions are necessary: if the continuous function f ′ is given, then its

restriction to the compact subset Z must be bounded and uniformly continuous. On the other

hand, if f is bounded and uniformly continuous, we can form the function

f ′ : Zp → Qp, x = lim
k→∞

xk 7→ lim
k→∞

a(xk),

where (xk) is a Cauchy sequence in Z with limit x ∈ Zp - the definition of f ′ is independent

of which xk are used, and this gives a continuous function which restricts to f .

In fact, it is enough to specify values fn for n ∈ N, as N by itself is dense in Z and so the

argument still holds.
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Uniform p-adic continuity may be extremely difficult to check. In practice, p-adic interpo-

lation is more interesting in the other direction; it is often feasible to construct a continuous

interpolating p-adic function by other, algebraic means and use its existence to prove the

p-adic uniform continuity and boundedness of the given function f .

8.1 p-adic measures

Let C(Zp,Qp) be the Qp-Banach space of continuous functions from Zp to Qp together with

the supremum norm.

A p-adic measure µ on Zp is a continuous linear map

µ : C(Zp,Qp)→ Qp.

Instead of µ(f) we will also write
∫
Zp f(x)dµ(x), and call µ(f) the integral of f with respect

to µ. This notation may be motivated by the following analogy to Riemann sums:

µ(f) = lim
n→∞

pn−1∑
k=0

f(k)µ(Ik+pnZp),

where Ik+pnZp = 1 on k + pnZp and 0 otherwise is the indicator function.

Since any open ball U ⊆ Zp is also closed, the indicator function IU is continuous; thus

we may define the integrals ∫
U
f(x)dµ(x) := µ(f · IU ).

We will denote the space of p-adic measures by M(Zp,Qp). M(Zp,Qp) is a normed space with

respect to the operator norm

‖µ‖ := sup{|µ(f)|p
‖f‖

: f 6= 0}.

The following important result of p-adic analysis is very well known:

Theorem 8.1.1 (Mahler expansion). Any continuous function f ∈ C(Zp,Qp) is represented

by an everywhere convergent Newton series

f(x) =

∞∑
n=0

fn

(
x

n

)
,

where
(
x
n

)
= x(x−1)...(x−n+1)

n! . The coefficients are unique and given by the formula

fn =

n∑
k=0

f(k)

(
n

k

)
(−1)n−k ∈ Qp.

Additionally, (fn)n is a null sequence (fn → 0), and ‖f‖∞ = sup |fn|.
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On the other hand, it is not difficult to see that, given any null sequence of coefficients fn,

the sum

f(x) :=
∞∑
n=0

fn

(
x

n

)
converges on Zp and defines a continuous function - this is because the functions

(
x
n

)
map Z

to Z and by density and continuity Zp to Zp, so have norm at most 1.

Definition 55. The Mahler transform (or Amice transform) of a measure µ is given by

the formal power series

M(µ) :=

∞∑
n=0

(∫
Zp

(
x

n

)
dµ(x)

)
Tn ∈ Qp[|T |].

Let Qp[|T |]b be the subspace of Qp[|T |] of formal power series with bounded coefficients,

together with the norm

‖
∞∑
n=0

anT
n‖∞ := sup an.

Theorem 8.1.2. M : M(Zp,Qp) → Qp[|T |]b is an isometric isomorphism of normed Qp-

vector spaces.

Proof. It is clear that M is a linear map.

Surjectivity: let
∑∞

n=0 anT
n ∈ Qp[|T |]b. Define the measure

µ(f) :=

∞∑
n=0

anfn,

where f =
∑∞

n=0 fn
(
x
n

)
is the Mahler series expansion of f . (Recall that (fn), and so also

(anfn) tends to zero.) It follows that

M(µ) =

∞∑
n=0

µ(

(
x

n

)
)Tn =

∞∑
n=0

( ∞∑
k=0

δnkak

)
Tn =

∞∑
n=0

anT
n,

noting that the k-th coefficient of the Mahler series for
(
x
n

)
is δnk.

For isometry (and in particular, injectivity), note that ‖
(
x
n

)
‖ = 1, because the function(

x
n

)
maps Z to Z and by continuity Zp to Zp. Given any measure µ ∈ M(Zp,Qp) with

M(µ) =
∑∞

n=0 anT
n, we then have

|an|p = |µ(

(
x

n

)
)|p ≤ ‖µ‖‖

(
x

n

)
‖ = ‖µ‖.

This implies ‖M(µ)‖∞ ≤ ‖µ‖.
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On the other hand, for any f =
∑∞

n=0 fn
(
x
n

)
∈ C(Zp,Qp),

‖M(µ)‖∞‖f‖∞ = (sup
n∈N
|
∫
Zp

(
x

n

)
dµ(x)|p) · (sup

n∈N
|fn|p)

≥ sup
n∈N
|
∫
Zp
fn

(
x

n

)
dµ(x)|p

≥ |
∞∑
n=0

∫
Zp
fn

(
x

n

)
dµ(x)|p = |

∞∑
n=0

µ(fn

(
x

n

)
)|p = |µ(f)|p.

It follows that

‖M(µ)‖∞ ≥ sup{|µ(f)|p
‖f‖∞

: f 6= 0} = ‖µ‖.

8.2 The p-adic zeta function

The p-adic zeta function plays an important role in the theory of cyclotomic fields (for exam-

ple, its study leads to a proof of Fermat’s last theorem for regular primes). In this section, we

will give an analytic construction of it due to Kubota and Leopoldt. For us, this will be useful

to motivate p-adic interpolation of L-functions attached to elliptic curves and to demonstrate

the pattern of construction we will follow there as well.

Define, via the Maclaurin series

z

ez − 1
=
∞∑
n=0

Bn
n!
zn,

the Bernoulli numbers Bn. These satisfy B0 = 1 and the recurrence equation

Bn = δ0n −
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
,

hence are rational.

We will p-adically interpolate the fractions (−1)n+1Bn
n , n ≥ 1. The resulting function is

called the p-adic zeta function, because it takes the same special values as the Riemann

zeta function: for any integer k ≥ 0,

ζ(−k) = (−1)k
Bk+1

k + 1
.

First, for x ∈ Z×p , we have x−1
(
x
n

)
∈ Zp for all n ∈ N, so it follows that

x

(1 + T )x − 1
− 1

T
= (1 +

∞∑
n=2

x−1

(
x

n

)
Tn−1)−1 · (

∞∑
n=2

x−1

(
x

n

)
Tn−2) ∈ Zp[|T |] ⊆ Qp[|T |]b.
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Here, (1 + T )x :=
∑∞

n=0

(
x
n

)
Tn.

By our previous results, we find a measure µx ∈M(Zp,Qp) that satisfies

M(µx) =
1

T
− x

(1 + T )x − 1
.

Theorem 8.2.1. The moments of µx are given by (−1)n(1− xn+1)ζ(−n); i.e.∫
Zp
yndµx(y) = (−1)n(1− xn+1)ζ(−n).

Proof. Consider for x ∈ N the function

fa(z) :=
1

ez − 1
− x

exz − 1
.

A Taylor series expansion gives

fx(z) =
∞∑
n=0

Bn+1

(n+ 1)!
(1− xn+1)zn,

so
dn

dzn
fx(z)|z=0 =

Bn+1

n+ 1
(1− xn+1) = (−1)n(1− xn+1)ζ(−n).

Being an equality of polynomials in the variable x, and because N ⊆ Zp is dense, this is

generally true for x ∈ Zp.

The lemma below will give us, with D = (1 + T ) d
dT ,∫

Zp
yndµx(y) = Dn(

1

T
− x

(1 + T )x − 1
)|T=0

=
dn

dzn
fx(z)|z=0 = (−1)n(1− xn+1)ζ(−n),

by formally substituting z = log(1 + T ) and D = ez(dTdz )−1 d
dz = d

dz .

Lemma 8.2.2. For any p-adic measure µ and integer k ≥ 0,∫
Zp
xkdµ = DkM(µ)(T )|T=0,

with the differential operator D := (1 + T ) d
dT .

Proof. Define λ : C(Zp,Qp) → Qp via λ(f) := µ(x · f(x)). Then λ is continuous (indeed, we

have ‖λ‖ ≤ ‖µ‖) and we calculate:

M(λ) =

∞∑
n=0

(∫
Zp
x

(
x

n

)
dµ(x)

)
Tn =

∞∑
n=0

(∫
Zp

(n+ 1)

(
x

n+ 1

)
+ n

(
x

n

)
dµ(x)

)
Tn
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= (1 + T )
∞∑
n=0

d

dT

(∫
Zp

(
x

n

)
dµ(x)

)
Tn = DM(µ).

The result follows from induction on k: assuming

DkM(µ)(T )|T=0 =

∫
Zp
dM−1(DkM(µ))(x) =

∫
Zp
xkdµ(x)

(which is clear for k = 0) for arbitrary µ, it follows from the above that∫
Zp
xk+1dµ(x) =

∫
Zp
xkdλ(x) = DkM(λ)(T )|T=0 = Dk+1M(µ)(T )|T=0.

The existence of such a measure implies that certain special values of Riemann’s zeta

function are p-adically close. This result is due to Kubota and Leopoldt and extends a result

of Kummer.

Theorem 8.2.3 (Kummer’s congruences). Let a ≥ 0 be an integer and

h ≡ k 6≡ 0(modpa(p− 1))

be even natural numbers. Then

(1− ph−1)
Bh
h
≡ (1− pk−1)

Bk
k

(modpa+1).

8.3 Multivariate interpolation

It is worth mentioning that the correspondence between p-adic measures and power series

extends to the case of several variables. This relies on a multivariate Mahler’s theorem:

Theorem 8.3.1. Let W be a complete and separated Zp-algebra with respect to the p-adic

topology, and let r ≥ 1 be an integer. Any continuous function f ∈ C(Zrp,W ) is represented

by an everywhere convergent Newton series

f(x1, ..., xr) =
∞∑
k1=0

...
∞∑
kr=0

ak

(
x1

k1

)
...

(
xr
kr

)
.

The coefficients ak ∈W are unique and converge to zero as |k| =
∑r

i=1 ki →∞.

On the other hand, it is not difficult to see that, given a sequence of coefficients ak ∈ W
that tend to zero as |k| → ∞, the sum

f(x) :=

∞∑
k1=1

...

∞∑
kr=1

ak

(
x1

k1

)
...

(
xr
kr

)

70



is well-defined and gives a continuous function f : Zrp →W .

This leads us as before to define the Mahler transform of a measure µ : C(Zrp,W )→W :

M(µ) :=

∞∑
k1=0

...

∞∑
kr=0

(∫
Zrp

(
x1

k1

)
...

(
xr
kr

)
dx1...dxr

)
T k11 ...T krr ∈W [|T1, ..., Tr|].

The Mahler transform is bijective; its inverse is given as follows. If
∑

k ak ∈ W [|T1, ..., Tr|] is

a given power series, the corresponding measure µ with M(µ) =
∑
ak is given by

f(x1, ..., xr) =
∑
k

ak

(
x1

k1

)
...

(
xr
kr

)
=⇒ µ(f) =

∑
k

akfk.

Of course, µ may also be described by its moments - that is, the value it takes on the monomial

xk = xk11 ...x
kr
r . This is given by∫

Zrp
xkdµ = [(1 + x1)

∂

∂x1
]k1 ...[(1 + xr)

∂

∂xr
]krf |x=0,

after an calculation analogous to 8.2.3.
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Chapter 9

Damerell’s theorem

Before attempting to construct a p-adic analogue of the L-function attached to an elliptic

curve, it is important to meaningfully interpret its values as p-adic numbers. As a matter of

fact, the values of L(z;E) at integers are regularly behaved, and up to a power of π and of

the fundamental period of E, even algebraic. This result is due to Damerell [3] and its proof

is much more involved than the analogous result for the Riemann ζ-function. Our proof is

based on Weil’s book [22].

9.1 The Hecke L-series and Eisenstein sums

We consider again the L-function L(ψE , s) of the Hecke character ψE associated to some

elliptic curve E, defined over a number field F , with complex multiplication by the quadratic

imaginary field K.

Lemma 9.1.1. There exists a Hecke character ϕ : IK → C× of K satisfying

ψE = ϕ ◦NF/K .

Proof. This is essentially by construction: if NF/K(x) = y, then ψE(x) = y−1
∞ z depends only

on y. Therefore, for general y ∈ IK ⊆ IF , we can set ϕ(y) := ψ(y).

It follows that

L(ψE , s) =
∏
p

1

1− ψE(p)NF/Q(p)−s
=
∏
p

1

1− ϕ(NF/Kp)NK/Q(NF/Kp)−s
.

Proposition 9.1.2. Assume that F/K is abelian. Then

L(ψ, s) =
∏

χ∈Gal(F/K)∨

L(χϕ, s).
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Proof. This requires some explanation. First, if f is the conductor of F/K, recall that Artin

reciprocity gives an isomorphism

Gal(F/K) ∼= I fK/KfNF/KI
f
F ,

and this allows us to view characters χ of the Galois group as Hecke characters of K; a

character

χ : Gal(L/K)→ C×

corresponds to the Hecke character

ψχ : IK → C×, s 7→ χ((s, L/K)).

As a character of ideals, this means ψχ(p) = χ(Frobp).

Now we consider the L-factor at primes P of F , lying over the prime p of K. We need

only consider primes p at which ϕ is unramified (and therefore ψ at P), because the L-factors

will be trivial otherwise. Let f = f(P/p) be the relative degree; that is, f = [FP : Kp], and

let r = [L : K]/f be the number of primes lying above p. Then∏
P|p

1

1− ψ(P)NF/Q(P)−s
=
∏
P|p

1

1− ϕ(p)fNK/Q(p)−sf
=

1

(1− ϕ(p)fNK/Q(p)−sf )r

=
∏
ζf=1

1

(1− ζϕ(p)NK/Q(p)−s)r

=
∏

χ∈Gal(FP/Kp)∨

1

(1− ϕχ(p)ϕ(pNK/Q(p)−s)r
,

for any P lying over p, since the Galois group Gal(FP/Kp) is cyclic of order f . There are

exactly r ways to lift any character χ to a character of the Galois group Gal(F/K), and so

... =
∏

χ∈Gal(F/K)∨

1

1− ϕχ(p)ϕ(p)NK/Q(p)−s
.

Combining all the factors, we see

L(ψ, s) =
∏

χ∈Gal(F/K)∨

L(ϕχϕ, s) =:
∏

χ∈Gal(F/K)∨

L(χϕ, s).

In this way, at least in the case that E is defined over an abelian extension of K, we are

reduced to considering Hecke characters defined over K itself.
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Now let L(ϕ, s) be a Hecke L-function for some Hecke character ϕ of K. Then L(ϕ, s) is

a linear combination

L(ϕ, s) =
∑
a6=0

ϕ(a)

NK/Q(a)s
=

1

|O×K |

h∑
j=1

ϕ(aj)

NK/Q(aj)

∑
α∈OK

ϕ((α))

NK/Q(α)s

=

h∑
j=1

ϕ(aj)

NK/Q(aj)

∑
xi∈O×K/1+f

∑
α∈1+f

αa

αb

where h is the class number of K, a1,...,ah represent the ideal class group, f is the conductor

of ϕ and a, b are integers that depend on ϕ.

Given any integer k ≥ 3 where the first L-function L(E, s) converges, the above motivates

that arithmetic information (algebraicity, p-adic properties, and so on) about L(E, k) can be

derived from considering the Eisenstein sums

Gk,r(OK) :=
∑
α 6=0

αr

αk+r
, r ≥ 0.

These sums have also attracted interest on their own. Surprisingly, up to an easily controlled

factor, these are algebraic numbers - this is a result due to Damerell.

9.2 Eisenstein functions

Definition 56 (Eisenstein trigonometric functions). For z ∈ C and k ≥ 1 define the series

ek(z) := lim
M→∞

m∑
m=−M

(z +m)−k.

If k ≥ 2, this series converges absolutely and uniformly on compact sets, and therefore

defines a periodic, meromorphic function on C with poles in Z which may be differentiated

by terms. e1(z) is also periodic, meromorphic and differentiable by terms (although the series

does not converge uniformly); indeed, e1 is the well-known partial fractions decomposition of

the cotangent

e1(z) = π cot(πz),

and the function obtained by termwise differentiation is its actual derivative

−e2(z) = − π2

sin2 πz
.

For this reason, the functions ek will be referred to as trigonometric functions.

For the rest of this section, we will assume that ω1 and ω2 are complex variables whose

domain is restricted in such a way that ω1 and ω2 define a lattice, and that ω2
ω1

= τ has positive

imaginary part.
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Definition 57 (Eisenstein elliptic functions). For z ∈ C and k ≥ 1 define

Ek(z;ω1, ω2) := lim
M→∞

M∑
m=−M

(
lim
N→∞

N∑
n=−N

(z +mω1 + nω2)−k
)
.

If k ≥ 3, this series above converges absolutely and uniformly on compact sets, and is the

same as the Ek which was defined in Chapter 2. We previously found the Laurent series

Ek(z;ω1, ω2) =
1

zk

(
1 + (−1)k

∞∑
j=1

(
2j − 1

k − 1

)
G2j(ω1, ω2)z2j

)
;

here G2j is the Eisenstein series

G2j(ω1, ω2) =
∑

(m,n)6=(0,0)

(mω1 + nω2)−2j , j ≥ 2,

and the value of G2 is unimportant, because
(

1
k−1

)
is zero for k ≥ 3. With some additional

care for the limit processes involved, one can also derive the analogous identities

E1(z;ω1, ω2) =
1

z

(
1−

∞∑
j=1

G2j(ω1, ω2)z2j
)

and

E2(z;ω1, ω2) =
1

z2

(
1 +

∞∑
j=1

(2j − 1)G2j(ω1, ω2)z2j
)
,

if

G2(ω1, ω2) := lim
M→∞

M∑
m=−M

(
lim
N→∞

N∑
n=−N

(m,n)6=(0,0)

(mω1 + nω2)−2
)
.

In particular, we have

E2(z) = ℘(z) +G2.

Most importantly, Ek is doubly periodic for k ≥ 2. This is not true for E1. Since we can

write

E1(z) =
1

ω1

(
e1(

z

ω1
) +

∞∑
n=1

(
e1(

x+ nω2

ω1
) + e1(

x− nω2

ω1
)
))
,

it is clear that E1, with e1, is periodic with respect to ω1. However, we have

E1(z + ω2)− E1(z) = lim
N→∞

1

u

(
e1(

z + (N + 1)ω2

ω1
)− e1(

z −Nω2

ω1
)
)

=
π

u
lim
N→∞

(
cot

πz + (N + 1)πω2

ω1
+ cot

πz −Nπω2

ω1

)
=

2πi

u
.

To work around this, we define E∗1(z) := E1(z) + πu
Auz −

πz
A , where

A =
1

2i
(vu− uv)
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is the area of the complex parallelogram with sides u and v; it follows that E∗1(z) is doubly pe-

riodic and real-analytic, although no longer holomorphic. We note that this function appears

in Damerell’s paper [3] under the name h(z).

Lemma 9.2.1. The following trigonometric formula holds for x, y ∈ C:

e2(x)e2(y)− (e2(x) + e2(y))e2(x+ y) = 2e3(x+ y)(e1(x) + e1(y)).

Proof. The following identity of rational functions is easily verified:

1

p2q2
=

1

(p+ q)2

( 1

p2
+

1

q2

)
+

2

(p+ q)3

(1

p
+

1

q

)
.

After substituting p = x+m and q = y + n−m and taking the appropriate sum,

lim
M→∞

M∑
m=−M

(
(x+m)−2(y+n−m)−2− (x+m)−2(x+y+n)−2− (y+n−m)−2(x+y+n)−2

)

=
2

(x+ y + n)3

(
e1(x) + e1(y + n)

)
=

2

(x+ y + n)3

(
e1(x) + e1(y)

)
.

Both sides are absolutely convergent with respect to n, and summing over both for n = −∞
to ∞ gives

e2(x)e2(y)− e2(x)e2(x+ y)− e2(y)e2(x+ y) = 2e3(x+ y)
(
e1(x) + e1(y)

)
as claimed.

Theorem 9.2.2 (Eisenstein differential equation). The following differential equation holds:

2πi

u

∂E1

∂ω2
= E3 − E1E2.

Proof. Summing over the identity in the previous lemma gives

u4
(
E2(z)E2(w)− (E2(z) + E2(w))E2(z + w)

)
= 2u4E3(z + w)

(
E1(z) + E1(w)

)
− 2

∞∑
m=−∞

2πim

u
e3(

z + w +mω2

ω1
),

and because of absolute convergence we may substitute

∂

∂ω2

∞∑
m=−∞

e2(
z + w +mω2

ω1
) = −2

∞∑
m=−∞

me3(
z + w +mω2

ω1
).

We then have

E2(z)E2(w)−
(
E2(z) +E2(w)

)
E2(z + w) = 2E3(z + w)

(
E1(z) +E1(w)

)
+

2πi

u

∂E2

∂ω2
(z + w).
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For a fixed w /∈ Λ, we use the Maclaurin series

Ek(z + w) =
∞∑
j=0

(
j + k − 1

j

)
(−1)jEj+k(w)zj

(which is derived from E′k(w) = −kEk+1(w) for all k) to expand both sides of the equation

as power series in z; the left-hand side is

(
E2(w)z−2 + E2(w)G2 + ...

)
−
(
z−2 +G2 + E2(w) + 3G4z

2 + ...
)(
E2(w)− 2E3(w)z + 3E4(w)z2

)
= 2E3(w)z−1 − (E2(w)2 + 3E4(w))z0 + ...

and the right-hand side:

2
(
E3(w)− 3E4(w)z + ...

)(
z−1 + E1(w)−G2z + ...

)
+

2πi

u

(∂E2

∂ω2
(w)− 2

∂E3

∂ω2
(w)z + ...

)
= 2E3(w)z−1 + (2E3(w)E1(w)− 6E4(w) +

2πi

u

∂E2

∂ω2
(w))z0 + ...

Equating constant terms shows that

2πi

u

∂E2

∂ω2
(w) = 3E4(w)− 2E1(w)E3(w)− E2(w)2.

Integrating both sides of the above with respect to w, we see that

2πi

u

∂E1

∂ω2
(w) = E3(w)− E1(w)E2(w) + C

for some constant C; since both 2πi
u
∂E1
∂ω2

(w) and E3(w)−E1(w)E2(w) are odd functions of w,

we have C = 0.

This may be translated into a differential equation relating Eisenstein series:

Corollary 9.2.3. For any k ≥ 1,

2πi

u

∂G2k(ω1, ω2)

∂ω2
= k(2k + 3)G2k+2(ω1, ω2)− k

k∑
j=1

G2j(ω1, ω2)G2k−2j+2(ω1, ω2).

9.3 Algebraicity results

Lemma 9.3.1. Let Λ be a lattice generated by ω1 and ω2, and Λ′ a linear transformation of

Λ, generated by aω1 + bω2 and cω1 + dω1 with a, b, c, d ∈ Z. Then for any k ≥ 2,

G2k(Λ
′) ∈ Q

(
G4(Λ), G6(Λ)

)
.
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Proof. Let N := |ad− bc|; then Λ′ has index N in Λ, and NΛ has index N in Λ′. Letting S

be a set of representatives for Λ′/NΛ containing 0, we have

G2k(Λ
′) =

∑
s∈S

∑
w∈Λ

(Nw + s)−2k = N−2kG2k(Λ) +N−2k
∑

s∈S\{0}

E2k(
s

N
,Λ).

Let R be a set of representatives for Λ/NΛ containing S; we then have for any j ≥ 2 that∑
r∈R

Ej(
z + r

N
,Λ) =

∑
r∈R

∑
ω∈Λ

(
z + r +Nω

N
)−j = N j

∑
ω∈Λ

(z + r)−j = N jEj(z; Λ).

With ℘(z) = E2(z)−G2, since the number of terms in the sum is N2, it also holds that∑
r∈R

℘(
z + r

N
) = N2℘(z).

Since any of the powers En2k of E2k can be expressed as a polynomial in Ej , j ≥ 3 and in ℘,

we see that
∑

r∈RE2k(
z+r
N ,Λ)n is a polynomial in Ej , j ≥ 3 and ℘ as well. Using Newton’s

algorithm, this also holds for the symmetric polynomials in Ej(
z+r
N ,Λ); it follows that the

functions Ej(
z+r
N ) and ℘( z+rN ) themselves are algebraic over Q(℘(z,Λ), Ej(z,Λ), j ≥ 3); since

we have ∑
r 6=0

℘(
r

N
) =

∑
r 6=0

E2(
r

N
)−

∑
r 6=0

G2 = (N2 − 1)G2 − (N2 − 1)G2 = 0,

one derives that E2k(
s
N ,Λ) is algebraic over Q(Gk, k ≥ 3) for every s ∈ S ⊆ R, and by the

recurrence formula for the Eisenstein series also algebraic over Q(G4, G6).

Assume in the following that Λ is a lattice such that the elliptic curve C/Λ has complex

multiplication by OK for some imaginary quadratic number field K.

Lemma 9.3.2. If G6(Λ) 6= 0, then G4(Λ)3G6(Λ)−2 is algebraic over Q.

Proof. Let α ∈ OK , α /∈ Z. Since Λ has complex multiplication by OK , it follows that

αΛ ⊆ Λ; thus there exists an integral matrix such that(
αω1 αω2

)
=
(
ω1 ω2

)(a b

c d

)
,

ω1 and ω2 being generators of Λ as before.

We have G4(αΛ) = α−4G4(Λ) and G6(αΛ) = α−6G6(Λ). We also have that

f4 := G4(aω1 + cω2, bω1 + dω2)− α−4G4(ω1, ω2) 6≡ 0

as a function of ω1 and ω2 - since α is not an endomorphism of every linear transformation

of Λ. Since the previous lemma shows that f4 is always algebraic over Q(G4(Λ), G6(Λ)), we

can find a polynomial F 6= 0 with

F (f4, G4(ω1, ω2), G6(ω1, ω2)) ≡ 0;
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without loss of generality assuming that F is not a multiple of f4, otherwise writing F =

fm4 ·G and using continuity to show that G(f4, G4(ω1, ω2), G6(ω1, ω2)) ≡ 0. Since our lattice Λ

satisfies f4(Λ) = 0, it follows that F (0, G4, G6) = 0 as a non-trivial relation. The homogeneity

of G4 and G6 in ω1 and ω2 of respective degrees 4 and 6 imply, after distributing out of F ,

out, that G3
4G
−2
6 is algebraic over Q.

Let {1, τ} be a basis for OK over Z, where Im[τ ] > 0.

Theorem 9.3.3.

∆(τ) := (60G4(1, τ))3 − 27(140G6(1, τ))2 = (2πq)12
∞∏
n=1

(1− qn)24

where q := e2πiτ .

Proof. This formula is well-known.

Theorem 9.3.4. Let Ω := 2π|q|1/12
∏∞
n=1(1− qn)2. Then G4(ΩOK) and G6(ΩOK) are alge-

braic over Q.

Proof. If G6(OK) = 0 (as occurs in the case K = Q(i)) we have

G4(ΩOK)3 = (
G4(OK)

Ω4
)3 =

∆(OK)

±603∆(OK)
= ± 1

603

and the claim is obvious.

Otherwise, we know that G4(OK)3G6(OK)−2 is algebraic. It follows that

∆(τ) = 603G4(OK)3− 27 · 1402G6(OK)2 = G4(OK)3
(

603− 27 · 1402(G4(OK)3G6(OK)−2)−1
)

= G6(OK)2
(

603(G4(OK)3G6(OK)−2)− 27 · 1402
)
.

Therefore

G4(ΩOK)3 = ±G4(OK)3

∆(τ)
= ± 1

603 − 27 · 1402(G4(OK)3G6(OK)2)−1

and

G6(ΩOK)2 = ±
G6(O2

K)

∆(τ)
= ± 1

603G4(OK)3G6(OK)−2 − 27 · 1402
,

which shows that both are algebraic.

Definition 58. For k ≥ 3 and r ≥ 0 and a lattice Λ in C, define

Ek,r(z,Λ) :=
∑
ω∈Λ

(z + ω)r

(z + w)k+r
.

Also define Gk,r(Λ) as the value of Ek,r(z)− zrz−k−r at z = 0.
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Theorem 9.3.5. For any imaginary quadratic number field K, letting A be the area of a

fundamental parallelogram of the lattice OK and k ≥ 3, r ≥ 0,

Bk,r :=
(−1)k(k + r − 1)!πrGk,r(OK)

2ArΩk+2r

is algebraic over Q; in fact, it lies in the number field Q
(
G4(ΩOK), G6(ΩOK)

)
.

Proof. Fix a basis {1, τ}, Im[τ ] > 0 of OK . We then have A = τ−τ
2i . The series Ek,r(z, ω1, ω2)

is not holomorphic due to its dependence on z, but may be understood as a real-analytic

function in the R-valued variables z, z, ω1, ω1, ω2, ω2.

Define the differential operator

D := z
∂

∂z
+ ω1

∂

∂ω1
+ ω2

∂

∂ω2
.

Recalling the function E∗1(z) from earlier, we define inductively

E∗k(z) := −1

k

∂E∗k−1

∂z
(z),

so that E∗2(z) = E2(z)− π
A and E∗k(z) = Ek(z) for any k ≥ 3. Define G∗k,r to be the value of

E∗k,r(z)− zrz−k−r at z = 0, which then equals Gk,r for k ≥ 3.

By an inductive argument, we find

Ek,r(z, ω1, ω2) =
(−1)k+r−1

(k + r − 1)!
Dr ∂

k−1

∂zk−1
E1(z).

It follows that

Gk,r =
(−1)r

(k + r − 1)(k + r − 2)...(k)
DrGk.

Applying the Eisenstein differential equation from above, we see that

G∗2k+1,1 = − 1

2k
DG∗2k =

A

π

(2k + 3

2
G∗2k+2 −

1

2

k∑
r=1

G∗2rG
∗
2k−2r+2

)
,

and by repeated application of D it follows that

G∗k,r =
Ar

(2π)r(k + r − 1)(k + r − 2)...(k)
Pk,r(G

∗
2, G

∗
4, G

∗
6, ...G

∗
k+2r)

where P is a polynomial with rational coefficients.

For j ≥ 4, we know G∗j = Gj to be algebraic over Q by 9.3.1 and 9.3.4. It is enough to

show this for G∗2, and the proof is given analogously. Let α ∈ OK , α /∈ Z, and let S be a set

of representatives for OK/(α) containing 0. Then we have

α−2
∑
s∈S

E∗2(
z + s

α
,OK) = E∗2(z,OK)
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and therefore

G∗2 =
1

α(α− α)

∑
s 6=0

(
E∗2(

s

α
)−G∗2

)
=

1

α(α− α)

∑
s 6=0

℘(
s

α
),

where we use the fact that N := αα terms appear in the sum on the left-hand side. The same

argument as in 9.3.1 shows that ℘( sα) = ℘(αsN ) is algebraic over Q(G4, G6) - and so G∗2 is as

well.
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Chapter 10

Katz’s measure

Let E be an elliptic curve over C with complex multiplication by OK for some imaginary

quadratic number field K. Choose an invariant differential on E such that the reduction of ω

at every place of OQ is regular. Let p be a prime that splits in K, let L/K be a finite extension

of K over which E has everywhere good reduction, and let W be the ring of integers of the

maximal unramified extension of Lp, the completion of L at some prime p lying over p; by

extending scalars, we understand (E,ω) as an elliptic curve defined over W .

Recall that the algebraic numbers B(k, r) were defined by

B(k, r) =
(−1)k(k + r − 1)!πr

2ArΩk+2r
Gk,r(OK).

The goal of this chapter is to explain Katz’s proof of the below theorem.

Theorem 10.0.1. There exists a unit c ∈ W× and for any b ∈ Z coprime to p, a W -valued

p-adic measure µ(c, b) on Zp × Zp such that∫
Zp×Zp

xk−3yr dµ(c, b) = 2ck+2r(bk − 1)B(k, r).

Proof. First, we recall that giving a W -valued p-adic measure µ on Zp × Zp is equivalent to

specifying a power series f ∈W [|X,Y |]: letting DX = (1 +X) ∂
∂X and DY = (1 + Y ) ∂

∂Y , the

requirement on f is that

Dk−3
X Dr

Y (f)|X,Y=0 = 2ck+2r(bk − 1)B(k, r), k ≥ 3, r ≥ 0.

We interpret this by noting that W [|X,Y |] is the coordinate ring of Ĝm × Ĝm over W , and

DX and DY are the standard invariant derivations.

Since p splits in K, E has good ordinary reduction Ẽ at the chosen prime p. This means

that the formal group law ˆ̃E is a one-dimensional formal group law of height one over the

82



algebraically closed residue field k = W/m. By Lazard’s theorem, ˆ̃E ∼= Ĝm over k. An argu-

ment using Hensel’s lemma shows that this extends to an isomorphism of formal group laws

Ê ∼= Ĝm over W - see [13], 4.3.3. We fix one such isomorphism ϕ : Ê → Ĝm. Then there

exists some c ∈ W× such that ϕ∗(c
−1ω) = 1

1+XdX, since the invariant differentials on both

form a free W -module of rank one; this will be the c in the theorem.

We now consider the universal formal W -deformation Euniv of E - that is, the elliptic

curve

Euniv : Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X

2Z − a4XZ
2 − a6Z

3

over the ring W [a1, a2, a3, a4, a6]. The formal moduli space M̂ is the formal completion of

SpecW [a1, a2, a3, a4, a6] at a point corresponding to a Weierstrass equation for E, and ϕ

extends to an isomorphism

ϕ : Êuniv → M̂ × Ĝm

of formal groups over W . This also gives us a natural choice of invariant differential ωuniv on

Euniv - namely, the one that restricts to the pullback ϕ∗( 1
1+XdX) from Ĝm on Êuniv.

There is also an isomorphism M̂ ∼= Ĝm of formal group laws over W that we now describe.

Recall that H1
dR(E/W ) is a free W -module of rank 2. The invariant differential ω is nonzero

in H1
dR(E/W ), and so we can extend it to a basis u, v such that u = c−1ω and that u∧ v = 1

in Ω2
E/R

∼= OE . By modifying v by some multiple of u, we may assume that this basis is

adapted to the action of OK on H1
dR(E/W ); that is,

[α]∗(u) = α · u, [α]∗(v) = α · v, α ∈ OK .

Now extend scalars to H1
dR(Euniv/M)⊗Div(M̂), where

Div(M̂) = {
∞∑
n=0

an
n!
Tn : an ∈W}

is the ring of divided power series and where T is a formal parameter of M̂ . After allowing

divided powers, the Gauss-Manin connection ∇GM on H1
dR(Euniv/M) becomes trivial, so

we can extend u, v to a horizontal basis U, V - this amounts to finding local solutions of a

particular differential equation, induced by the necessary linear relationship between ω, d
dT (ω)

and d2

dT 2 (ω) where T is some parameter for M - we know that H1(E/M) has rank two. The

invariant differential 1
1+XdX on Ĝm corresponds to an invariant differential

ϕ∗(
1

1 +X
dX) = U + L · V, where L ∈ Div(M̂),

where L corresponds to the logarithm on Ĝm.
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This shows that Êuniv ∼= Ĝm × Ĝm as formal group laws over W . The natural invariant

derivations (1 + X) ∂
∂X and (1 + Y ) ∂

∂Y on Ĝm × Ĝm correspond by our explicit description

of the above isomorphism to the derivations d
dL and D, respectively, where D is dual to the

invariant differential ω on Euniv.

Finally, we construct the power series f on Êuniv. We pick a parameter Z such that

ωuniv = (1 + [higher powers of Z])dZ.

Any two rational functions on Euniv whose expansion around ∞ begin with Z−2 + ... differ

by a constant, because their difference lies in the one-dimensional (by Riemann-Roch) space

Γ(Euniv,L(∞)). Therefore, applying D to any such series gives a power series ℘′(Z). We

define

f(Z) = b3℘′(bZ)− ℘′(Z) ∈W [|Z|].

To show that the choice of f is correct, we need to argue that

(
d

dL
)r(Dk−3(f))|0,0 = 2ck+2r(bk − 1)B(k, r).

Intuitively, at least in the case r = 0 and c = 1, in transcendental notation (if we think of

Euniv as a complex elliptic curve C/OK) the ℘′ is actually the derivative of the Weierstrass

℘-function, and the result follows from the previous chapter, recalling that ℘′ is also E3 and

that D in this case represents d
dz . The result in general will follow after connecting d

dL with

the differential operator

D = z
∂

∂z
+ ω1

∂

∂ω1
+ ω2

∂

∂ω2
.

By the Serre-Tate theory, L corresponds to log(1 + X) = log(T ) where T = 1 + X is the

given local parameter on Ĝm. In this sense, d
dL operates as T d

dT . It is known that this p-adic

operator corresponds to the Weil operator

W =
−π
A

(
ω1

∂

∂ω1
+ ω2

∂

∂ω2

)
where A(ω1, ω2) = Im[ω1ω2] is the ‘signed area’ function; see [9], 2.3.38, 2.6.7 and 2.6.26.

Since we evaluate z = 0, this is the operator we need.
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Chapter 11

Example: the Legendre family

Let E : y2 = x(x− 1)(x− λ) be the Legendre elliptic curve over the moduli space

M = SpecZ[
1

2
, λ,

1

λ(λ− 1)
];

this is the universal elliptic curve over Z[1
2 ], or generally over rings where 2 is invertible. ω = dx

2y

is a natural global differential on E. Pick any λ0 such that the curve y2 = x(x−1)(x−λ0) has

complex multiplication by some OK , and let M̂ be the completion of M at the point λ = λ0.

To differentiate ω with respect to λ, we look at the Gauss-Manin connection on E. Note

that M is a smooth relative curve over R := SpecZ[1
2 ], so in the defining filtration for ∇GM

(see 4.4)

... ⊆ F 2(Ω•E/R) ⊆ F 1(Ω•E/R) ⊆ Ω•E/R,

F k(Ω•E/R) := im[Ω•−kE/R ⊗OE π
∗Ωk

M/R → Ω•E/R],

we have F k(Ω•E/R) = 0 for k ≥ 2. Therefore, instead of the filtration spectral sequence, we

are left with only the exact sequence of complexes

0 −→ π−1Ω1
M/R ⊗π−1OM Ω•−1

E/R −→ Ω•E/R −→ Ω•E/M −→ 0.

The Gauss-Manin connection is now the transfer map on cohomology

∇GM : HkdR(E/M) = Hk(Ω•E/M )
δ−→ Hk+1(π−1Ω1

M/R ⊗π−1OM Ω•−1
E/M )

= Ω1
M/R⊗OMH

k(Ω•E/M ) = Ω1
M/R⊗OMH

k
dR(E/M).

We now calculate ∇GM (ω). Take dx
2y ∈ Ω1

E/R as a lift of ω; then

d(ω) = d(
1

2y
dx) = d(

1

2y
) ∧ dx = dx ∧ 1

2y2
dy.

85



Since y2 = x(x− 1)(x− λ) =: f(x, λ), we have

2ydy = ∂xfdx+ ∂λfdλ

and so

2ydx ∧ dy = ∂λfdx ∧ dλ.

Therefore, we can write the above as

dω = dx ∧ 1

2y2
dy =

∂λf

4y3
dx ∧ dλ ∈ Ω2

E/R.

A preimage of this in Ω1
M/R ⊗OM Ω1

E/R is given by dλ⊗−∂λf
4y3

dx, and its cohomology class is

∇GM (ω). We can now apply the derivation ∂
∂λ to see that

∂

∂λ
(ω) := (

∂

∂λ
⊗ id)(∇GM (ω)) = −∂λf

4y3
dx =

dx

4y(x− λ)
.

We can write this another way. Let g(x, λ) := −3x+2−λ
λ(λ−1) and h(x, λ) = x(x−1)

λ(λ−1) , so we have

−∂λf = g · f + h · ∂xf.

Then it holds that

−∂λf
4y3

dx = (
g

4y
+
h · ∂xf

4y3
)dx =

g + 2∂xh

4y
dx− d

( h
2y

)
;

here we note that over M , λ is a constant, and so 2ydy = ∂xfdx. Therefore, the above lies in

the same cohomology class as

g + 2∂xh

2

dx

2y
=

x− λ
2λ(λ− 1)

ω.

With the operator D := 2λ(λ− 1) ∂
∂λ , we see that D(ω) = (x− λ)ω and that

(ω,D(ω))dR = (ω, xω)dR = 1.

A similar computation shows that D2(ω) = D(xω) − λD(ω) = −λ(λ − 1)ω: calculating di-

rectly, we find ∂
∂λ(xω) = −x∂λf

4y3
dx, and the claim follows from y2dx = fdx ≡ x∂xfdx as

cohomology classes.

By modifyingD(ω) with a scalar multiple of ω, we get the unique basis u, v ofH1
dR(E|λ=λ0/R):

u = ω|λ=λ0 , v = (D(ω)− eω)|λ=λ0

adapted to the action of O(K) (as in the previous section) for some e ∈ d⊗OK [1/2], d being

the different of K. We extend u, v to a horizontal basis of H1
dR(E/M) by finding the local
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solutions (as divided power series) α(λ), β(λ) of the equation D2f+λ(λ−1)f = 0. Explicitly,

this is Euler’s hypergeometric differential equation

λ(1− λ)
d2f

dλ2
+ (1− 2λ)

df

dλ
− 1

4
f = 0

for the hypergeometric function 2F1(a, b, c;λ) with a = b = 1
2 and c = 1. We require the

boundary conditions

α(λ0) = 1, Dα(λ0) = e, β(λ0) = 0, Dβ(λ0) = 1,

and set U = D(β) · ω − β · D(ω) and V = −D(α) · ω + αD(ω); these are clearly horizontal

with respect to ∇GM and extend u, v. Then ω is given by

ω = αU + βV,

and the ‘natural’ invariant differential ωuniv on E is

ωuniv = U + LV =
1

α
ω

where L = β
α . The invariant derivation dual to ωuniv is then

Duniv = 2αy · d
dx
,

and the derivation d/dL is found by noting that L satisfies D(L) = 1
α2 ; indeed, we have

D(L) =
D(β)α−D(α)β

α2

where D(D(β)α −D(α)β) = D2(β)α − βD2(α) = 0 and where the value of D(β)α −D(α)β

at λ0 is 1. This implies

d

dL
=
( d
dλ

(L)
)−1 d

dλ
= α22λ(λ− 1)

d

dλ
.

For any given b, the function f to be taken is

f = 2α3(b3[b]∗(y)− y).
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