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Preface

Modern algebraic geometry knows a large number of different topologies. Most of them
have been developed to compute certain cohomology groups. The syntomic cohomology
is one of the less known topologies. It has proven useful in various cases, as it is
able to catch more details without becoming impossible to calculate. It was Mazur
who first came up with the notion of syntomic morphisms, probably while looking for
alternatives to the flat cohomology that are fine enough to catch interesting structure
but still not too complicated to calculate. Fontaine and Messing used the syntomic
topology in [FM87] to prove some results on p-adic periods. In [Bau92] Bauer gives a
proof for the conjecture of Birch and Swinnerton-Dyer for abelian varieties with good
reduction everywhere over function fields in characteristic p. Kato extended this notion
to the log-syntomic topology to generalize Bauer’s result to handle bad reduction as
well in [KT03]. Today, syntomic cohomology is used, e.g., in the theory of syntomic
regulators. They are an p-adic analogue of Beilinson’s regulators and give raise to
connections between syntomic cohomology and K-theory (see, e.g., [Niz12])

However, the basic foundations of this topology have not yet been fully collected in
a concise manner. This thesis aims at presenting the foundations of syntomic topology
and cohomology at least as far as they are necessary for the proof of the conjecture of
Birch and Swinnerton-Dyer in [Bau92].

This thesis has three main parts: The first one consists of chapters 1–3. Here the
notion of syntomic morphisms is developed. It forms the constitutive element of the
topology underlying the syntomic cohomology. This part uses mainly material from
[SGA6, Exp. VII], [EGAIV.4] and [Koe89]. It is extended by some propositions pointing
out the simplest applications of the definitions that should make understanding the
basic ideas easier (e.g., 1.1.17, 1.1.20, and 1.2.11). Furthermore, a classification of
generating sequences of a Koszul-regular ideal has been proven (1.1.14 and 1.1.15) and
some propositions on the behaviour of sequence-regular immersions on stalks have been
given (1.2.13, 1.2.15).

Chapter 1 defines and explores regular immersions: A special kind of immersion,
which has some good behaviour, e.g., with respect to codimension. There are two
different types of regular immersions – here called Koszul-regular immersion and
sequence-regular immersion – which are compared. In some cases they coincide. For
this fact a proof will be given, as well as counter examples for other cases.

Chapter 2 is about local complete intersections. Local complete intersections are
morphisms which factor through a regular immersion and a smooth morphism. In
particular, syntomic morphisms are local complete intersections. As in the case of
regular immersions, there are two different definitions which will be compared. For
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syntomic morphisms they will turn out to coincide.
Chapter 3 finally collects the notions introduced so far in order to define syntomic

morphisms and gives some important properties that will be used later. In particular,
some criteria for a morphism to be syntomic will be given. These criteria will be crucial
later to see that important morphisms are syntomic coverings, e.g., the p-multiplication
on a smooth group scheme (if it is faithfully flat).

Chapters 4–6 constitute the second part of this thesis. Here the notions of syntomic
sites and of syntomic cohomology are developed. Chapter 4 collects some important
statements about Grothendieck topologies that will be employed later to understand
syntomic sites. These statements originate mainly from [SGA3.1] and are reformulated
here using the nowadays more popular notion of covering families instead of sieves.
Additionally, some propositions on the relation between covering morphisms and
surjective morphisms of sheaves have been added.

Chapter 5 introduces the different syntomic sites. Apart from the usual distinction
between big and small sites there will be the syntomic site of a scheme S and the
crystalline-syntomic site, the first one being based on the category Sch(S) like the
étale and the flat site, the latter one being a refinement of the crystalline site. Also, a
comparison morphism will be constructed from the crystalline-syntomic to the syntomic
topos. This will allow us to calculate crystalline cohomology using the syntomic site.
One of the most important features of the syntomic sites will be that the Kummer
sequence is exact in characteristic p, too. The material in this chapter as well as in the
next one is mostly based on [Koe89], but has been extended and generalized to allow
a broader range of base schemes as is needed for the application in the conjecture of
Birch and Swinnerton-Dyer later on: [Koe89] mostly works on the syntomic site of
SpecWs(k) for k a perfect field of characteristic p. This is generalized here to the site
of syntomic schemes over Ws(k) and in some parts even to syntomic schemes over a
noetherian ring R.

Chapter 6 defines the crucial syntomic sheaves Ocris
n using the comparison morphism

of the previous chapter. The construction of these sheaves, resembling universal
crystalline coverings, will be given in detail. Also, theses sheaves will be used to
construct some important exact sequences.

The last part, chapter 7, outlines the proof of the conjecture of Birch and Swinnerton-
Dyer for abelian varieties over function fields in characteristic p as given by [Bau92].
It shows how the syntomic sheaves Ocris

n are used to calculate the cohomology groups
appearing in the L-function of an abelian variety.

Acknowledgments: I would like to thank Prof. Otmar Venjakob for supervising this
thesis and introducing me to this inspiring topic. Furthermore, I would like to thank
Andreas Riedel and Dr. Filippo A. E. Nuccio for helpful discussions and for their
comments on this thesis. In addition, I wish to express my gratitude to Dr. Jakob
Stix for some very helpful discussions and enlightening advice on algebraic geometry.
Finally, my thanks go to Steffen Rimner for his advice concerning the use of the English
language.
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Notation: In this thesis, p always denotes a prime, which will be arbitrary apart
from the last chapter, where it will be assumed to be odd. Let G be an abelian group.
Then we define pnG := ker(pn : G→ G), the p-part G(p) := lim−→n p

nG where the limit
is taken over the inclusion maps pnG ↪→ pn+1G, and TpG := lim←−n pnG where the limit is
taken over the maps p : pn+1G→ pnG. TorG denotes the torsion subgroup and we let
GTor := G/TorG. All rings are commutative. For the sake of readability, the Spec
functor is often omitted. For example, by X ×Y κ(y) we denote X ×Y Specκ(y).
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1. Regular Immersions

1.1. Koszul-Regular Immersions

The key element in the definition of the syntomic site is the notion of regular immersion.
It generalizes the idea of factoring out a non-zero divisor and in nice cases it is well-
behaved with respect to codimension (1.2.10). In order to define it in the generality as
needed for our purpose, the Koszul complex – a tool from homological algebra – is used.
The Koszul complex was first introduced by the French mathematician Jean-Louis
Koszul (a member of the second generation of Bourbaki). He originally used the
Koszul complex to construct a cohomology theory for Lie-algebras. As a reminder the
definition of the Koszul complex and some important facts will be given. For a more
complete introduction see [EGAIII.1, 1.1], [Eis99, 17], and [Sta, 12.23ff.].

Definition 1.1.1 ([SGA6, Exp. VII, 1.1]). Let R be a ring, E a projective finitely
generated R-module, and u : E → R an R-linear homomorphism, i.e., an element
of the dual space E∨. Then the Koszul complex K•(u) associated to u is defined
as follows: Its i-th degree is defined to be the i-th grade of the exterior algebra∧

(E), i.e., Ki(u) =
∧i(E). Its boundary operator ∂ is defined to be the inner

multiplication by u where u is considered as element of the dual space E∨, i.e.,
x1 ∧ · · · ∧ xn 7→

∑n
k=1(−1)k+1u(xk)x1 ∧ · · · ∧ x̂k ∧ · · · ∧ xn. A short calculation shows

that ∂2 = 0. This is an antiderivation of degree −1 on
∧

(E) and is equal to u on∧1(E) = E. The Koszul complex is generalized in the obvious way to ringed spaces.

In many cases the following definition is sufficiently flexible and eases notation a lot:

Definition 1.1.2. Let R be a ring and f = (f1, . . . , fr) a sequence1 of elements in
R. The Koszul complex K•(f,R) is defined as the Koszul complex of E = Rr and
u : Rr → R given by ei 7→ fi with the canonical base {e1, . . . , er} of Rr: We let
K•(f,R) := K•(u).

Now let M be an R-module. Then we define K•(f,M) := K•(f,R)⊗RM . This is
in accordance with the explicit definition given in [EGAIII.1, 1.1.1]. The homology
groups Hi(K•(f,M)) are denoted by Hi(f,M).

Remark 1.1.3 ([EGAIII.1, 1.1.3.5]). One has

H0(f,M) = M/(
∑
i

fiM) = R/(f)⊗RM.

1Of course, such an object should be called r-tuple more appropriately. However, in the context of
regular immersions, the notion of sequences has become common for these objects. Thus, this
thesis will stick with this notation. Also, the enclosing brackets will often be suppressed to ease
notation.
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The Koszul complex has the following structure:

Remark 1.1.4. Let f = (f1, . . . , fr) be a sequence of elements in R, E = Rr with the
canonical base {e1, . . . , er}, and u as above. Then we have Ki(f,R) =

∧i(Rr). The
boundary operator ∂ is

∂ :
n∧

(E)→
n−1∧

(E)

x1 ∧ · · · ∧ xn 7→
n∑
k=1

(−1)k+1u(xk)x1 ∧ . . . x̂k · · · ∧ xn.

In particular, we have ∂(ei1 ∧ · · · ∧ ein) =
∑n

k=1(−1)k+1fikei1 ∧ . . . êik · · · ∧ ein .
In the special case f = (f1) we get the Koszul complex

0 R R
f1·

0.

With this considerations, one can verify that for general f = (f1, . . . , fr) one has an
isomorphism K•(f,R) ∼= K•(f1, R)⊗· · ·⊗K•(fr, R). In this sense, the Koszul complex
is independent of the ordering of f .

Useful for inductions involving the Koszul complex is the following homological lemma:

Lemma 1.1.5. Let K• be a chain complex of free R-modules, concentrated in degrees
0 and 1. Then for every chain complex L• of R-modules and for every index k ≥ 0
there is an exact sequence

0 H0(K• ⊗Hk(L•)) Hk(K• ⊗ L•) H1(K• ⊗Hk−1(L•)) 0,

where we set H−1(L•) = 0.

Proof. See [EGAIII.1, 1.1.4.1] or [Wei94, 4.5.3].

Now the necessary notions have been defined and we can continue with the definition
of Koszul-regularity for morphisms, sequences, and ideals. The term Koszul-regular
goes back to T. Kabele in [Kab71].

Definition 1.1.6.

(i) Let R be a ring, E a projective finitely generated R-module, and u : E → R
an R-linear homomorphism. Then u is called Koszul-regular – or simply regular
if no ambiguity is possible – if the Koszul complex K•(u) is acyclic in positive
degrees and thus is a resolution of B = R/u(E).

(ii) Let f = (f1, . . . , fr) a sequence of elements in R, and M an R-module. The
sequence f is called M -Koszul-regular, if its Koszul complex K•(f,M) is acyclic
positive degrees. For M = R, the term Koszul-regular is used.
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(iii) An ideal I ⊂ R is called Koszul-regular if it is generated by a Koszul-regular
sequence. Then the Koszul complex of the generating sequence is a resolution of
R/I.

Lemma 1.1.7. An ideal I ⊂ R is Koszul-regular if and only if there is a finitely
generated free R-module E and a Koszul-regular homomorphism u : E −→ R with
im(u) = I. In fact, this is the definition of Koszul-regular ideals given in [SGA6, 1.4].

Proof. Let I be Koszul-regular. By definition, there is a Koszul-regular sequence
f1, . . . , fr ∈ R. By choosing E = Rr with the canonical base {e1, . . . , er} and u : ei 7→ fi,
the morphism u is Koszul-regular by 1.1.6 and by construction one has im(u) = I.

Let E be a finitely generated free R module and u : E → R Koszul-regular with
im(u) = I. Let {e1, . . . , er} be a basis of E. Define fi := u(ei). Then the fi
generate I and they form a Koszul-regular sequence by the definition of Koszul-regular
sequence.

Example 1.1.8. Let f = (f1). Then f is M -Koszul-regular if and only if H1(f,M) = 0.
But as we have H1(f,M) = ker(·f1 : M →M) (1.1.4), this is the case if and only if f1

is a non zero-divisor in M . For f of length greater than one, this can be extended only
to a sufficient condition (see 1.3.1), the sequence-regular sequences as defined in 1.2.1.

Lemma 1.1.9 ([Sta, 12.23.4]). Let R be a ring, f1, . . . , fr ∈ R, and (cij) an invertible
r × r-matrix with coefficients in R. Then the Koszul complexes K•(f1, . . . , fr) and
K•(

∑
i ci1f1, . . . ,

∑
i cirfr) are isomorphic.

Lemma 1.1.10 ([Sta, 12.24.4]). Let R, S be rings, and ϕ : R→ S a flat map of rings. If
a sequence (f1, . . . , fr) in R is Koszul-regular, then so is the sequence (ϕ(f1), . . . , ϕ(fr))
in S.

Now we want to prove a result on the classification of Koszul-regular generating
sequences of an ideal. This final result will be in 1.1.14 and 1.1.15. .

Lemma 1.1.11. Let I ⊂ R be an proper ideal generated by a Koszul-regular sequence
f1, . . . , fr. Then I/I2 is a free R/I-module of rank r and the images of f1, . . . , fr in
I/I2 form a base of this R/I-module.

Proof. Let f = (f1, . . . , fr). Since f is Koszul-regular, we have H1(f) = 0. This shows
that the following part of the Koszul complex K•(f) is exact:∧2(Rr) Rr R,

∂2 ∂1

where ∂2(ei ∧ ej) = fiej − fjei and ∂1(ei) = fi with the canonical base {e1, . . . , er} of
Rr. The image of ∂1 equals I. Therefore, this induces an exact sequence of R-modules∧2(Rr) Rr I 0.

∂2 ∂1

Tensoring with R/I, we get an exact sequence of R/I-modules
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∧2(Rr)⊗R R/I Rr ⊗R R/I I ⊗R R/I 0.
∂′2 ∂′1

Here we have for a ∈ R/I that ∂′2(ei∧ej⊗a) = eifj⊗a−ejfi⊗a = ei⊗fja−ej⊗fia = 0
and therefore ∂′1 is an isomorphism Rr ⊗R R/I → I ⊗R R/I. Since the tensor product
commutes with direct sums, we have Rr ⊗R R/I ∼= (R/I)r and by A.1.1 we get
I ⊗R R/I ∼= I/I2. Therefore, I/I2 is a free R/I-modules of rank r. The images of
f1, . . . , fr form a base, as we have ∂1(ei) = fi.

Corollary 1.1.12. Two Koszul-regular sequences generating the same ideal have the
same length.

Lemma 1.1.13 ([Sta, 12.24.13]). Let R be a ring, I ⊂ R an ideal generated by
f1, . . . , fr. If I can be generated by a Koszul-regular sequence of length r, then f1, . . . , fr
is a Koszul-regular sequence.

Corollary 1.1.14. Every set of generators for a Koszul-regular ideal is Koszul-regular
if and only if it has the minimal possible length (of all sets of generators).

Proof. Let I be an Koszul-regular ideal generated by a Koszul-regular sequence
g1, . . . , gs. Furthermore, let f1, . . . , fr be another sequence generating I. As the
images of the elements fi in I/I2 form a generating system of I/I2, by 1.1.11 we have
r ≥ s. Since the sequence is assumed to be of minimal length, we have r ≤ s and
therefore r = s. Thus, the sequence f1, . . . , fr is Koszul-regular by 1.1.13.

Let f1, . . . , fr be Koszul-regular. Then by 1.1.12 we have r = s. Any generating
sequence has to have at least s elements, as the images of the generating sequence in
I/I2 have to generate an free module of rank r. Therefore, the sequence f1, . . . , fr is
of the minimal possible length.

Corollary 1.1.15. Let I ⊂ R be an ideal. Then I is Koszul-regular if and only if
exactly the generating sequences of minimal possible length are Koszul-regular.

The definitions of Koszul-regularity can be generalized to ringed spaces and schemes:

Definition 1.1.16 ([SGA6, Exp. VII, 1.4]).

(i) Let (X,OX) be a locally ringed space, E an OX-module which is locally free and
finitely generated, and u : E → OX an OX-linear homomorphism. Then u is
called Koszul-regular, if the Koszul complex K•(u) is acyclic positive degrees.

(ii) Let J be an ideal in OX . Then J is called Koszul-regular if there is, locally in X,
a locally free and finitely generated OX-module E and a surjective Koszul-regular
homomorphism E → J , i.e., a Koszul-regular homomorphism E → OX whose
image is J .

(iii) Let i : X → Y be an immersion of schemes, let U be open in Y with i(X) ⊂ U
such that i is a closed immersion from X to U . Then i is called Koszul-regular,
if the ideal defined by i(X) in OU is Koszul-regular (this condition does not
depend on U). Let x ∈ X. Furthermore, i is called Koszul-regular in x if there
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is a neighbourhood V of i(x), such that the immersion i|i−1(V ) : i−1(V )→ V is
Koszul-regular.
Note that an immersion is Koszul-regular if and only if it is Koszul-regular in
every point.

Proposition 1.1.17. Let Y = SpecB be an affine scheme, I ⊂ B a finitely generated
ideal, and i : X = SpecB/I → Y the closed immersion defined by I. If I ⊂ B is a
Koszul-regular ideal (1.1.6), then i is a Koszul-regular immersion.

Proof. The Koszul complex associated with the ideal sheaf Ĩ ⊂ OY generated by
the ideal I ⊂ B consists of free and finitely generated modules which are therefore
quasi-coherent. Thus, whether the Koszul complex is acyclic depends only on the
global section ([GW10, 7.14]).

Remark 1.1.18 ([SGA6, Exp. VII, 1.4.1–3]). Let X be a scheme, J a finitely generated
ideal in OX , and x a point in supp(OX/J ). A family of sections f1, . . . , fd of J in a
neighbourhood of x is said to be a minimal generating system of J in a neighbourhood
of x, if the germs (fi)x form a minimal generating system of Jx, i.e., the images in
Jx ⊗ κ(x) form a base of this κ(x)-vector space. In this case the sections fi are said to
generate J in a neighbourhood of x.

With these terms an equivalent criterion for Koszul-regularity can be given: An
immersion defined on a certain open subset of X by a finitely generated ideal J is
Koszul-regular if and only if for every point x ∈ supp(OX/J ) every minimal generating
system of J in a neighbourhood of x is Koszul-regular (this follows immediately from
1.1.9).

Given only that J is finitely generated and J /J 2 is locally free and finitely generated,
one notes that every minimal generating system of J in a neighbourhood of a point y
in Y induces a base of J /J 2 in a neighbourhood of y. On the other hand, given a
base of J /J 2 in a neighbourhood of y, it can be lifted to a family of sections of J in a
neighbourhood of y. These sections generate Jy by the Nakayama lemma, and therefore
they generate J in a neighbourhood of y, as J is finitely generated. Furthermore this
generating system is minimal because it induces a base of J /J 2.

Proposition 1.1.19 ([SGA6, Exp VII 1.5]). Let i : X → Y be an immersion. The
following statements are equivalent:

(a) The immersion i is Koszul-regular.

(b) All faithfully flat base changes of i are Koszul-regular.

(c) The immersion i is Koszul-regular locally in the faithfully flat quasi-compact
topology.

Example 1.1.20. Let k be a field. The closed immersion Spec k → Spec k[X] is
Koszul-regular as the ideal (X) is generated by a non zero-divisor in Spec k[X]. The
closed immersion Spec k → Spec k[X]/(X2), however, cannot be Koszul-regular: The
ideal (X) is generated by a zero-divisor on Spec k[X]/(X2) and thus it cannot be
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Koszul-regular, as by 1.1.14 every generating sequence of a Koszul-regular ideal which
is of minimal length is Koszul-regular. Since Spec k[X]/(X2) has no non-trivial open
subset, the ideal (X) cannot be generated by a Koszul-regular sequence on an open
covering, too.

Definition 1.1.21. Let i : X → Y be an immersion defined in an open subset U ⊂ Y
by an ideal J ⊂ OY |U . The OX-module i∗(J /J 2) (which does not depend on U) is
called the conormal sheaf of X in Y and denoted by CX/Y . If i is regular, then CX/Y is
locally free and finitely generated and its rank is called the codimension of X in Y or
the codimension of i. Note that the sheaf CX/Y is denoted by NY/X in [SGA6, Exp.
VII].

Remark 1.1.22. In the noetherian case, the codimension of a regular immersion
X → Y does in fact coincide with the codimension of X in Y (see 1.2.10).

Using the conormal sheaves it is possible to state some facts about composition of

regular immersions: Given two closed immersions X
j−→ Y

i−→ Z the conormal
sheaves lead to the exact sequence

0 −→ j∗(CY/Z) −→ CX/Z −→ CX/Y −→ 0.

Proposition 1.1.23 ([SGA6, Exp. VII, 1.7]). Let j : X → Y and i : Y → Z be two
immersions.

(i) If i and j are Koszul-regular, then i ◦ j is Koszul-regular and the sequence

0 −→ j∗(CY/Z) −→ CX/Z −→ CX/Y −→ 0

is exact. In particular codim(i ◦ j) = codim(i) + codim(j).

(ii) If i ◦ j and i are Koszul-regular and the above sequence is exact and splits, then j
is Koszul-regular.

(iii) If Z is noetherian, and i◦j as well as j are Koszul-regular, then i is Koszul-regular
in the points of j(X).

Remark 1.1.24. It is not easy to find non-trivial examples of sequences that are not
Koszul-regular. However, e.g., [Eis99, Exercise 17.2] gives a criterion for disproving
Koszul-regularity.

1.2. Sequence-Regular Immersions

There is another definition of regularity, which is in the noetherian case equivalent to
Koszul-regularity. It is sometimes easier to work with and it shows the geometrical idea
behind regular immersions in a better way. This definition has been given in [EGAIII.1]
earlier than the above definition, but behaves in an unwanted way in non-noetherian
contexts. This will be discussed later in detail.
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Definition 1.2.1. Let R be a ring, a1, . . . , an a sequence of elements in R, and
M an R-module. These elements are called an M-sequence-regular sequence, if a1

is a non zero-divisor in M and for all i ≥ 2 the element ai is a non zero-divisor in
M/(a1M+· · ·+ai−1M), i.e., the sequence consisting only of ai is M/(a1M+· · ·+ai−1M)-
regular. The sequence is said to be sequence-regular (or just regular if there is no
ambiguity possible), if it is R-regular.

An ideal I ⊂ R is called a sequence-regular ideal, if it is generated by a sequence-
regular sequence.

Remark 1.2.2. Some authors additionally require M/
∑
aiM 6= 0 for sequence-

regularity, e.g., [Eis99].

Example 1.2.3.

(i) For a ringR, the coordinatesX1, . . . , Xn form a regular sequence in the polynomial
ring R[X1, . . . , Xn].

(ii) The sequence consisting only of the element X is regular in k[X], but is not in
k[X]/X2, as X is a zero-divisor there.

(iii) Let A = C[X, Y ]. Then a1 = X, a2 = Y +X is a regular sequence, but b1 = XY ,
b2 = X is not. Here already a relation to the notion of codimension of schemes
can be observed: While A/(a1, a2) has codimension 2, A/(b1, b2) has codimension
1, although two elements are factored out.

(iv) In a regular noetherian local ring every coordinate system makes up a regular
sequence([Liu02, Remark 6.3.2]).

(v) In Z the sequences (30, 4) and (4, 30) are sequence-regular. But in Z/30 the
sequences (3, 5) and (5, 3) both are not sequence-regular, as they consist of
zero-divisors.

Remark 1.2.4. While in general the regularity of a sequence depends on its order,
this is not the case for a sequence in the maximal ideal of a noetherian local ring
(1.3.5).

Lemma 1.2.5 ([Liu02, 6.3.6]). Let R be a ring and I ⊂ R, I 6= R be an ideal2

generated by a sequence-regular sequence a1, . . . , an. Then the images of the elements
ai in I/I2 form a basis of I/I2 over A/I. In particular, I/I2 is a free A/I-module of
rank n.

Corollary 1.2.6. This shows in particular that for a sequence-regular ideal I all
sequence-regular generating sequences have the same length.

Definition 1.2.7. Let Y be a scheme and f : X → Y an immersion defined by an ideal
I on an open subscheme of Y . Then f is a sequence-regular immersion in x ∈ X (of
codimension n in x), if there is a neighbourhood U of f(x) such that I|U is generated

2Actually, [Liu02] includes the case I = R, but in this case one gets the zero module over the zero
ring and the statement of the lemma does not hold any longer.
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by a sequence-regular sequence (of length n) in OY (U). The immersion f is called a
sequence-regular immersion, if it is sequence-regular in all x ∈ X. The codimension is
well-defined by corollary 1.2.6.

Proposition 1.2.8 ([EGAIV.4, 19.1.5]).

(i) An immersion j : X −→ Y is an open immersion if and only if it is a sequence-
regular immersion and of codimension 0 in every point.

(ii) Let f : X → Y be a sequence-regular immersion and g : Y ′ → Y flat. Then
f ′ : X ×Y Y ′ → Y ′ is a sequence-regular immersion as well. The codimensions
of f ′ in y′ ∈ Y ′ and of f in the corresponding point y ∈ Y coincide.

(iii) Sequence-regular immersions are stable under composition.

Proposition 1.2.9. Let S be a scheme and let X, Y be S-schemes with structure
morphisms g : X → S and h : Y → S locally of finite presentation. Let u : X → Y
be an S-immersion. Let x ∈ X, y ∈ Y be points with g(x) = h(y) = s ∈ S and
Xs = g−1(s), Ys = h−1(s) the corresponding fibers. Then the following statements are
equivalent:

(a) The morphism g is flat in a neighbourhood of x and the immersion u is sequence-
regular in x.

(b) The morphisms g and h are flat in neighbourhoods of x and y and the induced
immersion us : Xs → Ys is sequence-regular in x.

Proof. See [EGAIV.4, 19.2.4].

The following proposition shows, why the notion of codimension of a regular immersion
does in fact correspond to the geometric notion of codimension:

Proposition 1.2.10 ([Liu02, 6.3.11 (b)]). Let i : X −→ Y be a closed regular im-
mersion of codimension n. Then for any irreducible component Y ′ of Y one has
codim(X ∩ Y ′, Y ′) = n whenever X ∩ Y ′ 6= ∅. Furthermore, one has dimOX,x =
dimOY,i(x) − n for all x ∈ X.

Example 1.2.11. Let R1, R2 be rings and consider the ring R = R1 × R2. One
has f = (1, 0) ∈ R. Obviously, f is a zero-divisor. However, the closed immersion
i : SpecR/f → SpecR is sequence-regular: One has SpecR/f = SpecR2 which is an
open and closed subset of SpecR. Therefore, the morphism i is an open immersion
as well and thus is trivially sequence-regular. This shows that even dividing out a
zero-divisor can be a sequence-regular immersion.

Lemma 1.2.12. Let A be a ring and f ∈ A a non zero-divisor. Then f is a non
zero-divisor in Ap for all p ∈ SpecA.

Proof. Let p ∈ SpecA and f
1
· a
b

= 0 in Ap with b /∈ p. Then there is a t /∈ p with
f · a · t = 0 in A. As f is a non zero-divisor, this implies a · t = 0 and hence a

b
= 0 in

Ap.
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Proposition 1.2.13. Let f : X → Y be a sequence-regular immersion. Then for all
x ∈ X the ideal ker(OY,f(y) → OX,x) is sequence-regular.

Proof. This follow by induction from the above Lemma 1.2.12.

The following two statements show that in the noetherian case even the inverse of 1.2.13
holds: Sequence-regular sequences on the stalks can be lifted to a neighbourhood.

Lemma 1.2.14 (Lifting of non zero-divisors). Let A be a noetherian ring, p ∈ SpecA
a prime ideal, and f ∈ A such that the induced f ∈ Ap is not zero. Let the annulator
of f in Ap be trivial, i.e., AnnAp(f) = 0. Then there is an element b ∈ A \ p such that
AnnAb(f) = 0.

Proof. Let I be the ideal

I = {g ∈ p | ∃x /∈ p : xgf = 0} .

This is in fact an ideal: Let g1, g1 ∈ I with x1, x2 /∈ p and x1g1f = x2g2f = 0. Then
x1x2 /∈ p and x1x2(g1 + g2)f = 0, thus g1 + g2 ∈ I. Let g ∈ I with xgf = 0 and
λ ∈ A. Then obviously xλgf = 0, thus λg ∈ I. As A is noetherian, I = (g1, . . . , gn)
is finitely generated. For all gi one has gif = xi

xi
gif = 0 in Ap. But as AnnAp(f) = 0

it follows that gi = 0 in Ap, therefore, there is an element bi /∈ p with bigi = 0 in
A. Now let b = b1 · · · bn. As p is prime, obviously b /∈ p. We have to show that
AnnAb(f) = 0, thus let y

bm
f = 0 in Ab, i.e., bm

′
yf = 0 in A for some m′ ≥ 0. But then

y = a1g1 + · · ·+ angn ∈ I and thus in Ab one has y = 0. Hence, AnnAb(f) = 0.

Proposition 1.2.15. Let Y be a locally noetherian scheme and let f : X → Y be
a closed immersion defined by a sheaf of ideals J ⊆ OY . Let x ∈ X. If Jf(x) is
sequence-regular, then there is an affine open neighbourhood V of f(x) such that J (V )
is generated by a sequence-regular sequence, i.e., f is sequence-regular in x.

Proof. Let Jf(x) ⊂ OY,f(x) be sequence-regular. Then it is generated by a sequence-
regular sequence f1,x, . . . , fn,x. By [GW10, 7.7.29] this sequence lifts to a generating
sequence f1, . . . , fn on some neighbourhood V ′ of f(x). It remains to show that on
some neighbourhood this sequence is even sequence-regular, what will be done by
induction on n.
V ′ can be assumed to be affine. For n = 1, the statement follows from 1.2.14. Now

let f1,x, . . . , fn+1,x be sequence-regular. Then f1,x, . . . , fn,x is sequence-regular, too, and
can be lifted by induction hypothesis to some affine neighbourhood V ′′ = SpecA ⊂ V ′.
Let px ⊂ A denote the prime ideal corresponding to x and J = (f1, . . . , fn) ⊂ A. As
fn+1,x is a non zero-divisor in (A/J)p̄x , there is a b̄ ∈ A/I, b̄ /∈ p̄x such that fn+1 is
a non zero-divisor in (A/J)b̄. Let b ∈ A \ px be a lift of b̄, then on V = SpecAb the
sequence is sequence-regular.

Remark 1.2.16. The definition given in [Liu02, 6.3.4] for a regular immersion f :
X → Y uses the property shown just before in 1.2.15: It requires for all x ∈ X the
ideal ker(OY,f(y) → OX,x) to be regular. As the definition is given there only for locally
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noetherian schemes there, this is equivalent to the definition used here. If one would
extend Liu’s definition to non noetherian schemes, sequence-regular immersions would
not necessarily be Koszul-regular immersions, too.

Lemma 1.2.17 ([Koe89]). Let A be a noetherian ring, I ⊂ A[X1, . . . , Xn] an ideal
inducing a sequence-regular immersion SpecB → SpecA[X1, . . . , Xn] where B =
A[X1, . . . , Xn]/I. Then the scheme SpecB is locally of the form SpecB0 with B0 =
A[X0, . . . , Xn]/(P0, . . . , Pd) with a sequence-regular sequence P0, . . . , Pd.

Proof. By the definition of sequence-regular immersion (1.2.7), there is an f ∈
A[X1, . . . , Xn] and a sequence-regular sequence P1, . . . , Pd ∈ A[X1, . . . , Xn]f such that
If = (P1, . . . , Pd). By neglecting the (invertible) denominators, we can assume that
Pi ∈ A[X1, . . . , Xn]. Now we define P0 := fX0 − 1 ∈ A[X0, . . . , Xn] which is a
non zero-divisor with A[X0, . . . , Xn]/(P0) ∼= A[X1, . . . , Xn]f . Therefore, P0, . . . , Pd
form a sequence-regular sequence in B0 = A[X0, . . . , Xn] with B0/(P0, . . . , Pd) =
A[X0, . . . , Xn]f/(P1, . . . , Pd).

Proposition 1.2.18 ([EGAIV.4, 19.8.2]). Let (λ) be a projective filtered system with
minimal element α. Let Sλ be a projective system of schemes and let Xλ, Yλ be
projective systems over Sλ-schemes flat and locally of finite presentation with Xα and
Yα quasi-compact. Let S = lim←−Sλ, X = lim←−Xλ, and Y = lim←−Yλ. Let jα : Xα → Yα be
an Sα immersion locally of finite presentation. Then the induced immersion j : X → Y
is sequence-regular if and only if there is an index λ ≥ α such that jλ : Xλ → Yλ is
sequence-regular.

Proof. The condition is sufficient as sequence-regularity is stable under arbitrary base
change under the conditions given here ([EGAIV.4, 19.2.4] and [EGAIV.4, 19.2.7 (ii)]).

Let y ∈ j(X). Let s be the image of y in S and let sλ be the image of s in Sλ. If one
denotes by Xs, Ys the fibers of s, then Xs, Ys are the projective limits of (Xλ)sλ and
(Yλ)sλ . As by 1.2.9 js : Xs → Ys is sequence-regular and the induced transition maps
sλ → sλ′ on the images of s are faithfully flat, [EGAIV.4, 19.8.1 (ii)] shows that for
every s there is a λ(s) such that the immersion (Xλ)sλ → (Yλ)sλ is sequence-regular and
thus by 1.2.9 there is a neighbourhood Vλ(yλ) of yλ such that jλ|j−1

λ (Vλ(yλ)) → Vλ(yλ) is

regular. Denote by V (y) the preimage of Vλ(yλ) in Y . As X is quasi-compact, j(X) is
quasi-compact, too, and only finitely many y1, . . . , yn are needed such that the V (yi)
cover j(X). For every λ, let Vλ =

⋃n
i=1 Vλ(yi,λ). Thus there is a largest λ such that

jλ|j−1
λ (Vλ) → Vλ is sequence-regular. As furthermore, the preimage of Vλ in Y equals Y ,

by [EGAIV.3, 8.3.4] there is a possibly larger λ with Vλ = Yλ and hence the proposition
follows.

Proposition 1.2.19 ([Kun86, B.23]). Let R and P be noetherian local rings, and
R→ P a flat local homomorphism. Let I ⊂ R be an ideal and R = R/I, P̄ = P/IP .
Let f1, . . . , fd be a sequence of elements of P and let f̄i denote the images of the fi in
P̄ . Then the following statements are equivalent:

(a) The f1, . . . , fd form a P -sequence-regular sequence and P/(f1, . . . , fd) is a flat
R-module.
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(b) The f̄1, . . . , f̄d for a P̄ -sequence-regular sequence and P̄ /(f̄1, . . . , f̄d) is a flat
P̄ -module.

1.3. Comparison of the Definitions

While Koszul-regularity provides the powerful tools of homological algebra, sequence-
regularity is often easier to verify and in particular to falsify as it is more closely related
to the concept of non zero-divisors (nevertheless, bearing in mind examples like 1.2.11).
Therefore, it is of great interest to compare these two notions. This section aims at
doing this.

Proposition 1.3.1 ([EGAIII.1, 1.1.4]). Let R be a ring, f = (f1, . . . , fr) a sequence of
elements of R, M an R-module. If f is M -sequence-regular, then f is M-Koszul-regular.

Proof. The proof is done via induction on r: The case r = 1 is trivial by 1.1.8. Let f be
M -sequence-regular and assume the statement has been proven up to r−1. Define f ′ =
(f1, . . . , fr−1), which is obviously again M -sequence-regular. Let L• = K•(f

′,M) then
by induction hypothesis Hi(L•) = 0 for all i > 0. Furthermore we have H0(L•) = Mr−1

(1.1.3). Let K• = K•(fr) = 0→ K1 → K0 → 0 with K0 = K1 = R and d1 : K1 → K0

the multiplication with fr, then we have K•(f,M) = K• ⊗R L•. Thus, for k ≥ 2 one
has Hk(f,M) = 0 by 1.1.5 and by the induction hypothesis. For k = 1 we have to show
that H1(K• ⊗R H0(L•)) = 0. But we have H1(K• ⊗R H0(L•)) = ker(K1 ⊗RMr−1 −→
K0 ⊗RMr−1) = ker(Mr−1 −→Mr−1, z 7→ fr · z) = 0.

Corollary 1.3.2. Every sequence-regular immersion is Koszul-regular as well.

The converse does not hold in general, as will be demonstrated in 1.3.8 and 1.3.9.
However, given the right conditions, the definitions are in fact equivalent, as mentioned
earlier. This will now be proved in the following theorem, which constitutes the main
result of this section:

Theorem 1.3.3 ([EGAIV.4, 19.5.1]). Let A be a ring, f = (f1, . . . , fr) a sequence of
elements in A, and M an A-module. Let I be the ideal generated by f1, . . . , fr. If every
quotient module of a submodule of M is separated with respect to the I-adic topology,
then the following statements are equivalent:

(a) f is M-sequence-regular.

(b) Hi(f,M) = 0 for all i ≥ 0 (i.e., f is Koszul-regular).

(c) H1(f,M) = 0.

Without the hypothesis of separateness, still (a) ⇒ (b) ⇒ (c) holds.

Proof. The implication (a) ⇒ (b) has been shown in 1.3.1, the implication (b) ⇒ (c)
is trivial. Thus, it is sufficient to show (c) ⇒ (a), given that every quotient module of
a submodule of M is separated with respect to the I-adic topology. The proof will be
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done via induction on r. For r = 1, one has 0 = H1(f,M) = ker(M →M, z 7→ f1 · z),
thus f = (f1) is M -sequence-regular. Let r ≥ 2 and f ′ = (f1, . . . , fr−1), then one has,
as above, K•(f,M) = K•(fr)⊗AK•(f ′,M). With 1.1.5 one obtains an exact sequence

0 H0(fr, H1(f ′,M)) H1(f,M) H1(fr, H0(f ′,M)) 0.

Thus, from H1(f,M) = 0 one gets H0(fr, H1(f
′,M)) = 0 and H1(fr, H0(f

′,M)) = 0.
With 1.1.3 we obtain H0(fr, H1(f ′,M)) = H1(f ′,M)/frH1(f ′,M), thus frH1(f ′,M) =
H1(f

′,M). By definition, the module H1(f
′,M) is isomorphic to a quotient N/N ′,

where N is a submodule M r−1. Let M r−1 be equipped with the filtration given by M j ,
j ≤ r−1, let N be equipped with the induced filtration, and let H1(f ′,M) be equipped
with the quotient filtration of N . Then H1(f ′,M) has a finite filtration whose quotients
are isomorphic to quotients of submodules of M and hence H1(f ′,M) is separated with
respect to the I-adic topology by hypothesis. Now, because of frH1(f ′,M) = H1(f ′,M),
we have already I · H1(f

′,M) = H1(f
′,M) and thus H1(f

′,M) = 0 since it is I-
adically separated. Therefore, by induction hypothesis, the sequence f ′ is M -sequence-
regular. But H1(fr, H0(f

′,M)) = 0 shows, also by induction hypothesis, that fr is
H0(f

′,M) = M/(f1M + · · · + fr−1M)-sequence-regular and thus f is M -sequence-
regular.

Corollary 1.3.4 ([EGAIV.4, 19.5.2]). Let A be a noetherian ring, f1, . . . , fr ∈ radA,
and M a finitely generated A-module (e.g., A). Then the statements (a), (b), and (c)
of 1.3.3 are equivalent. In particular, the sequence f1, . . . , fr is sequence-regular if and
only if it is Koszul-regular.

Proof. As A is noetherian, every submodule of the finitely generated A-module M is
finitely generated as well. Quotient modules of these finitely generated submodules
obviously are finitely generated as well. Being finitely generated modules, all these
modules are (f1, . . . , fr)-adically separated ([EGAI, 0.7.3.5]). Therefore, theorem 1.3.3
can be applied.

Corollary 1.3.5. Let (A,m) be a local noetherian ring, f1, . . . , fr ∈ m. Then f1, . . . , fr
is sequence-regular if and only if it is Koszul-regular.

Corollary 1.3.6. Let (A,m) be a local noetherian ring, f1, . . . , fr ∈ m. If f1, . . . , fr
is sequence-regular, then every reordering of the sequence is sequence-regular, too.

Corollary 1.3.7. Let i : X −→ Y be an immersion of schemes and assume Y is
locally noetherian. Then i is a Koszul-regular immersion (1.1.16) if and only if it is a
sequence-regular immersion (1.2.7).

Proof. Let i be Koszul-regular and x ∈ X. Then there is an affine open set SpecA =
V ⊂ Y and an affine open neighbourhood U ⊂ X of x such that the closed immersion
U → V is induced by an ideal I generated by a Koszul-regular sequence f1, . . . , fn ∈ A.
The point i(x) ∈ Y corresponds to a prime ideal p ⊂ A with I ⊂ p. Therefore, Ip 6= Ap

and thus 1.3.5 can be applied: The element f1, . . . , fn form a sequence-regular sequence
in Ap = OY,i(x). With 1.2.15 this shows that i is sequence-regular in x. The inverse
statement has already been proven in 1.3.2.
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However, the definitions of Koszul-regularity and sequence-regularity are not equivalent
in all cases. In order to clarify their relation, in the following we will construct two
examples, which do not fulfill both definitions.

Example 1.3.8 ([Eis99, 17.3]). Let k be a field and R = k[X, Y, Z]/(X − 1)Z. The
elements X and (X−1)Y generate the ideal (X, (X−1)Y ) = (X, Y ) 6= R. Furthermore,
X is a non zero-divisor in R and in R/(X) = k[Y, Z]/Z the element (X − 1)Y = Y is
a non zero-divisor. Therefore, the sequence X, (X − 1)Y is sequence-regular and hence
Koszul-regular. But we have (X− 1)Y ·Z = 0 in R and thus (X− 1)Y is a zero-divisor
in R. Therefore, the sequence (X − 1)Y , X cannot be sequence-regular. However, it is
of course Koszul-regular as it is just a reordering of a Koszul-regular sequence.

As the sequence-regularity of an immersion is defined locally, it is of some interest to
find an example even in local rings where Koszul-regularity and sequence-regularity do
not coincide.

Example 1.3.9 ([EGAIV.4, 16.9.6]). Consider the sheaf of real-valued C∞-functions
on R. Let F be the ring of germs of this sheaf in 0. This local ring contains the
maximal ideal m = {f | f(0) = 0}. (To simplify notation, germs will be written by
representatives). Furthermore F contains the function t : x 7→ x. By A.1.4, the ideal
m is generated by t.

As the functions x−k exp(− 1
x2

) can be extended to C∞-functions in 0 for all k (by
iterated application of de l’Hospital), one has exp(− 1

x2
) ∈

⋂
km

k =: n 6= 0. This shows
that m is not separated.

Let now A = F [T ]/nTF [T ] and let f1, f2 be the images of t and T in A. Then the
sequence (f1, f2) is sequence-regular in A: First we show that f1 is a non-zero divisor.
Let P (T ) ∈ F [T ] with tP (T ) ∈ nTF [T ]. For reasons of degree the coefficients of P (T )
have to be in n and thus P (T ) ∈ nTF [T ]. It remains to show that f2 is no zero-divisor
in A/f1A. As we have B/tB ∼= R, we have that A/f1A ∼= R[T ] is an integral domain.
Hence, the element f2 = T 6= 0 is a non zero-divisor in R[T ].

On the other hand, (f2, f1) is not sequence-regular in A: Let x ∈ n, x 6= 0 in A.
Then one has xT = 0 in A and thus f2 divides zero.

To show that this is in fact a counter example, only a few steps are left: As (f1, f2)
is sequence-regular in A, we have Hi((f1, f2), A) = 0 for i > 0 with 1.3.1, i.e., (f1, f2) is
Koszul-regular. But then we have also Hi((f2, f1), A) = 0: Whether K• is acyclic does
not depend on the ordering of the sequence (see 1.1.4). But as shown before, (f2, f1) is
not sequence-regular in A and thus is Koszul-regular but not sequence-regular.

This counter example illustrates why the definition of sequence-regularity does not
behave well in non-noetherian contexts: In general one is interested in the geometric
properties of an immersion defined by an ideal. But this properties should not depend on
the generating system of the ideal and in particular not on the ordering of the generating
system. The Koszul complex gives rise to exactly this kind of behaviour. For more
examples comparing different properties of sequence-regularity and Koszul-regularity
see [Kab71].
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Lemma 1.3.10 ([Koe89]). Let A be a noetherian ring, I ⊂ A[X1, . . . , Xn] an ideal
such that SpecB → SpecA[X1, . . . , Xn] with B = A[X1, . . . , Xn]/I is a regular im-
mersion. Then the scheme SpecB is (Zariski-)locally of the form SpecB0 with
B0 = A[X0, . . . , Xn]/(P0, . . . , Pd) with a regular sequence P0, . . . , Pd.

Proof. Since A is noetherian, the notions of Koszul-regularity and sequence-regularity
coincide. Thus, the statement follows from 1.2.17.

Proposition 1.3.11 ([SGA6, Exp. VII, 1.10]). Let X and Y be smooth S-schemes.
Then every S-immersion X → Y is sequence-regular and hence Koszul-regular. In
particular, every section of a smooth morphism is a sequence-regular and hence Koszul-
regular immersion.

Proof. By [EGAIV.4, 17.12.1], the immersion is a sequence-regular immersion and
therefore is Koszul-regular by 1.3.2.
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2. Local Complete Intersections

This chapter introduces local complete intersections. They are a generalization of
regular immersions, which turn out – in spite of exhibiting nice properties – to be too
restrictive for our needs. As a main difference we will now allow composition with a
smooth morphism. This enables us to handle not only subschemes but a much larger
class of morphisms.

2.1. SGA Local Complete Intersections

Definition 2.1.1 ([SGA6, Exp. VIII, 1.1]). Let f : X −→ Y be a morphism of schemes.
Then f is called a local complete intersection in x ∈ X if there is a neighbourhood U
of x and a smooth Y -scheme V such that the restriction of f to U factorizes via V :

x ∈ U Y ,

V

f

i

sm
oo

th

where i is a Koszul-regular immersion. f is called a local complete intersection if it
is a complete intersection in every point. In [SGA6] this is called simply complete
intersection.

Remark 2.1.2. Smooth morphisms are trivially local complete intersections.
By replacing V by an open subset one can assume that i is a closed Koszul-regular

immersion. One can even replace V by some affine space An
Y over Y : In fact, as the

notion is local, on can assume that V is affine and that the image in Y is contained
in an affine open W ⊂ Y . Then there is an n ∈ N and a closed W -immersion
V −→ An

W , respectively a Y -immersion V −→ An
Y , which is Koszul-regular by 1.3.11.

Since the composition of two Koszul-regular immersion is Koszul-regular, one gets a
Koszul-regular Y -immersion U −→ An

Y which factorizes f .

Proposition 2.1.3 ([SGA6, Exp. VIII, 1.3]). Suppose one has a commutative diagram

V ′

X V ,

j

i

p
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where i and j are immersions and p is a smooth morphism. Then i is a Koszul-regular
immersion if and only if j is a Koszul-regular immersion.

Proof. See [SGA6, Exp. VIII, 1.3].

Corollary 2.1.4. Let f : X −→ Y be a local complete intersection. Then every
Y -immersion i : X −→ Z from X to a smooth Y -scheme is Koszul-regular.

Proof. Let x ∈ X. Then there is an open neighbourhood U ⊂ X of x such that f
factors as U → V → Y where U → V is a Koszul-regular immersion and V → Y is a
smooth morphism. The restriction i : U → Z is an immersion as well and there is a
commutative diagram

V

U V ×Y Z Y,

Z

where V → Y and Z → Y are smooth, therefore the projections V ×Y Z → V and
V ×Y Z → Z are smooth, too. Since U → Z and U → V are immersions, U → V ×Y Z
is an immersion, too (A.1.5). The morphism U → V is even Koszul-regular, and thus
2.1.3 shows that U → V ×Y Z is Koszul-regular, too. By another application of this
argument it follows that U → Z is Koszul-regular.

Proposition 2.1.5 ([SGA6, Exp. VIII, Prop. 1.5]). Let f : X −→ Y and g : Y −→ Z
be two local complete intersections. Then g ◦ f is a local complete intersection, too.

Proof. Let x ∈ X. There are neighbourhoods U of x and V of f(x) and Koszul-regular
immersions i, j such that

U An
V Am+n

Z

V Am
Z

Z,

i

f

j′

j

g

where j′ is the base change of j by the flat projection Am+n
Z −→ Am

Z and thus a Koszul-
regular immersion. With 1.1.23, the morphism j′ ◦ i is a Koszul-regular immersion
from U to a smooth scheme over Z.
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Proposition 2.1.6 ([SGA6, Exp. VIII, 1.6]). Let f : X −→ Y be a morphism of
schemes and g : Y ′ −→ Y a flat base change. If f is a local complete intersection, then
f ′ : X ×Y Y ′ −→ Y ′ is a local complete intersection, too. If g is quasi-compact and
surjective, the inverse holds, too.

Proof. If f is a local complete intersection, there is a covering X =
⋃
i Ui such

that f factors locally as Ui −→ Vi −→ Y where Ui −→ Vi is a Koszul-regular
immersion and Vi −→ Y is smooth. The Ui ×Y Y ′ form a covering of X ×Y Y ′ and
the Ui ×Y Y ′ −→ Vi ×Y Y ′ are Koszul-regular by 1.1.19. As base changes of smooth
morphisms the morphisms Vi ×Y Y ′ −→ Y ′ are smooth ([GW10, 6.15]). Thus, f ′ is a
local complete intersection.

Let f ′ be a local complete intersection and assume that g is quasi-compact and
faithfully flat. Then by faithfully flat descent ([GW10, 14.51 (1)]), f is locally of
finite presentation. Therefore, locally, there is a factorization f : X → An

Y → Y
via an immersion followed by a smooth morphism which induces a factorization
f ′ : X ×Y Y ′ → An

Y ′ → Y ′: Thus, we have

X An
Y Y

X ×Y Y ′ An
Y ′ Y ′.

Since immersions are stable under base change ([GW10, 4.32]), X ×Y Y ′ → An
Y ′

is an immersion, too, and therefore it is Koszul-regular by 2.1.4, as A′nY → Y ′ is
smooth. In addition, An

Y ′ → An
Y is as base change of a faithfully flat and quasi-compact

morphism faithfully flat and quasi-compact itself, thus 1.1.19 shows that X → An
Y is a

Koszul-regular immersion and therefore f is a local complete intersection.

2.2. EGA Local Complete Intersections

In [EGAIV.4, 19.3] Grothendieck also gives definitions for local complete intersections
which are more algebraic and thus often easier to handle. In the syntomic case which
is interesting for us, the definitions will be equivalent to the definition given in 2.1.1.

Definition 2.2.1 ([EGAIV.4, 19.3.1]). Let A be a local noetherian ring. Then A is
said to be an EGA absolute complete intersection, if its completion Â is isomorphic to
a quotient of a local noetherian complete regular ring B by a sequence-regular ideal.

A locally noetherian scheme X is an EGA absolute complete intersection in a point
x ∈ X, if OX,x is an EGA absolute complete intersection.

Proposition 2.2.2 ([EGAIV.4, 19.3.2]). Let B be a local noetherian regular ring,
I ⊂ B an ideal. Then A = B/I is an EGA absolute complete intersection if and only
if the ideal I is sequence-regular.
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Thus, in particular, Definition 2.2.1 is independent of the chosen ring B. Furthermore,
this shows that every regular local noetherian ring is an EGA absolute complete
intersection.

Corollary 2.2.3 ([EGAIV.4, 19.3.4]). Let k be a field, X a scheme locally of finite
type over k, k′ ⊇ k a field extension, X ′ = X ⊗k k′. Let x′ ∈ X ′, x the projection of x′

to X. Then X is an absolute complete intersection in x if and only if X ′ is an absolute
complete intersection in x′.

Definition 2.2.4 ([EGAIV.4, 19.3.6]). Let f : X −→ S be a flat morphism locally of
finite presentation. Then X is called a EGA local complete intersection in x ∈ X (in
[EGAIV.4] called complete intersection relative to S in x ∈ X), if the fiber f−1(f(x))
is an EGA absolute complete intersection in x. The S-scheme X is called an EGA
local complete intersection (in [EGAIV.4, 19.3.6] complete intersection relative to S)
and f an EGA local complete intersection, if X is an EGA complete intersection in all
of its points.

Remark 2.2.5. Note that f−1(f(x)) = X ×S Specκ(f(x)) is locally of finite presen-
tation over Specκ(f(x)) and thereby locally noetherian. Thus the definition of EGA
absolute complete intersections can be applied.

Proposition 2.2.6. Let f : X −→ S be a flat morphism locally of finite presentation.
Then f is an EGA local complete intersection if and only if for all x ∈ X the ring
OX,x/mf(x)OX,x is an absolute complete intersection.

Proof. The morphism X −→ S is an EGA local complete intersection if for all x ∈ X
the fiber f−1(f(x)) is an absolute local complete intersection. This is the case if
and only if for all x ∈ X the local ring of x in f−1(f(x)) = X ×S κ(f(x)) which is
OX,x ⊗OS,f(x) (OS,f(x)/mf(x)OS,f(x)) is an absolute complete intersection.

Proposition 2.2.7 ([EGAIV.4, 19.3.7]). Given the following commutative diagram

X Y

S,

f

g

h

where g and h are flat and locally of finite presentation, h smooth and f an immersion.
Let x ∈ X and y = f(x), s = g(x). Then g is an EGA local complete intersection in x
if and only if f is sequence-regular in a neighbourhood of x.

Proof. The morphism g is an EGA local complete intersection in x if and only if
Xs = g−1(s) is an EGA absolute complete intersection in x. Since h is smooth,
Ys = h−1(s) is smooth over κ(s) and as such is regular in y by [GW10, 6.26]. As
moreover, OXs,x = OYs,y/ ker fx, by 2.2.2 the fiber Xs is an EGA absolute complete
intersection in x if and only if fs : Xs → Ys is sequence-regular in x, which is by 1.2.9
equivalent to f being sequence-regular in a neighbourhood of x.
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Proposition 2.2.8 ([SGA6, Exp. VIII, 1.6]). Let f : X −→ Y be a morphism and
g : Y ′ −→ Y a base change. If f is an EGA local complete intersection, then
f ′ : X ×Y Y ′ −→ Y ′ is an EGA local complete intersection, too.

Proof. Let f be an EGA local complete intersection. It follows immediately that
f ′ is flat and locally of finite presentation. Then, for every y′ ∈ Y ′, y = g(y′),
f ′−1(y′) = X ×Y Y ′ ×Y ′ κ(y′) = X ×Y κ(y′) is an absolute complete intersection if and
only if f−1(y) = X ×Y κ(y) is an absolute complete intersection by 2.2.3.

2.3. Comparison

The following proposition is of particular interest, as it states that local complete
intersections and EGA local complete intersections are equivalent in the case considered
in the following in this thesis, namely, the syntomic case.

Proposition 2.3.1 ([SGA6, Exp. VIII, 1.4]). Let f : X −→ Y be a flat morphism
locally of finite presentation. Then f is a local complete intersection if and only if it is
an EGA local complete intersection.

Proof. Let f be a local complete intersection and let x ∈ X. Then there is a neigh-
bourhood U of x and a factorization

x ∈ U Y,

V

f

i g

where i is a Koszul-regular immersion (without loss of generality closed) and g is a
smooth morphism. Without loss of generality, we have V = SpecB, U = SpecB/I =
SpecA, and Y = SpecC.

Let y = f(x), Uy := f−1(y), Vy := g−1(y). The claim is that the induced immersion
iy : Uy −→ Vy is Koszul-regular in x: The closed immersion i : SpecA → SpecB is
defined by a Koszul-regular ideal I ⊂ B. Therefore, the Koszul complex of i (denoted
by K•(i) in the following) is (possibly after localization) a resolution of B/I = A.
Since A and B are finite over C and the Koszul complex consists of free B-modules,
the complex K•(i) is even a C-flat resolution. Since Vy = SpecB ⊗C κ(y) one has
K•(iy) = K•(i) ⊗C κ(y). Therefore, the homology groups of K•(iy) are equal to
TorCi (B/I, κ(y)). As X = SpecB/I is assumed to be flat over Y , these groups vanish
for i > 0 and therefore iy is Koszul-regular. This shows that Iy a Koszul-regular ideal
and hence by 1.3.7 sequence-regular.

Next, note that the local ring of y in Vy is regular, as Vy is smooth over Specκ(y)
([GW10, 6.26]). Therefore, Uy is the quotient of a regular ring by a sequence-regular
ideal and hence an EGA complete intersection by 2.2.2. This shows that f is an EGA
local complete intersection.
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Now let f be an EGA local complete intersection and x ∈ X. Let U ′ = SpecA
be an affine open neighbourhood of f(x) and U an affine open neighbourhood of x
in X contained in the preimage of U ′. With f being locally of finite presentation,
there is – maybe after further localization – a factorization of f : U → U ′ via
V = SpecA[T1, . . . , Tn], where i : U → V is a closed immersion and g : V → U ′ is flat.
With 2.2.7 this shows that i is a sequence-regular immersion and hence Koszul-regular.
Therefore, f is a local complete intersection.

Remark 2.3.2. A famous example for the use of local complete intersections is Andrew
Wiles’ proof of Fermat’s Last Theorem: He proves that a certain Hecke algebra is
a complete intersection (see [TW95] and [Wil95]). For an introduction to complete
intersections in the context of Fermat’s Last Theorem, see [SRS97].
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3. Syntomic Morphisms

This chapter concludes the first part of the thesis by introducing syntomic morphisms.
They will form the constitutive element of the topologies introduced later in this
thesis. We present some of their basic properties and establish some important criteria
that will allow us to show that some morphisms are syntomic coverings. n particular,
this enables us to show that on the syntomic site the Kummer sequence is exact in
characteristic p > 0, too, which is one of the most important properties of the syntomic
topology.

Definition 3.1.1. A morphism f : X −→ S of schemes is called syntomic, if it is
locally of finite presentation, flat and a local complete intersection.

Remark 3.1.2. The name “syntomic” was created by Barry Mazur. In a mail to
Thanos D. Papäıoannou he explains its meaning ([Maz]):

Thanks for your question. I’m thinking of “local complete intersection” as
being a way of cutting out a (sub-) space from an ambient surrounding
space; the fact that it is flat over the parameter space means that each such
“cutting” as you move along the parameter space, is—more or less—cut
out similarly. I’m also thinking of the word “syntomic” as built from the
verb temnein (i.e., to cut) and the prefix “syn” which I take in the sense of
“same” or “together”. So I think it fits.

Lemma 3.1.3 ([Bau92, 1.2]).

(i) Open immersions are syntomic.

(ii) The composition of syntomic morphisms is syntomic.

(iii) Syntomic morphisms are stable under arbitrary base change.

Proof. (i): Since an open immersions is smooth ([GW10, 6.15]), it is trivially a local
complete intersection. Also open immersions are locally of finite presentation ([GW10,
10.35]) and flat and thus syntomic. (ii): Flat morphisms and morphisms locally of
finite presentation are stable under composition. Local complete intersections are
stable under composition by 2.1.5. (iii) Flat morphisms and morphisms locally of finite
presentation are stable under base change. Local complete intersections which are flat
and locally of finite presentation are stable under base change by 2.2.8.
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Lemma 3.1.4. Let f : X −→ Y be a flat morphism of smooth S-schemes. Then f is
syntomic.

Proof. The morphism f is of finite presentation as it is a morphism of S-schemes
locally of finite presentation ([GW10, 10.35]). It remains to show that f factors locally
through a Koszul-regular immersion followed by a smooth morphism. Consider the
factoring through the graph Γf

X

X ×S Y Y

X S,

f

id

Γf

πY

πX

where πY is smooth as it is a base change of a smooth morphism. The graph Γf is
an immersion [GW10, 9.5] between smooth S-schemes and as such a Koszul-regular
immersion by 1.3.11. Since f is flat by hypothesis, it is syntomic.

Proposition 3.1.5 ([Koe89]). Let A = lim−→Aλ be a filtered limit of rings and A′ a
finitely generated syntomic A-algebra. Then there is an index ν and a finitely generated
syntomic Aν-algebra A′ν such that A′ = A⊗Aν A′ν.

Proof. A′ is locally of finite presentation. Since all the statements are local and affine
schemes are quasi compact, we can assume without restriction that A′ is of finite
presentation. Then by [GW10, 10.65] there is an index µ and an Aµ-algebra A′µ of finite
presentation with A′ = A′µ⊗AµA. Therefore, we have A′µ = Aµ[X1, . . . , Xn]/(f1, . . . , fd)
with certain fi ∈ Aµ[X1, . . . , Xn]. By defining A′λ = A′µ ⊗Aµ Aλ for λ ≥ µ we have
A′ = lim−→A′λ = A′µ ⊗Aµ A. Since A′ is flat as A-module, by [EGAIV.3, 11.2.6.1]
there is a µ̃ ≥ µ such that A′λ is flat as Aλ-algebra for all λ ≥ µ̃. So by now we
can assume without restriction that for all λ the algebras A′λ are flat and locally of
finite presentation as Aλ-algebras and therefore the definitions of SGA-local complete
intersections and EGA-local complete intersections coincide (2.3.1). Thus, it is suf-
ficient to show that there is a ν such that A′ν is an EGA-local complete intersection
as Aν-algebra. Since A′ is an EGA local complete intersection as well, the immer-
sion SpecA[T1, . . . , Tn] → SpecA[T1, . . . , Tn]/(f1, . . . , fd) = A′ is sequence-regular by
2.2.7. Therefore, Proposition 1.2.18 shows that there is a ν such that the immer-
sion Aν [T1, . . . , Tn]→ Aν [T1, . . . , Tn]/(f1, . . . , fd) = A′ν is sequence-regular and hence
Aν → A′ν is an EGA local complete intersection.

Proposition 3.1.6. Let A be a noetherian ring and X be a syntomic scheme over
SpecA. Then locally X is of the form

U = SpecA[T1, . . . , Tn]/(P1, . . . , Pd),
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where P1, . . . , Pd ∈ A[T1, . . . , Tn] form a sequence-regular (and therefore Koszul-regular)
sequence.

Proof. By definition of local complete intersections, X → SpecA factors locally as
X → An

A → SpecA, with X → An
A being a Koszul-regular immersion. Therefore, the

statement follows by 1.3.10.

Nil immersions play an important role in the construction of the crystalline site (cf.
5.2.1). In 5.3.6 we will construct a morphism from the crystalline-syntomic topos
to the syntomic topos. Crucial for this result will be the following theorem stating
that syntomic coverings of schemes locally can be lifted to syntomic coverings of nil
immersions.

Proposition 3.1.7 ([Koe89]). (Lifting of syntomic morphisms) Consider the following
diagram

U ′

U T,

u

where u is syntomic and U ↪→ T is a closed nil immersion. Then there is a Zariski
covering {Ui −→ U ′} of U ′ and Ti such that the diagram

Ui Ti

U ′

U T

u

vi

is cartesian with vi syntomic.

Proof. Without loss of generality, let U = SpecA and T = SpecB be affine and
U ′ = SpecA′ with A′ a finitely generated syntomic A-algebra. We denote by I the kernel
of the nil immersion B → A, i.e., A = B/I. First assume that A and B are noetherian.
By 1.3.10 we can even assume without loss of generalityA′ = A[X0, . . . , Xn]/(P0, . . . , Pd)
with (P0, . . . , Pd) sequence-regular. Choosing lifts Si ∈ B[X0, . . . , Xn] for the Pi ∈
A[X0, . . . , Xn], one defines B′ = B[X0, . . . , Xn]/(S0, . . . , Sd). It remains to show that
the Si generate a Koszul-regular ideal in B[X0, . . . Xn] and that B′ is flat over B.
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This will be done by application of 1.2.19. For this, let p ∈ Spec(B[X0, . . . , Xn]).
Define P = B[X0, . . . , Xn]p, R = Bp∩B and J = Ip∩B ⊂ R. Since I is a nil ideal,
J 6= R. One has R̄ = R/J = Ap∩B and P̄ = P/Ip = A[X0, . . . , Xn]p̄. Let fi := Sip ∈ P
be the germs of the Si in p. Obviously the f̄i ∈ P̄ form a sequence-regular sequence
in P̄ and P̄ /(f̄1, . . . , f̄d) = A′p∩A is flat over R̄. Therefore, by 1.2.19, the fi form a
sequence-regular sequence in P and P/(f1, . . . , fd) is flat over R. This shows that B′

is a syntomic B-algebra.
Now let A and B be arbitrary. One has B = lim−→Bλ where Bλ runs through all finitely

generated Z-subalgebras of B. Recalling that A = B/I, one defines Aλ = Bλ/(I ∩Bλ)
and therefore has A = lim−→Aλ. By 3.1.5 there is a ν and a finitely generated syntomic
Aν-algebra A′ν with A′ = A⊗Aν A′ν . Since Aν and Bν are noetherian, by the first part
of the proof there is a syntomic lift B′ν of Bν , thus by defining B′ = B ⊗Bν B′ν one gets
a syntomic lift of B.

The following proposition is crucial for the proof of the conjecture of Birch and
Swinnerton-Dyer as it shows that adjoining p-th roots to a noetherian ring is syntomic.
In particular, the relative Frobenius over a Witt ring is syntomic.

Proposition 3.1.8. Let A be a noetherian ring. Then the homomorphism

A[T1, . . . , Tm] −→ A[T1, . . . , Tm]

Ti 7−→ T pi

is syntomic and faithfully flat. Therefore, it is a syntomic covering.

Proof. A[T1] is a free A[T1]-module via the map T1 7→ T p1 (a base is given, e.g., by
T 0

0 , . . . , T
p−1
0 ) and thus it is flat. Since flatness is stable under products, the morphism

is flat for all m. As A[T1, . . . , Tm] is smooth over A, the morphism is syntomic by 3.1.4.
The morphism is obviously even faithfully flat, as it is topologically the identity.

The proposition above is a generalized version from the one given in [Koe89], which
now follows as a corollary:

Corollary 3.1.9 ([Koe89]). Let k be a perfect field of characteristic p > 0, s ≥ 1 and
Ws := Ws(k) the ring of Witt vectors of length s. Then the relative Frobenius

Ws[T1, . . . , Tm] −→ Ws[T1, . . . , Tm]

Ti 7−→ T pi

is syntomic and faithfully flat. Therefore, it is a syntomic covering.
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4. Some Facts about Grothendieck
Topologies

This section aims to collect some statements about Grothendieck topologies that will
be used later to characterize covering families on the syntomic sites and to show that
the Kummer sequences on the syntomic sites are exact. As there are quite a number of
slightly different definitions for a Grothendieck topology (e.g.,, in [SGA3.1], [Tam94],
and [Mil80]), the one used here shall be introduced in the following.

Definition 4.1.1. Let C be a category (with fiber products). A topology on C is the
datum for every S ∈ ob C of a set of families of morphisms in C with target S called
covering families or coverings such that the following axioms hold:

(C 1) For every covering family {Si −→ S} and every morphism T −→ S the family
{Si ×S T −→ G} is a covering (stable under base change).

(C 2) Let {Si −→ S} be a covering and for every i let {Sij −→ Si} be a covering.
Then the composite family {Sij −→ S} is a covering (stable under composition).

(C 3) Let {Tj −→ S} be a covering and {Si −→ S} be a family such that for every j
there is an i such that

Tj S

Si

commutes, then {Si −→ S} is a covering (Saturation).

(C 4) Every family consisting of just an isomorphism is a covering.

It is often useful to extend the notion of coverings to families of arbitrary morphisms
in the category of presheaves Ĉ = Hom(Cop, (set)). This can be done uniquely by the
following definition/axiom:

(C 0) Let {Fi −→ F} be a family of morphisms in Ĉ. If for every representable base
change S −→ F (i.e., S, Fi ×F S ∈ C) the family {Fi ×F S → S} is a covering,
then the initial family a covering.
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This is compatible with the Yoneda embedding C ↪→ Ĉ, S 7→ HomC(−, S): A family
{Fi → F} in C is a covering if and only if the induced family in Ĉ is a covering. Thus,
one can regard all objects of C as objects of Ĉ, too.

A category C together with a topology on C is called a site.

Remark 4.1.2. Note that (C 2) and (C 3) already imply the following statement:
Let {Si −→ S} be a family of morphisms and {Tj −→ S} a covering such that for all
j the family {Si ×S Tj −→ Tj} is a covering. Then {Si −→ S} is already a covering
(local coverings are coverings).

Remark 4.1.3. In [SGA3.1, Exp. IV] instead of the notion of covering families of
morphisms, the notion of sieves, that is subobjects in Ĉ, is used mostly. These two
notions are equivalent for categories possessing fiber products ([SGA3.1, Exp. IV, 4.2.4]).
Today, the notion of families of morphisms is used almost exclusively. Therefore, all
statements are presented here using the language of families of morphisms.

Remark 4.1.4. Today many authors use the weaker notion of a pretopology [SGA3.1,
Exp. IV, 4.2.5]. A pretopology does not have to be saturated which makes handling it
a lot easier. For most sheaf related statements it is sufficient to hold at the level of a
pretopology ([SGA4.1, Exp. II, 2.4]) because a pretopology is cofinal in the generated
topology ([SGA4.1, Exp. II, 1.4]).

Definition 4.1.5. Let C be a category with fiber products. Given for any S ∈ ob C a
set of families of morphisms in C one can consider the coarsest topology in which all
the given families are covering families. This topology is well-defined by [SGA3.1, Exp.
IV, 4.2.2] and is called the topology generated by the given families.

Definition 4.1.6. Let C be a category. A presheaf on C is a contravariant functor
from C to (set) and thus an object of Ĉ = Hom(Cop, (set)). A presheaf P is called
representable if it is isomorphic to a presheaf in the image of the Yoneda embedding,
i.e., there is an S ∈ C with P ∼= HomC(−, S). Assume C to be equipped with a topology.
A presheaf P is called a sheaf, if for all S ∈ ob C and all coverings {Si −→ S} the
diagram

P (S)
∏

i P (Si)
∏

i,j P (Si ×S Sj)

is exact in the usual sense in (set). In general, one can assign to each presheaf P a
sheaf P † with the universal property HomĈ(P,G) = HomC̃(P

†, G) for any sheaf G. The
sheaf P † is called the sheaf associated to P .

The category of sheaves on a site C is a full subcategory of the category of presheaves
Ĉ and often is denoted by C̃. A category which is equivalent to the category of sheaves
for some site is called a topos.

Definition 4.1.7. Let {Fi
fi−→ F} be a family of morphisms in Ĉ. One defines the

image of this family to be the presheaf im{fi} : S 7→
⋃
i fi(S)(Fi(S)) ⊂ F (S).
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Proposition 4.1.8. Let Fi, G be sheaves, {Fi
ϕi−→ G} a covering family, and im{ϕi} ⊂

G the image presheaf. Then one has im{ϕi}† = G.

Proof. Let T ∈ C and g : T −→ G ∈ HomĈ(T,G) = G(T ). From the diagram

Fi ×G T T

Fi G

fi
gi

g

ϕi

one gets morphisms fi : Fi ×G T −→ Fi ∈ Fi(Fi ×G T ) which induce morphisms
gi = ϕi ◦ fi : Fi ×G T −→ G in im{ϕi}(Fi × T ). Furthermore, {Fi ×G T −→ T} is a
covering by 4.1.1 and one has clearly gi = g|Fi×GT . Thus, the morphisms gi form a
gluing datum on {Fi ×G T} in im{ϕi} which glues to g in im{ϕi}†.

Remark 4.1.9. This proposition shows that a covering family which is usually thought
of as something surjective becomes in fact surjective if one considers the image sheaf.
This analogy is even more accurate as the following proposition shows the inverse
statement:

Proposition 4.1.10. Let f : F → G be a morphism of sheaves that is surjective, i.e.,
im{f}† = G. Then f is a covering morphism.

Proof. Let F,G ∈ C be representable sheaves. Then for all S ∈ C the morphism
F (S) = HomC(S, F ) → HomC(S,G) = G(S) is surjective. In particular for the case
S = G one has id ∈ HomC(G,G). Since f is surjective as a morphism of sheaves, there

is a covering {Gi
ψi−→ G} and there are morphisms ϕi ∈ HomC(Gi, F ) = F (Gi) such

that f ◦ ϕi = id |Gi = ψi as in the following diagram:

F G

Gi Gi

f

ϕi ψi

As the morphisms f ◦ ϕi = ψi form a covering of G, the saturation axiom (C3) shows
that f is a covering as well.

Now let F,G ∈ Ĉ be arbitrary sheaves. If all representable base changes of F → G
are surjective and therefore coverings as shown before, F → G is a covering by (C0).
Therefore, the proof is finished by the following lemma.
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Lemma 4.1.11. Let f : F → G be a surjective morphism of sheaves. Then every base
change of f is surjective, too.

Proof. Let g : H → G be a morphism of sheaves. Let X ∈ C and ψ ∈ H(X) =

HomĈ(X,H). Then g ◦ ψ ∈ HomĈ(X,G). Therefore, there is a covering {Xi
ti−→ X}

and there are morphisms si : Xi → F with f ◦si = (g ◦ψ)|Xi = g ◦ψ ◦hi. The universal
property of the fiber product shows that the morphisms si factor through F ×G H,
making the following diagram commute:

F G

F ×G H H

X

Xi Xi

f

f ′

g

ψ

ϕi

si

ti

Since f ′ ◦ ϕi = ψ|Xi , this shows that F ×G H → H is a surjective morphism of
sheaves.

Corollary 4.1.12. Let f : F −→ G be a morphism of sheaves. Then this morphism
is surjective, i.e., im{f}† = G, if and only if it is covering.

A lot of common topologies are based on the Zariski topology together with some
refinement (e.g., the étale topology or the flat topology). The covering families in
this topologies could be some quite complicated combinations of the morphisms used
to construct the topology. The following proposition, however, shows that in special
cases (which will be fulfilled in all our applications) the covering families can be easily
characterized.

Proposition 4.1.13 ([SGA3.1, Exp. IV, 6.2.1]). Let C be a category and C ′ a full
subcategory. Let P be a set of families {Si → S} of morphisms in C, stable under
base change and composition (i.e., they fulfill the axioms (P1) and (P2) in [SGA3.1,
Exp. IV, 4.2.5]). Let P ′ be a set of families of morphisms {Si → S} in C ′. Suppose P ′

contains the families consisting of just an identity-isomorphism (P3) and fulfills the
following properties:

(i) If {Si −→ S} ∈ P ′ (and thus Si, S ∈ ob C ′) and if T −→ S is a morphism in
C ′, then the fiber products Si ×S T ∈ ob C exist and the family {Si ×S T −→ T}
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is an element of P ′ (thus Si ×S T ∈ ob C ′, too). This condition implies that P ′

is stable under base change, but is not equivalent as it implies further that the
inclusion functor C ′ −→ C commutes with certain fiber products.

(ii) For every S ∈ ob C there is a family {Si −→ S} ∈ P with Si ∈ ob C ′ for all i.

(iii) In the situation

Sijk

Si Sij

S,

P ′

P

P ′

where S, Si, Sij, Sijk ∈ ob C ′, {Si −→ S} ∈ P ′, {Sij −→ Si} ∈ P for all i and
{Sijk −→ Sij} ∈ P ′ for all i, j (like indicated in the diagram in a somewhat
imprecise manner), there is a family {Tn −→ S} ∈ P ′ and for every n there is a
multi-index ijk such that the following diagram commutes:

Tn S

Sijk

Let C be equipped with the topology generated by P and P ′. Let S ∈ ob C and {Rk −→ S}
a family of morphisms (in [SGA3.1] a sieve R −→ S is used). Then this family is
a covering if and only if there is a composite morphism {Sij −→ Si −→ S}, where
Si, Sij ∈ ob C ′, {Si −→ S} ∈ P , {Sij −→ Si} ∈ P ′ for all i such that the family
{Sij −→ S} is a refinement of {Rk −→ S}, i.e., it factors through {Rk −→ S}: For
every i, j there is a k such that the morphism Sij −→ S factors through Rk −→ S.

Proof. The families of P and P ′ are coverings and thus are also composite families of
those by (C2). Therefore, families of which the composite families are refinements are
coverings as well. This proves one direction of the claimed equivalence.

In order to show the converse, it suffices to show that these families already form a
topology, i.e., they satisfy (C1) to (C4).

(C4) Let S ∈ ob C. According to (ii) there is a family {Si −→ S} ∈ P with Si ∈ ob C ′.
The families {idSi : Si −→ Si} are elements of P ′ by assumption. Therefore the identity
morphism of S is of the desired form:
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Si

Si S

S

∼

(C3) Clear.

(C1) Let {Rk −→ S} be a covering of the desired form and T −→ S a morphism in
ob C. Then we consider the following diagram:

Sij Uilj

Si Ti Uil

Rk S T

P ′

P

P

P

Here, Ti is given by Ti = Si×ST . Then {Ti −→ T} ∈ P as P is stable under base change.
By (ii) one obtains a family {Uil −→ Ti} ∈ P with Uil ∈ ob C ′. With P being stable
under composition, one has {Uil −→ T} ∈ P as well. By (i), Uilj = Uil ×Si Sij ∈ ob C ′
and {Uilj −→ Uil} ∈ P ′. Since we have a diagram

Uilj Rk

T S,

the morphisms {Uilj −→ Rk} factor through Rk×S T , which shows that {Rk×S T −→
T} is indeed of the desired form.

(C2) Let {Rk −→ S} be of the desired form and for all i let {Tkn −→ Rk} be of this
form as well. Then, one has a commutative diagrams
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Sij Rklm

Si Rkl

S Rk Tkn.

P ′

P

P ′

P

From this one can construct a diagram

Vijkltm Rklm

Vijklt Sijkl Rkl

Sij Rk

Si

S Rk Tkn,

P ′

P

P
P

P ′

P

P ′

P

�

�

where Sijkl = Sij×RkRkl and thus {Sijkl −→ Sij} ∈ P . Because of (ii) one gets a family
{Vijklt −→ Sijkl} ∈ P with Vijklt ∈ ob C ′ for all t. As P ′ is stable under base change,
one gets a family of morphisms {Vijkltm = Vijklt ×Rkl Rklm −→ Vijklt} ∈ P ′. From this,
one obtains a composite family {Vijkltm −→ Vijklt −→ Sij −→ Si −→ S} composed as
P ◦ P ′ ◦ P ◦ P ′, which factors through {Tkn −→ S} and in which all objects but S
are in C ′. Now (iii) gives for every family {Vijkltm −→ Si} a family {Tiq −→ Si} ∈ P ′
factoring through Vijkltm and thus {Tiq −→ Si −→ S} factors through Tkn. This shows
that {Tkn −→ S} is indeed of the desired form.

Corollary 4.1.14 ([SGA3.1, Exp. IV, 6.2.2]). Let S ∈ ob C ′ and {Rk −→ S} be a
family of morphisms. Then {Ri −→ S} is covering if and only if there is a family
{Tl −→ S} ∈ P ′ factoring through {Rk −→ S}.
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Proof. Such a family is a covering by (C3). On the other hand, given a covering
{Rk −→ S}, there exists a composite family {Sij −→ Si −→ S} factoring through
{Rk −→ S}. By composing with the identity isomorphism of S, one gets by (iii) the
desired family {Tl −→ S} ∈ P ′.

Corollary 4.1.15 ([SGA3.1, Exp. IV, 6.2.3]). A presheaf F on C is a sheaf if and
only if the diagram

F (S)
∏

i F (Si)
∏

i,j F (Si ×S Sj)

is exact for all families {Si −→ S} from the following two cases:

(i) {Si −→ S} ∈ P .

(ii) S, Si ∈ ob C ′ and {Si −→ S} ∈ P ′.

Remark 4.1.16 ([SGA3.1, Exp. IV, 6.2.5]). Condition (iii) of 4.1.13 is satisfied in
particular whenever

(i) P ′ is stable under composition and

(ii) if {Si −→ S} is a family of morphisms in C ′ and an element of P , then there is a
subfamily which is in P ′.

The following proposition is generalized from [SGA3.1, Exp. VI, Prop. 6.3.1 (i)].

Proposition 4.1.17. Let C, C ′ have finite direct sums and have an initial object I
such that S ×SqT T = I. Suppose, for all Si, i = 1, . . . , n one has {Si −→

∐
i Si} ∈ P .

Suppose further that for all {Si −→ S} ∈ P ′ one has {
∐

i Si −→ S} ∈ P ′. Then a
presheaf F on C is a sheaf if and only if the sheaf sequence (4.1.6) is exact for all
families from the following two cases:

(i) {Si −→ S} ∈ P .

(ii) S ′, S ∈ obC ′ and {S ′ −→ S} ∈ P ′.

Proof. Since we have {Si −→
∐

i Si} ∈ P , one has an exact sequence

F (
∐

i Si)
∏

i F (Si)
∏

i,j F (Si ×∐
k Sk

Sj) = F (I) = ∅,

and thus F (
∐

i Si) '
∏

i F (Si). Now let Si, S ∈ obC ′ and {Si −→ S} ∈ P ′. Then by
assumption one has {

∐
i Si −→ S} ∈ P ′ and a commutative diagram

F (S)
∏

i F (Si)
∏

i,j F (Si ×S Sj)

F (S) F (
∐

i Si) F (
∐

i,j Si ×S Sj =
∐

i Si ×S
∐

j Sj).

∼ ∼
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Since the lower sequence is exact by assumption, the upper sequence is exact, too, and
the conditions of 4.1.15 are fulfilled. This proves the proposition.

In order to do cohomology calculations on a site, we need to define a global section
functor. In general, this is a little bit more tricky than on the usual sites like the Zariski
site or the étale site, as there is not necessarily a final object in the site. However, the
topos always has a final object. This is what will be used:

Definition 4.1.18. Let C be a site with topos T and let T ∈ C be an object. The section
functor Γ(T,−) : T −→ (Set) is defined as Γ(T, F ) = F (T ) for all sheaves F ∈ T .
Since F (T ) = HomĈ(T, F ) this is generalized by Γ(G,F ) = F (G) := HomĈ(G,F ) for
all G ∈ T .

Definition 4.1.19. Let C be a site. Then ê : T 7→ {0} is the final object in the
category Ĉ of presheaves on C. Its associated sheaf e is the final object of the topos C̃.
The global section functor Γ : C̃ −→ (Set) is defined as Γ(F) := Γ(e,F).

Remark 4.1.20. If the site C has a final object X (e.g., X in Xét or XZAR), then e is
represented by X, thus Γ(F) = F(X). In general one has, by the universal property of
the associated sheaf, HomC̃(e,F) = HomĈ(ê,F), where a morphism ϕ in HomĈ(ê,F)
is given by a compatible system of maps ϕ(T ) : ê(T ) = {0} −→ F(T ) for all T ∈ C.
Such a system of maps is just a compatible system of elements ϕ(T )(0) ∈ F(T ) for all
T ∈ C. Thus, one has Γ(F) = lim←−T∈C F(T ).

With these definitions, cohomology for, e.g., abelian sheaves can be defined in the
usual way as the derived functor of the global section functor (see, e.g., [Tam94,
3.3]). If a site has a canonical structure sheaf, its notation is often suppressed, e.g.,
Hq

cris(X/S) = Hq((X/S)cris,OX/S) denotes the q-th cohomology group of the sheaf
OX/S ∈ (X/S)cris.
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5. The Syntomic Sites

In this chapter, the techniques developed the previous chapter will be used to construct
the different syntomic sites. First, the syntomic site of a scheme will be constructed.
Secondly, the crystalline syntomic site will be constructed. Finally some comparison
theorems will be proved. They will allow to construct comparison morphisms between
the different topoi and thus give rise to the possibility to calculate some crystalline
cohomology groups on the syntomic site – a technique fundamental for the proof of the
conjecture of Birch and Swinnerton-Dyer as given in [Bau92] that will be presented
later in this thesis.

5.1. The Syntomic Site of a Scheme

Definition 5.1.1. Let Y be a scheme. Let C be the category of Y -schemes and C ′ ⊂ C
the full subcategory of absolute affine Y -schemes, i.e., Y -schemes that are affine as
a scheme (not as a scheme over Y ). Let P be the set of surjective families of open
immersions in C and P ′ the set of finite surjective families of syntomic morphisms in
C ′. Then the site of C together with the topology generated by P and P ′ (cf. 4.1.5) is
called (big) syntomic site SYN(Y ) of Y . The full subcategory syn(Y ) ⊂ SYN(Y ) of
syntomic Y -schemes with the induced topology is called small syntomic site of Y . The
associated topoi are denoted by YSY N and Ysyn.

Proposition 5.1.2. A family of morphisms {Zk −→ X} is a covering in SYN(Y ) if
and only if there is a composite family {Xij −→ Xi −→ X} with Xij, Xi affine for all
i, j, {Xi −→ X} ∈ P and {Xij −→ Xi} ∈ P ′ such that {Xij −→ Xi −→ X} factors
through {Zk −→ X}. In particular, these composite families form a pretopology.

Proof. It suffices to show that P and P ′ fulfill the conditions in 4.1.13. Since syntomic
morphisms are stable under base change (3.1.3), (i) is fulfilled. Condition (ii) is
obviously fulfilled. For (iii) it is with 4.1.16 sufficient to show that syntomic families
are stable under composition (3.1.3) and that for all families {Xi −→ X} ∈ P with
Xi, X ∈ ob C ′ there is a subfamily of {Xi −→ X} in P ′. But as affine schemes are
quasi-compact, there is a finite subfamily of {Xi −→ X} which is surjective and thus
in P ′, as open immersions are syntomic (3.1.3).

Corollary 5.1.3. A presheaf on SYN(Y ) is a sheaf if and only if the sheaf sequence
is exact for all {Xi → X} ∈ P and for all {Y → X} ∈ P ′.

Proof. This follows from 4.1.17.
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Remark 5.1.4. The syntomic topology is obviously finer than the étale or the smooth
topology. On the other hand it is coarser than the flat or fppf -topology. The next
propositions shall make the position of the syntomic topology relatively to the other
topologies clearer.

One of the big advantages of the étale topology over the Zariski topology is that it is
fine enough to have an exact Kummer sequence in characteristic p = 0 ([SGA4 1/2,
II 2.5]). In the flat or the fppf -topology the Kummer sequence is always exact. The
syntomic topology is already fine enough to show the same behaviour:

Proposition 5.1.5 ([Bau92, 1.4]). Let S be a scheme of characteristic p > 0, G/S a
smooth group scheme for which multiplication by p is a faithfully flat morphism. Let

G be the sheaf represented by G on SYN(S). Then G pn−→ G is an epimorphism of
syntomic sheaves for any n ∈ N. In particular for Gm resp. an abelian scheme A/S
one gets exact sequences in SYN(S):

0 µpn Gm Gm

pn

0

0 pnA A A
pn

0

Proof. The morphism pn : G −→ G is a flat morphism of smooth schemes and thus
syntomic by 3.1.4. Since it is faithfully flat, it is surjective and thus a syntomic covering.
By definition, the induced morphism G −→ G is a covering as well. In 4.1.8 it has been
shown that then this morphism is surjective. The first part of the sequence is of course
exact by definition of pnA resp. µpn .

Lemma 5.1.6. Let G/S be a smooth group scheme. Then for all j ≥ 0 the canonical
maps

Hj(SSYN, G)→ Hj(Sfppf , G)

induced by the Leray spectral sequence for the morphism Sfppf −→ SSYN obtained by
coarsing the topology are isomorphisms.

Proof. In [Mil80, III 3.9] it is shown that Hj(Sfl, G) ∼= Hj(Sét, G). The proof, however,
shows already that Hj(Sét, G) is isomorphic to any cohomology of a topology between
the étale and the flat topology.

Corollary 5.1.7 ([Bau92, 1.5]). Let A/S be an abelian scheme. Then for any j ≥ 0
one has

(i) Hj(Sfppf , pnA) ' Hj(SSYN, pnA).

(ii) Hj(Sfppf , µpn) ' Hj(SSYN, µpn),
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Proof. For all sheaves F on Sfppf there are canonical homomorphisms Hj(SSYN, ϕ∗F )→
Hj(Sfppf , F ) from the Leray spectral sequence for the morphism ϕ : Sfppf −→ SSYN

(note that ϕ∗F = F , as the syntomic topology is coarser than the fppf topology). By
the above lemma 5.1.6 these morphisms are isomorphisms for a sheaf represented by a
smooth group scheme. Thus, the statement follows from the five-lemma in the diagram

Hj−1(SSYN, A) Hj−1(SSYN, A) Hj(SSYN, pnA) Hj(SSYN, A) Hj(SSYN, A)

Hj−1(Sfppf , A) Hj−1(Sfppf , A) Hj(Sfppf , pnA) Hj(Sfppf , A) Hj(Sfppf , A).

The statement for µpn of course follows by setting A = Gm.

Proposition 5.1.8. The syntomic site SYN(Y ) has enough points: A morphism of
syntomic sheaves f : F ′ −→ F in YSYN is an isomorphism if and only if it is an
isomorphism in all points

Proof. See [Sta, 38.30.1].

Remark 5.1.9. Although by the above proposition we know that the syntomic site
has enough points, so far there are no results on what these points actually are. This
is not the case for, e.g., the étale topology, where we know that the points are the
spectra of strict hensilian rings or the Nisnevich topology, where the points are the
spectra of hensilian rings.

In the following an exactness criterion on some syntomic sites will be proven which
will be crucial for the techniques used in the proof of the conjecture of Birch and
Swinnerton-Dyer [Bau92] discussed later. It is generalized from [Koe89], where it
is only given for the special case R = Ws(k), Y = SpecR for k an perfect field of
characteristic p. The version given here is able to handle a much wider range of base
schemes.

Proposition 5.1.10. Let R be a noetherian ring and Y a syntomic R-scheme. The
set

MY := {X0 = SpecA0 ∈ syn(Y ) with A0
∼= R[T1, . . . , Tm]/(P1, . . . , Pd)

with a sequence-regular sequence P1, . . . , Pd ∈ R[T1, . . . , Tm]}

is cofinal in syn(Y ).

Proof. By 3.1.6, MY is cofinal in syn(Y ): We have syn(Y ) ⊂ syn(SpecR) as Y →
SpecR is syntomic.

For an scheme X0 ∈ MY we define a family Xi := SpecAi ∈ syn(Y ) by base change
with the morphism ϕ : Am

R −→ Am
R given on A[T1, . . . , Tm] by Ti 7→ T pi (this is the

relative Frobenius in those cases where a relative Frobenius exists):
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Xi Am
A

X0 Am
A

ϕi

By 3.1.8 all morphisms Xi → X0 are syntomic coverings. Having established these
prerequisites, we can formulate the exactness criterion:

Proposition 5.1.11 ([Koe89]). Let R be a noetherian ring and Y a syntomic R-scheme.
Let

F• := F1 F2

f
F3

g

be a sequence of abelian presheaves on syn(Y ) such that lim−→i
F•(Xi) is exact in the

category of abelian groups (Ab) for all X0 ∈MY . Then the sheafified sequence F̃• is
an exact sequence of abelian sheaves.

Proof. First we will show that g̃ ◦ f̃ = 0: For this let U ∈ syn(Y ) and let s ∈ F̃1(U) be
a section. By passing to a covering we can assume that s ∈ F1(U) by the definition of
the sheafification. As mentioned above, this U can be covered with objects from MY ,
thus it can be assumed that U = X0 ∈MY . But then by hypothesis (g ◦ f)(s) = 0 ∈
lim−→i
F3(Xi) which shows that there is an i such that (g ◦ f)(s)|Xi = 0. Now, because

Xi −→ X0 is a syntomic covering, this shows that (g̃ ◦ f̃)(s) = 0 ∈ F̃3(X0).
It remains to show that ker(g̃) ⊆ im(f̃). For this, let again be U ∈ syn(Y ) and

s ∈ ker(g̃)(U) ⊆ F̃2(U). By passing to coverings it can be assumed first that s ∈ F2(U)
and then even g(s) = 0. With another covering one gets U = X0 ∈ MY . Now by
hypothesis there is a t ∈ lim−→i

F1(Xi) with f(t) = s ∈ lim−→i
F2(Xi) and thus there is

an i with s|Xi ∈ imf̃ . Exactly as above, Xi −→ X0 is a syntomic covering and thus
s ∈ imf̃(U), hence the statement.

Now let k be a perfect field of characteristic p, R = Ws(k) and Y an syntomic R-scheme.
The following proposition underlines the importance of the exactness criterion:

Lemma 5.1.12 ([Koe89]). Let A = lim−→i
Ai for A0

∼= Ws[T1, . . . , Tm]/(P1, . . . , Pd) as
in the definition of MY . Then one has

A ∼= Ws[T
p−∞

1 , . . . , T p
−∞

m ]/(P1, . . . , Pd)

and the absolute Frobenius of A/(p) is surjective.

Proof. By definition one has

Ws[T
p−∞

1 , . . . , T p
∞

m ] = lim−→(Ws[T1, . . . , Tm]
rel. Frob.−−−−−→ Ws[T1, . . . , Tm] −→ . . . ).
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and by definition of Xi = SpecAi one has

Ai = Ws[T
p−i

1 , . . . , T p
−i

m ]/(P1, . . . , Pd),

thus, the identity follows.

Since Ws/(p) = k is perfect, the absolute Frobenius on k[T p
−∞

1 , . . . , T p
−∞

m ] is surjective
and therefore on A, too.

Corollary 5.1.13. Let Y be a syntomic k-scheme and OY the structure sheaf on
syn(Y ). Then

OY OY
Frob

is surjective. In particular, this gives a more hands-on proof for the exactness of the
Kummer sequence on the syntomic site of a perfect field in characteristic p > 0 than
the one given in 5.1.5.

Proof. The structure sheaf OY is defined by OY (Z) = Γ(Z,OZ). Let X0 = SpecA0 ∈
MY with A0

∼= k[T1, . . . , Tm]/(P1, . . . , Pd) for a sequence-regular sequence P1, . . . , Pd.
Then one has OY (X0) = k[T1, . . . , Tm]/(P1, . . . , Pd) and therefore lim−→i

OY (Xi) =

k[T p
−∞

1 , . . . , T p
∞

m ]/(P1, . . . , Pd) =: A. Hence, by 5.1.12 the absolute Frobenius on
A/(p) = A is surjective. By 5.1.11, this shows that (−)p : OY → OY is surjective.

5.2. The Crystalline-Syntomic Site

The site underlying the crystalline topology can also be equipped with a syntomic
topology which will make way for interesting comparison theorems. The following part
will make some use of the concepts of crystalline topology and divided power structures.
For a comprehensive introduction into these topics, see [BO78]. The definition given
here is based on [Koe89].

In the following p is a prime, (S, I, γ) a PD-scheme. Let X be an S-scheme such
that p is locally nilpotent on X and that γ extends to X.1

In the important case of the conjecture of Birch and Swinnerton-Dyer discussed
later, we will have S = SpecW (Fp) = SpecZp or S = SpecWn(Fp) = SpecZ/pnZ.

Definition 5.2.1. Let CRIS(X/S, I, γ) or short CRIS(X/S) be the category whose
objects are quadruples (U, T, i, δ) (or short (U, T, δ)) with U an X-scheme, T an S-
scheme where p is locally nilpotent, i : U ↪→ T a closed S-immersion and δ divided
powers on the ideal defining i in OT compatible with γ. In particular, the immersion i
is a nil immersion. A morphism (U ′, T ′, δ′) −→ (U, T, δ) is a commutative diagram

1[Bau92] actually demands that γ extends to all X-schemes. However, [BO78, 5] shows that this
is not necessary: The PD structure γ already extends to all Zariski open subschemes of X if it
extends to X.
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U ′ T ′

U T,

i′

u v

i

where u is an X-morphism and v an S-PD-morphism. A short notation is just (u, v)
or, when there is no confusion possible, even just T ′ −→ T .

Definition 5.2.2.

(i) An object (U, T, δ) is called affine if T is affine.

(ii) A morphism (u, v) is called cartesian, if the commutative diagram is cartesian.

(iii) A morphism (u, v) is called open immersion, syntomic, surjective, etc., if it is
cartesian and v is an open immersion, syntomic, surjective, etc.

Definition 5.2.3. Let CRIS′(X/S) ⊂ CRIS(X/S) the full subcategory consisting
of all affine (U, T, δ). Let P be the set of surjective families of open immersions
in CRIS(X/S) and P ′ the set of finite surjective families of syntomic morphisms in
CRIS′(X/S). The category CRIS(X/S) with the topology generated by P and P ′

is called big crystalline-syntomic site CRIS(X/S)SYN of X/S. The full subcategory
Cris(X/S)syn of objects i : U −→ T where U −→ X is syntomic together with the
induced topology is called small crystalline-syntomic site of X/S. The associated topoi
are denoted by (X/S)CRIS,SYN and (X/S)cris,syn.

The usual crystalline site and topos as introduced in [BO78], i.e., only with P as
coverings, will be denoted as CRIS(X/S)ZAR and (X/S)CRIS,ZAR.

Remark 5.2.4. This is the definition as given in [Koe89]. Berthelot actually defines in
[BO78] the crystalline site slightly different. He defines only the small site: He requires
for the objects (U, T ) that U is Zariski-open in X and he requires for morphisms (u, v)
that u is an open immersion.

Furthermore, he does not require the coverings to be cartesian, explicitly. However,
this is equivalent on the small site:. Let an arbitrary morphisms (u, v) : (U ′, T ′)→ (U, T )
be given such that the morphism v : T ′ → T is an open immersion. As we are working
on the small site, the morphism u : U ′ → U is an open immersion, too. Furthermore the
morphisms U ′ → T ′ and f : U → T are nilpotent closed immersions, hence topological
homeomorphisms. Therefore, one has an identification U ′ = f−1(T ′) = U ×T T ′.

On the big site, the definition given here behaves better than the one given by Berth-
elot in [BO78]: For an open immersion (u, v), the morphisms u and v are guaranteed
to be open immersions, like for any property stable under base change. The definition
given by Berthelot ensures only that v has the requested property.

Note that for a morphism (U ′, T ′, δ′)→ (U, T, δ) surjectivity of T ′ → T and U ′ → U is
equivalent, as they are topologically identical.
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Later, in 5.3.10 we will show that the crystalline sheaves OX/S, O and IX/S defined in
[BO78, 5.2] are sheaves on the syntomic crystalline site as well. A sheaf F on CRIS(X/S)
is often characterized by the Zariski sheaves F(U,T ) on T for all (U, T ) ∈ CRIS(X/S)
given by F(U,T )(T

′) = F(U ∩ T ′, T ′) (cf. [BO78, 5.1]).

Lemma 5.2.5. In CRIS(X/S), fiber products exist and syntomic morphisms are stable
under base change.

Proof. Consider the situation

(U1, T1, δ1)

(U ′, T ′, δ′) (U, T, δ)
synt.

in CRIS(X/S). The fiber product (U1 ×U U ′, T1 ×T T ′) can be constructed via the
following commutative diagram:

U1 ×U U ′ T1 ×T T ′

U1 T1

U ′ T ′

U T

synt.

The bottom square is cartesian because (U ′, T ′, δ′) −→ (U, T, δ) is syntomic. The left
and the right squares are cartesian by construction. Thus, the universal property of
the fiber product shows that the upper square is cartesian as well.

Since T ′ −→ T is syntomic, so is T1×T T ′ −→ T1. Hence (U1×U U ′, T1×T T ′, δ′′) −→
(U1, T1, δ1) is syntomic.

With these properties, the coverings in CRIS(X/S)SYN again can be characterized by
4.1.13:

Corollary 5.2.6. A family of morphisms {(U ′k, T ′k) −→ (U, T )} is a covering in
CRIS(X/S)SYN if and only if there is a composite family {(Vij, Tij) −→ (Vi, Ti) −→
(U, T )} with (Vij, Tij) and (Vi, Ti) affine for all i, j, {(Vi, Ti) −→ (U, T )} ∈ P and
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{(Vij, Tij −→ (Vi, Ti)} ∈ P ′ such that {(Vij, Tij) −→ (Vi, Ti) −→ (U, T )} factors through
{(U ′k, T ′k) −→ (U, T )}. In particular, these composite families form a pretopology.

Proof. It suffices to show that P and P ′ fulfill the conditions in 4.1.13. Syntomic
crystalline morphisms are stable under base change by 5.2.5. Condition (ii) is fulfilled
as all schemes allow an affine covering by Zariski open subschemes. This property lifts
to the crystalline site by base change. For (iii) the argument is the same as in 5.1.2.

Corollary 5.2.7. A presheaf on CRIS(Y )SYN is a sheaf if and only if the sheaf sequence
is exact for all {(Ui, Ti)→ (U, T )} ∈ P and for all {(U ′, T ′)→ (U, T )} ∈ P ′.

Proof. This follows from 4.1.17.

In general, the category CRIS(X/S) has no final object. Because of this, the global
section functor is only defined via the final presheaf (4.1.19). However, here we will
show that in some cases final objects in CRIS(X/S) do exist, which will be very
important later on. This follows the argument which Köck gives in [Koe89] based on a
talk of Günther Tamme in Oberwolfach ([Tam89]), but is generalized in order to allow
the case of syn(S) for S a syntomic Wn(k)-scheme which will be a smooth curve over
Fp in the conjecture of Birch and Swinnerton-Dyer later on in this thesis.

In the following let k be a perfect field of characteristic p > 0. Let Wn = Wn(k)
be the ring of Witt vectors of length n. Unless otherwise noted, k is considered a
Wn(k)-algebra via

Wn(k) Wn(k)
Frob−n

k,
π0

where π0 is the projection onto the first component, i.e., reduction modulo p.

Furthermore, let A be a k-algebra and (B, I) an affine PD-thickening of A/Wn:
(B, I) is a PD-algebra over (Wn, pWn) together with a Wn-isomorphism B/I → A,
where A is considered a Wn-algebra via the Wn-algebra structure of k (see above).
First we need a technical lemma:

Lemma 5.2.8. Let 0 ≤ r ≤ n, b ∈ B, and δ ∈ I. Then

(b+ δ)p
r ≡ bp

r

mod prI.

Proof. This is proven using induction on r. For r = 0 the statement is obvious. Assume
it is known for r. Then by induction hypothesis (b + δ)p

r+1
= (bp

r
+ prδ′)p. Modulo

pr+1I we get

(bp
r

+ prδ′)p ≡ bp
r+1

+ pprδ′p ≡ bp
r+1

+ pprp!γp(δ
′),

because δ′ ∈ I and I is a PD-ideal (γp denotes the p-th divided powers on I). The last
term is of course equal to bp

r+1
mod pr+1
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Corollary 5.2.9. There is a well-defined homomorphism of Wn-algebras given by

θn : Wn(A) Wn(B) B

(a0, . . . , an−1) (â0, . . . , ân−1) âp
n

0 + · · ·+ pn−1âpn−1,

ghost comp. Wn

where âi denotes a lift of ai ∈ A under the projection B −→ A.

Proof. The morphism is well-defined by the above lemma. It is a ring homomorphism
because the ghost component Wn(B) −→ B is so. The Wn-linearity needs more work:

Let s : Wn −→ k be the Wn-structure morphism of k (see above), ϕ : k −→ A be the
structure morphism of A, ϕ′ = ϕ ◦ s : Wn −→ A the induced Wn-structure morphism
and ψ : Wn −→ B the structure morphism of B. The induced structure morphism
Wn(k) −→ Wn(A) is denoted by ϕ̃.

Now let x = (x0, . . . , xn−1) ∈ Wn(k). We have to show that θn(ϕ̃(x)) = ψ(x).
First note that ϕ(xi) = ϕ′(x̂i) for arbitrary lifts of xi in Wn(k) by construction of ϕ′.
Thus, ϕ̃((x0, . . . , xn−1)) = (ϕ(x0), . . . , ϕ(xn−1)) = (ϕ′(x̂0), . . . , ϕ′(x̂n−1)) ∈ Wn(A). As
B −→ A is a morphism of Wn algebras, (ψ(x̂0), . . . , ψ(x̂n−1)) is a lift in Wn(B) and
thus θn(ϕ̃(x)) = ψ(x̂0)p

n
+ · · ·+ pn−1ψ(x̂n−1)p.

On the other hand we have in x = (x0, . . . , xn−1) = x̂p
n

0 + · · ·+ pn−1x̂pn−1 in Wn(k)
(A.1.2) and this shows that ψ(x) = θn(ϕ̃(x)) ∈ B.

This definition can be extended to global sections:

Proposition 5.2.10. Let (X,T ) ∈ CRIS(S/Wn). There is a homomorphism of Wn-
algebras which is functorial in (X,T )

θn : Wn(Γ(X1,OX1)) −→ Γ(T,OT ),

where X1 = X ×Wn k.

Proof. First assume (U, T ) ∈ CRIS(S/Wn) be affine, i.e., T is affine. Let B = Γ(T,OT )
and A = Γ(U,OU)/(p). The ideal I = (p) + ker(B � Γ(U,OU)) = ker(B → A) is
equipped with a PD-structure. That makes (B, I) an affine PD-thickening of A. By
the above proposition there is a homomorphism of Wn-algebras which is functorial in
(U, T ):

θn : Wn(Γ(U,OU)/(p)) −→ Γ(T,OT )

Note that A = Γ(U,OU)/(p) = Γ(U,OU) ⊗Wn k. Therefore, by gluing we get the
statement.

In the next step, this morphism will be extended to PD-structure. For this define for
an S-scheme X the ideals

In(X) := ker(θn : Wn(Γ(X1,OX1)→ Γ(X1,OX1))

=
{

(a0, . . . , an−1) ∈ Wn(Γ(X1,OX1))
∣∣∣ apn0 = 0

}
,

Jn(X) := ker(θn : Wn(Γ(X1,OX1)→ Γ(X,OX)),
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corresponding to the homomorphisms θn for the trivial PD-thickenings (X1, X1) and
(X,X).

Lemma 5.2.11. One has
Jn(X) + (p) ⊆ In(X).

If the Frobenius is surjective on X1, this is an equality.

Proof. Obviously one has Jn(X) + (p) ⊂ In(X). Let the Frobenius on X1 be surjective
and A = Γ(X,OX). Now let a = (a0, . . . , an−1) ∈ In(X), i.e., (a0, . . . , an−1) ∈ Wn(A/p)
with ap

n

0 = 0 ∈ A/p), that is âp
n

0 = py in A for some y ∈ A. Define b = (0, a1, . . . , an−1).
Since the Frobenius on A/p is surjective, one has b ∈ (p). Furthermore let ȳ be the

projection of y in A/p and cp
n−1

1 = ȳ. By defining c = (0, c1, 0, . . . , 0) ∈ (p) we have
θn(a−y− c) = 0 ∈ A. This shows a−y− c ∈ Jn(X) and thereby a ∈ Jn(X) + (p).

Remark 5.2.12. If the Frobenius on X1 is not surjective, the inclusion is in general
proper: Let n = 2, k = Fp and A = Z/p2[X]. Then (0, T ) ∈ W2(A/p) is obviously in
In(SpecA), but as there is no p-th root of T , there is no change of (0, T ) lying within
Jn(SpecA) + (p). Köck claims in [Koe89] actually that the equality in 5.2.11 holds
always. But the statement is used only in cases of surjective Frobenius, thus it does
not matter.

With this let

WDP
n (Γ(X1,OX1)) :=DWn(Γ(X1,OX1

)),(p)(Jn(X))

be the PD-envelope of Wn(Γ(X1,OX1)) with respect to the ideal Jn(X) over the ring
(Wn, (p)) (For the notation cf. [BO78, 3.19]).

If the Frobenius on X1 is surjective, one has

DWn(Γ(X1,OX1
)),(p)(In(X)) = DWn(Γ(X1,OX1

)),(p)(Jn(X))

because of the equality Jn(X) + (p) = In(X) (5.2.11). By abuse of notation let
Jn(X) ⊂ WDP

n (Γ(X1,OX1)) denote the PD-ideal.
With this notation we can finally extend θn like we wish:

Proposition 5.2.13. Let (X,T ) ∈ CRIS(S/Wn). There is a PD-homomorphism of
Wn-algebras functorial in (X,T )

θn : WDP
n (Γ(X1,OX1)) −→ Γ(T,OT ),

satisfying the commutative diagram

Γ(X,OX) Γ(T,OT ).

WDP
n (Γ(X1,OX1))

θn

θn
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Proof. This follows directly from the universal property of the PD-envelope and the
functoriality of θn as defined above by using the morphism (X,X) → (X,T ) in
CRIS(S/Wn).

Corollary 5.2.14. Let X be a Wn-scheme. There is a homomorphism of Wn-algebras
functorial in X:

WDP
n (Γ(X1,OX1)) −→ H0

cris(X/Wn)

Proof. Recall that by 4.1.20 we have H0
cris(X/Wn) = lim←−(U,T )

Γ(T,OT ) where (U, T )

runs through CRIS(X/Wn). Let (U, T ) ∈ CRIS(X/Wn). By the above one has a
morphism

θn : WDP
n (Γ(U1,OU1)) −→ Γ(T,OT ).

By functoriality using the morphism (U,U)→ (X,X) one has a morphism

WDP
n (Γ(X1,OX1))→ WDP

n (Γ(U1,OU1)).

Concatenating these morphisms one gets compatible morphisms WDP
n (Γ(X1,OX1))→

Γ(T,OT ) which factorize through the limit by the universal property of the projective
limit.

Proposition 5.2.15. Let X = SpecA be an affine scheme, flat over Wn with the
absolute Frobenius on A1 surjective. Then

(X, SpecWDP
n (A1))

is a final object in CRIS(X,Wn).

Proof. First we have to prove that (X,WDP
n (A1)) ∈ CRIS(X,Wn). Using the results

from 5.2.13, it remains to show that it is a PD-thickening of X. Thus, it is sufficient
to show WDP

n (A1)/Jn(A1) ∼= A. By the properties of the PD-envelope, we have

WDP
n (A1)/Jn(A1) = Wn(A1)/Jn(A1),

thus it is sufficient to show Wn(A1)/Jn(A1) ∼= A, i.e., that θn : Wn(A1) −→ A is
surjective.

This proof is done via induction on n. First let n = 1. Then one has A1 = A and θ1

induced by θ1 : W1(A1) −→ A1, (a0) 7→ ap0 which is clearly surjective as the Frobenius
on A1 is surjective.

Now let the statement be proven up to n and let A be a flat Wn+1-algebra with
surjective Frobenius on A1. Then An := A⊗Wn+1Wn is a flat Wn-algebra with surjective
Frobenius on An,1 = A1 and thus by induction hypothesis θn : Wn(A1) −→ An is
surjective, just like θ1 : W1(A1) −→ A1.

Because k is perfect, there is an exact sequence

0 W1(k) Wn+1(k)
νn

Wn(k)
ρ1

0,
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where νn denotes the shift map (x0) 7→ (0, . . . , 0, x0) and ρk : Wn(k) → Wn−k(k)

is given by (x0, . . . , xn−1) 7→ (xp
k

0 , . . . , x
pk

n−k−1). This is a sequence of Wn+1-modules
(A.1.3), where Wn−k is a Wn+1-module via ρk. Since A is flat over Wn+1, this induces
an exact sequence

0 A1 A
νn

An
ρ1

0

with A1 := A⊗Wn+1 W1(k), A = A⊗Wn+1 Wn+1(k), and An := A⊗Wn+1(k) Wn(k). As
we will prove now, this sequence gives rise to a commutative diagram

W1(A1) Wn+1(A1) Wn(A1) 0

0 A1 A An 0.

νn ρ1

id⊗νn id⊗ρ1

θ1 θn+1 θn

First we show the commutativity of the left square: Let (a) ∈ W1(A1). Then one has

(a)
νn7−→ (0, . . . , 0, a)

θn+17−−→ pnâp. On the other hand we have (a)
θ17−→ ap = âp ⊗ 1

id⊗νn7−−−→
âp ⊗ pn = pnâp. Thus the left square commutes.

For the right square, let (a0, . . . , an) ∈ Wn+1(A1). Then one has

(a0, . . . , an)
ρ7−→(ap0, . . . , a

p
n−1)

θn7−→âp0
pn

+ · · ·+ pn−1âpn−1

p

= âp
n+1

0 + · · ·+ pn−1âp
2

n−1.

For the last step note that âp − âp ∈ ker(An → A1) = pA, with pA being a PD-ideal.

Therefore, by 5.2.8 in An one has pkâp
pn−k

= pkâp
n+1−k

. On the other hand:

(a0, . . . , an)
θn+17−→ âp

n+1

0 + · · ·+ pnâpn
id⊗ρ17−→ âp

n+1

0 + · · ·+ pn−1âp
2

n−1,

as pn = 0 in An. Furthermore one has

ker(ρ1 : Wn+1(A1)→ Wn(A1))

= {(a0, . . . , an) ∈ Wn1(A1) | api = 0∀i = 0, . . . , n− 1} .

and there is a commutative triangle

ker(ρ1) Wn+1(A1),

W1(A1)

⊆

πn
νn
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where πn : (a0, . . . , an) 7→ (an) denotes the projection onto the last component. All
this together allows the construction of a commutative diagram

0 ker(ρ1) Wn+1(A1) Wn(A1) 0

0 A1 A An 0

0 coker(θn+1) 0,

θ1 ◦ πn

ρ1

θn+1 θn

where the first two rows are exact. By the snake lemma, we get coker(θn+1) = 0 and
thus Wn+1(A1)/Jn+1(A1) ∼= A. Therefore, (X,WDP

n (A1)) ∈ CRIS(X/Wn). In 5.2.14 it
has already been shown that this object is final.

Corollary 5.2.16. Let X = SpecA be an affine scheme, flat over Wn with the absolute
Frobenius on A1 surjective. Then the morphism

θn : WDP
n (A1) −→ H0

cris(X/Wn)

is an isomorphism.

Remark 5.2.17. Fontaine constructs in [Fon94] universal PD-thickenings as well.
However, his construction is more complicated, as he constructs the limit for n→∞.
Therefore, he needs additionally the ring R = lim←−A1 formed over the morphisms

A1 → A1, x 7→ xp and gets a ring WDP (R) for the universal PD-thickening. The ring
R appears here, as WDP (R) corresponds to lim←−nW

DP
n (A1) where the morphisms are

given by ρ1 : WDP
n+1(A1)→ WDP

n (A1).

5.3. Comparison Morphisms

Crucial for the applications of the syntomic topology and cohomology will be the
possibility to compare it with other topologies. In the following some morphisms of
topologies and of topoi will be constructed in order to make this possible. Recall:

Definition 5.3.1 ([SGA4.1, Exp. IV, 3.1]). A morphism of topoi f : T ′ −→ T is a
pair (f∗, f

∗) of functors, where f∗ : T ′ −→ T has a left adjoint f ∗ : T −→ T ′ which
commutes with finite inverse limits.2

2[BO78, 5.4] defines a morphism of topoi slightly different to be a functor f∗ admitting a left
adjoint like f∗. Since the left adjoint is unique only up to isomorphism, this definitions allows less
morphisms of topoi.
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While a morphism of topologies gives rise in a canonical way to a morphism of the
associated topoi, there are cases where it is not possible to construct a useful morphism
of the sites and nevertheless morphisms of the topoi can be defined. This is often done
using the following statements which show that it is sufficient to define the morphism
for representable sheaves. This statements can be found in [SGA4.1, Exp. IV, 4.9.4].
Here they are given more detailed and without introducing that much additional
notation.

Proposition 5.3.2 ([BO78, 5.7]). Let C ′ and C be categories. Suppose ϕ : C −→ Ĉ ′ is
a functor. Then there is a unique pair of functors ϕ∗ : Ĉ −→ Ĉ ′ and ϕ∗ : Ĉ ′ −→ Ĉ such
that ϕ∗|C = ϕ and such that ϕ∗ is left adjoint to ϕ∗.

These functors are defined by

ϕ∗(G
′) : T 7→ HomĈ′(ϕ(T ), G′) T ∈ C, G′ ∈ Ĉ ′

ϕ∗(G) : T ′ 7→ lim
{T ′→ϕ(T )}

G(T ) T ′ ∈ C ′, G ∈ Ĉ.

C

Ĉ ′ Ĉ

ϕ

ϕ∗

ϕ∗

i

If C and C ′ are sites, given some more properties, these morphisms even introduce a
morphism of the topoi C̃ → C̃ ′:

Theorem 5.3.3. Let the notation be as in 5.3.2. Let finite inverse limits be repre-
sentable in C ′. Let the following properties be given:

(i) ϕ(T ) is a sheaf for all objects T ∈ C.

(ii) ϕ∗(G
′) is a sheaf for all sheaves G′ on C ′.

(iii) g∗ : C̃ −→ C̃ ′ = (ϕ∗(−))† commutes with finite inverse limits (for example if it
commutes with finite products and finite fiber products).

Then g∗ : C̃ ′ −→ C̃ = ϕ∗|C̃′ is a morphism of topoi.

Proof. Let g∗ : C̃ ′ −→ C̃ = ϕ∗|C̃′ be defined by g∗(G
′) = ϕ∗(G

′). Let g∗ : C̃ −→ C̃ ′ be
defined by g∗(G) = (ϕ∗(G))†. Then g∗ is left adjoint to g∗:

Hom(g∗(G), G′) = Hom((ϕ∗(G))†, G′) = Hom(ϕ∗(G), G′)

= Hom(G,ϕ∗(G
′)) = Hom(G, g∗(G

′))

Since g∗ commutes with finite inverse limits, these functors constitute a morphism of
topoi.
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With the following proposition, hypothesis (iii) can be checked quite easily in a lot of
cases:

Proposition 5.3.4 ([SGA4.1, Exp IV, 4.9.2]). With the notions of 5.3.3: Let (i) and
(ii) be given. If C is a small category where finite inverse limits are representable, then
g∗ commutes already with finite inverse limits, if ϕ does.

Proof. Let ϕ commute with finite inverse limits. Since C is small with representable
finite inverse limits, ϕ∗ commutes with them as well ([SGA4.1, Exp I, Prop. 5.4 4]).
Now, from 5.3.3 (i) and (ii) follows as C is small that g∗ commutes also with finite
inverse limits ([SGA4.1, Exp. III, Prop. 1.3 5]).

Remark 5.3.5. In terms of [SGA4.1, Exp. IV, 4.9], the theorem 5.3.3 can be refor-
mulated: The hypotheses (i) and (ii) say that ϕ is a continuous functor C −→ C̃ ′.
Together with (iii) this means that ϕ induces a morphism of sites from C̃ ′ to C. With
this notation the statement of this proposition can be extended to an equivalence of
categories

Homtop(E, C̃) Morsite(E, C),∼

where C is a site and E is a topos which can be considered as a site, too, using the
notion of covering families of presheaves.

With these propositions we are now able to construct a morphism of topoi ν :
(X/S)CRIS,SYN −→ XSYN, which is done here according to the construction given
in [Koe89].

Theorem 5.3.6. There is a morphism of topoi ν : (X/S)CRIS,SYN −→ XSYN.

Proof. We would like to apply theorem 5.3.3. Therefore, the setting will be as following:

CRIS(X/S) = C ′ C = SYN(X)

(X/S)CRIS,SYN = C̃ ′ C̃ = XSYN

ν

ν∗

ν∗

Thus, we need a morphism ν : SYN(X) −→ (X/S)CRIS,SYN. Let Z ∈ SYN(X). We
define ν(Z) to be the presheaf

ν(Z)(U, T ) = HomX(U,Z).

Now we have to check the conditions of 5.3.3:
(i): ν(Z) is a sheaf: Let (Ui, Ti) −→ (U, T ) be a Zariski-covering, i.e., the diagrams
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Ui Ti

U T

ui vj

are cartesian and the morphisms {Ti −→ T} form a surjective family of open immersions.
Since open immersions are stable under base change, {Ui −→ U} is also a family
of open immersions which is even surjective because nil-immersions are topological
homeomorphisms. Now the ui are X-morphisms and thus {Ui −→ U} is a covering of
U in the Zariski topology of X. Because HomX(−, Z) is a Zariski sheaf on X, we have
an exact sequence HomX(U,Z)→

∏
i HomX(Ui, Z) ⇒

∏
i,j HomX(Ui ×U Uj, Z).

Now let (U ′, T ′) −→ (U, T ) be a surjective syntomic morphism of affine objects.
As above this means that U ′ −→ U is surjective and syntomic and thus fppf. Since
HomX(−, Z) is also an fppf sheaf on X, we have that HomX(U,Z)→ HomX(U ′, Z) ⇒
HomX(U ′ ×U U ′, Z) is exact.

This shows with 4.1.17 that ν∗Z is a sheaf on CRIS(X/S)SYN.

(ii): ν∗F is a sheaf on SYN(X) for all F ∈ (X/S)CRIS,SYN: According to 5.3.2, ν∗F
is defined by ν∗F (Z) = Hom(ν∗Z, F ). Showing the exactness of the sheaf sequence for
a Zariski covering, that is, a surjective family {Zi −→ Z} of open immersions, involves
quite some calculations and is shown in [BO78, 5.8.2]. Thus, is remains to show the
exactness for a surjective and syntomic ϕ : Z ′ −→ Z in SYN(X). Then again ν∗F is
already a sheaf by 4.1.17.

Let u′ ∈ ker(Hom(ν∗Z ′, F ) ⇒ Hom(ν∗(Z ′×Z Z ′), F )). We have to show that there is
a unique u ∈ Hom(ν∗Z, F ) such that u|ν∗Z′ = u′. In the following this sheaf morphism
is constructed. Let (U, T, i, δ) ∈ CRIS(X/S) and f ∈ HomX(U,Z) = ν∗Z(U, T ). One
has to give u(U, T )(f) ∈ F (U, T ).

By base change f comes locally in SYN(X) from an f ′ : Z ′×Z U → Z ′. However, the
syntomic covering Z ′ ×Z U → U does not have to induce an object in CRIS(X/S)SYN

or even a covering of (U, T ). Thus, it is no section of ν∗Z ′. But, the lifting proposition
3.1.7 states that such a crystalline covering exists locally: Let Ui be a Zariski covering
of Z ′ ×Z U such that there is a cartesian diagram

Ui Ti

Z ′ Z ′ ×Z U

Z U T

f ′i

ϕ

f ′

f

v
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with v syntomic. Such a covering exists by 3.1.7. Note that f ′i : Ui → Z ′ ∈
HomX(Ui, Z

′) = ν∗(Z ′)(Ui, Ti). By defining fi := ϕ◦f ′i , we have to define u(Ui, Ti)(fi) =
u′|ν∗Z′(Ui, Ti)(f ′i) = u′(Ui, Ti)(f

′
i) ∈ F (Ui, Ti). Because fi = f |Ui , we have to show that

these sections glue in F (U, T ).
For this let u(fi) = u′(f ′i) := u′(Ui, Ti)(f

′
i), Uij = Ui ×U Uj, and Tij = Ti ×T Tj for

the sake of readability. Then we have

u′(fi)|(Uij ,Tij) = u′(Uij, Tij)(fi|(Uij ,Tij)) As u′ is a sheaf hom

= u′|1,Z′×ZZ′(Uij, Tij)(Uij
fi×fj−→ Z ′ ×Z Z ′) Definition of restriction

= u′|2,Z′×ZZ′(Uij, Tij)(Uij
fi×fj−→ Z ′ ×Z Z ′) As u′|1,Z′×ZZ′ = u′|2,Z′×ZZ′

= u′(fj)|(Uij ,Tij).

This shows that the u(fi) ∈ F (Ui, Ti) fulfill the gluing axioms and give rise to a section
in F (U, T ), which we define to be u(f). Now this defines a sheaf homomorphism
u : ν∗Z −→ F with u|ν∗Z′ = u′ by construction, as can be seen in the above diagram.
It is also unique with this property as noted in the construction, thus this shows the
exactness of the sheaf sequence for Z ′ −→ Z. Hence, ν∗Z is a sheaf.

(iii): By 5.3.4 is suffices to check that ν commutes with finite inverse limits or even
with finite products and fiber products:

ν(Z1 ×Z Z2)(U, T ) = HomX(U,Z1 ×Z Z2)

= HomX(U,Z1)×HomX(U,Z) HomX(U,Z2)

= ν(Z1)(U, T )×ν(Z)(U,T ) ν(Z2)(U, T )

= (ν(Z1)×ν(Z) ν(Z2))(U, T )

This shows that ν commutes with fiber products. With Z = X one gets the statement
for products. This concludes the proof.

Theorem 5.3.7 ([Koe89]). There is a commutative diagram of morphisms of topoi

(X/S)CRIS,ZAR XZAR

(X/S)CRIS,SYN XSYN,

uX/S

β

νX/S

α

where α and β are the morphisms of topoi created by coarsing the topology. The
morphism uX/S is defined in [BO78, 5.18].

Proof. It suffices to show ν∗X/S ◦α∗ = β∗ ◦ u∗X/S for Z ∈ ZAR(X) as this determines all

the morphisms uniquely by 5.3.3. So let Z ∈ ZAR(X). Then one has (ν∗X/S ◦ α∗)(Z) =

ν(Z), as representable functors are already syntomic sheaves. On the other hand,
(β∗ ◦u∗X/S)(Z) is, by definition, the associated sheaf to u∗X/SZ in the syntomic topology.

But u∗X/SZ and ν(Z) are by construction the same sheaf, the latter one being already

a sheaf in CRIS(X/S)CRIS,SYN. Thus (β∗ ◦ u∗X/S)(Z) = u∗X/SZ = ν(Z).
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Lemma 5.3.8 ([Koe89]). Let F ∈ (X/S)CRIS,SYN, Z ∈ SYN(X), and ν = νX/S. Then
one has

ν∗F(Z) = HomZ/S(e,F|(Z/S)CRIS,SYN
) = H0((Z/S)CRIS,SYN,F|(Z/S)CRIS,SYN

).

Proof. By definition in 5.3.2 we have

ν∗F(Z) = HomX/S(ν(Z),F),

where ν(Z) : (U, T ) 7→ HomX(U,Z). Thus, it is sufficient to show HomX/S(ν(Z),F) ∼=
HomZ/S(e,F|(Z/S)). Therefore, let u : ν(Z) → F . We define an morphism u′ : e →
F|(Z/S) on (Z/S): Let (U

f→ Z, T ) ∈ CRIS(Z/S). Then u′ is defined by

u′(U → Z, T ) : e(U, T ) = {e} → F|(Z/S)(U, T ) = F(U, T )

e 7→ u(U, T )(f).

On the other hand let u′ : e→ F(Z/S). Then a morphism u : ν(Z)→ F on (X/S) is
defined for (U, T ) ∈ CRIS(X/S) by

u(U, T ) : ν(Z)(U, T ) = HomX(U,Z)→ F(U, T )

f 7→ u′(U
f→ Z, T )(e).

The assignments u↔ u′ are mutually inverse which shows the identity. The identity
HomZ/S(e,F|(Z/S)CRIS,SYN

) = H0((Z/S)CRIS,SYN,F|(Z/S)CRIS,SYN
) is just by definition of

H0 (4.1.19).

In the following the cohomology groups of this different topoi will be compared. Of
course, they can not be expected to be isomorphic in general, but there are special
cases which will be sufficiently general for our purposes. In order to formulate this
conditions, we need the notion of crystals, which are the objects giving rise to the
name of crystalline cohomology. For the usual crystalline-Zariski site they are defined
as follows:

Definition 5.3.9 ([Bau92, 1.13]). A crystal of OX/S-modules is a sheaf F of OX/S-
modules in (X/S)CRIS,ZAR such that for every morphism (u, t) : (U ′, T ′) −→ (U, T ) in
CRIS(X/S)ZAR the canonical morphism of OT ′-modules

ρ(u,v) ⊗ 1 : v∗(F(U,T )) −→ F(U ′,T ′)

is an isomorphism. Morphisms of crystals are morphisms of OX/S-modules. A crystal
is called quasi-coherent resp. locally free of finite rank if for any object (U, T ) the
OT -module F(U,T ) has this property.

The following proposition states that a quasi-coherent crystal is already a sheaf in
the syntomic topology (and in fact even for fppf and fpqc, see [BBM82, 1.1.19]) and
compares their cohomology.
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Proposition 5.3.10 ([Bau92, 1.14]). Let F ∈ (X/S)CRIS,ZAR be a quasi-coherent
crystal of OX/S-modules. Then F is also a sheaf for the syntomic cohomology on
CRIS(X/S) and for any j > 0

Rjβ∗F = 0,

where β is the canonical morphism (X/S)CRIS,SYN −→ (X/S)CRIS,ZAR. In particular,
there is no need to distinguish between crystals on (X/S)CRIS,ZAR and (X/S)CRIS,SYN.

Proof. See [BBM82, 1.1.18, 1.1.19] or [Bar].

Corollary 5.3.11. If F is a quasi-coherent crystal of OX/S-modules, one has for any
j ≥ 0:

Hj((X/S)CRIS,SYN,F) ∼= Hj((X/S)CRIS,ZAR).

Remark 5.3.12. This tells us that the exact sequence

0 JX/S OX/S O 0

([BO78, 5.2]) exists on the crystalline syntomic site, too.

It would be helpful to have a similar statement for the morphism u = uX/S :
(X/S)CRIS,SYN −→ XSYN. However, much more restrictive hypotheses on the un-
derlying schemes are needed in this case and some syntomic properties will enter in
the proof. First we note the following lemma which allows us to calculate certain
crystalline cohomology groups using Zariski cohomology. It is a combined version of
the slightly more special ones in [Bau92, 1.16] and [Koe89].

Lemma 5.3.13 ([Bau92, 1.16], [Koe89]). Let k be a perfect ring of characteristic
p, Wn := Wn(k) the ring of Witt vectors of length n endowed with the canonical
divided power structure on the ideal (p) ⊂ Wn(k). Let R be a Wn-algebra such that
the Frobenius morphism is surjective on the k-algebra R0 = R/(p) and let S = SpecR.
Then there exists an affine PD-thickening D = SpecWDP

n (R0) of S, such that for all
j ≥ 0 and all abelian sheaves F in (S/Wn(k))CRIS,ZAR one has

Hj((S/Wn)CRIS,ZAR,F) ∼= Hj
ZAR(D,FD).

Proof. By 5.2.15, (S,D) is a final object in CRIS(S/Wn) and for any (U, T ) ∈
CRIS(S/Wn) there is a morphism

θn : (U, T ) −→ (S,D)

compatible with morphisms in CRIS(S/Wn). This allows to define a morphism of topoi

Θ : (S/Wn)CRIS,ZAR −→ DZAR

Θ∗F := FD
(Θ∗G)(U,T ) := θ−1

n G,

where F ∈ (S/Wn)CRIS,ZAR, G ∈ DZAR and (U, T ) ∈ CRIS(S/Wn). Since Θ∗ is exact
([BO78, 5.26]), the proposition follows from the Leray spectral sequence.
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With this tool, it is possible to show that in this context the crystalline-syntomic and
the syntomic cohomology groups are isomorphic:

Proposition 5.3.14 ([Bau92, 1.17]). Let k be a perfect ring of characteristic p, Wn :=
Wn(k) the ring of Witt vectors of length n, endowed with the canonical divided power
structure on the ideal (p) ⊂ Wn(k). Let further S be a k-scheme and F a quasi-coherent
crystal on CRIS(S/Σ)SYN. Then one has

Rju∗F = 0 for j > 0 and

Hj((S/Σ)CRIS,SYN,F) ∼= Hj(SSYN, u∗F) for j ≥ 0.

Proof. We have to calculate the higher direct images Rju∗F of F . Such a Rju∗F is the
sheaf associated to the presheaf U 7→ F j(U) := Hj((U/Σ)CRIS,SYN,F). Therefore, it is
sufficient to show that this presheaf becomes locally trivial, or even the following: For
any affine S-scheme U = SpecA there is a family of faithfully flat syntomic morphisms
{Vi −→ U}i∈I satisfying lim−→i∈I F

j(Vi) = 0 for j > 0.

Now, the crucial point is that for any a ∈ A the morphism Spec(A[T ]/(T p− a)) −→
SpecA is a syntomic covering: It is of finite presentation, it is flat as A[T ]/(T p − a)
is free as A-module and it factors via SpecA[T ]/(T p − a) −→ SpecA[T ] −→ SpecA
clearly via a regular immersion (T p − a is a non zero-divisor in A[T ]) followed by a
smooth morphism. Finally as A −→ A[T ]/(T p − a) is an integral ring extension, it is
surjective by going up.

Thus, we define a ring Â by

Â := lim−→
n∈N

An, A0 := A, An+1 := An[(Ta)a∈An ]/((T pa − a)a∈An).

This ring Â can be written as Â = lim−→i∈I Bi where Bi are faithfully flat syntomic

A-algebras (Let I = Â and a ≤ a′ if A(a) ⊂ A(a′). For every a ∈ Â there is n ∈ N
such that ap

n ∈ A, thus a and Ba = A(a) ⊂ Â can be generated by n syntomic ring
extensions like above and thus Ba is a syntomic A-algebra). One has

lim−→
i∈I

F j(SpecBi) = lim−→
i∈I

Hj((SpecBi/Σ)CRIS,SYN,F)

∼= lim−→
i∈I

Hj((SpecBi/Σ)CRIS,ZAR,F) 5.3.11

∼= Hj((Spec Â/Σ)CRIS,ZAR,F). [Kat94, 2.4.3]

In addition, the Frobenius morphism on Â is clearly surjective by the definition of Â
and thus we can use 5.3.13: Let D = SpecWDP

n (Â). Then one gets

Hj((Spec Â/Σ)CRIS,ZAR,F) ∼= Hj
ZAR(D,FD) = 0,

where the second step is due to Serre’s criterion [Sha96, 2.1.2], as FD is a quasi-coherent
on D.
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Remark 5.3.15. The fact that locally the Frobenius becomes surjective is a special
property of the syntomic topology. This would not work e.g., in étale topology: The
polynom T p − a is inseparable in characteristic p and thus the induced morphism
SpecA[T ]/(T p−a) −→ SpecA is not étale in general. For an explicit example consider
A = Fp(X) as Fp-scheme. Then the morphism is not étale at 0 ∈ A[T ]/(T p −X) as
the induced residue field extension Fp(X)(X1/p)|Fp(X) is inseparable.
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6. Sheaves on the Syntomic Site

This section will introduce some very important syntomic sheaves on sites of schemes
over perfect fields of characteristic p. These sheaves will play a major part in the proof
of BSD presented later. The material in this part is based on the manuscript Die
syntomische Kohomologie by Köck [Koe89]. It was first formulated by Fontaine and
Messing in [FM87]. Here it is generalized in order to allow the case of syn(S) for S a
syntomic Wn(k)-scheme which will be the smooth curve from BSD later.

Let k be a perfect field of characteristic p > 0. Let Wn = Wn(k) be the ring of Witt
vectors of length n. Unless otherwise noted, k is considered a Wn(k)-algebra via

Wn(k) Wn(k)
Frob−n

k,
π0

where π0 is the projection onto the first component, which corresponds to reduction
modulo p.

Let s ∈ N and X be a Ws-scheme. For i ≤ s define Xi = X ⊗Ws Wi. By 5.3.6 this
induces for n ≥ i a morphism of topoi

νi := νXi/Wn : (Xi/Wn)CRIS,SYN −→ (Xi)SYN.

Definition 6.1.1. Let Ocris
X,n,i denote the sheaf (νi)∗(OXi/Wn) on SYN(Xi). The induced

sheaf on syn(Xi) is also denoted by Ocris
X,n,i. If there is no ambiguity possible, often just

Ocris
n,i will be used.

Proposition 6.1.2. The sections of the sheaf Ocris
X,n,i for Z ∈ SYN(Xi) are

Ocris
X,n,i(Z) = H0((Z/Wn)CRIS,SYN,OZ/Wn).

They are commutative Wn-algebras with a Frobenius endomorphism F .

Proof. By 5.3.8 and 4.1.20 one has

(νi)∗(OXi/Wn)(Z) = H0((Z/Wn)CRIS,SYN,OZ/Wn) = Γ(OZ/Wn)

= lim←−
(U,T )

OZ/Wn((U, T )) = lim←−OT (T ),

where the limit runs through CRIS(Z/Wn). Since the T are Wn-schemes, their global
sections are Wn-algebras and hence is the limit. The Frobenius is induced by the
Frobenius on OZ/Wn .
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Lemma 6.1.3. Let i ≤ j and inc : Xj ↪→ Xi the canonical closed immersion. Then
one has

(inc)∗(Ocris
X,n,j) = Ocris

X,n,i.

Proof. Let Z ∈ SYN(Xi). Then

(inc)∗(Ocris
X,n,j)(Z) = Ocris

X,n,j(Z ⊗Wi
Wj)

= H0
cris((Z ⊗Wi

Wj)/Wn) by 5.3.8

= H0
cris(Z/Wn) rigidity theorem [BO78, 5.17]

= Ocris
X,n,i(Z).

Remark 6.1.4. This allows us to suppress the index i from now on: Ocris
X,n = Ocris

X,i,n.
Since (inc)∗ is exact ([BO78, 6.2]), this does not change the cohomology.

The following lemma shows that we can use the sheaves Ocris
X,n to calculate crystalline

cohomology groups on the syntomic site.

Lemma 6.1.5. We have isomorphisms for Z ∈ SYN(X) resp. Z ∈ syn(X)

H i
SYN(Z,Ocris

X,n) = H i
CRIS,SYN(Z/Wn)

H i
syn(Z,Ocris

X,n) = H i
cris,syn(Z/Wn).

Proof. This follows from 5.3.14.

Next, a more explicit description of Ocris
X,n will be given for a syntomic Ws-scheme X,

using the results from 5.2.15. From now on we work on the small syntomic site, as
we are going to apply the exactness criterion 5.1.11. Let Z be in syn(X), then Z is a
Ws-scheme and by 5.2.14 there is a canonical homomorphism

WDP
n (Γ(Z1,OZ1)) −→ H0

cris(Zi/Wn)

for i sufficiently small (i ≤ s, n). Let WDP
n denote the presheaf Z 7→ WDP

n (Γ(Z1,OZ1))
on syn(X): This allows us to define a morphism of presheaves WDP

n −→ Ocris
X,n which

can be extended to the associated sheaf W̃DP
n on syn(X):

W̃DP
n −→ Ocris

X,n.

Proposition 6.1.6. Let X be a syntomic Ws-scheme. Then the homomorphism

W̃DP
n −→ Ocris

X,n

is an isomorphism.
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Proof. This will be proved using the exactness criterion 5.1.11: Let X0 = SpecA0 ∈
MX . We have to prove that lim−→i

WDP
n (Ai/p) ∼= lim−→i

H0
cris(Ai/Wn). Since the PD-

envelope is a left-adjoint functor (A.1.6), one has lim−→i
WDP
n (Ai/p) = WDP

n (lim−→i
Ai/p)

which equals H0
cris(A/Wn) (5.2.15) as the Frobenius is surjective on A = lim−→i

Ai by

5.1.12. As H0
cris(lim−→i

Ai/Wn) = lim−→i
H0

cris(Ai/Wn) ([SGA4.2, Exp. VI, 5]), the statement
follows.

Proposition 6.1.7. Let n ≥ m. The canonical morphism

Ocris
X,n Ocris

X,m
ν

given for Z ∈ syn(X) as the morphism H0
cris(Zi/Wn)→ H0

cris(Zi/Wm) induced by the

canonical homomorphism Wn → Wm, (x0, . . . , xn−1) 7→ (xp
n−m

0 , . . . , xp
n−m

m−1 ) is

W̃DP
n

ν−→ W̃DP
m

(a0, . . . , an−1) 7−→ (ap
n−m

0 , . . . , ap
n−m

m−1 ).

Proof. We have Ocris
n (Z) = H0

cris(Zi/Wn) = lim←−(U,T )
OT (T ) where the limit runs trough

(U, T ) ∈ CRIS(Zi/Wn). The morphism SpecWm → SpecWn induces an inclusion
CRIS(Zi/Wm) ⊂ CRIS(Zi/Wn). The morphism ν is given on the limit by projection:

lim←−
(U,T )∈

CRIS(Zi/Wn)

OT (T ) −→ lim←−
(U,T )∈

CRIS(Zi/Wm)

OT (T )

The morphism W̃DP
n (Z)→ Ocris

n (Z) is given via the universal property of the projective
limit by

W̃DP
n (Z)

ν−→ OT (T )

(a0, . . . , an−1) 7−→
∑
i

piâp
n−i

i

for (Z, T ) ∈ CRIS(Zi/Wn) and is an isomorphism, if the Frobenius on Z1 is surjec-
tive. Let Zi = SpecA affine and (Zi, T ) ∈ CRIS(Zi/Wm) ⊂ CRIS(Zi/Wn). Then

we have
∑n−1

i=0 p
iâp

n−i

i = θn(a0, . . . , an−1) = θm(ν(a0, . . . , an)) =
∑m−1

i=0 pib̂p
m−i

i with
ν(a0, . . . , an−1) = (b0, . . . , bm−1). Hence the statement.

Proposition 6.1.8. The Frobenius homomorphism on Ocris
X,n reads under the isomor-

phism W̃DP
n
∼= Ocris

X,n as

W̃DP
n

F−→ W̃DP
n

(a0, . . . , an−1) 7−→ (ap0, . . . , a
p
n−1).

67



Lemma 6.1.9. Let B be a smooth Wn-algebra of finite type, P1, . . . , Pd ∈ B a sequence-
regular sequence, and J = (P1, . . . , Pd) such that A = B/J is flat over Wn. Then for
all r ≥ 0 the ideal J̄ [r] ⊆ DB,(p)(J) ist flat over Wn. Here, J̄ [r] denotes the r-th divided
power of the PD-ideal J̄ ⊆ DB,(p)(J).

Proof. Let X = SpecA and Y = SpecB. There is a commutative diagram

X Y

SpecWn Ad
Wn
,

α

z

where z is the zero section Ti 7→ 0 and α is induced by Ti 7→ Pi. This diagram is
in fact cartesian: Let C be a ring with homomorphisms c1 : B → C and c2 : Wn →
C commuting over Wn[T1, . . . , Td]. Because α((T1, . . . , Td)) ⊆ B generates J and
(T1, . . . , Td) = ker(z) one has J ⊆ ker c1 and therefore c1 factors uniquely via B/J = A.
On the other hand, c2 factors via the structure morphism Wn → B and therefore via
B/J , too.

Let x ∈ X. The elements T1, . . . , Td ∈ OAdWn ,α(x) form a sequence-regular sequence.

As these are mapped by α to the B-sequence-regular sequence P1, . . . , Pd in B and as
B/(P1, . . . , Pd) is flat over Wn[T1, . . . , Td]/(T1, . . . , Td) = Wn, the stalk OY,x is flat over
OAdWn ,α(x) by [EGAIV.1, 0.15.1.21]. Since the flat locus is open ([GW10, 14.42]), there

exist an open neighbourhood U of X in Y such that U → Ad
Wn

is flat.
By A.1.7, one has DX,(p)(Y ) = DX,(p)(U). Furthermore, as U → Ad

Wn
is flat, by

[BO78, 3.21] we get

DX,(p)(U) = DSpecWn,(p)(A
d
Wn

)×AdWn U.

Therefore, by flat base change we see that DX,(p)(Y ) = DSpecWn,(p)(A
d
Wn

) ×AdWn
U is flat over DSpecWn,(p)(A

d
Wn

) and even that J̄ [r] ⊆ DB,(p)(J) flat over Ī [r] ⊆
DWn[T1,...,Td],(p)(T1, . . . , Td). Since Ī [r] =

⊕
|i|≥rWnT

[i1]
1 · · ·T [id]

d is a free Wn-module
and as such flat over Wn, this implies the statement.

Lemma 6.1.10. Let A be a k-algebra with surjective Frobenius. Then for all n,m ≥ 1
there is an exact sequence

WDP
n+m(A) WDP

n+m(A)
pn

WDP
n (A)

ν
0,

where ν is given by ν : Wn+m(A)→ Wn(A), (x0, . . . , xn+m−1) 7→ (xp
m

0 , . . . , xp
m

n−1).

Proof. Since the Frobenius on A is surjective, so is the map ν : Wn+m(A)→ Wn(A).
Furthermore, one has ν(In+m(A)) = In(A) and as by 5.2.11 we have In(A) = Jn(A),
this induces a surjective map WDP

n+m(A) → WDP
n (A). Obviously, one has ν ◦ pn = 0.

Thus, it remains to show that ker(ν) ⊆ im(pn).
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There is a PD-thickening θn+m : WDP
n+m(A) → A, which is a morphism of Wn+m-

algebras. By factoring out pn, we get a PD-thickening WDP
n+m(A)/(pn)→ A/(pn) = A,

which is a morphism of Wn+m/(p
n) = Wn-algebras. By 5.2.13, we get a morphism

θn : WDP
n (A) → WDP

n+m(A). We claim that it satisfies the following commutative
diagram:

WDP
n (A)

WDP
n+m(A) WDP

n+m(A)/pn

ν

π

θn

This would show that ν is injective up to pn and therefore ker(ν) ⊆ im(pn).
To show the commutativity, let a = (a0, . . . , an+m−1) ∈ Wn+m(A). Then ν(a) =

(ap
m

0 , . . . , ap
m

n−1). To calculate θn((ap
m

0 , . . . , ap
m

n−1)), we need to choose lifts âi for the ap
m

i in
WDP
n+m(A)/p under the homomorphism θn+m : WDP

n+m(A)/pn → A, (a0, . . . , an+m−1) 7→
ap

m+n

0 + · · · + pm+n−1apm+n−1 = ap
m+n

0 . Let âi := [ãi] = (ãi, 0, . . . , 0) ∈ WDP
n+m(A)/pn

with ãp
n

i = ai be such a lift. Then we have

θn(ν(a)) = θn(ap
m

0 , . . . , ap
m

n−1)

=
n−1∑
k=0

pkân−ki =
n−1∑
k=0

pk[ãn−ki ]

= (ãp
n

0 , . . . , ã
pn

n−1, 0, . . . , 0)

= (a0, . . . , an−1, 0, . . . , 0) = π(a).

Remark 6.1.11. It is worth noting that this sequence becomes exact not before
taking the PD-envelopes: For example, let ε ∈ A with ε2 = 0. Then obviously
(ε, 0, . . . , 0) ∈ ker(ν), but how should (ε, 0, . . . , 0) ∈ (pn) hold? In fact it doesn’t have
to be true in Wn+m(A), but it is true in WDP

n+m(A): Let ε̃ ∈ A such that ε̃p
n

= ε.

Then θn+m([ε̃]) = ε̃p
m+n

= 0, thus [ε̃] ∈ In+m(A). As [ε] is in the PD-ideal, one has
[ε] = [ε̃]p

n
= (pn)!γpn([ε̃]) ∈ (pn).

This allows us to construct a fundamental exact sequence on the syntomic topos:

Proposition 6.1.12 ([Koe89]). Let X be a syntomic Ws-scheme. Then there is an
exact sequence on syn(X):

Ocris
X,n+m Ocris

X,n+m

pm

Ocris
X,n+m

pn

Ocris
X,n

ν
0

Proof. First the exactness on the left side will be shown. Of course pn ◦ pm = 0, thus
it has to be shown that ker pn ⊆ im pm. Let U ∈ syn(X) and s ∈ Ocris

X,n+m(U) with
pns = 0. It is sufficient to show that there is a covering {Ui → U} in syn(X) and
ti ∈ Ocris

X,n+m(Ui) with pmti = s|Ui .
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By 5.1.10, U can be assumed to be of the form U = Spec(B/J) with B =
Ws[T1, . . . , Tl] and J = (P1, . . . , Pd) with P1, . . . , Pd a sequence-regular sequence in B.
Then we have

Ocris
X,n+m(U) = H0

cris(U/Wn+m,OU/Wn+m)

= ker

(
J̄ [0] d−→ J̄ [0] ⊗ Ω1

Al
Wn+m/Wn+m

)
⊆ J̄ [0] = DU,(p)(A

l
Wn+m

).

by [BO78, 7.2] as Al
Wn+m

is flat over Wn+m. Furthermore, J̄ [0] is flat over Wn+m by
6.1.9. Thus, the exact sequence

Wn+m Wn+m

pm

Wn+m

pn

induces an exact sequence J̄ [0] → J̄ [0] → J̄ [0] which shows that there is a t ∈ J̄ [0] with
pmt = s. Let dt =

∑l
i=1 ai ⊗ dTi ∈ J [0] ⊗ Ω1

Al
Wn+m/Wn+m

denote the image of t under

d with ai ∈ J̄ [0]. Of course, dt 6= 0 in general. But by defining V = Un+m by base

change with the relative Frobenius as in 5.1.11, one has in V : Ti = (T p
−n−m

i )p
n+m

and

thus d(Ti|V ) = d(T p
−n−m

i )p
n+m

= pn+m · d(T p
−n−m

i )p
n+m−1 = 0. Therefore, d(t|V ) = 0

and t|V ∈ ker(d) = Ocris
X,n+m(V ) which shows the exactness in the first part.

The exactness in the other parts is a consequence from 6.1.10 and the exactness
criterion: Let X0 = SpecA0 ∈MX . Then

WDP
n+m(lim−→Ai/p) WDP

n+m(lim−→Ai/p) WDP
n (lim−→Ai/p) 0

is exact by 6.1.10. By A.1.6 this sequence equals

lim−→WDP
n+m(Ai/p) lim−→WDP

n+m(Ai/p) lim−→WDP
n (Ai/p) 0,

which shows the statement by the exactness criterion 5.1.11.

Corollary 6.1.13. Let X be a syntomic Ws-scheme. Then there is a short exact
sequence on syn(X)

0 Ocris
X,m Ocris

X,n+m

pn

Ocris
X,n

ν
0.

Proof. From 6.1.12 one obviously gets a short exact sequence

0 Ocris
X,m+n/p

m Ocris
X,n+m

pn

Ocris
X,n

ν
0,

thus it remains to show that there is an isomorphism Ocris
X,m+n/p

m ∼= Ocris
X,m. But this

isomorphism is induced by the epimorphism ν : Ocris
X,m+n � Ocris

X,m gained by exchanging
n and m after factoring out the kernel pmOcris

X,m+n.
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Remark 6.1.14. Let A be a k-algebra with surjective Frobenius. Then Ocris
X,n(A) =

WDP
n (A). In this case the morphism pm : Ocris

X,n → Ocris
X,n+m is given by (a0, . . . , an−1) 7→

(0, . . . , 0, a0, . . . , an−1).

Definition 6.1.15. Let X be a syntomic Ws-scheme. Like for Ocris
X,n,i we define OX,n,i

to be the push-forward of OXi under the morphism νi. It again turns out to be
independent of i. Therefore, we can omit the index and write OX,n ∈ syn(X).

Proposition 6.1.16. It can be easily shown that On = OX/pn, with OX the structure
sheaf on syn(X).

Proposition 6.1.17. Let X be a syntomic Ws-scheme. Then there is an epimorphism
of sheaves on syn(X):

Ocris
n → On.

This epimorphism is induced by the exact sequence 5.3.12 on (Xi/Wn)cris,syn and
application of νi,∗.

Proposition 6.1.18. There is a commutative diagram

Ocris
n+m On+m

Ocris
n On,

ν ν′

where ν ′ is induced by the morphism Wn+m → Wn.

We define the sheaf of ideals Jn on syn(X) by the short exact sequence

0 Jn Ocris
n On 0.

Note that for s = 1 we have On = OX = Ga and thus

0 Jn Ocris
n Ga 0.

From 6.1.12 we note that

ker(Ocris
n+1 → Ocris

n ) = pnOcris
n+1.

Multiplication by p induces an injection

p : Ocris
n ↪→ Ocris

n+1

by 6.1.13. The commutative diagram 6.1.18 shows that the projection Ocris
n+1 � Ocris

n

induces a surjection Jn+1 � Jn.
From now on let X be a syntomic k-scheme, i.e., s = 1. Then On = Ga = OX . In

this case the surjection Jn+1 � Jn has kernel pnOcris
n+1 as well: Obviously, one has

ker(Jn+1 → Jn) ⊆ ker(Ocris
n+1 → Ocris

n ) = pnOcris
n+1. But as X is a k-scheme, we have

char On+1 = char Ga = p and therefore pnOcris
n+1 ⊂ Jn+1.
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Proposition 6.1.19. On Ocris
n there is a Frobenius F . On Ocris

1 the kernel of F is J1.

Proof. The proof will use the exactness criterion (5.1.11). Let Z0 = SpecA0 ∈ MX

(see 5.1.10). By the exactness criterion, it is sufficient to show the equality for the ideals
of WDP

1 (Ai/p) corresponding to J1 and kerF . The first one is generated as a PD-ideal
by the ideal J1 := {(a0) ∈ W1(Ai/p) | âp0 = 0}, while the second one is generated as
a PD-ideal by the ideal I1 := {(a0) ∈ W1(Ai/p) | ap0 = 0}. By 5.2.11, these ideals are
equal, as W1(Ai/p) is of characteristic p. Therefore, the statement follows.

Lemma 6.1.20. By writing J1 ⊂ Ocris
n+1 for the image of J1 in Ocris

n+1 under the injection
pn : Ocris

1 ↪→ Ocris
n+1 one defines

In := Jn+1/J1

and gets an exact sequence

0 In Ocris
n+1/J1 Ga 0.

Proof. This is done by factoring out J1 from the short exact sequence 0 → Jn+1 →
Ocris
n+1 → On+1 → 0.

Since by definition, J1 ⊂ pnOcris
n+1, the surjection Jn+1 → Jn factors via In giving rise

to the exact sequence

0 pnOcris
n+1/J1 In Jn 0.

Proposition 6.1.21 ([Bau92, 3.4 (i)]). The Frobenius F on Ocris
n+1 induces a morphism

p−1F : In → Ocris
n , which makes the following diagram commutative:

Jn+1 In

pOcris
n+1 Ocris

n .

F p−1F

p

Proof. First we show that the Frobenius maps Jn+1 to pOcris
n+1: Using the exact-

ness criterion we can work locally on a k-algebra A with surjective Frobenius. Let

(a0, . . . , an) ∈ Jn+1(A), i.e., ap
n

0 = 0. Choosing ãi with ãp
n+1

i = ai we have (a0, . . . , an) =
[ã0]

pn+1
+ · · · + pn[ãn]p and F (a0, . . . , an) = (ap0, . . . , a

p
n) = [ã0]

pn+2
+ · · · + pn[ãn]p

2
=

[ã0]p
n+2

+ p(. . . ). But as the Teichmüller lift commutes with multiplication, it follows
that [ã0]p

n+2
= [a0]p = pγp[a0], since [a0] is an element of the PD ideal Jn+1(A). This

shows F (a0, . . . , an) ∈ pOcris
n+1.

By the exactness criterion and 6.1.14 it is easy to see that ker(F : pnOcris
n+1 → Ocris

n+1) =
J1. Thus J1 ⊂ kerF and F : Jn+1 → pOcris

n+1 factors via In. Composing the map
F : In → pOcris

n+1 with the inverse of the isomorphism p : Ocris
n → pOcris

n+1 we get the
morphism p−1F which makes the above diagram commute by construction.
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For the morphism p−1F there is a short exact sequence which will be fundamental for
the proof of the conjecture of Birch and Swinnerton Dyer discussed in the next section:

Proposition 6.1.22 ([Bau92, 3.4 (ii)]). On syn(X) there is an exact sequence

0 µpn In Ocris
n

1− p−1F
0.

Proof. This proof is quite complicated and therefore omitted here. See [Bau92, 3.4,
3.5].
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7. The Proof of BSD

This section will sketch as an example of the usefulness of the syntomic cohomology a
proof of the conjecture of Birch and Swinnerton-Dyer for abelian varieties with good
reduction everywhere over function fields in characteristic p > 0 as given in [Bau92]. In
this section, p will denote an odd prime. The following objects will play an important
role:

(i) Let K be an algebraic function field in one variable with field of constants Fq,
q = pr.

(ii) Let S/Fq be the smooth projective integral curve corresponding to K.

(iii) Let AK/K be an abelian variety over K, which has good reduction everywhere.

(iv) Let π : A −→ S an abelian scheme with generic fiber π−1(s) = AK .

The goal of [Bau92] is to prove the conjecture of Birch and Swinnerton-Dyer as stated
in [Tat66, conj. B], which reads in our case as follows:

Theorem 7.0.1. Let AK/K be of dimension d. Let ρ be the order of the zero of the L-
function L∗(s) of AK/K at s = 1. Let g be the genus of K. Let h : AK(K)×ÂK(K) −→
R denote the height pairing. If X(AK/K)(`) is finite for one prime `, then the whole
X(Ak/K) is finite and∣∣∣∣lims→1

L∗(s)

(s− 1)ρ

∣∣∣∣ =
#X(AK/K) · | deth|

# TorAK(K) ·# Tor ÂK(K)
.

Up to p-part, this is already proven by Tate ([Tat66, Thm 5.2]) for elliptic curves and
by Schneider ([Sch82, Theorem]) for arbitrary abelian varieties using étale cohomology.
Thus, it is sufficient to consider the p-part.

7.1. The L-Function of an Abelian Variety in Terms of
Syntomic Cohomology Groups

To AK/K one attaches the Hasse-Weil L-function:

L(s) = LA(q−s), where

LA(t) =
∏
x∈|S|

det(1− ϕ−deg x · tdeg x|H1
ét(Āx,Q`))

−1.

The first step is to transform the L-function into a function in terms of crystalline
cohomology groups:
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Proposition 7.1.1 ([Bau92, 2.4]). L(s) = LCRIS(p−s), where

LCRIS(t) =
2∏
j=0

det(1− Φt|Hj
CRIS,ZAR(S/Zp, EQp))(−1)j+1

.

with Hj
CRIS,ZAR(S/ZpEQp) is defined as follws (see [Bau92, 2.1]): Let E = D(A) =

Ext1
S/Zp

(u∗S/ZpA,OS/Zp) be the Dieudonné module of A/S. Through the closed immer-

sion i : Σn := Spec(Z/pnZ) ↪→ Spec(Zp) define En := i∗CRISE ' Ext(u∗S/ΣnA,OS/Σn)

[BBM82, 2.3.6]. Then let H∗CRIS(S/Zp, EQp) := lim←−nH
∗((S/Σn)CRIS,ZAR, En) ⊗Zp Qp

where the transition maps are induced by i∗CRISEn ' En−1 with respect to the closed
immersion i : Σn−1 ↪→ Σn. In addition, Φ denotes the Frobenius endomorphism as
defined in [Bau92, 2.3].

Now we can pass over to the syntomic site using the morphisms constructed earlier,
especially the morphism u : (S/Σ)CRIS,SYN −→ SSYN. LetOcris

n = u∗OS/Σn , as defined in
6.1.4. Then, using the morphisms of topoi and checking some Frobenius compatibilities
one translates the L-function first to an L-function LSYN for the big syntomic site and
gets finally

Proposition 7.1.2 ([Bau92, 2.7]). Let F denote the endomorphism which is induced
on Hj(Ssyn, Ext1

Ssyn
(A,Ocris

n )) by the Frobenius of Ocris
n . Further let

Hj(Ssyn, Ext1(A,Ocris
Qp

)) := lim←−
n

Hj(Ssyn, Ext1
Ssyn

(A,Ocris
n ))⊗Zp Qp,

where the transition maps are induced by the natural epimorphisms Ocris
n+1 −→ Ocris

n .
Then the Hasse-Weil L-function of AK/K is given by L(s) = Lsyn(p−s) where

Lsyn(t) :=
2∏
j=0

det(1− Ft|Hj(Ssyn, Ext1(A,Ocris
Qp

)))(−1)j+1

.

7.2. Calculating the Syntomic Cohomology Groups

The calculation of the syntomic cohomology groups consists of several steps. First, the
factors of the syntomic L-function are expressed in terms of certain # ker /# coker-
fractions of some morphisms. Plugging in some exact sequences, this can be expressed in
terms of the size of some cohomology groups. In the last step, these sizes of cohomology
groups can be identified with the arithmetic invariants appearing in the conjecture of
Birch and Swinnerton-Dyer.

Application of Ext1
Ssyn

(A,−) to the exact sequences 6.1.20 and 6.1.22 gives two short
exact sequences of syntomic sheaves ([Bau92, 3.7]):

0 Ext1
Ssyn

(A, In) Ext1
Ssyn

(A,Ocris
n+1/J1)

i Ext1
Ssyn

(A,Ga) 0.
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0 Ext1
Ssyn

(A, µpn) Ext1
Ssyn

(A, In) Ext1
Ssyn

(A,Ocris
n )

1− p−1F
0.

Now one defines

Hj(Ssyn, Ext1(A,Ocris
Zp

)) := lim←−
n

Hj(Ssyn, Ext1
Ssyn

(A,Ocris
n ))

Hj(Ssyn, Ext1(A, IZp)) := lim←−
n

Hj(Ssyn, Ext1
Ssyn

(A, In)),

which gives rise to two important long exact sequences (we suppress the index in Ssyn

to simplify notation):

Lemma 7.2.1 ([Bau92, 3.8]). There are long exact sequences of finitely generated
Zp-modules from the two short exact sequences above:

. . . −→ Hj(S, Ext1(A, IZp))
i−→ Hj(S, Ext1(A,Ocris

Zp
)) −→ Hj(S, Ext1(A,Ga)) −→ . . .

. . . −→ Hj(S, TpÂ) −→ Hj(S, Ext1(A, IZp))
1−p−1F−→ Hj(S, Ext1(A,Ocris

Zp
)) −→ . . .

Handling the determinants: Crucial for handling the determinants of the cohomology
groups is the notion of a quasi-isomorphism of abelian groups:

Definition 7.2.2. A morphism f of abelian groups is called quasi-isomorphism if
ker f and coker f are finite. In this case one defines

z(f) :=
# ker f

# coker f
.

The importance of this definitions becomes apparent in the following

Lemma 7.2.3 ([Tat66, z.1]). Let ` be an arbitrary prime, A and B finitely generated
Z`-modules of the same rank, and (ai), resp. (bi) bases for ATor and BTor . Let
f : A −→ B be Z`-linear with fTor (ai) =

∑
j zijbj, where fTor denotes the induced

morphism ATor → BTor . Then f is a quasi-isomorphism if and only if det(zij) 6= 0, in
which case

|z(f)|` =

∣∣∣∣det(zij)
#BTor

#ATor

∣∣∣∣
`

.

Furthermore, this is compatible with composition:

Lemma 7.2.4 ([Tat66, z.2]). With the same notation as above: Let f : A −→ B and
g : B −→ C be homomorphisms of Z`-modules. If any two of the three maps f , g,
and g ◦ f are quasi-isomorphisms, the third is a quasi-isomorphism, too and one has
z(g ◦ f) = z(g)z(f).

77



To simplify notation, we define

Pj(t) := det(1− Ft|Hj(S, Ext1(A,Ocris
Qp

))).

With this definition we have Lsyn(t) = P1(t)
P0(t)P2(t)

and L(s) = Lsyn(p−s). By defining
furthermore

P (t) =
P1(t)

(1− t−1p−1)ρ
∈ Qp(t),

we have P (p−1) 6= 0 ([Bau92, 3.14]) and

lim
s→1

L(s)

(1− ps−1)ρ
=

P (t)

P0(t)P2(t)
.

Now we can try to calculate these polynomials:

Lemma 7.2.5 ([Bau92, 3.12]). For j = 0, 2 the morphisms ij := i and ϕj := 1− p−1F
from (7.2.1) and (7.2.1) are quasi-isomorphisms and one has

|Pj(p−1)|p = z(ϕj)z(ij)
−1.

For P some more work is needed:

Definition 7.2.6. We define the Frobenius invariants Hj(S, Ext1(A, IZp))1−p−1F to be
the kernel of the map

1− p−1F : Hj(S, Ext1(A, IZp)) −→ Hj(S, Ext1(A,Ocris
Zp

)).

Furthermore we define the Frobenius coinvariants Hj(S, Ext1(A,Ocris
Zp

))1−p−1F to be
the cokernel of the above map.

Lemma 7.2.7 ([Bau92, 3.15]). Let

f : H1(S, Ext1(A, IZp))1−p−1F −→ H1(S, Ext1(A,Ocris
Zp

))1−p−1F

be induced by i : H1(S, Ext1(A, IZp)) −→ H1(S, Ext1(A,Ocris
Zp

)) (see 7.2.1). Then f is

a quasi-isomorphism if and only if ρ = rkZp H
1(S, Ext1(A, IZp))1−p−1F and in this case

one has
|P (p−1)|p = z(f)z(i1)−1.

Noting that rkZp H
1(S, Ext1(A, IZp))1−p−1F = rkZp H

1(S, TpÂ) ([Bau92, 3.17]), we can
collect what we have achieved so far in the following form:

Proposition 7.2.8 ([Bau92, 3.17]). One has ρ = rkZp H
1(S, TpÂ) if and only if f is

a quasi-isomorphism and in this case∣∣∣∣lims→1

L(s)

(1− ps−1)ρ

∣∣∣∣
p

=
z(ϕ0) · z(i1) · z(ϕ2)

z(i0) · z(f) · z(i2)
.
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The next step is to actually calculate the z’s. With the Frobenius invariants and
coinvariants (7.2.6), the long exact sequences (7.2.1) give rise to short exact sequences
([Bau92, 3.11])

0 H0(S, Ext1(A,Ocris
Zp

))1−p−1F H1(S, TpÂ) H1(S, Ext1(A, IZp))1−p−1F 0

0 H1(S, Ext1(A,Ocris
Zp

))1−p−1F H2(S, TpÂ) H3(S, Ext1(A, IZp))1−p−1F 0,

α

f

β

which allow to proof the following:

Proposition 7.2.9 ([Bau92, 3.17]). One has ρ = rkZp H
1(S, TpÂ) if and only if f is

a quasi-isomorphism and in this case∣∣∣∣lims→1

L(s)

(1− ps−1)ρ

∣∣∣∣
p

=
3∏
j=1

# TorHj(S, TpÂ)(−1)j
1∏
j=0

#Hj(S,R1π∗OA)(−1)j

· z((βfα)Tor)
−1.

Let 〈 , 〉q : H1(S, TpÂ)×H1(S, TpA)→ H2(S,Zp(1))→ Zp be the cup product pairing
induced by the exact Kummer sequence in [Bau92, 3.1]. Some tedious computations
allow to show

Proposition 7.2.10 ([Bau92, 3.18]). The morphism f is a quasi isomorphism if and
only if 〈 , 〉q is non-degenerate and in this case

z((βfα)Tor) = |rρ · det〈 , 〉q|p,

where r = [Fq : Fp].

All of this allows to formulate the theorem

Theorem 7.2.11. One has ρ ≥ rkZp H
1(S, TpÂ). Furthermore ρ = rkZp H

1(S, TpÂ) if
and only if 〈 , 〉q is non-degenerate and in this case one has∣∣∣∣lims→1

L(s)

(1− ps−1)ρ

∣∣∣∣
p

=|rρ · det〈 , 〉q|−1
p ·

3∏
j=1

# TorHj(S, TpÂ)(−1)j

·
1∏
j=0

#Hj(S,R1π∗OA)(−1)j .

With this important theorem we can start to calculate the cardinalities and approach
the conjecture of Birch and Swinnerton-Dyer. First, using results from Milne, Bauer
proofs the following lemma:
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Lemma 7.2.12 ([Bau92, 4.2]). If X(AK/K)(p) is finite, then

3∏
j=1

# TorHj(S, TpÂ)(−1)j =
#X(AK/K)(p)

#AK(K)(p) ·#ÂK(K)(p)
.

By the Riemann-Roch theorem, Bauer calculates the next factor:

Lemma 7.2.13 ([Bau92, 4.3]). Let e : S → A be the unit section and let ωA := e∗Ω1
A/S.

Then
1∏
j=0

#Hj(S,R1π∗OA)(−1)j = q− degωA+d(1−g),

where g denotes the genus of K and d the dimension of AK.

Finally, via the Yoneda pairing, Bauer relates 〈 , 〉q to the Néron-Tate height paring:

Lemma 7.2.14 ([Bau92, 4.5]). Let h : AK(K)× ÂK(K)→ R be the Néron-Tate height
pairing. If X(AK/K)(p) is finite, then 〈 , 〉q is non-degenerate and

| det〈 , 〉q|p = |(log q)− rkZ AK(K) · deth|p.

Because of ∣∣∣∣lims→1

L(s)

(1− ps−1)ρ

∣∣∣∣ = (log p)−ρ
∣∣∣∣lims→1

L(s)

(s− 1)ρ

∣∣∣∣ ,
this can be combined with the result for the non-p-part in [Sch82, Theorem] to get

Theorem 7.2.15 ([Bau92, 4.7]). Let AK/K be an abelian variety of dimension d
possessing good reduction everywhere. Let ρ be the order of the zero of the Hasse-Weil
L-function L(s) of AK/K at s = 1. Let S/Fq be the model of K, g be the genus of
K, and A/S be an abelian scheme with generic fiber AK. Further let e : S → A be
the unit section, ωA := e∗Ω1

A/S, and let h : AK(K) × ÂK(K) → R denote the height

pairing. Then one has ρ = rkZAK(K) if and only if X(AK/K)(`) is finite for one
prime `. In this case X(AK/K) is finite too and it holds∣∣∣∣lims→1

L(s)

(s− 1)ρ

∣∣∣∣ =
#X(AK/K) · | deth|

# TorAK(K) ·# Tor ÂK(K)
· q− degωA+d(1−g).

Since for Tate’s L-series L∗(s) one has

lim
s→1

L(s)

L∗(s)
= q−degωA+d(1−g),

this results in the conjecture of Birch and Swinnerton-Dyer as formulated in [Tat66,
Conjecture B]:

Theorem 7.2.16 ([Bau92, 4.8]). Under the assumptions of 7.2.15 one has the following
statement: If X(AK/K)(`) is finite for one prime ` then X(AK/K) is finite too and
it holds ∣∣∣∣lims→1

L∗(s)

(s− 1)ρ

∣∣∣∣ =
#X(AK/K) · | deth|

# TorAK(K) ·# Tor ÂK(K)
.

80



The following diagram gives an overview of the complete proof of the conjecture of
Birch and Swinnerton-Dyer for abelian varieties over function fields in characteristic
p > 0 as given in [Bau92]. The numbers on the arrows refer to the corresponding
statements in [Bau92].∣∣∣∣(log p)−ρ lim

s→1

L(s)

(s− 1)ρ

∣∣∣∣−1

p

3.1
===

∣∣∣∣lims→1

L(s)

(1− ps−1)ρ

∣∣∣∣−1

p

2
==

∣∣∣∣lims→1

LA(q−s)

(1− ps−1)ρ

∣∣∣∣−1

p

2.4
===

∣∣∣∣lims→1

LCRIS(p−s)

(1− ps−1)ρ

∣∣∣∣−1

p

2.6
===

∣∣∣∣lims→1

LSYN(p−s)

(1− ps−1)ρ

∣∣∣∣−1

p

2.7
===

∣∣∣∣lims→1

Lsyn(p−s)

(1− ps−1)ρ

∣∣∣∣−1

p

after 3.11
======

∣∣∣∣∣∣ P0(p−1) · P2(p−1) ·
1

P (p−1)

∣∣∣∣∣∣
p

=
z(ϕ0)

z(i0)
·
z(ϕ2)

z(i2)
·
z(i1)

z(f)

= ∏3
j=1 # TorHj(S, TpÂ)(−1)j · ∏1

j=0 #Hj(S,R1π∗OA)(−1)j · z((βfα)Tor)
−1 ·

# ker(1−p−1F )
# coker(1−p−1F )

# ker(1−p−1F )
# coker(1−p−1F )

=
# TorH2(S, TpÂ)

# TorH3(S, TpÂ) · # TorH1(S, TpÂ)
· ∏1

j=0 #Hj(S,R1π∗OA)(−1)j · |rρ · det〈 , 〉q|−1
p

=
#X(AK/K)(p)

#AK(K)(p) · #ÂK(K)(p)
· q− degωA+d(1−g) · |(log p)−ρ deth|−1

p

3.12
3.12

3.15

j = 3

3.11

3.11

j = 1, 2

3.16 3.8.1

3.16

3.16

3.18

4.3 4.4, 4.5
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A. Appendix

Lemma A.1.1. Let R be a ring and I ⊆ R an ideal. Then one has a canonical
morphism of R/I-modules

I ⊗R R/I ∼= I/I2.

Proof. There is a short exact sequence of R-modules

0 I2 I I/I2 0,
i π

which gives raise to an exact sequence of R/I-modules

I2 ⊗R R/I I ⊗R R/I I/I2 ⊗R R/I 0.
i′ π′

Let xy⊗a ∈ I2⊗RR/I with x, y ∈ I, a ∈ R/I. Then one has i′(xy⊗a) = xy⊗a = x⊗
ya = 0 and thus i′ = 0. This shows that π′ : I⊗RR/I → I/I2⊗RR/I is an isomorphism.
Since I annihilates I/I2, we have furthermore I/I2 ⊗R R/I ∼= I/I2 ⊗R/I R/I ∼= I/I2.
This shows the lemma.

Lemma A.1.2. Let k be a perfect field of characteristic p > 0, Wn := Wn(k) the ring
of Witt vectors of length n. Let wn : Wn → k, (x0, . . . , xn−1) 7→ xp

n

0 denote the n-th
ghost component. Then for all (x0, . . . , xn−1) ∈ Wn one has

(x0, . . . , xn−1) = x̂p
n

0 + · · ·+ pn−1x̂pn−1,

where x̂i denotes a lift of xi ∈ k under wn.

Proof. This map is well-defined: Since k is perfect, one has ker(wn) = (p), therefore

p̂ix̂p
n−1

i does not depend on the choice of the lift by 5.2.8. Hence, let without restriction

x̂i = [xp
−n

i ]. Then one has p̂ix̂p
n−i

i = pi[xp
−n

i ]p
n−i

= pi[xn−ii ] = (0, . . . , 0, xi, 0, . . . , 0) as
the Teichmüller lift commutes with products. Now the statement follows from [FOed,
p. 12, 0.12].

Proposition A.1.3. Let k be a perfect field of characteristic p > 0, Wn := Wn(k) the
ring of Witt vectors of length n. Let ρk : Wn → Wn−k be given by (x0, . . . , xn−1) 7→
(xp

k

0 , . . . , x
pk

n−k−1). The ring Wn−k is an Wn+1-module via ρk. One has an exact sequence
of Wn+1-modules

0 W1(k) Wn+1(k)
νn

Wn(k)
ρ1

0.
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Proof. The exactness of the sequence is clear, as k is perfect. The map ρ1 is Wn+1-
linear, as it is a ring homomorphism (ρ1 = (− mod pn) ◦ σ) and Wn is a Wn+1-module
via ρ1. The map νn is additive by [FOed, p. 12]. Let y = (y0, . . . , yn) ∈ Wn+1 and
(x0) ∈ W1. Then one has y · (x0) = (yn0x0) 7→ (0, . . . , yn0x0). On the other hand one has

y · (0, . . . , x0) = pnx̂p0 · (
∑

i p
iŷp

n+1−i

i ) = pnx̂p0ŷ
pn+1

0 = (0, . . . , x0y
pn

0 ).

Lemma A.1.4. Consider the sheaf of real-valued C∞-functions on R. Let F be
the ring of germs of this sheaf in 0. This local ring contains the maximal ideal
m = {f | f(0) = 0}. (To simplify notation, germs will be written by representatives).
Furthermore F contains the function t : x 7→ x. Then m is generated by t.

Proof. Let f ∈ m. It suffices to show that the function f(x)
x

can be C∞-extended in 0.

Therefore, it suffices to show that the functions
(
f(x)
x

)(k)

are continuous extendable in

0 for all k ≥ 0. One has:

(
f(x)

x

)(k)

=
k∑
i=0

(
k

i

)
f (i)(x)

(−1)k−i(k − i)!
xk−i+1

=
k∑
i=0

(−1)(k−i)k!

i!

f (i)(x)

xk−i+1

=

∑k
i=0(−1)k−i k!

i!
xif (i)(x)

xk+1
.

The limit in 0 can be calculated by de l’Hospital. With

(
k∑
i=0

(−1)k−i
k!

i!
xif (i)(x)

)′
=

k∑
i=0

(−1)k−i
k!

i!

(
ixi−1f (i)(x) + xif (i+1)(x)

)
= xkf (k+1)(x),

one gets

lim
x→0

(
f(x)

x

)(k)

→ lim
x→0

xkf (k+1)(x)

(k + 1)xk+1
=
f (k+1)(0)

k + 1
.

Thus, there is a C∞-function g such that gt = f .

Lemma A.1.5. Let U → V and U → W be immersions over Y . Then U → V ×Y W
is an immersion, too.

Proof. The induced morphism U → V ×Y W factors as U → U ×Y U → V ×Y U →
V ×Y W as can be seen in the following diagram:
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U V V

U U ×Y U V ×Y U V ×Y W Y.

U U W

∆

The diagonal ∆U/Y : U → U×Y U is an immersion ([GW10, 9.5]) and U×Y U → V ×Y U ,
V ×Y U → V ×Y W are so, because immersions are stable under composition and base
change ([GW10, 4.30]). Thus, the composition is an immersion, too.

Proposition A.1.6. Let P be the category of PD rings and let (A, I, γ) be a PD
ring. Let C be the category of pairs (R, I) where R is a ring and I ⊂ R an ideal
with morphisms f : (R, I) → (R′, I ′) consisting of homomorphisms f : R → R′ with
f(I) ⊆ I ′. Then taking the PD envelope is a functor C/A→ P/A which is left adjoint
to the forgetful functor P/A→ C/A.

Proof. This follows directly from the universal property of the PD envelope ([BO78,
3.119]):

HomC/A((B, J), (C,K)) = HomP/A((DB,γ(J), J̄ , [ ]), (C,K, γ))

Lemma A.1.7. Let i : X → Y be a closed immersion over Wn(k), U ⊂ Y open with
i(X) ⊂ U . Then one has DX,(p)(Y ) = DX,(p)(U).

Proof. Let X, U , Y be affine. Obviously U → Y is flat. Therefore, by [BO78, 3.21],
we have

DX,(p)(U) = DX,(p)(Y )×Y U.
It remains to show that DX,(p)(Y ) ×Y U = DX,(p)(Y ). But, as we have topological
identities X → DX,(p)(Y ) and X → DX,(p)(U), the morphism DX,(p)(Y )→ Y factors
through U and we get a morphism u : DX,(p)(Y )→ DX,(p)(Y )×Y U via the universal
property of the fiber product:

DX,(p)(Y )

DX,(p)(Y )×Y U DX,(p)(Y )

U Y

u
id

p1

p2
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Obviously we have p1 ◦ u = id by construction. Since the morphism u ◦ p1 commutes
over DX,(p)(Y ) → Y and U → Y , it is unique with this property and therefore the
identity, too.

Now let X, U , Y be arbitrary. The sheaf giving rise to DX,(p)(Y ) is quasi-coherent
on Y ([BO78, 3.30]), therefore we can check the proposition on affine coverings.
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Tome 2. Lecture Notes in Mathematics 270. Springer, 1972.
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