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Abstract

On 17 December of 2014 Kiran S. Kedlaya and Ruochan Liu published their
article on the foundations of relative p-adic Hodge theory [17] in which they
describe a new approach to the area using systematic Witt vector constructions
and the work of Huber and Berkovich in nonarchimedean analytic geometry. Our
work is based on the second chapter of the article, where Kedlaya and Liu proved
that for a sheafy adic Banach ring, the structure sheaf on Spa(A, A+) satisfies the
Tate sheaf property and the Kiehl glueing property [17, Theorem 2.7.7]. The first
property establishes acyclicity for the structure sheaf OSpa(A,A+) of the geometric
object Spa(A, A+), i.e., H i(Spa(A, A+),OSpa(A,A+)) = 0 for i 6= 0, while the sec-
ond ensures a category equivalence between finite projective modules over certain
rings and their associated sheaves of modules which are locally free of finite rank.
The last theorem is of great importance, since it allow us to establish analogies
between the new geometric objects and the classical ones in algebraic geometry,
namely the structure sheaf of X = Spec(R) for a ring R and its corresponding
coherent OX -modules.
The main objective of this thesis is to explain in detail some of the results ex-
posed in the article [17] and enhance some of the definitions, in order to prove
the theorem stated above. We assume that the reader has already a mathe-
matical background in algebraic geometry and algebraic number theory. We
will divide the presentation in three parts: The first chapter will comprehend
the preliminaries of the work stating the classical results from the theories of
Huber and Berkovich and some glueing lemmata necessary for the last two parts.
Part two will consist of the proof of the Tate sheaf property of the structure
sheaf and the last part will be dedicated to the proof of the Kiehl glueing property.

Am 17. Dezember 2014 veröffentlichten S. Kiran Kedlaya und Ruochan Liu
ihren Artikel über die Grundlagen der relativen p-adischen Hodgetheorie [17]. In
dem Artikel haben die Autoren einen neuen Ansatz, durch systematische Kon-
struktionen von Wittvektoren, dargelegt und haben die Arbeit von Huber und
Berkovich in der nichtarchimedischen analytischen Geometrie beschrieben. Un-
sere Arbeit basiert auf dem zweiten Kapitel des Artikels, wo Kedlaya und Liu die
Tate-Garbe-Eigenschaft und die Kiehl-Aufkleben-Eigenschaft für die Strukturgarbe
auf dem Raum Spa(A, A+) eines sheafy adischen Banachringes beweisen [17,
Theorem 2.7.7]. Die erste Eigenschaft stellt Azyklizität für die Struckturgarbe
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des geometrischen Objekts sicher, i.e., H i(Spa(A, A+),OSpa(A,A+)) = 0 für i 6= 0,
während die zweite für eine Kategorieäquivalenz zwischen endlichen projektiven
Modulen über bestimmte Ringe und ihrer zugehörigen Garbe von Modulen, die
lokal frei endlichen Ranges sind, sorgt. Der letzte Satz ist von großer Bedeutung,
da er es uns ermöglicht Analogien zwischen den neuen geometrischen Objekten
und den klassischen Objekten der algebraischen Geometrie zu schaffen, spezifisch
die Strukturgarbe auf X = Spec(R) für einen Ring R und seine entsprechenden
kohärenten OX-Module.
Das Hauptziel dieser Arbeit ist im Detail einige der Ergebnisse in dem Artikel [17]
zu erklären und einige der Definitionen zu erweitern, um den oben angegebenen
Satz zu beweisen. Wir gehen davon aus, dass der Leser bereits über einen mathe-
matischen Hintergrund in der algebraischen Geometrie und in der algebraischen
Zahlenthoerie verfügt. Die Darstellung ist in drei Teile untergliedert: Das erste
Kapitel beschreibt die Grundlagen der Arbeit. Die Ergebnisse aus den Theorien
von Huber und Berkovich werden angegeben, wie auch einige Verklebungslemmata
bewiesen, die notwendig für die beiden letzten Teile sind. Der zweite Teil besteht
aus dem Beweis der Tate-Garbe-Eigenschaft der Strukturgarbe und der letzte Teil
wird der Kiehl-Aufkleben-Eigenschaft gewidmet.
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1 Introduction
We would like to begin by presenting the theorem we want to prove. After that, we will
explain what it says and what the objects of the theorem are.

Theorem 1.0.1. Let (A,A+) be a sheafy adic Banach ring. Then the structure sheaf
on Spa(A,A+) satisfies the Tate sheaf property and the Kiehl glueing property.

We will define two different but related geometric spaces associated to a nonarchimedean
commutative Banach ring. The first one is the Gel’fand spectrum in the sense of
Berkovich, while the second one is the adic spectrum Spa(A,A+) considered by Huber.
Consequently, we will proceed by defining a structural presheaf OSpa(A,A+) on Spa(A,A+)
and will call (A,A+) sheafy if this presheaf is a sheaf. Finally, we will be interested
in two particular properties of the structure sheaf. First we will prove the acyclicity
of the structure sheaf, where acyclicity means that H i(Spa(A,A+),OSpa(A,A+)) = 0 for
i 6= 0. The second property is related to a category equivalence between finite projective
modules over commutative Banach rings with certain conditions and their associated
sheaves of modules which are locally free of finite rank.

2 Part: Preliminaries

2.1 Finite, flat, projective modules and finite étale algebras
We will apply some results from the theory of modules over a ring and do some com-
parisons with the theory of finite étale algebras over a ring. Specifically we will focus
on the case where the ring is a Banach ring.

Before we continue, let us make a convention in order to simplify notation.

Convention 2.1.1. As in the article [17], we assume all rings to be commutative and
unital unless otherwise stated.

Definition 2.1.2. Let M be a module over a ring R.
We call M pointwise free, if M⊗

RRp is free for each maximal ideal p of R.

Definition 2.1.3. Let M be a module over a ring R.
We call M locally free, if there exist f1, . . . , fn ∈ R generating the unit ideal such that
M
⊗
RRf is a free module over Rf for i = 1, . . . , n.

We will often use the next equivalence for finite projective modules over a ring R.

Theorem 2.1.4. Let M be a module over a ring R. The following conditions are
equivalent:

(i) M is finitely generated and projective.

(ii) M is a direct summand of a finitely generated free module.

(iii) M is finitely presented and pointwise free.
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(iv) M is finitely generated and pointwise free of locally constant rank.

(v) M is finitely generated and locally free.

Proof. See [8, §II.5.2, Théorèm 1].

Definition 2.1.5. Let M be a module over a ring R. We say M is faithfully flat if
M is flat and M

⊗
RN 6= 0 for every nonzero R-module N . A ring homomorphism

ϕ : R −→ R′ is called faithfully flat if R′, viewed as an R-module via ϕ, is faithfully
flat.

Theorem 2.1.6. For an R-module M , the following conditions are equivalent:

(i) M is faithfully flat.

(ii) M is flat and, given a morphism of R-modules ϕ : N ′ −→ N such that ϕ⊗ idM :
N ′
⊗
RM −→ N

⊗
RM is the zero morphism, then ϕ = 0.

(iii) A sequence of R-modules N ′ −→ N −→ N ′′ is exact if and only if the sequence
N ′
⊗
RM → N

⊗
RM −→ N ′′

⊗
RM obtained by tensoring over R with M is

exact.

(iv) M is flat and, for every maximal ideal m ⊂ R, we have mM 6= M .

Proof. See [5, Proposition 4.2.11].

Lemma 2.1.7. Let ϕ : R −→ S be a flat ring morphism. Then ϕ is faithfully flat if
and only if for every maximal ideal P of R, there exists a maximal ideal J of S, such
that ϕ(J)−1 = P.

Proof. See [8, §I.3.5, Proposition 9].

We will now state some results about étale morphisms following [5] in order to charac-
terize the category of finite étale algebras over a ring.

Definition 2.1.8. Let f : X −→ S be a morphism of schemes.

Then we say that f is formally étale if for every affine S-scheme Y and for every closed
subscheme Ȳ ⊂ Y , given by a quasi-coherent ideal I ⊂ OY satisfying I2 = 0, the
canonical restriction map

φ : HomS(Y,X) −→ HomS(Ȳ , X)

is bijective.

We called f unramified at a point x ∈ X if there exists an open neighborhood U ⊂ X

of x as well as a closed S-immersion j : U ↪→ W ⊂ An
S into a open subscheme W of

some affine n-space An
S over S such that:

a.) If I ⊂ OW is the sheaf of ideals associated to the closed immersion j,there exist
finitely many sections generating I in a neighborhood of j(x).
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b.) The differential forms of type dg for sections g of I where d stands for the exterior
differential dAnS/S : OAnS/S −→ Ω1

AnS/S
, generate Ω1

AnS/S
at j(x).

The morphism f is unramified if it is unramified at all points of X.

We say that f is smooth at a point x ∈ X (of relative dimension r) if there exists an
open neighborhood U ⊂ X of x as well as a closed S-immersion j : U ↪→ W ⊂ An

S into
a open subscheme W of some affine n-space An

S over S such that:

a.) If I ⊂ OW is the sheaf of ideals associated to the closed immersion j, there are
n− r sections gr+1, . . . , gn in I that generate I in a neighborhood of z := j(x); in
particular, we assume r ≤ n.

b.) The residue classes dgr+1(z), . . . , dgn(z) ∈ Ω1
AnS/S

⊗ k(z) of the differential forms
dgr+1, . . . , dgn are linearly independent over k(z).

We call f smooth on X if it is smooth at all points of X.

The notation Ω1
AnS/S

⊗ k(z), as used above, is an abbreviation for the k(z)-vector space

Ω1
AnS/S,z

⊗OAn
S
/S,z

k(z) ∼= Ω1
AnS/S,z

/mzΩ1
AnS/S,z

where mz ⊂ OAnS/S,z is the maximal ideal and k(z) = OAnS/S,z/mz is the residue field of
z.

Definition 2.1.9. A morphism of schemes is étale if it is locally of finite presentation
and formally étale. A morphism of rings is étale if the corresponding morphism of affine
schemes is étale.

For a ring R we define the tensor category FÉt(R) of finite étale algebras over R, with
morphisms being arbitrary morphisms of R-algebras.

It follows from [5, Theorem 8.5.6] and [5, Theorem 8.5.8] that every morphism of
schemes f : X −→ S of locally finite presentation is formally étale if and only if it is
smooth and unramified. From here we conclude:

Lemma 2.1.10. Let ϕ : A −→ B be a morphism of rings. If ϕ makes B into a
projective A-module of finite type and if the module of relative differential forms of
degree 1 of B over A is zero, i.e., ΩB/A = 0., then B ∈ FÉt(A).

Actually the lemma stated above is reversible and gives a characterization of the finite
étale algebras over a ring.

2.2 Seminorms on groups and rings
In order to define Banach rings and eventually spectra of nonarchimedean (commutative)
Banach rings it is necessary to consider norms and seminorms on groups and rings. We
will introduce the notation as in [17, §2.1].
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Definition 2.2.1. Let G be an abelian group. Consider the following conditions on a
function α : G→ [0,+∞).

a.) For all g, h ∈ G, we have α(g − h) ≤ max{α(g), α(h)}.

b.) We have α(0) = 0.

c.) For all g ∈ G, we have α(g) = 0 if and only if g = 0.

We say that α is a nonarchimedean seminorm if it satisfies a.) and b.), and a nonar-
chimedean norm if it satisfies additionally c.).

If α, α′ are two seminorms on the same abelian group G, we say α dominates α′,
and write α ≥ α′ or α′ ≤ α, if there exists c > 0 such that cα(g) ≥ α′(g) for all g ∈ G.
If α and α′ dominate each other, we say they are equivalent.

Note that conditions a.) and b.) imply

For all g, h ∈ G, we have α(g + h) ≤ max{α(g), α(h)}

since for all g ∈ G, we then have α(g) = α(−g). From here it is clear why we call such
a seminorm or norm nonarchimedean (compare [6, Part 1, §2]).
Any seminorm α induces a norm on G/H, where H := {g ∈ G : α(g) = 0}. That this
norm is well defined is easy to see. We will often refer to H as the kernel of α.

Definition 2.2.2. Let G,H be two abelian groups equipped with nonarchimedean
seminorms α, β, and let

ϕ : G −→ H

be a homomorphism. We say ϕ is bounded if α ≥ β ◦ ϕ, and isometric if α = β ◦ ϕ.

The quotient seminorm induced by α is the seminorm ᾱ on image(ϕ) defined by

ᾱ(h) = inf{α(g) : g ∈ G,ϕ(g) = h}

If H is also equipped with a seminorm β, we say ϕ is strict if the two seminorms ᾱ and
β on image(ϕ) are equivalent; this implies in particular that ϕ is bounded.

Note that the composition of strict morphisms g ◦ f is again strict if f is surjective or g
injective.

Definition 2.2.3. For G an abelian group with a nonarchimedean seminorm α, equip
the group of Cauchy sequences in G with the seminorm whose value on the sequence
(gi)i∈N is limi→∞α(gi). The quotient by the kernel of this seminorm is the separated
completion Ĝ of G under α. For the unique continuous extension of α to Ĝ, the
homomorphism G −→ Ĝ is isometric, and injective if and only if α is a norm (in which
case we call Ĝ the completion of G).
If G is isomorph to its completion, we say that G is complete.
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Example 2.2.4. The two classical examples are Zp and Qp, which are respectively the
completions of Z and Q for the p-adic norm | · |p.

Definition 2.2.5. Let A be a ring. Consider the following conditions on a (semi)norm
α on the additive group of A.

a’.) For all g, h ∈ A, we have α(gh) ≤ α(g)α(h).

b’.) We have a’.), and for all g ∈ A, we have α(g2) = α(g)2.

c’.) We have b’.), α(1) = 1, and for all g, h ∈ A, we have α(gh) = α(g)α(h).

We say α is submultiplicative if it satisfies a’.), power-multiplicative if it satisfies b’.),
and multiplicative if it satisfies c’.).

If α is a submultiplicative seminorm and α′ is a power-multiplicative seminorm, then α
dominates α′ if and only if α′(a) ≤ α(a) for all a ∈ A. Indeed, if α dominates α′,

α′(a2) ≤ cα(a2) for some c > 0.
⇒ α′(a)2 ≤ cα(a)2

⇒ α′(a)2

cα(a) ≤ α(a)

⇒ α′(a) ≤ α(a)

for all a ∈ A with α(a) > 0. The other implication is immediate.
Following this observation, we will often make use of this second property whenever is
possible. For example, for any β ∈M(A) as in Definition 2.4.1, we get that β(a) ≤ |a|
for all a ∈ A.

Definition 2.2.6. Let A be a ring equipped with a submultiplicative seminorm α.
The spectral seminorm on A is the power-multiplicative seminorm αsp defined by
αsp(a) = lims→∞α(as)1/s.

The above limit exists due to a’.) and Fekete’s lemma, which says that for every
subadditive sequence {an}n∈N in R the sequence

{
an
n

}
n∈N

converges. Note that equivalent
choices of α define the same spectral seminorm.

Definition 2.2.7. Let A, B, C be rings equipped with submultiplicative seminorms
α, β, γ, and let A −→ B, A −→ C be bounded homomorphism. The product seminorm
on the ring B⊗AC is defined by taking f ∈ B⊗AC to the infimum of maxi{β(bi)γ(ci)}
over all presentations f = ∑

i bi ⊗ ci. The separated completion of B ⊗A C for the
product seminorm is denoted B⊗̂AC and called the completed tensor product of B and
C over A.

The product seminorm is not in general a norm. However if A is an analytic field and
the rings B,C are Banach rings equipped with submultiplicative norms, then we can
assure that the product seminorm is a norm; see [20, Proposition 17.4].
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2.3 Banach rings and modules
We will now define the terms Banach ring, Banach algebra and Banach module. We
will also define a Tate algebra in order to speak later about rational subspaces and
rational localizations, in our new setting as well as in the classical theory of affinoid
algebras [6, Part 1, §3].

Definition 2.3.1. As in [17] we will mean by an analytic field a field equipped with a
nontrivial multiplicative nonarchimedean norm under which it is complete.
A Banach ring is a commutative ring R equipped with a submultiplicative norm under
which it is complete. We allow the zero ring as a Banach ring, so that the completed
tensor product can be defined in the category of Banach rings.
A Banach algebra over a Banach ring R is a Banach ring S equipped with the structure
of an R-algebra in such a way that the map R −→ S is bounded.

Lemma 2.3.2. Let R be a Banach ring.

(i) For any finite R-module M , the quotient seminorm defined by a surjection π :
Rn −→ M of R-modules does not depend, up to equivalence, on the choice of the
surjection.

(ii) Let ψ : R −→ S be a bounded homomorphism of Banach rings. Let M be a
finite R-module, let N be a finite S-module, and let θ : M −→ N be a R-linear map.
Then this map becomes bounded if we equip M and N with the seminorms as described
in (i).

Proof. (i) Let us recall the definition of the quotient seminorm | · |M on M . For h ∈M ,

|h|M = inf{|g| : g ∈ Rn and π(g) = h}.

Consider a second surjection π′ : Rm −→ M . Combining π and π′ we obtain a third
surjection π′′ : Rn+m −→ M . It is enough to check that the quotient seminorms
| · |M , | · |′′M induced by π, π′′ are equivalent, as then the same argument will apply with
π′ and π′′ leading to the conclusion that | · |M , | · |′M induced by π, π′ are equivalent.

Let e1, . . . , en+m be the standard basis of Rn+m. For h ∈M ,

|h|′′M = inf{|g′′| : g′′ ∈ Rn+m and π′′(g′′) = h}
≤ inf{|g| : g ∈ Rn and π(g) = h}
=|h|M ,

since the norm on Rn+m is compatible with the norm on Rn and lifting an element of
M to Rn also gives a lift to Rn+m. This proves | · |′′M ≤ | · |M .
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Now, for j = n + 1, . . . , n + m we can write π(ej) = ∑n
i=1 Aijπ(ei) for some Aij ∈ R.

For an element h ∈M who lifts to ∑n+m
i=1 ciei ∈ Rn+m, we have,

h = π
( n+m∑

i=1
ciei

)

=
n∑
i=1

ciπ(ei) +
n+m∑
j=n+1

cjπ(ej)

=
n∑
i=1

ciπ(ei) +
n+m∑
j=n+1

cj

( n∑
i=1

Aijπ(ei)
)

=
n∑
i=1

(
ci +

n+m∑
j=n+1

cjAij

)
π(ei)

= π
( n∑
i=1

(
ci +

n+m∑
j=n+1

cjAij
)
ei

)
.

So h lifts also to ∑n
i=1

(
ci +∑n+m

j=n+1 cjAij
)
ei ∈ Rn. Consequently,

| · |M ≤ max{1, |A|}| · |′′M

This proves the equivalence.

(ii) Choose surjections πR : Rm −→M , πS : Sn −→ N of R-modules. We have to verify
that | · |M ≥ | · |N ◦ θ.
Define

p : Rm −→ Sn

g = (gi)1≤i≤m 7−→ l = (lj)1≤j≤n,

such that πS(l) = θ(πR(g)), which is well defined due to the fact that θ is a R-linear
map.
Let k1, . . . , km be a set of generators of the R-module M . Then θ(ki) = ∑

1≤j≤n sijnij
for all i = 1, . . . ,m, with sij ∈ S and generators nij ∈ N . It follows that for any
g = (gi)1≤i≤m ∈ Rm the image under p equals l = (∑m

i=1 ψ(gi)sij)1≤j≤n,i.e.,

g = (gi)1≤i≤m 7−→ l =
(

m∑
i=1

ψ(gi)sij
)

1≤j≤n
.

For s := maxi,j{|sij|}, we get that |p(g)| ≤ cs|g| for some constant c > 0, since
the homomorphism of Banach rings ψ : R −→ S is bounded. We conclude that
p : Rm −→ Sn is also bounded and makes the following diagram commutative

Rm Sn

M N

p

πR πS

θ
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Now, for h ∈M we have,

|θ(h)|N ≤ inf{|p(g)| : g ∈ Rm and πS(p(g)) = θ(h)}
≤ cs inf{|g| : g ∈ Rm and πS(p(g)) = θ(h)}, for some c > 0
= cs inf{|g| : g ∈ Rm and θ(πR(g)) = θ(h)}
≤ cs inf{|g| : g ∈ Rm and πR(g) = h}
= cs|h|M ,

which yields the lemma.

Definition 2.3.3. Let R be a Banach ring. A Banach module over R is an R-module
M whose additive group is complete for a norm ‖ · ‖M for which for, some c > 0, we
have ‖rv‖M ≤ cα(r)‖v‖M for all r ∈ R,v ∈M . Here α(·) denotes the norm on R. In
particular, any Banach algebra over R is a Banach module over R.

Definition 2.3.4. Let R be a Banach ring with submultiplicative norm α.
An element z ∈ R is called topologically nilpotent if limi→∞α(zi) = 0.
An element w ∈ R is called power-bounded if the set {α(wn) : n ∈ N} ⊂ R+ is bounded.

Lemma 2.3.5. Let R be a Banach ring. Let P be a finite projective R-module. Choose
a finite R-module Q and an isomorphism P ⊕Q ∼= Rn of R-modules, for n a suitable
nonnegative integer. Equip Rn with the supremum norm defined by the canonical basis.

(i) The subspace norm on P for the inclusion into Rn is equivalent to the quotient norm
for the projection from Rn, and gives P the structure of a finite Banach module over R.

(ii) The equivalence class of the norms described in (i.) is independent of the choice of
Q and of the presentation P ⊕Q ∼= Rn.

(iii) The above construction defines a fully faithful functor from the category of finite
projective R-modules to the category of finite Banach modules over R whose underlying
R-modules are projective (Definition 2.3.6), which is a section of the forgetful functor.

Proof. Consider two copies P ′, Q′ of P , Q respectively. Note that for the presentations

(P ⊕Q)⊕ (P ′ ⊕Q′) ∼= Rn ⊕Rn, (P ⊕Q′)⊕ (P ′ ⊕Q) ∼= Rn ⊕Rn

of P ⊕Q⊕ P ′ ⊕Q′, the two supremum norms | · |1, | · |2 defined by each presentation
respectively are equivalent by Lemma 2.3.2.
The subspace and quotient norms on P ⊕Q induced by | · |1 are identical, and P ⊕Q is
complete under these norms. Accordingly, the subspace and quotient norms on P ⊕Q
induced by | · |2 are equivalent, and P ⊕Q is complete under these norms. By restricting
to P we obtain the subspace and quotient norms induced by the original presentation,
so these two are equivalent.
Now, P is the intersection of the closed subspaces P⊕Q and P⊕Q′ of P⊕Q⊕P ′⊕Q′ ∼=
Rn ⊕Rn, so P is closed and therefore complete, since Rn ⊕Rn is a Banach space. This
proves (i). Parts (ii) and (iii) follow from Lemma 2.3.2, since morphisms in the category
of finite Banach R-modules are bounded R-modules homomorphisms.
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Definition 2.3.6. Let R be a Banach ring. A finite Banach module/algebra over R is
a Banach module/algebra M over R admitting a strict surjection Rn −→M of Banach
modules over R for some nonnegative integer n (for the supremum norm on Rn defined
by the canonical basis).
A morphism between finite Banach modules/algebras over R is a bounded morphism of
modules/algebras over R.

Definition 2.3.7. For a Banach ring A and B ∈ FÉt(A), we can view B as a finite
Banach module over A by Lemma 2.3.5. The multiplication map µ : B ⊗A B −→ B is
then bounded by Lemma 2.3.2 and Lemma 2.3.5, since µ is an additive A-linear map.
Consequently, we can find an equivalent norm on B which is submultiplicative (see [20,
§17 Proposition 17.4]), and thus consider B as a finite Banach algebra over A.

We end this section by defining the Tate algebra over a ring.

Definition 2.3.8. For r1, . . . , rn > 0, define the Tate algebra over the Banach ring A
with submultiplicative seminorm α and radii r1, . . . , rn to be the ring

A{T1/r1, . . . , Tn/rn} :=
{
f =

∑
I

aIT
I : aI ∈ A, lim

I→∞
α(aI)rI = 0

}

where I = (i1, . . . , in) runs over n-tuples of nonnegative integers, T I = T i11 , . . . , T
in
n , and

rI = ri11 . . . r
in
n . The set A{T1/r1, . . . , Tn/rn} is a subring of A[[T1, . . . , Tn]] complete for

the Gauss norm

‖
∑
I

aIT
I‖r = sup

I
{α(aI)rI}

which is easily seen to be submultiplicative (resp. power-multiplicative, multiplicative)
if the seminorm on A is; see [18, Lemma 1.7]. In case r1 = · · · = rn = 1, we contract
the notation to A{T1, . . . , Tn}.
Let ϕ : A −→ B be a bounded homomorphism of Banach rings. We say ϕ is affinoid if
it factors through a strict surjection ψ : A{T1, . . . , Tn} −→ B for some positive integer
n. So we obtain the following commutative diagram

A B

A{T1, . . . , Tn}

ϕ

i
ψ strict

We will also say that B is an affinoid algebra over A.
We say that A is strongly noetherian if every affinoid algebra over A is noetherian, or
equivalently the rings A{T1, . . . , Tn} are noetherian for all n ≥ 0.

Example 2.3.9. For A an analytic field, we land in the category of A-affinoid algebras,
which present the basic settings in rigid analytic geometry. In particular consider Qp or
Fp((T )); see [6, Part 1 §3].
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2.4 The Gel’fand spectrum of a Banach ring
Here we introduce the work of Berkovich concerning the definitions and main ideas of
the topological space corresponding to a Banach ring; compare [3] and [4].

Throughout the rest of this work, let A be a Banach ring with a norm denoted
by | · |.

Definition 2.4.1. The Gel’fand spectrum M(A) of A is the set of multiplicative
seminorms α on A bounded above by | · | (or equivalently, dominated by | · |).
We equip M(A) with the weakest topology with respect to which all real valued
functions onM(A) of the form α 7→ α(a), a ∈ A, are continuous. So we may seeM(A)
as a closed subspace of the product ∏a∈A[0, |a|]; henceM(A) is compact by Tikhonov’s
theorem [7, §1.9.5, Théorème 3].
A subbasis of the topology on M(A) is given by the sets

{α ∈ M(A) : α(a) ∈ I}

for each open interval I ⊆ R and a ∈ A.
Any bounded homomorphism ϕ : A −→ B between Banach rings induces a continuous
map ϕ∗ :M(B) −→ M(A) by ϕ∗(β)(a) := β(ϕ(a)), a ∈ A.

Lemma 2.4.2. Let I be a proper ideal in a Banach ring A. Then the closure of I is
also a proper ideal. In particular, any maximal ideal in A is closed.

Proof. Assume the closure of I were A. In that case I would be dense in A. Consider
the set:

U = {a ∈ A : |1− a| < 1}.

Since U is open in A, there would exist an element x ∈ I ∩ U . But then the series∑∞
i=0(1− x)i would converge to an inverse of x, contradicting the assumption that I is

proper.

We present now the first main theorem about the spectrum.

Theorem 2.4.3. (Berkovich). For A nonzero, M(A) 6= ∅.

Proof. See [3, Theorem 1.2.1].

The theorem tells us that if our ring is not trivial, then we can find a multiplicative
seminorm on A, which is dominated by the (in general not multiplicative) seminorm
| · | of A.

Corollary 2.4.4. For any proper ideal I of A, there exists α ∈ M(A) such that
α(f) = 0 for all f ∈ I.

Proof. Let J be the closure of I. By Lemma 2.4.2, A/J is nonzero, so M(A/J) 6= ∅
by theorem 2.4.3. Any element of M(A/J) restricts to an element α ∈ M(A) of the
desired form. (Compare [3, Corollary 1.2.4]).
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Corollary 2.4.5. A finite set f1, . . . , fn of elements of A generates the unit ideal if and
only if for each α ∈M(A), there exists an index i ∈ {1, . . . , n} for which α(fi) > 0.

Proof. Assume the finite set f1, . . . , fn generates the unit ideal in A, then there exists
u1, . . . , un ∈ A such that u1f1 +· · ·+unfn = 1. Since every α ∈M(A) is a multiplicative
seminorm, maxi{α(ui)α(fi)} ≥ 1 and so α(fi) > 0 for some index i. Conversely, suppose
that f1, . . . , fn generated a nontrivial ideal I; then by Corollary 2.4.4, we can choose
α ∈ M(A) such that α(f) = 0 for all f ∈ I.

Corollary 2.4.6. An element f ∈ A is a unit if and only if α(f) > 0 for all α ∈M(A).

Definition 2.4.7. For α ∈ M(A) , define the prime ideal pα := α−1(0); then α ∈
M(A) induces a multiplicative norm on A/pα. The completion of Frac(A/pα) for the
unique multiplicative extension of this norm is called the residue field of α, denoted
H(α). The image of the map M(A) −→ Spec(A), α 7→ pα contains all maximal ideals,
by Corollary 2.4.4. The image of an element a ∈ A in H(α) will be denoted by a(α).

The homomorphism

·̂ : A −→ B :=
∏

α∈M(A)
H(α),

which sends a ∈ A to the element â = (a(α))α∈M(A) is called the Gel’fand tranform.

Note that the induced map M(B) −→M(A) is surjective.

From this, we could also deduce the compactness of M(A) using the following re-
sult:

Lemma 2.4.8. Let {Ki}i∈I be a family of valuation fields. Then the spectrum M(A)
of the Banach ring A = ∏

i∈I Ki is homeomorphic to the Stone-Čech compactification of
the (discrete) set I.

Proof. [3, Proposition 1.2.3].

2.5 The adic spectrum of an adic Banach ring
We continue by introducing another type of topological space corresponding to a Banach
ring, following [17] and the work of Huber; [14], [15] and [16].

As in [17] we will begin by stating a basic result in general topology.

Lemma 2.5.1. Let f : X −→ Y be a continuous map of a quasicompact topological
space to a Hausdorff topological space. Then f is closed.

Proof. See [7, §1.9.4, Corollaire 2].

From now on we will impose some conditions on the Banach ring A. From this section
onwards we will only consider Banach rings which are Banach algebras over an analytic
field K.

14



Let us consider an important consequence of our assumption:

Let A be a Banach ring. If we may view A as a Banach algebra over some analytic field,
then there exists a topologically nilpotent unit z ∈ A such that αsp(z)αsp(z−1) = 1. We
will refer to any such z as a uniform unit in A. Note that for any β ∈ M(A) ,

1 = β(z)β(z−1) ≤ αsp(z)αsp(z−1) = 1

and so β(z) = αsp(z).

Consequently from now on, we only consider Banach rings containing a topologi-
cally nilpotent unit.

To justify the existence of a uniform unit z in a nonzero Banach algebra A over an
analytic field K, consider an element z ∈ K, such that |z|K ∈ (0, 1). Then |z| ≤ c|z|K
for some c > 0, where | · |K denotes the norm in K. Since | · |K is multiplicative, we
have |zn|K = |z|nK for any n ∈ N and |z|nK → 0, when n→∞. It follows that |zn| → 0,
when n→∞, which proves that z is a topologically nilpotent element of A.
Now, by Theorem 2.4.3, there exists β ∈M(A). For this β we get:

αsp(z)αsp(z−1) = lim
s→∞
|zs|

1
s lim
r→∞
|(z−1)r| 1r

≥ lim
s→∞

β(zs) 1
s lim
r→∞

β((z−1)r) 1
r

= lim
s→∞

β(z) lim
r→∞

β(z−1)

= β(z)β(z−1)
= β(1)
= 1.

On the other hand,

αsp(z)αsp(z−1) = lim
s→∞
|zs|

1
s lim
r→∞
|(z−1)r| 1r

≤ lim
s→∞
|(zs)|

1
s
K lim
r→∞
|(z−1)r|

1
r
K

= lim
s→∞
|z|K lim

r→∞
|z−1|K

= |z|K |z−1|K
= |1|K
= 1.

We conclude that αsp(z)αsp(z−1) = 1.

Definition 2.5.2. For A a Banach ring equipped with a submultiplicative norm, let
A◦ denote the subring of power-bounded elements of A.
An adic Banach ring is a pair (A,A+) in which A is a Banach ring (which as mentioned
above is now a Banach algebra over some analytic field) and A+ is a subring of A◦ which
is open and integrally closed in A. These conditions ensure that every topologically
nilpotent element of A must belong to A+.
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A morphism of adic Banach rings (A,A+) −→ (B,B+) is a bounded homomorphism
ϕ : A −→ B of Banach rings such that ϕ(A+) ⊆ B+. With this definition, the
correspondence A 7−→ (A,A◦) defines a functor from the category of Banach rings to
the category of adic Banach rings.
For (A,A+) −→ (B,B+), (A,A+) −→ (C,C+) two morphisms of adic Banach rings,
their coproduct in the category of adic Banach rings will be denoted by (B,B+)⊗(A,A+)

(C,C+). It consists of (D,D+) where D = B⊗̂AC and D+ is the completion of the
integral closure of B+ ⊗A+ C+ in D.

Definition 2.5.3. Let Γ be a totally ordered abelian group, and let Γ0 be a pointed
monoid Γ ∪ {0} ordered so that 0 < γ for all γ ∈ Γ. A semivaluation on a ring A with
values in Γ is a function v : A −→ Γ0 satisfying the following properties.

a.) For all a, b ∈ A, we have v(a− b) ≤ max{v(a), v(b)}.

b.) For all a, b ∈ A, we have v(ab) = v(a)v(b).

c.) We have v(0) = 0 and v(1) = 1.

If morover v−1({0}) = {0}, we say that v is a valuation.

As an example consider Γ = R≥0, then a (semi)valuation is the same as a multi-
plicative (semi)norm.
For A a Banach ring, we declare two semivaluations on A, which possibly are defined
into different ordered groups, to be equivalent if they define the same order relation on
A. It is clear that this defines an equivalence relation and that the equivalence classes
form a set. We denote this set by Spv(A). We will identify each equivalence class in
Spv(A) with a particular representative in an arbitrary but fixed manner.
A semivaluation v on A is continuous if for every nonzero γ in the value group of v (i.e.,
the subgroup of Γ generated by the nonzero images of v) there is a neighborhood U of
0 in A such that v(u) < γ for all u ∈ U .

The adic spectrum of (A,A+) is the subset Spa(A,A+) of Spv(A) consisting of the
equivalence classes of continuous semivaluations on A bounded by 1 on A+. Since A+

is integrally closed in A, we have the following equality

A+ = {x ∈ A : v(x) ≤ 1 with v ∈ Spa(A,A+) }.

See [15, Proposition 1.6] for more details.
We equip X := Spa(A,A+) with the topology generated by the sets of the form

{v ∈ Spv(A,A+) : v(a) ≤ v(b) 6= 0} (a, b ∈ A).

A rational subspace of Spa(A,A+) is a set of the form:

X
(
f1

g
, . . . ,

fn
g

)
= {v ∈ Spa(A,A+) : v(fi) ≤ v(g) 6= 0, (i = 1, . . . , n)}.
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for some f1, . . . , fn, g ∈ A generating the unit ideal. Note that we would get the same
definition if we only require that f1, . . . , fn generate the unit ideal, since then it would
be harmless to append g as an extra generator.
Note that any morphism ψ : (A,A+) −→ (B,B+) of adic Banach rings induces a
continuous map

ψ∗ : Spa(B,B+) −→ Spa(A,A+),

under which the inverse image of any rational subspace is again a rational subspace.

One of the most important theorems of the work of Huber about adic spectra is the
following result, which can be seen as an analogue to the compactness of the Gel’fand
spectrum.

Theorem 2.5.4. (Huber). The space Spa(A,A+) is quasicompact and the rational
subspaces form a topological basis consisting of quasicompact open subsets.

Proof. See [14, Theorem 3.5(i,ii)].

We will now relate this construction to the Gel’fand spectrum.

Definition 2.5.5. There is a natural map M(A) −→ Spa(A,A+) taking each α ∈
M(A) to the equivalence class of α as a semivaluation. Note that this map is not
continuous.
Now suppose that A contains a uniform unit z; then there is a map

j : Spa(A,A+) −→M(A)

defined as follows. Given a semivaluation v ∈ Spa(A,A+), define the multiplicative
seminorm α = α(v) ∈ M(A) by the formula

α(x) = inf{αsp(z)r/s : r ∈ Z, s ∈ Z>0, v(zr) < v(xs)}.

The composition M(A) −→ Spa(A,A+) −→ M(A) is the identity. In particular,
the map M(A) −→ Spa(A,A+) is injective, and by Theorem 2.4.3, Spa(A,A+) 6= ∅
whenever A 6= 0.

Definition 2.5.6. We define a rational subspace of M(A) as the intersection of M(A)
with a rational subspace of Spa(A,A+). For a rational subspace U of Spa(A,A+) as in
Definition 2.5.3, the corresponding rational subspace of M(A) is

{α ∈ M(A) : α(fi) ≤ α(g) for i = 1, . . . , n}

and the image of U in M(A) is equal to the intersection U∩ M(A) . As a corollary,
we see that every nonempty rational subspace of Spa(A,A+) meets M(A) , so M(A)
is dense in Spa(A,A+) .
Rational subspaces of M(A) are closed, not open; as a result, not every rational
subspace containing some α ∈ M(A) is a neighborhood of α.However, those which
are neighborhoods form a neighborhood basis of a in M(A); we say that such rational
subspaces encircle a.
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Lemma 2.5.7. Given a rational subspace U = X(f1
g
, . . . , fn

g
) of Spa(A,A+), let U be

the image of U under the projection j : Spa(A,A+) −→ M(A) . Then U is compact in
M(A) and c := inf{α(g) : α ∈ U} > 0.

Proof. Since U is quasicompact by Theorem 2.5.4 and j is continuous by the discussion
above, U is a closed subset of a compact space, due to the topology of M(A) and
Lemma 2.5.1. It follows that U is compact.
For the second assertion notice that we have α(g) > 0 for all α ∈ U , so by compactness

c = inf{α(g) : α ∈ U} > 0.

Keeping the same notation as above, consider

0 < ε < min
{

1
max{|u1|, . . . , |un|, |u|}

, c

}
,

where f1u1 + · · ·+ fnun + gu = 1.

Any f ′1, · · · , f ′n, g′ ∈ A satisfying |fi − f ′i | < ε, |g − g′| < ε generate the unit ideal, since

|f ′1 + · · ·+ f ′n + g′ − 1| ≤ εmax{{|u1|, · · · , |un|, |u|} < 1

and f ′1 + · · ·+ f ′n + g′ ∈ A would have an inverse.

For f ′1, · · · , f ′n, g′ we get that v(fi − f ′i), v(g − g′) < v(g), for any v ∈ U , since as-
suming the contrary leads to v(fi − f ′i)s, v(g − g′)s ≥ v(g)s for any s ∈ Z>0, implying
j(v)(fi − f ′i), j(v)(g − g′) ≥ j(v)(g), which produces the contradiction

j(v)(g) > ε

> |fi − f ′i |, |g − g′|
≥ j(v)(fi − f ′i), j(v)(g − g′)
≥ j(v)(g).

Let v ∈ U . Then, since v(g − g′) < v(g),

v(g′) = v(g′ − g + g) = max{v(g − g′), v(g)} = v(g),

so v(g) = v(g′). This proves that

U ⊆ U ′ := {v ∈ Spa(A,A+) : v(f ′i) ≤ v(g′) for i = 1, . . . , n}

For the other inclusion, notice that

1 = v(1) = v(f ′1u′1 + · · ·+ f ′nu
′
n + g′u′) ≤ max{v(u′1), · · · , v(u′n), v(u′)}v(g′),

for every v ∈ U ′. Thus 0 < v(g′). As explained above, we obtain v(fi − f ′i), v(g − g′) <
v(g′) = v(g), for every v ∈ U ′. We conclude that U = U ′.

Consequently, one may drop the condition v(g) 6= 0 for the definition of a rational
subspace.
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Definition 2.5.8. An adic field is an adic Banach ring (K,K+) in which K is an
analytic field and K+ is a valuation ring in K (i.e., a subring containing either x or
1/x for each x ∈ K×). The space Spa(K,K+) is not in general a point; however, the
valuation corresponding to K+ defines the unique closed point of Spa(K,K+).
Given v ∈ Spa(A,A+) , let (H(v),H(v)+) be the adic field with H(v) = H(α(v)) and
H(v)+ equal to the valuation ring of the continuous multiplicative extension of v to
H(α(v)). By construction, there is a canonical morphism (A,A+) −→ (H(v),H(v)+)
such that the induced map Spa(H(v),H(v)+) −→ Spa(A,A+) maps the unique closed
point of (H(v),H(v)+) to v.

Definition 2.5.9. Let U be a quasicompact open subset of Spa(A,A+) . We say that
U is an affinoid subdomain of Spa(A,A+) if there exists an affinoid homomorphism
ϕ : (A,A+) −→ (B,B+) which is initial among morphisms ψ : (A,A+) −→ (C,C+)
of adic Banach rings for which ψ∗(Spa(C,C+)) ⊆ U . We refer to the representing
morphism (A,A+) −→ (B,B+) as an affinoid localization.
Every rational subspace U is an affinoid subdomain and the map Spa(B,B+) ∼= U is a
homeomorphism, as we will see in the Lemma 2.5.10 below. We thus refer to U also
as a rational subdomain and the corresponding affinoid localization also as a rational
localization.

Lemma 2.5.10. Let U be a rational subspace of Spa(A,A+) as in Definition 2.5.3.

(i) The subspace U is an affinoid subdomain represented by ϕ : (A,A+) −→ (B,B+),
where B is the quotient of A{T1, . . . , Tn} for the closure of the ideal (gT1−f1, . . . , gTn−
fn), equipped with the quotient norm, and B+ is the completion of the integral closure
of the image of A+[T1, . . . , Tn] in B.

(ii) The map ϕ∗ : Spa(B,B+) −→ Spa(A,A+) induces a homeomorphism Spa(B,B+) ∼=
U . More precisely, the rational subspaces of Spa(B,B+) correspond to the rational
subspaces of Spa(A,A+) contained in U .

Proof. We will guide our proof following [15] and the notes of Professor T. Wedhorn on
adic spaces.

Let (A,A+) be an adic Banach ring, g ∈ A and let T = {f1, . . . , fn} ⊆ A be a
finite subset such that TA is open in A. Then there exists on Ag := A[ 1

g
] a (unique)

nonarchimedean ring topology, defined by T , making it into a topological ring

Ag = A
(
T

g

)
= A

(
f1, . . . , fn

g

)
,

such that {fig−1 : fi ∈ T} is power-bounded in A(T
g
) and such that the canonical

homomorphism ϕ : A −→ A(T
g
) satisfy the following universal property. If B is a

nonarchimedean topological ring and ψ : A −→ B is a continuous homomorphism such
that ψ(g) is invertible in B and such that the set {ψ(fi)ψ(g)−1 : fi ∈ T} is power-
bounded in B, then there exists a unique continuous ring homomorphism α : A(T

g
) −→ B

with ψ = α ◦ ϕ.
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The topology defined by T on Ag is the coarsest and finest topology such that the
subgroups

Ei := {fig−1 : fi ∈ T}

of (A,+) build a fundamental system of neighborhoods of 0.
Let A+

g be the integral closure of A+[ f1
g
, . . . , fn

g
] in Ag. Then A+

g is a ring of integral
elements in A(T

g
). The completion of (A(T

g
), A+

g ) is denoted by (A〈T
g
〉, A+〈T

g
〉+). Hence,

(A〈T
g
〉, A+〈T

g
〉+) is an adic Banach ring.

In a similar way, the canonical continuous homomorphism of adic Banach rings

ρ : (A,A+) −→
(
A
〈
T

g

〉
, A
〈
T

g

〉+)
is universal for continuous homomorphisms of adic Banach rings ψ : A −→ B, with
ψ(g) ∈ B× and ψ(fi)

ψ(g) ∈ B
+ for all fi ∈ T .

Since

A{T1, . . . , Tn}/(gT1 − f1, . . . , gTn − fn)

fulfills this universal property, it follows that

A{T1, . . . , Tn}/(gT1 − f1, . . . , gTn − fn) ∼= A
〈
T

g

〉
.

Therefore, it would be enough to show the Lemma for (A〈T
g
〉, A〈T

g
〉+).

Note that in our present setting, to be a continuous homomorphism of adic Banach
rings, is equivalent to be a bounded homomorphism of adic Banach rings.

(i) The definition of (A〈T
g
〉, A〈T

g
〉+) shows that for all v ∈ Spa(A〈T

g
〉, A〈T

g
〉+) one has

v(ρ(fi)) ≤ v(ρ(g)) for all i = 1, . . . , n. This means that

ρ∗ : Spa
(
A
〈
T

g

〉
, A
〈
T

g

〉+)
−→ Spa(A,A+)

factors through U . Now, consider a continuous homomorphism from (A,A+) to an adic
Banach ring (B,B+), ψ : (A,A+) −→ (B,B+) such that ψ∗ factors through U .
As ψ∗ factors through U , we have w(ψ(fi)) ≤ w(ψ(g)) 6= 0 for all w ∈ Spa(B,B+) and
for all i = 1, . . . , n. This implies that ψ(g) ∈ B× by Corollary 2.4.6. Moreover, for all
w ∈ Spa(B,B+) we have w(ψ(fi)

ψ(g) ) ≤ 1 for all i = 1, . . . , n. This implies that ψ(fi)
ψ(g) ∈ B

+

for all i = 1, . . . , n. Thus, we can apply the universal property of

ρ : (A,A+) −→
(
A
〈
T

g

〉
, A
〈
T

g

〉+)
and conclude that there exists a unique continuous homomorphism of Banach rings
β : (A〈T

g
〉, A〈T

g
〉+) −→ (B,B+), such that β ◦ ρ = ψ.

(ii) We saw that the map

ρ∗ : Spa
(
A
〈
T

g

〉
, A
〈
T

g

〉+)
−→ Spa(A,A+)
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factors through U , so by definition, ρ∗ gives us a continuous map from Spa(A〈T
g
〉, A〈T

g
〉+)

to U . To see that the map is bijective, choose any v ∈ U . Again, by the univer-
sal property of ρ : (A,A+) −→ (A〈T

g
〉, 〈T

g
〉+), the map (A,A+) −→ (H(v),H(v)+)

factors uniquely through a unique continuous homomorphism of adic Banach rings
β : (A〈T

g
〉, A〈T

g
〉+) −→ (H(v),H(v)+). The closed point of (H(v),H(v)+) maps to the

unique point of Spa(A〈T
g
〉, A〈T

g
〉+) in the preimage of v.

To see that the induced homomorphism

j′ : Spa
(
A
〈
T

g

〉
, A
〈
T

g

〉+)
−→ U

is a homeomorphism, it suffices to check the final assertion, i.e., that any rational
subspace of Spa(A〈T

g
〉, A〈T

g
〉+) is also a rational subspace of Spa(A,A+).

Let V = X(h1
r
, . . . , hm

r
) be a rational subspace of (A〈T

g
〉, A〈T

g
〉+), for h1, . . . , hm, r ∈

A(T
g
) by Lemma 2.5.7. Multiplying h1, . . . , hm, r with a suitable power of g we may

assume that all these elements lie in the image of ρ : (A,A+) −→ (A〈T
g
〉, A〈T

g
〉+), say

r = ρ(q) and {h1, . . . , hm} = ρ(H) for some q ∈ A and some finite subset H of A. As V
is quasi-compact, then j′(V ) is quasi-compact. Now, every v ∈ j′(V ) is of the form v ◦ ρ
for some v ∈ V . Thus by definition v(q) 6= 0 for all v ∈ j′(V ). Consider the following
rational subspaces:

Xk := {v ∈ Spa(A,A+) : v(fi)k ≤ v(q) 6= 0 for all i = 1, . . . , n},

for each k ∈ N.
Then j′(V ) ⊆ ⋃

kXk, which implies that j′(V ) ⊆ Xl for some l ∈ N. It follows that
for the rational subspace W of Spa(A,A+) generated by H ∪ {f l1, . . . , f ln} ∪ {q}, we get
j′(V ) = U ∩W . Hence, j′(V ) is a rational subspace of Spa(A,A+).

Remark 2.5.11. In the category of affinoid K-algebras, where K is an analytic field,
we can characterize the intersection of two affinoid subdomains in the following way.
Let τ1 : R −→ A1 and τ2 : R −→ A2 be homomorphisms of affinoid K-algebras. Then
the complete tensor product A1⊗̂RA2 is an affinoid K-algebra as well by [6, Theorem 6
Appendix B]. Accordingly, the category of affinoid K-algebras admits amalgamated
sums and the completed tensor product of two affinoid (resp. rational) localizations is
again such a localization. By [6, §3.3, Proposition 13] such a localization correspond to
the intersection of the affinoid (resp. rational) subdomains.
We have a similar result for rational subspaces of Spa(A,A+):
Consider two rational subspaces U1, U2 of Spa(A,A+). Let T1 := {f1, . . . , fn, g} and
T2 := {f ′1, . . . , f ′n, g′} be generating sets for U1 and U2 respectively. Then the intersection
of U1 and U2 is equal to the rational subspace generated by T := {t1t2 : ti ∈ Ti}, i.e.,

Spa
(
A
〈
T1

g

〉
, A
〈
T1

g

〉+)
∩ Spa

(
A
〈
T2

g′

〉
, A
〈
T2

g′

〉+)
= Spa

(
A
〈
T

gg′

〉
, A
〈
T

gg′

〉+)
It follows, that the intersection of two rational subspaces correspond to the completed
tensor product of its rational localizations, since it fulfills the universal property of
(A〈 T

gg′
〉, A〈 T

gg′
〉+).
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In order to establish analogies to the theory of algebraic geometry and in order to
comprehend fully our Theorem 1.0.1, we will need to define a structure sheaf on adic
Banach rings. At this point it is important to mention that the structure sheaf that
we will define, following [17, §2], differs from the structure sheaf on an affine scheme,
since it will be defined in the category of complete topological rings. For example, for
an affine scheme X = Spec(A) with A a Banach ring and OX its classical structure
sheaf, we know that Γ(D(f),OX) ∼= Af , where D(f) is an element of the base of the
topology of X and f ∈ A. For the structure sheaf we will defined, the global section of
an element of the basis of the topology (a rational subspace) will be the completion
Âf for Af for some f ∈ A, which in general differs from Af ; see Definition 2.5.13 and
compare to Lemma 2.5.10.

Definition 2.5.12. By a rational covering (resp. affinoid covering) of Spa(A,A+),
we will mean either a finite colletion {Ui}i of rational (resp. affinoid) subdomains of
Spa(A,A+) forming a set-theoretic covering, or the corresponding collection {Spa(A,A+)
−→ Spa(B,B+)}i of a rational (resp. affinoid) localizations, depending on the context.
Note that a rational covering of Spa(A,A+) induces a set-theoretic covering of M(A)
by rational subspaces, but not conversely in general. However, for a finite collection
of rational subspaces {Ui ∩M(A)}i∈I whose relative interiors cover M(A), we may
consider the inverse image under the projection j of those interiors, which will be equal
to Ui in Spa(A,A+), for all i ∈ I. Thus, we can induce a rational covering of Spa(A,A+),
since M(A) is dense in Spa(A,A+); we call such a covering a strong rational covering
of Spa(A,A+) (or of M(A)).

Definition 2.5.13. Define the structure presheaf O on Spa(A,A+) as the functor
taking each open subset U to the inverse limit of B over all rational localizations
(A,A+) −→ (B,B+) for which Spa(B,B+) ⊆ U (i.e., O : U 7→ lim←−Spa(B,B+)⊆U B). In
particular, for any rational localization (A,A+) −→ (B,B+), we have

Γ(Spa(B,B+),O) = B,

since Spa(B,B+) is final in the index category.

We say that (A,A+) is sheafy if the structure presheaf is a sheaf on Spa(A,A+); we will
prove below (Lemma 3.2.1) that an equivalent condition is that for any rational local-
ization (A,A+) −→ (B,B+) and for any rational covering B := (Ui)i∈I of Spa(B,B+),
the map B −→ Ȟ0(Spa(B,B+),O;B) is an isomorphism. In this case, (Spa(A,A+),
O) is a locally ringed space.

Let us mention another important and interesting Theorem due to Huber.

Theorem 2.5.14. (Huber). Let (A,A+) be an adic Banach ring such that A is strongly
noetherian. Then (A,A+) is sheafy.

Proof. See [15, Theorem 2.2].

We will end the first part of our work presenting a key argument that will allow us
to prove the Tate and Kiehl properties of the structure sheaf on Spa(A,A+). The
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argument is based on the theory of rigid geometry for affinoid algebras (see [6, Part
I, §4]), which consists in reducing certain questions about coverings to coverings of a
simple form.

Definition 2.5.15. For f1, . . . , fn ∈ A generating the unit ideal, the standard rational
covering of Spa(A,A+) generated by f1, . . . , fn is the covering by rational subspaces

Ui = X
(
f1

fi
, . . . ,

fn
fi

)
= {v ∈ Spa(A,A+) : v(fj) ≤ v(fi), for j = 1, . . . , n},

with i = 1, . . . , n.

For f1, . . . , fn ∈ A arbitrary and v ∈ Spa(A,A+) we either have v(fi) < 1, v(fi) > 1 or
v(fi) = 1, for every i = 1, . . . , n. This motivates the definition of the standard Laurent
covering generated by f1, . . . , fn, which is the covering given by the rational subspaces

Se =
n⋂
i=1

Si,ei =
n⋂
i=1

X
(
f eii

)
(e = (e1, . . . , en) ∈ {−,+}n),

where

Si,− = X
(
f+
i

)
= X

(
fi
1

)
= {v ∈ Spa(A,A+) : v(fi) ≤ 1},

Si,+ = X
(
f−i

)
= X

( 1
fi

)
= {v ∈ Spa(A,A+) : v(fi) ≥ 1}.

A standard Laurent covering with n = 1 is also called a simple Laurent covering.

We can think of a simple Laurent covering as a separation of Spa(A,A+) through a ball
of radius one between the elements inside the ball, the ones outside the ball and the
ones on the border of the ball:

S−

S+

S+ ∩ S−

Definition 2.5.16. Consider two coverings A = (Ui)i∈I and B = (Vj)j∈J of a topological
space X. Then B is called a refinement of A if there exists a map τ : J −→ I such that
Vj ⊂ Uτ(j) for all j ∈ τ .

Lemma 2.5.17. The following statements hold.

(i) Any rational covering can be refined by a standard rational covering.

(ii) For any standard rational covering A of X = Spa(A,A+), there exists a standard
Laurent covering B of X such that for each V = Spa(B,B+) ∈ B, the restriction of A to
V (omitting empty intersections) is a standard rational covering generated by units in B.

(iii) Any standard rational covering generated by units can be refined by a standard
Laurent covering generated by units.
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Proof. (i) Consider a rational covering given by (Ui)1≤i≤n with

Ui = X
(
f

(i)
1

f
(i)
0
, . . . ,

f (i)
ri

f
(i)
0

)

Now, consider the set I of all tuples (v1, . . . , vn) ∈ Nn with 0 ≤ vi ≤ ri and set

fv1,...,vn :=
n∏
i=1

f (i)
vi

for such tuples. Writing I ′ for the set of all (v1, . . . , vn) ∈ I such that vi = 0 for at least
one i, then the functions

fv1,...,vn , (v1, . . . , vn) ∈ I ′

form a standard rational covering B.
Indeed, suppose that the functions fv1,...,vn , (v1, . . . , vn) ∈ I ′, do not generate the unit
ideal in A, then by Corollary 2.4.5, there exists α ∈ M(A) with α(fv1,...,vn) = 0 for all
fv1,...,vn , (v1, . . . , vn) ∈ I ′. Since the (Ui)1≤i≤n form a covering, there exists Uj such that
α ∈ Uj. Then α(f (j)

0 ) > 0 and α(∏i 6=j f
(i)
vi

) = 0 for 0 ≤ vi ≤ ri. This contradicts the
fact that for each i, the functions f (i)

0 , . . . , f (i)
ri

generate the unit ideal of A, since for
each i there exists 0 ≤ vi ≤ ri such that α(f (i)

vi
) > 0, due to Corollary 2.4.5, and then it

would be impossible to have ∏i 6=j α(f (i)
vi

) = α(∏i 6=j f
(i)
vi

) = 0. Thus B is well defined.

Lets see that B is a refinement of A, or that B refines A.
Consider a tuple (v1, . . . , vn) ∈ I ′ and look at the set

Xv1,...,vn := X
(
fµ1,...,µn

fv1,...,vn

: (µ1, . . . , µn) ∈ I ′
)
∈ B

where, for example vn = 0. We will show that Xv1,...,vn ⊂ Un. Choose v ∈ Xv1,...,vn and
an index µn, 0 ≤ µn ≤ rn.
We have to proof that

v(f (n)
µn ) ≤ v(f (n)

0 ) = v(f (n)
vn ).

Again, since the (Ui)1≤i≤n form a covering, there exists Uj such that v ∈ Uj. If j = n,
then there is nothing to be proved. Assume thus that j is different from n, say j = 1.
It follows v(f (1)

v1 ) ≤ v(f (1)
0 ), for 0 ≤ v1 ≤ r1 and

v
( n−1∏
i=1

f (i)
vi

)
v(f (n)

µn ) ≤ v(f (1)
0 )v

( n−1∏
i=2

f (i)
vi

)
v(f (n)

µn ) ≤ v
( n∏
i=1

f (i)
vi

)
(1)

as the tuple (0, v2, . . . , vn−1, µn) belongs to I ′.
Suppose that

v(f (n)
µn ) > v(f (n)

0 ) = v(f (n)
vn ).

Then

v(f (n)
vn )v

( n−1∏
i=1

f (i)
vi

)
< v(f (n)

µn )v
( n−1∏
i=1

f (i)
vi

)
,
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which contradicts (1). Hence, v(f (n)
µn ) ≤ v(f (n)

0 ) = v(f (n)
vn ).

We conclude that B is a refinement of A.

(ii) Let A be a standard rational covering consisting of (Ui)0≤i≤n, with

Ui = X
(
f0

fi
, . . . ,

fr
fi

)
.

Since f1 . . . , fn generate the unit ideal of A, we have that for each α ∈ M(A) there
exists 0 ≤ i ≤ r with α(fi) > 0, due to Corollary 2.4.5.
Now consider the projection j : Spa(A,A+) −→M(A). As previously discussed j is
continuous and following the notation of Lemma 2.5.7 we conclude that Ui =: j(Ui) is
compact in M(A), and

c(i) := inf{α(fi) : α ∈ Ui} > 0.

For each α ∈ M(A), α ∈ Ul for some 0 ≤ l ≤ n, since A is a covering. It follows,
that α ∈ Ul and as we have just seen the quantity c(l) = inf{α(fl) : α ∈ Ul} > 0. We
conclude then,

c := inf
{

max
0≤i≤r

α(fi) : α ∈M(A)
}
> 0.

Now we use the fact that our ring contains a topologically nilpotent unit z. Following
Definition 2.3.4, there exists k ∈ N such that |zk| < c. For this choice of k, we have for
all α ∈M(A) :

1 <

{
max
0≤i≤r

α(fi)
}

|zk|
≤

{
max
0≤i≤r

α(fi)
}

α(zk) =
{

max
0≤i≤r

α
( fi
zk

)}
,

since α(zk) ≤ |zk|.
We conclude that for the generators g0 := f0z

−k, . . . , gr := frz
−k, the quantity

d := inf
{

max
0≤i≤r

α(gi) : α ∈M(A)
}

fulfills: d > 1.
Note that g0, . . . , gr generate the same standard rational covering A, since we just
multiply the generators of A by a constant element z−k.

We claim that the standard Laurent covering B defined by g0, . . . , gr has the desired
property. To justify this, consider a set V = X

(
ge0

0 , . . . , g
er
r

)
∼= Spa(B,B+) ∈ B, where

e0, . . . , er ∈ {−,+} and ϕ : (A,A+) −→ (B,B+) is the rational localization associated
to V . We may assume that e0 = · · · = es = + and that es+1 = · · · = er = −, for some
0 ≤ s ≤ r.
Let v ∈ V . Then for any gi with i = 0, . . . , s, we have that

v(gi) < max
i=s+1,...,r

{v(gi)},
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since assuming the contrary gives rise to the contradiction

max
i=s+1,...,r

{jB(v)(gi)} > 1

≥ |gi|B
≥ jB(v)(gi)
≥ max

i=s+1,...,r
{jB(v)(gi)},

where | · |B denotes the norm in B and jB : Spa(B,B+) −→M(B) is the projection in
B. Remember that jB|A ∈M(A), which justifies the first inequality. It follows that

Ui ∩ V = ∅ for i = 0, . . . , s,

since

max
i=0,...,s

{v(gi)} < max
i=s+1,...,r

{v(gi)},

and in particular

max
i=0,...,r

{v(gi)} = max
i=s+1,...,r

{v(gi)}.

And so A|V is a standard rational covering of Spa(B,B+) generated by the units
gs+1, . . . , gr. To support this claim, notice that for all α ∈M(B) ↪→ Spa(B,B+) ∼= V ,
α(gi) ≥ 1 > 0 for s+ 1 ≤ i ≤ r. So by Corollary 2.4.5., each gi with s+ 1 ≤ i ≤ r is a
unit in B.

(iii) Consider the standard rational covering A = (Uk)0≤j≤r generated by the units
f1, . . . , fr. Let B be the Laurent covering of X generated by all products

fif
−1
j 1 ≤ i < j ≤ r.

We claim that B refines A.
To verify this consider a V ∈ B. Given elements i, j ∈ S := {1, . . . , r}, we write i << j

if v(fi) ≤ v(fj) for all v ∈ V . The relation ”<<” is transitive, since if i << j and
j << r, then v(fi) ≤ v(fj) and v(fj) ≤ v(fr) for all v ∈ V and the order relation ”≤” is
transitive. The relation ”<<” is also total, since for v ∈ V we have

v(fif−1
j ) ≤ 1 or v(fif−1

j ) ≥ 1
⇐⇒

v(fi) ≤ v(fj) or v(fj) ≤ v(fi).

It is known that every total transitive order on a finite set has a maximal element, so
let is ∈ S be the maximal element of the relation ”<<”. It follows that v(fi) ≤ v(fis)
for all v ∈ V and so

V ⊂ X
(
f0

fis
, . . . ,

fr
fis

)
.

In this way B is a refinement of A.
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Using the above Lemma, we establish the following criterion for rational coverings.

Lemma 2.5.18. Let P be a property of rational coverings of rational subdomains of
Spa(A,A+) satisfying the following conditions.

a.) The property P is local: if it holds for a refinement of a given covering, it also holds
for the original covering.

b.) The property P is transitive: if it holds for a covering {(B,B+) −→ (Ci, C+
i )}i and

for some coverings {(Ci, C+
i ) −→ (Dij, D

+
ij)}j for each i, then it holds for the composite

covering {(B,B+) −→ (Dij,D
+
ij)}i,j.

c.) The property P holds for any simple Laurent covering.

Then the property P holds for any rational covering of any rational subdomain of
Spa(A,A+).

Proof. We will divide the demonstration into four observations:

Let U ∼=Spa(B,B+) be a rational subdomain of Spa(A,A+).

(i) We may deduce P for any standard Laurent covering generated by units in B.

We argue by induction. Let B be a standard Laurent covering of U =Spa(B,B+). In
the case B is defined by a unit f1 ∈ B, then by condition c.) property P holds for B.
Say then that the property P holds for the case when B = (Se)e∈{−,+}n−1 is defined by
f1, . . . , fn−1, all units in B. Consider the simple Laurent covering A defined by a unit
fn ∈ B. For each Se ∈ B,

Se = X
(
f e1

1 , . . . , f
en−1
n−1

)
, e1, . . . , en−1 ∈ {+,−},

the covering A|Se = (Ue,j)0≤j≤1, with

Ue,j = X
(
f e1

1 , . . . , f
en−1
n−1 , f

j
n

)
∈ A|Se , j ∈ {+,−},

fulfills the property P by condition c.)
Then we can apply b.) and conclude that the composition

{(B,B+) −→ (Ce, C+
e ) −→ (De,j, D

+
e,j)}e,j,

where (Ce, C+
e ) ∼= Se and (De,j, D

+
e,j) ∼= Ue,j, satisfy the property P. But this com-

position is precisely the standard Laurent covering generated by the units f1, . . . , fn.
We conclude that any standard Laurent covering is a composition of simple Laurent
coverings, thus we can apply b.) and c.) to deduce (i).

(ii) We may deduce P for any standard rational covering generated by units.
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Apply Lemma 2.5.17(iii), to refine the covering by a standard Laurent covering generated
by units, then invoke a.) and (i).

(iii) We may deduce P for any standard rational covering.

Given a standard rational covering {(B,B+) −→ (Ci, C+
i )}i, use Lemma 2.5.17(ii) to

obtain a standard Laurent covering {(B,B+) −→ (Dj, D
+
j )}j such that for each j, the

covering

{(Dj, D
+
j ) −→ (Ci, C+

i )⊗̂(B,B+)(Dj, D
+
j )}i

is a standard rational covering generated by units in Dj. Note that

(Ci, C+
i )⊗̂(B,B+)(Dj, D

+
j )

correspond to the intersection of Spa(Dj, D
+
j ) and Spa(Ci, C+

i ) by Remark 2.5.11.
We may thus deduce P for the covering

{(B,B+) −→ (Ci, C+
i )⊗̂(B,B+)(Dj, D

+
j )}i,j

by invoking (ii) and b.), which is a refinement of {(B,B+) −→ (Ci, C+
i )}i. Invoking a.)

follows that any standard rational covering fulfills P .

(iv) We may deduce P for any rational covering by applying Lemma 2.5.17(i) to refine
the covering by a standard rational covering and then invoke (iii) and a.). This proofs
our claim.

3 Part: Tate sheaf property
In this section we will prove that for a sheafy adic Banach ring (A,A+) the structural
sheaf on Spa(A,A+) satisfies acyclicity for every rational localization (A,A+)→ (B,B+),
where U ∼= Spa(B,B+).
We will use Lemma 2.5.18 in order to verify acyclicity of sheaves of rings. First for
simple Laurent coverings, and then for any rational covering, by proving that acyclicity
fulfills the conditions of the Lemma. We begin with some important results in the
theory of Čech cohomology.

3.1 Čech cohomology
Here we will discuss the overall setting of Čech cohomology that will be required in
this work. We will give some basic definitions, as well as settle some notation for the
Čech complexes. Our objective for this part will be to proof some results relating Čech
cohomology and Grothendieck cohomology, as it will be the conclusion of the comparison
Theorem for Čech cohomology and its Corollary, see Theorem 3.1.9 and Corollary 3.1.10.

Let X be a topological space, and let A = (Ui)i∈I be an open covering of X. Fix, once
and for all, a well-ordering of the index set I. For any finite set of indices i0, . . . , iq ∈ I
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we denote the intersection Ui0 ∩ · · · ∩ Uiq by Ui0...iq .
Now let F be a presheaf of abelian groups on X. We define a complex C•(A,F) of
abelian groups as follows. For each q ≥ 0, let

Cq(A,F) = ∏
i0<···<iq

F(Ui0...iq).

Thus an element α ∈ Cq(A,F) is determined by giving an element

αi0...iq ∈ F(Ui0...iq)

for each (q + 1)-tuple i0 < · · · < iq of elements of I. We define the co-boundary map
dq : Cq −→ Cq+1 by setting

(dqα)i0...iq+1 =
q+1∑
k=0

(−1)kαi0,...,̂ik,...iq+1
|Ui0...iq+1

.

Here the notation îk means to omit ik. Since αi0,···̂ik,...iq+1
is an element of F(Ui0,···̂ik,...iq+1

),
we restrict to Ui0...iq+1 to get an element of F(Ui0...iq+1). One checks easily that dq◦dq−1 =
0, so we have indeed defined a complex of abelian groups.

Definition 3.1.1. Let X be a topological space and let A be an open covering of X.
For any presheaf of abelian groups F on X, we define the qth Čech cohomology group
of F , with respect to the covering A, to be

Ȟq(X,F ;A) = hq(C•(A,F)),

the qth cohomology object of the complex C•(A,F).

Remark 3.1.2. If α ∈ Cq(A,F), it is sometimes convenient to have the symbol αi0...iq
defined for all (q + 1)-tuples of elements of I, as for examples in double complexes, see
below. If there is a repeated index in the set {i0, . . . , iq}, we define αi0...iq = 0. If the
indices are all distinct, we define αi0...iq = (−1)δαδ(i0)...δ(iq), where δ is the permutation
for which δ(i0) < · · · < δ(iq). With these conventions, one can check that the formula
given above for dqα remains correct for any (q + 2)-tuple i0, . . . , iq+1 of elements of I.

Definition 3.1.3. Let X be a topological space and F a presheaf of abelian groups.
Then, for any open covering A = (Ui)i∈I of X, one defines an augmentation homomor-
phism

ε : F(X) −→ C0(A,F)
f 7→ (f |Ui)

mapping F(X) into ker d0. The map ε is used to construct the so-called augmented
Čech complex C•aug(A,F), which is given by Cq

aug(A,F) := Cq(A,F) for q 6= −1 and
C−1
aug(A,F) := F(X) with co-boundary homomorphism dqaug as in Cq(A,F) except

that d−1
aug := ε. The associated cohomology object hqaug(C•aug(A,F)) of the complex

C•aug(A,F) coincides with the Čech cohomology group Ȟq(X,F ;A), for q ≥ 1.
If all cohomology objects hqaug(C•aug(A,F)) vanish, i.e., if the sequence

0→ F(X) ε−→ C0(A,F) d0
−→ C1(A,F)→ . . .
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is exact, the covering A is called F-acyclic. This condition is equivalent to the fact
that Ȟq(X,F ;A) = 0 for all q 6= 0 and that ε induces a bijection F ∼−→ Ȟ0(X,F ;A).
To give another characterization of acyclicity, we consider the trivial covering A0 = X

of X. This covering is F -acyclic by [5, Corollary 7.6.2], since the augmentation is the
identity map in this case. Therefore, an arbitrary open covering A is F -acyclic if and
only if all homomorphisms

%q(A,A0) : Ȟq(X,F ;A0) −→ Ȟq(X,F ;A) (2)

are bijective. Namely, we have Ȟq(X,F ;A) = 0 for all q > 1. Furthermore, if
τ • : C•(A0,F) −→ C•(A,F) is the complex homomorphism associated to the refinement
A of A0, then τ 0 : C0(A0,F) −→ C0(A,F) coincides with the augmentation ε :
F(X) −→ C0(A,F).

For what it is to come we follow [1, §8.1]. We would like to see in more detail the
relation between Čech complexes associated to refinements of a given covering of a
topological space X. In turn, this will help us proof the Comparison Theorem for Čech
cohomology.

Consider two open coverings A = (Ui)i∈I and B = (Vj)j∈J of a topological space
X and assume that B is a refinement of A, i.e., that there exists a map τ : J −→ I

satisfying Vj ⊂ Uτ(j), for all j ∈ J . Any such map τ induces a homomorphism

τ q : Cq(A,F) −→ Cq(B,F),

where F is a presheaf of abelian groups on X and f ∈ Cq(A,F) is mapped onto the
element τ q(f) with components

(τ q(f))j0...jq := fτ(j0)...τ(jq)|Vj0...jq .

The maps τ q constitute a homomorphism of complexes

τ • : C•(A,F) −→ C•(B,F).

Although the map τ : J −→ I is not uniquely determined by the coverings A and B,
we can show that the induced maps

Ȟq(τ •) : Ȟq(X,F ;A) −→ Ȟq(X,F ;B)

are independent of τ . Namely, let τ ′ : J −→ I be a second map satisfying Vj ⊂ Uτ ′(j)
for all j ∈ J . Then one verifies that the homomorphisms

lq : Cq(A,F) −→ Cq−1(B,F)

given by

(lq(f))j0...jq−1 =
q−1∑
k=0

(−1)kfτ(j0)...τ(jk)τ ′(jk)...τ ′(jq−1)|Vj0...jq−1

define a homotopy between τ • and τ ′•; thus, the maps Ȟq(τ •) and Ȟq(τ ′•) must coincide
for all q. We will use the notation %q(B,A) instead of Ȟq(τ •) or Ȟq(τ ′•), as in [1, §8.1 ].
Note that %q(A,A) =id and that %q(W,A) = %q(W,B) ◦ %q(B,A) if W is a refinement
of B and B is a refinement of A. In particular, we have
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Lemma 3.1.4. Assume that the coverings A and B are refinements of each other.
Then %q(B,A) : Ȟq(X,F ;A) −→ Ȟq(X,F ;B) is bijective and its inverse is %q(A,B)
for all q.

Using the previous definitions for F-acyclicity and remembering that X is an open
subset of itself, one derives

Lemma 3.1.5. Let A and B be open coverings of X which are refinements of each
other. Then, A is F-acyclic if and only if B is F-acyclic.

Now we center our attention into proving the Comparison Theorem for Čech cohomology.
In order to do this, some knowledge in the cohomology of double complexes is needed,
especially the results that are linked to argumentations involving spectral sequences;
see [21, § 0.2.3].

Let R be a commutative ring. A double complex K•• of R-modules consists of a
collection of R-modules Kp,q, p, q ∈ Z, and of R-module homomorphisms

′dp,q : Kp,q −→ Kp+1,q and
′′dp,q : Kp,q −→ Kp,q+1,

satisfying

′dp+1,q ◦ ′dp,q = 0,
′′dp,q+1 ◦ ′′dp,q = 0, and
′′dp+1,q ◦ ′dp,q +′ dp,q+1 ◦ ′′dp,q = 0

for all p, q ∈ Z. Thus, we may interpret K•• as a diagram

... ...

. . . Kp,q Kp,q+1 . . .

. . . Kp+1,q Kp+1,q+1 . . .

... ...

′′dp,q

′′dp+1,q

′dp,q ′dp,q+1

with co-boundary homomorphisms ′dp,q (for a fixed q) as well as ′′dp,q (for p fixed) such
that all squares are anticommutative.
It follows in particular, that for a fixed q ∈ Z, the modules Kp,q with co-boundary
homomorphisms ′dp,q constitute a single complex. This complex is called the q-th
column of K••, and it will be denoted by ′K•q. Analogously, one defines the p-th row
′′Kp• of K•• by using the maps ′′dp,q as co-boundary maps.
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There is a third way of deriving a single complex from K••. For r ∈ Z, set Kr :=⊕
p+q=rK

p,q and define homomorphisms dr : Kr −→ Kr+1 by dr|Kp,q :=′dp,q+′′dp,q for
all pairs (p, q) such that p+ q = r. It is easily seen that dr+1 ◦ dr = 0 for all r; hence
the modules Kr and the maps dr constitute a complex K• which is called the single
complex associated to K••. The cohomology objects of K• are also referred to as the
cohomology objects of K••, i.e., we set

hr(K••) := hr(K•), r ∈ Z.

In the following we are only interested in double complexes K•• which vanish at negative
integers. Thus, we always assume that Kp,q = 0 for p < 0 or q < 0.

Lemma 3.1.6. Let K•• be a double complex and consider the homomorphism of
complexes ′π : K• −→′K•0 induced by the natural projections Kr = ⊕

p+q=rK
p,q −→

Kr,0.
Then, if hp(′K•q) = 0 for all p ≥ 0 and for all q > 0, the maps hr(′π) : hr(K•) −→
hr(′K•0) are bijective for all r.

Proof. For i ≥ 0, we consider the subcomplex K•i of K• which is defined by

Kr
i :=

⊕
p+q=r
q≥i

Kp,q.

Note that K•0 = K•. Furthermore, there are natural isomorphisms Kr
i /K

r
i+1

∼−→ Kr−i,i

which constitute an isomorphism of complexes K•i /K•i+1
∼−→′K•i of degree −i (i.e., one

obtains an isomorphism in the usual sense if the indices of all modules in ′K•i are
enlarged by i). Thus we have hr(K•i /K•i+1) ∼= hr−i(′K•i) = 0 for i > 0 and for all r by
our assumption. Looking at the long cohomology sequence corresponding to

0 −→ K•i /K
•
i+1 −→ K•/K•i+1 −→ K•/K•i −→ 0

we get bijections hr(K•/K•i+1) ∼−→ hr(K•/K•i ) for i > 0, and, by induction

hr(K•/K•i ) ∼−→ hr(K•/K•1) = hr(′K•0)

for i > 0. Since hr(K•) is canonically isomorphic to hr(K•/K•i ) for i ≥ r + 2, the
assertion of the lemma follows.

We will use the previous lemma to derive a key argument for the proof of the Comparison
Theorem for Čech cohomology.

Lemma 3.1.7. Let K•• be a double complex, K• the associated single complex. Denote
by K ′′• the subcomplex

K ′′q := ker ′d0,q.

Then, if hp(′K•q) = 0 for all p > 0 and for all q, the inclusion K ′′• ↪→ K• induces
bijections
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hr(K ′′•) ∼−→ hr(K•),

for all r.

Proof. Considering the long cohomology sequence corresponding to the short exact
sequence

0 −→ K ′′• −→ K• −→ K•/K ′′• −→ 0,

we have only to show that hr(K•/K ′′•) = 0 for all r. For this purpose we introduce the
double complex L•• defined by

Lp,q :=
{
Kp,q if p 6= 0
K0,q/K ′′q if p = 0.

with co-boundary maps being induced by K••. Then, by our construction,

h0(′L•q) = 0

for all q. From the definition of L•• and the assumption on hp(′K•q), we have

hp(′L•q) = hp(′K•q) = 0

for all p > 0 and for all q. Since K•/K ′′• is the single complex associated to L••, we
get from Lemma 3.1.6

hr(K•/K ′′•) = hr(′L•0) = 0

for all r.

As usual let X be a topological space. We want to define a double Čech complex
C••(A,B;F) depending on two open coverings A = (Ui)i∈I and B = (Vj)j∈J of X. For
p, q ≥ 0, we set (using the same notations as before)

Cp,q(A,B) :=
∏

(i0...ip)∈Ip+1

(j0...jq)∈Jq+1

F(Ui0...ip ∩ Vj0...jq)

and define homomorphisms

′dp,q : Cp,q(A,B;F) −→ Cp+1,q(A,B;F) and

′′dp,q : Cp,q(A,B;F) −→ Cp,q+1(A,B;F)

where, for any f ∈ Cp,q(A,B;F), the (i0, . . . , ip+1, j0, . . . , jq)-component of ′dp,q(f) is
given by

p+1∑
k=0

(−1)k+qfi0...̂ik...ip+1,j0...jq
|Ui0...ip+1∩Vj0...jq
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and the (i0, . . . , ip, j0, . . . , jq+1)-component of ′′dp,q(f) is given by
q+1∑
l=0

(−1)lfi0...ip,j0...ĵl...jq |Ui0...ip+1∩Vj0...jq+1
.

It is easy to see that the objects Cp,q(A,B;F) together with the maps ′dp,q and ′′dp,q
constitute a double complex C••(A,B;F). From this double complex, one can derive
single complexes as outlined before. The q-th column and the p-th row of C••(A,B;F)
are described as follows:

′C•q(A,B;F) =
∏

(j0,...,jq)∈Jq+1

C•(−1)q(A|Vj0...jq ,F) and

′′Cp•(A,B;F) =
∏

(i0,...,ip)∈Ip+1

C•(B|Ui0...ip ,F)

Here the product of complexes is understood in the obvious way. Furthermore, C•(−1)q

is the complex obtained from C• by multiplying the co-boundary maps with (−1)q,
and for any open V ⊆ X, the covering A|V := {Ui ∩ V }i∈I is the restriction of A to V
(likewise for B). Also, on the right-hand sides, F must be interpreted as its restriction
to Vj0...jq or Ui0...ip .
The augmentations

F(Vj0...jq) −→ C0(A|Vj0...jq ,F)

induce homomorphisms

Cq(B,F) −→ ker ′d0,q ⊂ C0,q(A,B;F),

which, in turn, can be interpreted as a homomorphism

i′′ : C•(B,F) −→ C•(A,B;F)

into the single complex associated to C••(A,B;F). Furthermore, i′′ maps C•(B,F)
into the subcomplex C ′′•(A,B;F) of C•(A,B;F) which is given by

C ′′q(A,B;F) = ker ′d0,q.

Now assuming that the covering A|Vj0...jq is F -acyclic for all indices j0, . . . , jq ∈ J and
for all q, we see that i′′ maps C•(B,F) isomorphically onto C ′′•(A,B;F). In addition,
it follows from our description of the q-th row that

hp(′C•q(A,B;F)) = 0

for all p > 0 and for all q. Thus, Lemma 3.1.7 can be applied and we get

Lemma 3.1.8. If the covering A|Vj0...jq is F-acyclic for all indices j0, . . . , jq ∈ J and
for all q, then the homomorphisms

i′′ : C•(B,F) −→ C•(A,B;F)

induces bijections

hr(i′′) : Ȟr(X,F ;B) ∼−→ hr(′C•(A,B;F))
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Of course, there is an analogue of Lemma 3.1.8 for the homomorphism

i′ : C•(A,F) −→ C•(A,B;F)

which is derived from the augmentations

F(Ui0...ip) −→ C0(B|Ui0...ip ,F).

Thus, we obtain the following result:

Theorem 3.1.9 (Comparison Theorem). Assume that all coverings A|Vj0...jq and
B|Ui0...ip are F-acyclic. Then one gets bijections

Ȟr(X,F ;A) hr(i′)−−−→
∼

hr(′C•(A,B;F)) hr(i′′)←−−−
∼

Ȟr(X,F ;B)

and a commutative diagram

Ȟr(X,F ;A) hr(′C•(A,B;F)) Ȟr(X,F ;B)

Ȟr(X,F ;A0)

hr(i′)
∼

hr(i′′)
∼

%r(B,A0)
%r(A,A0)

for all r. In particular, A is F-acyclic if and only if B is F-acyclic.

Proof. The acyclicity statement follows from Lemma 3.1.8 if one realizes that there is a
canonical augmentation

F(X) −→ C0(A,B;F) = C0,0(A,B;F)

which is compatible with the augmentations F(X) −→ C0(A,F) and F(X) −→
C0(B,F) via i′ and i′′. Indeed, the criterion of F-acyclicity used in (2) and the
commutativity of the diagram yield the result.

Corollary 3.1.10. Assume B = (Vj)j∈J is a refinement of A = (Ui)i∈I and that
B|Ui0,...,ip is F-acyclic for all i0, . . . , ip ∈ I and for all p. Then, the covering A is
F-acyclic if and only if B is F-acyclic.

Proof. We only have to show that all coverings A|Vj0,...,jq are F-acyclic. However,
this follows form Lemma 3.1.5, since A|Vj0,...,jq and the trivial covering of Vj0...jq are
refinements of each other.

We will end this section by giving a standard argument that will allow us to attain
acyclicity in general cohomology by acyclicity in Čech cohomology, for any rational
covering of a rational subspace of Spa(A,A+). For this part some basic knowledge in
cohomology theory is required. See [12, §III.1] or [21].

Lemma 3.1.11. Let (X,OX) be a ringed space. Then the category of presheaves of
OX-modules has enough injectives.
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Proof. Let F be a presheaf of OX-modules. For each point x ∈ X, the stalk Fx is
defined and it is an OX,x-module. By [12, Proposition 2.1A], there exists an injection
Fx −→ Ix, where Ix is an injective OX,x-module. Consider the inclusion

j : {x} −→ X

for each x ∈ X and the sheaf

J := ∏
x∈X

j∗(Ix).

Here we consider Ix as a sheaf on the one-point space {x}, and j∗ is the direct image
functor; see [12, II, § 1].
For any presheaf G of OX-modules, we have

HomOX (G,J ) = ∏
x∈X

HomOX (G, j∗(Ix)).

Now, for each point x ∈ X

HomOX (G, j∗(Ix)) ∼= HomOX.x(Gx, Ix)

which is easily verified.
So we obtain an injection

F ↪→ J ,

induced by all the local maps Fx −→ Ix.
Furthermore HomOX (·,J ) = ∏

x∈X HomOX,x(·, Ix) ◦F is exact, since Ix is injective and
the stalk functor F : G 7→ Gx is exact.
We conclude that J is an injective presheaf of OX-modules.

Corollary 3.1.12. The category of abelian presheaves on a topological space X has
enough injectives.

Proof. Let OX be the constant sheaf of rings Z as in [12, II, § 2]. Then (X,OX) is a
ringed space, and the category of abelian presheaves on X coincides with the category
of presheaves of OX-modules.

Lemma 3.1.13. Let X be a ringed space. Let A = (Ui)i∈I be a covering of X. Let I
be an injective object in the category of abelian presheaves on X. Then

Hq(X, I) = Ȟq(X, I;A) = 0, for q > 0.

Proof. For the Grothendieck cohomology see [12, §III.1, Theorem 1.1A].

For the Čech cohomology consider an injective presheaf I of OX-modules. In this
case the functor HomOX (·, I) is exact.
Denote jio···ip : Uio···ip −→ X the inclusion of Uio···ip into X. Consider the complex
K(A)• of presheaves of OX-modules

· · · −→
⊕
i0,i1,i2

(ji0i1i2)p!OUi0i1i2 −→
⊕
i0,i1

(ji0i1)p!OUi0i1 −→
⊕
i0

(ji0)p!OUi0 −→ 0
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where (ji0···ip)p!OUi0···ip denotes the extended sheaf by zero as in [12, II, Exercise 1.19],
where the last nonzero term is place in degree 0 and the map

(ji0···ip+1)p!OUi0···ip+1
−→ (ji0···îj ···ip+1

)p!OUi0···îj ···ip+1

is given by (−1)j times the canonical map.
Then

HomOX ((ji0···ip+1)p!OUi0···ip ,F) ∼= HomOX (OX |Ui0···ip ,F|Ui0···ip ) ∼= F(Ui0···ip).

for any abelian presheaf F of OX-modules. Consequently, HomOX (K(A)•, I) ∼=
C•(A, I).
Since HomOX (·, I) is exact, we conclude that

hq(HomOX (K(A)•, I)) ∼= hq(C•(A, I)) = 0 for q > 0.

Thus, Ȟq(X, I;A) = 0, for q > 0.

Lemma 3.1.14. Let U ∼= Spa(B,B+) be a rational subspace of Spa(A,A+) and
F an abelian presheaf on U . Assume that for any rational covering B = (Ui)i∈I ,
Ȟq(U,F ;B) = 0 for all q > 0.

Then Hq(U,F) = 0 for all q > 0.

Proof. Since the category of abelian presheaves has enough injectives, we can choose
an embedding F −→ I into an injective abelian presheaf I. By Lemma 3.1.13,

Ȟq(U, I;B) = 0 for q > 0.

Let Q = I/F so that we have the short exact sequence

0 −→ F −→ I −→ Q −→ 0

It follows that for any Ui ∈ B the sequence

0 −→ F(Ui) −→ I(Ui) −→ Q(Ui) −→ 0 (1)

is exact. In particular we obtain a short exact sequence of Čech complexes

0 −→ C•(B,F) −→ C•(B, I) −→ C•(B,Q) −→ 0.

Looking at the long exact sequence of Čech cohomology groups we conclude that for
the abelian presheaf Q,

Ȟq(U,Q;B) = 0 for all q > 0.

Now consider the long exact cohomology sequence

0 H0(U,F) H0(U, I) H0(U,Q)

H1(U,F) H1(U, I) H1(U,Q)

. . . . . . . . .
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By Lemma 3.1.13, Hq(U, I) = 0 for q > 0. We conclude that Hq(U,F) ∼= Hq−1(U,Q)
for q > 1 and from (1), we obtain H1(U,F) = 0, since H0(U, I) −→ H0(U,Q) is
surjective.
We argue now by induction on q > 0. The case q = 1 is done.
Suppose Hq−1(U,F) = 0 for all abelian presheaves on U with Ȟq(U,F ;B) = 0 for all
q > 0.
Then Q is such a presheaf and by the conclusion made above

0 = Hq−1(U,Q) ∼= Hq(U,F).

It follows that Hq(U,F) = 0 for all q > 0.

3.2 Acyclic sheaves
From here on we will follow the main ideas of the classical Tate’s acyclicity Theorem
in rigid analytic geometry; see [1, §8.2]. As mentioned before our objective is to proof
acyclicity for simple Laurent coverings, and then use Lemma 2.5.18 to obtain acyclicity
for every rational covering.

Lemma 3.2.1. Let F be a presheaf of abelian groups on Spa(A,A+). Suppose that
for every rational subdomain U = Spa(B,B+) of Spa(A,A+) and every simple Laurent
covering {V1, V2} of U , we have

Ȟ0(U,F ; {V1, V2}) = F(U), resp.

Ȟ i(U,F ; {V1, V2}) =
{
F(U) i = 0
0 i > 0.

Then for every rational subdomain U of Spa(A,A+) and every rational covering B of
U ,

H0(U,F) = Ȟ0(U,F ;B) = F(U), resp.

H i(U,F) = Ȟ i(U,F ;B) =
{
F(U) i = 0
0 i > 0.

Proof. We will divide the proof into several steps in order to derive the two conclusions
of the Lemma. In first part we will proof that the property ”F(U) −→ Ȟ0(U,F ;B) is
injective” for a rational covering B of U satisfies a.), b.) and c.) of Lemma 2.5.18.

Throughout this argument, let U be an arbitrary rational subdomain of Spa(A,A+),
with U ∼= Spa(B,B+) and B be a rational covering of U .

(1) The property ”F(U) −→ Ȟ0(U,F ;B) is injective” for a rational covering B of U is
local:

Let S = (Vj) be a refinement of B = (Ui) such that

ϕ2 : F(U) −→ Ȟ0(U,F ;S)
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is injective.
Since S is a refinement of B we obtain a morphism∏

i

F(Ui) −→
∏
i,j

F(Vi,j) for Vi,j ⊂ Ui.

Consequently, there is a morphism between the two Čech complexes:

τ • : C•(U,F ;B) −→ C•(U,F ;S).

Thus we get morphisms ψi : Ȟ i(U,F ;B) −→ Ȟ i(U,F ;S) for all i ≥ 0.
Consider the canonical morphism

ϕ1 : F(U) −→ Ȟ0(U,F ;B).

Then ϕ2 : F(U) −→ Ȟ0(U,F ;S) factors through ψ0 ◦ ϕ1, as shown in the following
commutative diagram:

F(U) Ȟ0(U,F ;S)

Ȟ0(U,F ;B)

ϕ2

ϕ1
ψ0

Since ϕ2 is injective, ψ0 ◦ ϕ1 must also be injective. We conclude that ϕ1 is injective.

(2) The property ”F(U) −→ Ȟ0(U,F ;B) is injective” for a rational covering B of U is
transitive:

For each Ui ∈ B, let Si = (Vij) be a covering of Ui, such that

ϕ1 : F(U) −→ Ȟ0(U,F ;B) and ϕi : F(Ui) −→ Ȟ0(U,F ;Si)

are injective.

Consider the covering S := ⋃
iSi of U and the canonical morphism

ϕ2 : F(U) −→ Ȟ0(U,F ;S).

For f ∈ F(U), we have that ϕ2(f) = (f |Vij)ij = (f |Ui|Vij )ij = ψ0 ◦ ϕ1(f), since F is a
presheaf. It follows that the diagram

F(U) Ȟ0(U,F ;S)

Ȟ0(U,F ;B)

ϕ2

ϕ1
ψ0

commutes. Here the morphism ψ0 : Ȟ0(U,F ;B) −→ Ȟ0(U,F ;S) is induced by the
morphism of Čech complexes

τ • : C•(U,F ;B) −→ C•(U,F ;S),
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which exists since S is a refinement of B.
Now, consider the morphism

τ 0 :
∏
i

F(Ui) −→
∏
i,j

F(Vij)

given by (τ 0(f))ij = fi|Vij , where f := (fi)i∈I and Vij ∈ Si. Since

ϕi : F(Ui) −→ Ȟ0(Ui,F ;Si)

is injective for all Ui ∈ B, it follows that τ 0 is also injective. Looking at the following
commutative diagram,

Ȟ0(U,F ;B) ∏
i
F(Ui)

Ȟ0(U,F ;S) ∏
i,j
F(Vij)

ψ0
τ0

we conclude that ψ0 is injective. Hence, ϕ2 = ψ0 ◦ ϕ1 must also be injective.

(3) The property ”F(U) −→ Ȟ0(U,F ; {V1, V2}) is injective” holds for simple Laurent
coverings {V1, V2} of U .

By hypothesis Ȟ0(U,F ; {V1, V2}) = F(U).

It follows by Lemma 2.5.18 that for any rational covering B of U the canonical morphism
F(U) −→ Ȟ0(U,F ;B) is injective.

Now we are ready to proof the first statement of the Lemma, which we will do by
proving that the property ”F(U) −→ Ȟ0(U,F ;B)” is bijective” for a rational covering
B of U satisfies a.), b.) and c.) of Lemma 2.5.18.

a.) The property ”F(U) −→ Ȟ0(U,F ;B) is bijective” for a rational covering B of U is
local:

Let S = (Vj) be a refinement of B = (Ui) given by the function λ : j 7−→ i, such that

ϕ2 : F(U) −→ Ȟ0(U,F ;S)

is bijective.
As mentioned above, there exists a morphism

ψ0 : Ȟ0(U,F ;B) −→ Ȟ0(U,F ;S)

and the canonical morphism

ϕ2 : F(U) −→ Ȟ0(U,F ;S)

factors through ψ0 ◦ ϕ1, as shown in the following commutative diagram:
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F(U) Ȟ0(U,F ;S)

Ȟ0(U,F ;B)

ϕ2

ϕ1
ψ0

Since ϕ2 is bijective, ψ0 is surjective.
We will show that ψ0 is also injective, thus establishing an isomorphism between
Ȟ0(U,F ;B) and Ȟ0(U,F ;S). Then we can deduce the surjectivity of ϕ1 from the
surjectivity of ϕ2.

Consider the following commutative diagram:

Ȟ0(U,F ;B) Ȟ0(U,F ;S)

∏
i
F(Ui)

∏
j
F(Vj)

ψ0

γ

τ0

where τ 0((fi)i) := (fλ(j)|Vj ). Let us prove that γ is injective, which implies the injectivity
of ψ0.

For any Ui ∈ B we have a rational covering S|Ui = (Ui ∩ Vj), with Vj ∈ S. We get a
canonical morphism for each Ui

βi : F(Ui) −→ Ȟ0(F , Ui,S|Ui)
fi 7−→ (fi|Ui∩Vj)j

which is injective as mentioned before.

Given f := ((fi))i ∈ Ȟ0(Ui,F ;B) such that γ(f) = 0, then

fi|Ui∩Uj = fj|Ui∩Uj and
fλ(j)|Vj = 0,

for all i and j.
For a fixed index i, we obtain

(βi(fi))j = fi|Ui∩Vj
= (fi|Ui∩Uλ(j))|Ui∩Vj , since F is a presheaf
= (fλ(j)|Ui∩Uλ(j))|Ui∩Vj
= (fλ(j)|Vj)|Ui∩Vj , since F is a presheaf
= 0.

We conclude that fi = 0 by the injectivity of βi. Consequently, f = 0 after considering
all indices i. Hence, γ is injective and a.) is proven.

b.) The property that F(U) −→ Ȟ0(U,F ;B) is bijective, is transitive:

For each Ui ∈ B, let Si = (Vij) be a covering of Ui, such that
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ϕ1 : F(U) −→ Ȟ0(U,F ;B) and ϕi : F(Ui) −→ Ȟ0(U,F ;Si)

are bijective.

Consider the covering S := ⋃
iSi of U . As in the injective case, there exists a canonical

morphism

ϕ2 : F(U) −→ Ȟ0(U,F ;S)

and an injective morphism

ψ0 : Ȟ0(U,F ;B) −→ Ȟ0(U,F ;S),

induced by the morphism of Čech complexes

τ • : C•(U,F ;B) −→ C•(U,F ;S),

which exists since S is a refinement of B, given by the function λ : IJ −→ I, ij 7−→ i.
In this way we obtain again a commutative diagram

F(U) Ȟ0(U,F ;S)

Ȟ0(U,F ;B)

ϕ2

ϕ1
ψ0

such that ϕ1 is bijective and ψ0, ϕ2 are injective.
Given g := (gij) ∈ Ȟ0(U,F ;S), we have that gi0j0|Vi0j0∩Vi1j1 = gi1j1 |Vi0j0∩Vi1j1 for all
Vij ∈ S. In particular, gi0j0|Vi0j0∩Vi1j1 = gi1j1|Vi0j0∩Vi1j1 for all Vij ∈ Si. It follows that
for any fixed i, say i0, the components i0j of g are elements of Ȟ0(U,F ;Si0), i.e.,

(gi0j)j ∈ Ȟ0(U,F ;Si0).

Since

ϕi0 : F(Ui0) −→ Ȟ0(U,F ;Si0)

is bijective, there exists fi0 ∈ F(Ui0) such that ϕi0(fi0) = (fi0 |Vi0j)j = (gi0j)j.
Varying the index i0, we obtain a morphism

τ ′0 :
∏
i

F(Ui) −→ Ȟ0(U,F ;S),

given by (τ ′0(f))ij = fi|Vij = gij, where f := (fi)i∈I .

For each F(Ui0i1) consider the morphism

εi0i1 : F(Ui0i1) −→
∏

λ(j0)=i0
λ(j1)=i1

F(Vj0j1).
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Which arise by considering Hi0i1 := {Vj0j1}λ(j0)=i0,λ(j1)=i1 as a covering of Ui0i1 . As we
previously proved, the canonical morphism

β : F(Ui0i1) −→ Ȟ0(Ui0i1 ,F ;Hi0i1)

is injective and so

εi0i1 : F(Ui0i1) −→
∏

λ(j0)=i0
λ(j1)=i1

F(Vj0j1),

is injective for each Ui0i1 .
Consider now a part of the two augmented Čech complexes given by

0 F(U)
∏
i
F(Ui)

∏
i0<i1
F(Ui0i1)

0 F(U)
∏
i,j
F(Vij)

∏
i0j0<i1j1

F(Vi0j0i1j1)

ε d0

τ0

ε d′0

τ1

As d′0 ◦ τ 0(f) = τ 1 ◦ d0(f) = 0, it follows that

τ 1
(
(fi1 − fi0 |Ui0i1 )i0i1

)
= 0,

where (fi1−fi0|Ui0i1 )i0i1 ∈
∏
i0<i1 F(Ui0i1). In particular, for any fi1−fi0|Ui0i1 ∈ F(Ui0i1)

we have

εi0i1
(
fi1 − fi0|Ui0i1

)
= 0.

Thus, fi1 − fi0|Ui0i1 = 0 for each i0i1. This implies that f = (fi)i∈I ∈ Ȟ0(U,F ;B).
Since

ϕ1 : F(U) −→ Ȟ0(U,F ;B)

is bijective, there exists x ∈ F(U) such that ϕ2(x) = g. This proves that ϕ2 is surjective.
Consequently, ϕ2 is bijective.

c.) By hypothesis Ȟ0(U,F ; {V1, V2}) = F(U).
By the definition of Grothendieck cohomology, we get that H0(U,F) ∼= F(U). This
proofs the first part of the Lemma.

Assume now that

Ȟ i(U,F ; {V1, V2}) =
{
F(U) i = 0
0 i > 0.

Define the property P for any rational covering S of U :=

Given another covering A= (Ui)i∈I of U ,
S|Ui0,...,ip is F-acyclic for all i0, . . . , ip ∈ I
and for all p, where Ui0,...,ip = Ui0 ∩ · · · ∩ Uip.
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We will proof that the property P satisfies a.), b.) and c.) of Lemma 2.5.18.

a.) Let B′ be a refinement of B = (Ui)i∈I with the property P . Since B is a covering of U
and B′ fulfills the property P , it follows that B′|Ui0,...,ip is F -acyclic for all i0, . . . , ip ∈ I
and for all p. Now, consider any covering S = (Vj)j∈J of U . It suffices to proof that
B|Vj is F-acyclic in order to show that B fulfills the property P. The covering B′|Vj
is a refinement of B|Vj as a covering of Vj and B′|Vj is F-acyclic, since B′ fulfills the
property P . For the covering B ∪ {Vj} of U , we have as above that

B′|Ui0...ip∩Vj = B′|Vj |Ui0...ip

is F -acyclic for all i0, . . . , ip ∈ I and for all p. Thus we can apply Corollary 3.1.10 and
conclude that B|Vj is F -acyclic. This proofs a.)

b.) Let B = (Ui)i∈I be a covering of U with the property P, and for each Ui let
B′i = (Wik)k∈K be a covering of Ui with the property P. We want to proof that
B′ = ⋃

iB
′
i fulfills the property P . To see this, consider any covering S = (Vj)j∈J of U .

It suffices to proof that B′|Vj is F -acyclic in order to show that B′ fulfills the property
P .
We would like to apply Corollary 3.1.10 to the coverings B|Vj and B′|Vj of Vj , since the
covering B′|Vj is a refinement of B|Vj as a covering of Vj. For the purpose of satisfying
the conditions of the Corollary 3.1.10, it would suffice to proof that B′|Uj is F -acyclic
for some Uj ∈ B.
Consider the covering B′j = (Wjk)k∈K of Uj, which is a refinement of

B′|Uj = (Uj ∩Wik)i∈I,k∈K

as a covering of Uj. Since B′j fulfills the property P , then

B′j|Uj∩Wi0k0...ipkp

is F -acyclic for all i0k0, . . . , ipkp and for all p. Thus, we can apply Corollary 3.1.10 to
the coverings B′j and B′|Uj and conclude that B′|Uj is F -acyclic if and only if B′j is
F -acyclic. Regarding the trivial cover A0 := {Uj} as a cover of Uj, it follows that B′j
is F -acyclic by the property P . Consequently, B′|Uj is F -acyclic.
Now, the conditions of the Corollary 3.1.10 are met and B′|Vj is F -acyclic if and only
if B|Vj is F-acyclic. Since B fulfills the property P, it follows that B|Vj is F-acyclic.
Hence, B′|Vj is F -acyclic. This proofs b.)

c.) Let {V1, V2} be a simple Laurent covering of U . Consider another covering
S = (Wi)i∈I of U . Since {V1, V2}|Wi0...ip

is a simple Laurent covering of Wi0...ip and
Wi0...ip is a rational subdomain of Spa(A,A+), we can apply our assumption to Wi0...ip

instead of U and conclude that {V1, V2}|Wi0...ip
is F -acyclic. Consequently, {V1, V2} has

the property P, i.e, without loss of generality we can assume that {V1, V2} fulfills the
property P . This proofs c.)
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Note that the property P implies F -acyclicity for any covering that fulfills it, since we
can always consider the trivial covering A0 = U . Thus, by Lemma 2.5.18 the covering
B fulfills the property P and therefore is F -acyclic.

Now we can apply Lemma 3.1.14, and obtain also H i(U,F) =
{
F(U) i = 0
0 i > 0.

We successfully proved, that if we manage to proof acyclicity of the structure sheaf for
simple Laurent coverings on a rational subdomain U of Spa(A,A+), we could follow
acyclicity for any rational covering on U . As we will see below the sheaf condition
is all that we need to prove acyclicity for simple Laurent coverings on any rational
subdomain. As stipulated in [17, §2.4] we could also see the next assertion as following:
the only obstruction to the analogue of Tate’s acyclicity Theorem is the failure of the
structure presheaf to be a sheaf. To see this, consider the Čech complex associated to a
simple Laurent covering {V1, V2} of Spa(A,A+), which is of the form

0 −→ Γ(Spa(A,A+),O) −→ Γ(V1,O)⊕ Γ(V2,O) −→ Γ(V1 ∩ V2,O) −→ 0.

Since Γ(Spa(A,A+),O) ∼= A, this translates into the sequence

0 −→ A −→ B1 ⊕B1 −→ B12 −→ 0,

where (A,A+) −→ (B1, B
+
1 ),(A,A+) −→ (B2, B

+
2 ),(A,A+) −→ (B12, B

+
12) correspond

to the rational localizations of V1, V2, V1 ∩ V2, respectively.

Lemma 3.2.2. Let S−, S+ be the simple Laurent covering of Spa(A,A+) define by
some f ∈ A. Let (A,A+) −→ (B1, B

+
1 ),(A,A+) −→ (B2, B

+
2 ),(A,A+) −→ (B12, B

+
12)

be the rational localizations corresponding to S−, S+, S− ∩ S+, respectively. Then the
map B1 ⊕B2 −→ B12 taking (b1, b2) to (b1 − b2) is surjective.

Proof. Lemma 2.5.10, tells us that any rational subspace U of Spa(A,A+) defined by
f1, . . . , fn, g is represented by a rational localization ϕ : (A,A+) −→ (B,B+), where B
is the quotient of A{T1, . . . , Tn} for the closure of the ideal (gT1 − f1, . . . , gTn − fn). In
this way we obtain strict surjections

ϕ1 : A{T} −→ B1, ϕ2 : A{U} −→ B2, ϕ12 : A{T, U} −→ B12

taking T to f and U to f−1. This means

B1 ∼= A{T}/(T − f), B2 ∼= A{U}/(fU − 1), B12 ∼= A{T, U}/(T − f, fU − 1)

In particular, any b ∈ B12 can be lifted to some ∑∞i,j=0 aijT
iU j ∈ A{T, U}. Consider the

sum of aij over all i, j ≥ 0 with i− j = n. Remember that ∑∞i,j=0 aijT
iU j ∈ A{T, U}

means that lim
i,j→∞

|aij| = 0. Consequently, ∑∞n=i−j aij converges in A for all n, say to a′n.
Let b1 be the image of ∑∞n=0 a

′
nT

n in B1. Let b2 be the image of −∑∞n=1 a
′
−nU

n in B2.

45



Then

b =
∞∑

i,j=0
aijf

i(f−1)j

=
∞∑

i−j=0
aij +

∞∑
i−j=1

aijf + · · ·+
∞∑

i−j=−1
aijf

−1 +
∞∑

i−j=−2
aij(f−1)2 + . . .

=
∞∑
n=0

a′nf
n +

∞∑
n=1

a′−n(f−1)n

=ϕ12(
∞∑
n=0

a′nT
n +

∞∑
n=1

a′−nU
n)

=ϕ12(b1 − b2).

This proofs the desired surjection.

Theorem 3.2.3. Suppose that (A,A+) is sheafy. Then for every rational covering A

of any rational subspace U ∼= Spa(B,B+) of X = Spa(A,A+),

H i(U,OX) = Ȟ i(U,OX ;A) =
{
U i = 0
0 i > 0.

Proof. By Lemma 3.2.1, it suffices to check OX-acyclicity for simple Laurent coverings.
We may as well consider only simple Laurent coverings of Spa(A,A+) itself, since the
condition that OX is a sheaf implies that OU ∼= OX |U is also a sheaf by restriction. In
the notation of Lemma 3.2.2, the Čech complex C•({V1, V2},OX), where {V1, V2} is a
simple Laurent covering of A, induces the sequence

0 −→ A −→ B1 ⊕B2 −→ B12 −→ 0,

which is exact at B12 due to Lemma 3.2.2. By the sheafy hypotesis, it is also exact at
A and B1 ⊕B2. Thus, Lemma 3.2.1 yields the claim.

Definition 3.2.4. Let (A,A+) be an adic Banach ring. Let F be a presheaf of
topological rings on Spa(A.A+). We say that F satisfies the Tate sheaf property if
for every rational localization (A,A+) −→ (B,B+) and every rational covering A of
U ∼= Spa(B,B+),

H i(U,F) = Ȟ i(U,F ;A) =
{
F(U) i = 0
0 i > 0.

In particular, this implies that F is a sheaf.

Theorem 3.2.5. Let (A,A+) be a sheafy adic Banach ring. Then the structure sheaf
OX on X =Spa(A,A+) satisfies the Tate sheaf property.

Proof. The Tate sheaf property is in this case Theorem 3.2.3.
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4 Part: Kiehl glueing property
In this section we will use Lemma 2.5.18 to compare sheaves of locally free modules of
finite rank with their global sections. In particular, we will be interested into glueing
together finitely generated projective modules in order to attain a category equivalence,
similar to the classical result of Kiehl; see Theorem 4.1.5(ii).
We will proceed as in the previous section and prove the claim for simple Laurent
coverings and then for any rational covering.

4.1 Coherent sheaves on affinoid spaces
We will present the equivalent of the classical results of Tate and Kiehl in the theory
of coherent sheaves from our curring setting of adic spectra. In order to do so, we
will have to restrict ourselves, in some cases, to the setting of affinoid spaces over an
analytic field. Accordingly, some results here are analogous to results in rigid analytic
geometry, which we mention to establish a comparison between these classical results
and the ones in the setting of Banach algebras over an analytic field.

Definition 4.1.1. For (A,A+) an adic Banach ring let M be an A-module. We define
the presheaf associated to M on X = Spa(A,A+), denoted by M̃ , as follows. For any
rational subspace U ∼= Spa(B,B+) of X, we define the group M̃(U) as M ⊗A B, i.e.,
U 7→ M̃(U) := M ⊗A B.
For V ⊆ Spa(A,A+) open, we define the group M̃(V ) as M⊗A lim←−Spa(Bi,B+

i )⊆V Bi, where
the inverse limit is taken over all rational localizations (A,A+) −→ (Bi, B

+
i ) for which

Spa(Bi, B
+
i ) ⊆ V ,i.e., V 7→ M̃(V ) := M ⊗A lim←−Spa(Bi,B+

i )⊆V Bi.

Note that although it would be desirable to work with sheaves on Spa(A,A+) as for
OX-modules in algebraic geometry, the presheaf M̃ is in general not a sheaf, even if
we restrict ourselves to finite coverings as in rigid analytic geometry; see [17, Example
2.8.7] for a counterexample. However, if A is an affinoid space over an analytic field
or if we only consider finite projective modules over a sheafy Banach ring (A,A+), we
could assure acyclicity of the presheaf M̃ ; see [6, Theorem 4.3/11] and [6, Corollary
5.2/4] for the first assertion and Lemma 4.2.10 for the second.

Definition 4.1.2. Let X = (A,A+) be an adic Banach ring. Let F be a sheaf of
topological rings on Spa(A.A+). We say that F satisfies the Kiehl glueing property
if for every rational subdomain U ∼= Spa(B,B+) of Spa(A,A+), the functor from the
category of finite projective F(U)-modules to the category of sheaves of F-modules
over U which are locally free of finite rank, defined by F : M 7→ M̃ , is an equivalence of
categories.

For the definition to make sense, we need to proof that the F -module M̃ , associated to
a finite projective B-module, is locally free of finite rank.

For this consider the elements f1, . . . , fn in B such that f1u1 + · · · + fnun = 1 and
M ⊗B Bfi is a finitely generated free Bfi-module for all i = 1, . . . , n, which exist by
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Theorem 2.1.4. It follows that M ⊗B B̂fi is a finitely generated free B̂fi-module for all
i = 1, . . . , n. Taking the standard rational covering A = (Ui)1≤i≤n of U generated by
the elements f1, . . . , fn, where Ui = X(f1

fi
, . . . , fn

fi
) ∼= Spa(Bi, B

+
i ), we get that B̂fi

∼= Bi,
via f−1

i 7→ (u1 + u2T2 + · · ·+ unTn), for all i = 1 . . . , n. Thus, M̃ |Ui = (M ⊗B Bi)̃ is a
free FU |Ui-module, making M̃ into a locally free sheaf of finite rank; compare Lemma
2.5.10.

As remarked in [17, Theorem 2.2.8], the following theorem is an analogue of the Banach-
Schauder open mapping theorem [19, Theorem 2.11] in the rigid analytic geometry.
This theorem will help us proof that any simple Laurent covering fulfills the conditions
of a glueing square (Definition 4.2.3).

Theorem 4.1.3. Let R be a Banach ring containing a topologically nilpotent unit. Let
ϕ : V −→ W be a bounded surjective homomorphism of Banach modules over R. Then
ϕ is open and strict.

Proof. For R an analytic field, see [9, §I.3.3, Théorème 1]. For the general case, see
[13].

The next Lemma is one of the key arguments for proving the classical theorems of Tate
and Kiehl (Theorem 4.1.5), which we will only mention at the end of this section, in
order to remark its similarity to our main Theorem 1.0.1.

Lemma 4.1.4. Let (A,A+) be an adic Banach ring in which A is an affinoid algebra
over an analytic field K. Let {(A,A+) −→ (Bi, B

+
i )}ni=1 be an affinoid covering. Then

the ring homomorphism A −→ B1 ⊕ · · · ⊕Bn is faithfully flat.

Proof. The homomorphism A −→ B1 ⊕ · · · ⊕ Bn is flat by [1, Corollary 7.3.2/6]. It
is faithful by Lemma 2.1.7 and the fact that every maximal ideal of A is closed (by
Corollary 2.4.4).

Theorem 4.1.5. Let (A,A+) be an adic Banach ring in which A is an affinoid algebra
over an analytic field K. Let A be an affinoid covering.

(i) For any finite A-module M , let M̃ be the sheaf of O-modules on Spa(A+, A) induced
by M . Then Ȟ i(Spa(A,A+), M̃ ;A) = M for i = 0 and 0 for i > 0. In particular,
(A,A+) is sheafy and H i(Spa(A,A+)) = M for i = 0 and 0 for i > 0.

(ii) The functor M 7→ M̃ defines a tensor equivalence between finite A-modules and
coherent sheaves of O-modules on Spa(A,A+).

The first part is non other than Tate’s acyclicity theorem, which we already studied
in the framework of adic spectra; see Theorem 3.2.5 and Corollary 4.2.10. The second
part is an analogous of the Kiehl’s glueing property for coherent sheaves and finitely
generated modules; see Definition 4.1.2.
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4.2 Glueing of finite projective modules
For (A,A+) −→ (B,B+) a rational localization of adic Banach rings, the map A −→ B

is flat if A is an affinoid algebra over an analytic field; see Theorem [17, Lemma 2.5.7]
or Lemma 4.1.4. But it need not be flat in general. For instance, flatness almost always
fails for perfectoid algebras. Guided by this observation and by the analogy with the
Beauville-Laszlo theorem ([17, Proposition 1.3.6]), we will limit our glueing ambitions
to cases where the modules being glued are themselves flat.
Following this idea, we will focus our attention on the category of sheaves of locally
free modules of finite rank over various sheaves of rings on adic spectra.

Definition 4.2.1. Let

R R1

R2 R12

be a commuting diagram of ring homomorphisms such that the sequence

0 −→ R −→ R1 ⊕R2 −→ R12 −→ 0

of R-modules, in which the last nontrivial arrow takes (s1, s2) to s1 − s2, is exact.
By a glueing datum over this diagram, we will mean a datum consisting of modules
M1,M2,M12 over R1,R2,R12, respectively, equipped with isomorphisms

ψ1 : M1 ⊗R1 R12 ∼= M12, ψ2 : M2 ⊗R2 R12 ∼= M12.

We say such a glueing datum is finite or finite projective if the modules are finite or
finite projective over their corresponding rings.
When considering a glueing datum, it is natural to consider the kernel M of the map

ψ1 − ψ2 : M1 ⊕M2 −→M12 (m1,m2) 7→ (ψ1(m1 ⊗ 1)− ψ2(m2 ⊗ 1)).

Note that since R1 and R2 are R-modules, then M1⊕M2 can be seen also as a R-module.
It follows that M , as a submodule of M1 ⊕M2 is also a R-module.
There are natural maps M −→M1, M −→M2 of R-modules, which by tensoring with
R1 and R2 respectively, correspond to the maps M ⊗R R1 −→M1, M ⊗R R2 −→M2.

Lemma 4.2.2. Let R1 → S,R2 → S be bounded homomorphisms of Banach rings (not
necessarily containing topologically nilpotent units) such that the sum homomorphism
ψ : R1 ⊕R2 → S of groups is strict and surjective. Then there exists a constant c′ > 0
such that for every positive integer n, every matrix U ∈ GLn(S) with ‖1− U‖ < c′ can
be written in the form ψ(C1)ψ(C2) with Ci ∈ GLn(Ri) i = 1, 2.

Proof. By hypothesis, there exists a constant d ≥ 1 such that every x ∈ R12 lifts to
a pair (z, y) ∈ R1 ⊕ R2 with |z|, |y| ≤ d|x| and |ψ ((z, 0)) |, |ψ ((0, y)) | ≤ d|x|. Indeed,
since ψ is strict, there exist constants c, l > 0 such that,

|ψ((z, 0))| ≤ cmax{|z|, |0|} = c|z|
|ψ((0, y))| ≤ cmax{|y|, |0|} = c|y| and
|z|, |y| ≤ max{|z|, |y|} ≤ l|x|,
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for some (z, y) ∈ R1 ⊕R2 with ψ((z, y)) = x.

If c ≤ 1,

|ψ((z, 0))|, |ψ((0, y))| ≤ c|z|, c|y|
≤ |z|, |y|.
≤ l|x|.

Hence, put d := max{l, 1}.

If c ≥ 1,

|ψ((z, 0))|, |ψ((0, y))| ≤ c|z|, c|y| ≤ cl|x| and
|z|, |y| ≤ c|z|, c|y| ≤ cl|x|.

Hence, put d := max{cl, 1}.

Choose c′ = d−2.

Given U ∈ GLn(S) such that |U − 1| < c′, let V = U − 1. Lift every entry Vij to a
pair (Zij, Yij) ∈ R1⊕R2 with |Zij|, |Yij| ≤ d|Vij| and |ψ ((Zij, 0))| , |ψ ((0, Yij)) | ≤ d|Vij|.
Define the matrix

U0 := ψ(1− Z)Uψ(1− Y ),

which fulfills:

|U0 − 1| = |ψ(1− Z)Uψ(1− Y )− 1|
= |ψ(1− Z)(1 + (U − 1))ψ(1− Y )− 1|
= |(1− ψ(Z))(1 + (U − 1))(1− ψ(Y ))− 1|
= |(1 + (U − 1)− ψ(Z)− ψ(Z)(U − 1))(1− ψ(Y ))− 1|
= |1− ψ(Y ) + (U − 1)− (U − 1)ψ(Y )− ψ(Z) + ψ(Z)ψ(Y )

− ψ(Z)(U − 1) + ψ(Z)(U − 1)ψ(Y )− 1|.

Since, ψ(Y ) + ψ(Z) = ψ((Z, Y )) = (U − 1), then

|1− ψ(Y )− (U − 1)− (U − 1)ψ(Y )− ψ(Z) + ψ(Z)ψ(Y )
− ψ(Z)(U − 1) + ψ(Z)(U − 1)ψ(Y )− 1|

= |1− 1− (ψ(Y ) + ψ(Z)) + (U − 1)− (U − 1)ψ(Y ) + ψ(Z)ψ(Y )
− ψ(Z)(U − 1) + ψ(Z)(U − 1)ψ(Y )|

= |1− 1− (U − 1) + (U − 1)− (U − 1)ψ(Y ) + ψ(Z)ψ(Y )
− ψ(Z)(U − 1) + ψ(Z)(U − 1)ψ(Y )|

= | − ψ(Z)(U − 1)− (U − 1)ψ(Y ) + ψ(Z)ψ(Y ) + ψ(Z)(U − 1)ψ(Y )|
≤ d|U − 1|2,
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Here we used ψ(Z) := ψ((Z, 0)) and ψ(Y ) := ψ((0, Y )) to simplify the notation.
If |U − 1| ≤ d−l < 1 for some integer l ≥ 2, then |U0 − 1| ≤ d−l−1. Consequently, we
may iterate the construction and obtain a series of matrices (Un)n∈N such that

Un+1 := ψ(1− Zn)Unψ(1− Yn) and
|Zn|, |Yn| ≤ d|Un − 1|.

It follows that

lim
n→∞

Un+1 = 1

lim
n→∞

ψ(1− Zn) = ψ(C ′1)

lim
n→∞

ψ(1− Yn) = ψ(C ′2),

since (1−Zn)n∈N, (1−Yn)n∈N are Cauchy series in the complete spaces Mn(R1),Mn(R2)
respectively and ψ is in particular a bounded homomorphism.

If d = 1, then |U − 1| < d−2 = 1. It follows that

|Un − 1| ≤ dn|U − 1|2n+1 = |U − 1|2n+1
.

Consequently,

lim
n→∞

|Un − 1| ≤ lim
n→∞

|U − 1|2n+1 = 0

We conclude that for d = 1 the series (Un)n∈N still converges to 1.
We conclude that 1 = ψ(C ′1)Uψ(C ′2), which yields U = ψ(C1)ψ(C2) for some Ci ∈
GLn(Ri) i = 1, 2.

Definition 4.2.3. Let
R R1

R2 R12

be a commutative diagram of Banach rings. (For the purposes of this definition, it is
not necessary to assume the presence of topologically nilpotent units.) We call this
diagram a glueing square if the following conditions hold.

a.) The sequence

0 −→ R −→ R1 ⊕R2 −→ R12 −→ 0

of R-modules, in which the last nontrivial arrow takes (s1, s2) to s1 − s2, is exact and
the two maps in the middle are strict.

b.) The map R −→ R12 has dense image.

c.) The map M(R1 ⊕R2) −→M(R) is surjective.

We define glueing data on a glueing square as in Definition 4.2.1.
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Let us recall two important lemmata from the standard abstract descent formalism
([17, §1.3]), which we will use for the glueing of modules.

Lemma 4.2.4. Consider a finite glueing datum as in Definition 4.2.1, for which
M ⊗R R1 −→M1 is surjective. Then we have the following:

(i) The map ψ1 − ψ2 : M1 ⊕M2 −→M12 is surjective.

(ii) The map M ⊗R R2 −→M2 is also surjective.

(iii) There exists a finitely generated R-submodule M0 of M such that for i = 1, 2,
M0 ⊗Ri −→M1 is surjective.

Proof. (i) The surjection M ⊗R R1 −→M1 induces a surjection M ⊗R R12 −→M12 by
tensoring over R1 with R12. Hence, we obtain a surjection

(M ⊗R R1)⊕ (M ⊗R R2) −→M12,

which factors trough M1 ⊕M2.

(M ⊗R R1)⊕ (M ⊗R R2) M12

M1 ⊕M2

ψ1−ψ2

We conclude that ψ1 − ψ2 : M1 ⊕M2 −→M12 is surjective.

(ii) For each v ∈M2, ψ(v) lifts to (M ⊗R R1)⊕ (M ⊗R R2); we can thus find wi in the
image of (M ⊗R Ri) −→M12 for i = 1, 2, such that ψ1(w1)− ψ2(w2) = ψ2(v). Consider
v′ = (w1, v + w2) ∈ M1 ⊕M2; note that v′ ∈ M by construction. Consequently, the
image of (M⊗RR2) −→M12 contains both w2 and v−w2, and hence also v. This yields
(ii), from which (iii) is immediate since each Mi is a finite Ri-module for i = 1, 2.

Definition 4.2.5. For a map ϕ : F −→ G of finite free modules over a ring R, we
define Ijϕ as the image of the map

∧jF ⊗ ∧jG∗ −→ R,

induced by ∧jϕ : ∧jF −→ ∧jG. Here ∧j denotes the j-th exterior power. If we choose
bases for F and G, then ϕ may be represented by a matrix, and one sees that Ijϕ is
generated by the minors (that is, determinants of submatrices) of size j of the matrix.
We make the convention that the determinant of the 0× 0 matrix is 1. In particular,
I0ϕ = R, and more generally Ijϕ = R for j ≤ 0.
Let M be a finitely generated R-module, and let

F
ϕ−→ G→M → 0,

be a finite presentation for M , with G of rank r. For each number i <∞ we define the
i-th Fitting Ideal of M as

Fitti(M) = Ir−iϕ ⊂ R.

52



The Fitting Ideals of a finitely presented R-module M , are invariants of the module
with interesting properties:

1. The Fitting Ideals of M are finitely generated ideals of R satisfying Fitt0(M) ⊆
Fitt1(M) ⊆ . . . and Fitti(M) = R for i sufficiently large.

2. For any ring homomorphism R −→ S, we have Fitti(M ⊗R S) = Fitti(M)S [11,
Corollary 20.5]. In particular, the Fitting Ideals commute under localization.

3. The R-module M is finite projective of constant rank n if and only if Fitti(M) = 0
for i = 0, . . . , n− 1 and Fittn(M) = R [11, Proposition 20.8].

Lemma 4.2.6. Suppose that for every finite projective glueing datum as in Definition
4.2.1, the map M ⊗R R1 −→M1 is surjective. Then,

(i) For any finite projective glueing datum, M is a finitely presented R-Module and
M ⊗R R1 −→M1,M ⊗R R2 −→M2 are bijective.

(ii) Suppose in addition that the image of Spec(R1 ⊕ R2) −→ Spec(R) contains
Maxspec(R). Then with notation as in (i), M is a finite projective R-module.

Proof. Choose M0 as in Lemma 4.2.4(iii). Choose a surjection F −→M0 of R-modules
with F finite free, and put F1 = F ⊗R R1, F2 = F ⊗R R2, F12 = F ⊗R R12, N =
ker(F −→ M), N1 = ker(F1 −→ M1), N2 = ker(F2 −→ M2), N12 = ker(F12 −→ M12).
From Lemma 4.2.4 we have a commutative diagram

0 0 0

0 N N1 ⊕N2 N12 0

0 F F1 ⊕ F2 F12 0

0 M M1 ⊕M2 M12 0

0 0 0

with exact rows and columns, excluding the dashed arrows. Since Mi is projective for
i = 1, 2, the exact sequence

0 −→ Ni −→ Fi −→Mi −→ 0

splits, so

0 −→ Ni ⊗Ri R12 −→ F12 −→M12 −→ 0

is again exact for i = 1, 2. Thus Ni is finite projective over Ri and admits an isomorphism
Ni ⊗Ri R12 ∼= N12 for i = 1, 2. By Lemma 4.2.4 again, the dashed horizontal arrow
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in the diagram above is surjective. By diagram chasing, the dashed vertical arrow is
also surjective; that is, we may add the dashed arrows to the diagram above while
preserving exactness of the rows and columns. In particular, M is a finitely generated
R-module; we may repeat the argument with M replaced by N to deduce that M is
finitely presented.
For i = 1, 2 we obtain a commutative diagram

N ⊗R Ri Fi M ⊗R Ri 0

0 Ni Fi Mi 0

with exact arrows: the first row is derived from

0 −→ N −→ Fi −→M −→ 0

by tensoring over R with Ri and the second row is derived from

0 −→ N1 ⊕N2 −→ F1 ⊕ F2 −→M1 ⊕M2 −→ 0.

By Lemma 4.2.4 the left vertical arrow is surjective. Then by the five lemma, the right
vertical arrow must be injective. We thus conclude that the map M ⊗R Ri −→ Mi,
which was previously shown (Lemma 4.2.4) to be surjective, is bijective for i = 1, 2.

For n a nonnegative integer and i ∈ {1, 2, 12}, let Un,i be the closed-open subset of
Spec(Ri) on which Mi has rank n, where the rank at a prime p is given by

Spec(Ri) −→ Card
p 7→ dimQuot(Ri/p){M ⊗Ri Quot(Ri/p)}.

This is the nonzero locus of some idempotent en,i ∈ Ri. Since M12 ∼= M1 ⊗R1 R12 ∼=
M2 ⊗R2 R12, Un,12 can be characterized as the pullback of either Un,1 or Un,2; this
means that the images of en,1 and en,2 in R12 are both equal to en,12. It follows that
en = en,1⊕ en,2 is an idempotent in R mapping to en,i in Ri; its nonzero locus is an open
subset Un of Spec(R) whose pullback to Spec(Ri) is Un,i. This means, that to prove
that M is projective , we may reduce to case where M1 and M2 are finite projective of
some constant rank n.
Since M is finitely presented, we may define its Fitting Ideals Fitti(M) as in Definition
4.2.5. Since M1⊕M2 is finite projective over R1⊕R2 of constant rank n, Fitti(M)(R1⊕
R2) = Fitti(M1⊕M2) = 0 for i = 0, . . . , n−1 and Fitti(M)(R1⊕R2) = Fitti(M1⊕M2) =
R1 ⊕ R2 for i = n. Since the map R −→ R1 ⊕ R2 is injective, this implies that
Fitti(M) = 0 for i = 0, . . . , n− 1.
Now assume that the image of Spec(R1⊕R2) −→ Spec(R) contains Maxspec(R). Then
for each p ∈ Maxspec(R), M must have rank n at p by comparison with some point in
Spec(R1 ⊕R2), so Fittn(M)p = Fittn(Mp) = Rp. It follows that Fittn(M) = R. Hence
M is a finite projective R-module.

We proceed by proving that any simple Laurent covering fulfills the conditions of a
glueing square.
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Lemma 4.2.7. Let R1,R2,R12 correspond to a simple Laurent covering S−,S+,S− ∩ S+

of a rational subdomain U ∼= Spa(B,B+) of Spa(A,A+), given by f ∈ B. If (A,A+) is
sheafy, then B,R1,R2,R12 define a glueing square.

Proof. We check the conditions on Definition 4.2.3.
a.) As in the proof of Theorem 3.2.3, we see that the sequence

0 −→ B
h−→ R1 ⊕R2

g−→ R12 −→ 0 (∗)

is exact.
Since we are in the category of Banach rings, g is bounded by definition and surjective
by exactness. Thus, by Theorem 4.1.3, g is strict and open. Applying Lemma 2.5.10,
we get

R1 ∼= B{T}/(T − f) and R2 ∼= B{U}/(fU − 1),

equipped each with the quotient norm and strict surjections

θ1 : B{T} −→ R1, θ2 : B{U} −→ R2, θ12 : B{T, U} −→ R12

Since the Tate algebra B{W} is equipped with the Gauss norm,

|
∑
I

aIW
I | = sup

I
{|aI |}, with aI ∈ B,

We can consider the morphism ϕ : B −→ B{T} ⊕B{U}, given by b 7→ (b, b). For any
(b, b) ∈ B{T}⊕B{U}, the norm is given by |(b, b)|B{T}⊕B{U} = sup{|b|, |b|} = |b|, which
is equivalent to the norm of b ∈ B and therefore ϕ is strict.
We conclude that

B R1 ⊕R2

B{T} ⊕B{U}

h

ϕ θ

is a commutative diagram of Banach rings, with f = ϕ ◦ θ, where θ is define by
θ = (θ1, θ2). As remarked in Definition 2.2.3, h has to be strict, since it is a composition
of strict morphisms and θ is surjective. This proofs a.)

b.) Consider the natural homomorphism of Banach rings φ : R2 −→ R12. Let b12 ∈ R12

be the image of ∑∞i,j=0 aijT
iU j ∈ B{T, U}. Call b2 the image of ∑∞i,j=0 aijf

iU j ∈ B{U}
in R2. It follows that φ(b2) = b12. Hence φ is surjective and continious. Thus, φ(R1) is
dense in R12. This proofs b.)

c.) Applying Lemma 2.5.10 as above, we get again

R1 ∼= B{T}/(T − f) and R2 ∼= B{U}/(fU − 1).

For any α ∈M(B), consider the following multiplicative seminorm on B{T} ⊕B{U},

β
((∑

I

aIT
I ,
∑
J

bJU
J
))

:= sup
I,J
{α(aI), α(bJ)}, with aI , bJ ∈ B.
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We can define β̃ as the quotient seminorm of β on R1⊕R2. This again is a multiplicative
seminorm and we see that

β̃
(
(b, b)

)
= sup

I,J
{α(b), α(b)} = α(b),

for all b ∈ B.
Since α(b) ≤ |b| for all b ∈ B, it follows that

β
((∑

I

aIT
I ,
∑
J

bJU
J
))

= sup
I,J
{α(aI), α(bJ)}

≤ sup
I,J
{|aI |, |bJ |}

=
∣∣∣(∑

I

aIT
I ,
∑
J

bJU
J
)∣∣∣
B{T}⊕B{U}

for all
(∑

I aIT
I ,
∑
J bJU

J
)
∈ B{T} ⊕ B{U}. Hence, β̃ ∈ M(R1 ⊕ R2) and the map

M(R1⊕R2) −→M(B) maps β̃ to α. We conclude that the mapM(R1⊕R2) −→M(B)
is surjective, which proves c.)

In order to complete the proof of the Kiehl glueing property for simple Laurent coverings,
a combination from Lemma 4.2.4 and Lemma 4.2.6 in the setting of glueing squares
is needed, since then we would be able to glue finitely generated projective modules
corresponding to a simple Laurent covering into a finitely generated projective module;
specially important is Lemma 4.2.6(ii).

Lemma 4.2.8. Consider a glueing square as in Definition 4.2.3., an let M1,M2,M12

be a finite glueing datum. Let M be the kernel of the map M1 ⊕M2 −→ M12 taking
(m1,m2) to ψ1(m1 ⊗ 1)− ψ2(m2 ⊗ 1).

(i) For i = 1, 2, the natural map M ⊗R Ri −→Mi is surjective.

(ii) The map M1 ⊕M2 −→M12 is surjective.

Proof. Choose generating sets v1, . . . , vn and w1, . . . , wn of M1 and M2, respectively,
of the same cardinality. We may then choose n × n matrices A,B over R12 such
that ψ2(wj ⊗ 1) = ∑

Aijψ1(vi ⊗ 1) and ψ1(vj ⊗ 1) = ∑
Bijψ2(wi ⊗ 1). Notice that

A,B ∈ GLn(R12), since AB = I.
Following Definition 4.2.3 consider the maps φ : R2 → R12 and ψ : R1 ⊕R2 → R12. By
hypothesis φ : R2 → R12 has dense image. We may thus choose B′ ∈Mn(R2) such that
B′′ := φ(B′) fulfills:

B′′ ∈ GLn(R12) and

‖B′′ −B‖ < c

||A||
,

where c is the constant of Lemma 4.2.2. We may then write I+A(B′′−B) = ψ(C1)ψ(C−1
2 )

with Ci ∈ GLn(Ri) i = 1, 2, since ‖A(B′′ −B)‖ < c and Lemma 4.2.2.
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We now define the elements xj ∈M1 ⊕M2 by the formula:

xj = (x1,j, x2,j) =
(∑

i

(C1)ijvi,
∑
i

(B′C2)ijwi
)

j = 1, . . . , n.

Then

ψ1(x1,j ⊗ 1)− ψ2(x2,j ⊗ 1) =
∑
i

(ψ(C1)− AB′′ψ(C2))ijψ1(vi ⊗ 1)

=
∑
i

((I− AB)ψ(C2))ijψ1(vi ⊗ 1)

= 0.

so xj ∈M . Since C1 ∈ GLn(R1), the x1,j generate M1 over R1, so the map M ⊗RR1 →
M1 is surjective. We may now apply Lemma 4.2.4 and deduce (i) and (ii).

Theorem 4.2.9. Consider a glueing square as in Definition 4.2.3, and let M1,M2,M12

be a finite projective glueing datum. Let M be the kernel of the map M1 ⊕M2 −→M12

taking (m1,m2) to ψ1(m1 ⊗ 1)− ψ2(m2 ⊗ 1). Then M is a finite projective R-module
and for i = 1, 2 the natural maps M ⊗R Ri −→Mi are isomorphisms.

Proof. By Lemma 4.2.8, the hypotheses of Lemma 4.2.6 are satisfied. It thus suffices
to check that the additional hypothesis of Lemma 4.2.6(ii) is satisfied, i.e., that the
image of Spec(R1 ⊕ R2) −→ Spec(R) contains Maxspec(R). Given p ∈ Maxspec(R),
choose α ∈ M(R) with pα = p (see Definition 2.4.7). By assumption, α lifts to some
β ∈M(R1 ⊕R2); then pβ is a prime ideal of Spec(R1 ⊕R2) lifting p.

Now, let us prove that if M is a finite projective module over a sheafy adic Banach
ring (A,A+), then the presheaf M̃ defined in Definition 4.1.1 is in fact a sheaf on
X := Spa(A,A+). This would mean, that the functor

F : Modfp(A,A+) −→
{

Sheaves of OX-modules
}

M 7−→ F(M) := M̃,

from the category of finite projective (A,A+)-modules to the category of sheaves of
OX-modules, is well defined.

Corollary 4.2.10. Suppose that (A,A+) is sheafy. Let M be a finite projective A-
module. Then for every rational covering A of any rational subspace U ∼= Spa(B,B+)
of X = Spa(A,A+),

H i(U, M̃) = Ȟ i(U, M̃ ;A) =
{
M ⊗A B i = 0
0 i > 0.

Proof. Let A = (Ui)i∈I be a rational covering of U . Assume first, that M is a free
A-module, i.e., M ∼= A(J), for some index J , where A(J) := ⊕

j∈J A. In this case the
Čech complex associated to the covering A is given by

0 −→ M̃(U) ε−→
∏
i

M̃(Ui) d0
−→

∏
i0<i1

M̃(Ui0i1) d1
−→ . . .
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which is the same as

0 −→ A(J) ε(J)
−−→

(∏
i

OX(Ui)
)(J) d0(J)
−−−→

( ∏
i0<i1

OX(Ui0i1)
)(J) d1(J)
−−−→ . . .

and therefore exact by Theorem 3.2.3.
If M is not free, consider a simple Laurent covering

V1 ∼= Spa(B1, B
+
1 ) V2 ∼= Spa(B2, B

+
2 )

of U . By Lemma 4.2.7, B,B1, B2, B12, where V1 ∩ V2 ∼= Spa(B12, B
+
12) define a glueing

square. Applying Lemma 4.2.9 for the finite projective glueing datum define by
M ⊗A B1,M ⊗A B2,M ⊗A B12, we get that the short sequence of finite projective
A-modules

0 −→M ⊗A B −→ (M ⊗A B1)⊕ (M ⊗A B2) −→M ⊗A B12 −→ 0

is exact, due to the fact that M is a flat A-module.
Since this sequence corresponds to the Čech complex associated to the covering {V1, V2}
of U

0 −→ M̃(U) ε−→
∏
1,2
M̃(Vi) d0

−→ M̃(V12) d1
−→ 0

we conclude that

H i(U, M̃) = Ȟ i(U, M̃ ; {V1, V2}) =
{
M ⊗A B i = 0
0 i > 0.

The result follows after invoking Lemma 3.2.1.

Analog to the proof of the Tate sheaf property we will define a property P that fulfills
the conditions of Lemma 2.5.18 in order to derive the Kiehl glueing property.

Lemma 4.2.11. Let X = (A,A+) be a sheafy Banach ring and let F be a locally free
OX |U -Module of finite rank over a rational subspace U ∼= Spa(B,B+) of Spa(A,A+).
Then the property P:

Given a covering A = (Ui)i∈I of U with
F|Ui ∼= M̃i, where Ui ∼= Spa(Bi, B

+
i ) and

Mi is a finite projective Bi-module, then
F ∼= M̃ for a finite projective B-module,

fulfills the conditions of Lemma 2.5.18.

Proof. a.) Consider a covering A = (Ui)i∈I of U with F|Ui ∼= M̃i, where Ui ∼=
Spa(Bi, B

+
i ) and Mi is a finite projective Bi-module. Given a refinement B = (Vij)j∈J

with the property P , then M̃i|Vij ∼= (Mi⊗BiCj)∼, where Vij ⊂ Ui and Vij ∼= Spa(Cj, C+
j ).

We claim that Mi ⊗Bi Cj is a finite projective Cj-module.
Since Mi is a finite projective Bi-module, there exist a finite free Bi-module Z, such
that Z = Mi ⊕Ni. Thus tensoring with Cj over Bi, we get

Z ⊗Bi Cj = (Mi ⊗Bi Cj)⊕ (Ni ⊗Bi Cj).
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So if Z ⊗Bi Cj is a finite free Cj-module, we would have proven the claim by Theorem
2.1.4.
Since Z is a finite free Bi-module, we can write Z as Z ∼=

⊕n
k=0 Bi, then

Z ⊗Bi Cj ∼=
( n⊕
k=0

Bi

)
⊗Bi Cj ∼=

n⊕
k=0

(Bi ⊗Bi Cj) ∼=
n⊕
k=0

Cj.

We conclude that Mi ⊗Bi Cj is a finite projective Cj-module. Since B has the property
P , it follows that F ∼= M̃ , with M a finite projective B-module. This proofs a.)

b.) Let A = (Ui)i∈I be a covering of U with the property P and let Bi = (Vij)j∈J be
a covering of each Ui, also with the property P. Consider B = ⋃

i∈I Bi as a covering
of U , such that for each Vij ∼= Spa(Cj, C+

j ), F|Vij ∼= M̃ij with Mij a finite projective
Cij-module.
All the Vij ∈ Bi have then the premises of the property P. Hence F|Ui ∼= M̃i, with
Mi a finite projective Bi-module, for each Ui ∼= Spa(Bi, B

+
i ) ∈ A. This again makes A

fulfill the premises of the property P and we conclude that F ∼= M̃ , with M a finite
projective B-module. This proofs b.)

c.) Let {V1 ∼= Spa(C1, C
+
1 ), V2 ∼= Spa(C2, C

+
2 )} be a simple Laurent covering of U ,

such that F|V1 = M̃1 and F|V2 = M̃2, with M1 a finite projective C1-module and M2 a
finite projective C2-module. Consider V1 ∩ V2 ∼= Spa(C12, C

+
12). As proven above, we

get that the module M12, defined by

ψi : Mi ⊗Ci C12 ∼= M12 i = 1, 2,

is a finite projective C12-module. Thus, by Lemma 4.2.7, B,M1,M2,M12 define a finite
projective glueing data. Now we can apply Theorem 4.2.8 and conclude that the kernel
of the map M1 ⊕M2 −→ M12 taking (m1,m2) to ψ1(m1 ⊗ 1)− ψ2(m2 ⊗ 1) is a finite
projective B-module with isomorphisms M ⊗B Ci −→Mi, i = 1, 2. Consider the OX |U -
module M̃ associated to the B-module M . For any rational subspace V ∼= Spa(D,D+)
of U with V ∩ Vi ∼= Spa(Di, D

+
i ) for i = 1, 2, we have

M̃(V ∩ Vi) = M ⊗B Di

∼= (M ⊗B Ci)⊗Ci Di

∼= Mi ⊗Ci Di

= M̃i(V ∩ Vi)
∼= F(V ∩ Vi).

Since F is an OX |U -module we conclude that F ∼= M̃ . This proofs c.)

Theorem 4.2.12. Let (A,A+) be a sheafy adic Banach ring. Then the structure sheaf
on Spa(A,A+) satisfies the Kiehl glueing property.

Proof. Let U ∼= Spa(B,B+) be a rational subdomain of Spa(A,A+). Now consider the
functor

F :
{

Finite projective O(U)-modules.
}
−→


Sheaves of OU -modules over U
which are locally free of finite
rank.
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given by F(M) := M̃ .

Let F be a locally free of finite rank OU -module over U . Choose a rational cov-
ering A = (Ui)i∈I of U , then A has the property P by Lemma 4.2.11 and Lemma
2.5.18; thus F ∼= M̃ , where M is a finite projective B-module. By Corollary 4.2.10,
F(U) ∼= M̃(U) = M .
Consequently, define the functor

G :


Sheaves of OU -modules over U
which are locally free of finite
rank.

 −→
{

Finite projective O(U)-modules.
}

by G(F) := F(U).

It is clear that both functors are quasi-inverse to each other by the discussion held
above and so F defines an equivalence of categories.

As a corollary of Theorem 3.2.3 and Theorem 4.2.12 we derive our main result: Theorem
1.0.1.

Corollary 4.2.13. Let (A,A+) be a sheafy adic Banach ring. Then the structure sheaf
on Spa(A,A+) satisfies the Tate sheaf property and the Kiehl glueing property.
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