
VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Interpretable Machine Learning
and Hyperbolic Geometry

Ullrich Köthe
Visual Learning Lab, Heidelberg University

joint work with Lynton Ardizzone, Jakob Kruse, Stefan Radev, Jens Müller,
Felix Draxler, Peter Sorrenson, Carsten Rother

Seminar Hyperbolic Geometry & Data Science, December 2020

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Inductive vs. Transductive Reasoning

• Traditional science: inductive reasoning

– Problem: did not work well for machine learning until recently

• available models were too weak to theoretically explain complex phenomena
• ML community gave up on it around 1990

 Transductive reasoning

– Why trying to understand the world, when one is only required to make good predictions?

– Such black-box models are very general and work surprisingly well in practice

– Most ML successes rest on transductive approach 2

Observations
Experiments

Understanding
Theory

Application
Induction Deduction

Training data Black box Application
Training Prediction

Transduction

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Inductive Solution of Inverted Triple Pendulum:
Optimal Control based on Equations of Motion

3

C
o

n
tr

o
l
E

n
g
in

e
e

ri
n
g

 G
ro

u
p
 -

T
U

 I
lm

e
n
a

u
(2

0
1

8
)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Transductive Solution of Inverted Double Pendulum:
Reinforcement Learning

5

H
e

s
s
e

 e
t

a
l.
 (

2
0
1

8
)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

The Brain’s Solution of Complex Balancing:
Transductive or Inductive?

6

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling

• Problem: transductive models are hard to interpret, explain, validate
– not acceptable for applications with critical consequences

– nor acceptable if ML shall be used as a scientific research tool

– the return to inductive modelling is now within reach!

 Generative modelling
– Transductive models: to predict 𝑦 from 𝑥, learn the posterior distribution 𝑝 𝑦 𝑥)

– Generative models turn the problem around: learn the data generating process, i.e. likelihood 𝑝 𝑥 𝑦)

– Solve the original prediction task via Bayes theorem

𝑝 𝑦 𝑥) =
𝑝 𝑥 𝑦) 𝑝(𝑦)

𝑝(𝑥)
– This is much more difficult and requires insight, i.e. theoretical understanding

Feynman: “What I cannot create, I do not understand.”

7

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Neural Networks

• Standard definition of a neuron: ℝ𝐷 → ℝ: 𝑧′ = 𝜙(𝒘𝑇𝒛 + 𝑏)
– weights 𝒘, bias 𝑏, non-linear activation function 𝜙, e.g. 𝜙 𝑡 = tanh(𝑡) or 𝜙 𝑡 = max(𝑡, 0) (ReLU)

• Fully connected networks: combine neurons in parallel and in series (= layers)

– 𝑓: 𝒛0 ∈ ℝ𝐷 → 𝒛𝐿 ∈ ℝ𝑀: recursive definition 𝒛𝑙 = 𝜙𝑙(𝑾𝑙
𝑇𝒛𝑙−1 + 𝒃𝑙) with weight matrices 𝑾𝑙 and

element-wise application of 𝜙𝑙
– deep learning: large number 𝐿 of layers (10 … 1000)

• Convolutional networks: weight matrices 𝑾𝑙 are Toeplitz matrices
– Additionally: some layers execute “max pooling”: reduce spatial resolution by ½ in every direction by

taking the maximum of certain subsets of the input 𝒛𝑙−1 (e.g. of 2x2 blocks of pixels)

– Image classification networks: convolutional and pooling layers followed by fully connected layers

– Image segmentation networks: only convolutional and pooling layers

• Most successful networks are transductive (“discriminative models”)
8

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep Learning Example: Semantic Segmentation

9

• Neural network classifies each pixel as „Street“, „Sidewalk“, „Person“, „Car“ etc.
– Prerequisite for autonomous driving, but not as long as it is an unverifiable black-box

Pohlen et al. (2016)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Opening-up the Black-Box in Retrospect

• Neural networks learn suitable features for the task
– better than traditional hand-crafted features

– early layers detect local edges, later layers entire objects

– feature visualization shows what each layer is looking for:

10

edges textures patterns objects

Ohla et al.(2017)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

• Emergent structure evolves in the
feature spaces

• Can identify linear “concept axes”

• Extrapolation along a concept axis
changes image in well-defined way
– transform data 𝑥 → 𝑧

– 𝑧′ = 𝑧 + 𝜏 ⋅ concept

– reconstruct 𝑧′ → 𝑥′

• Active concepts in 𝑧 serve as
explanations

Opening-up the Black-Box in Retrospect

11

age axis

beard axis

Upchurch et al.(2016)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modeling

12

• Given features, learn to generate corresponding data

NVIDIA (2019)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep Generative Modelling

• Generative Adversarial Networks (GANs):
– two player game: generator learns to create realistic images

discriminator learns to recognize synthetic images

– converge to a state where synthetic and real images are indistinguishable

13

adversarial
loss

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep Generative Modelling

• Autoencoder
– learn a lossy compression through a latent bottleneck

– converge to maximum reconstruction quality by keeping only the relevant information in the bottleneck

14

reconstruction loss

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep Generative Modelling

• Normalizing flows
– learn an invertible transport map between target distribution in data space and a simple latent base

distribution

– converge to maximum reconstruction quality by keeping only the relevant information in the bottleneck

15

Invertible Network

maximum likelihood loss

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling for
Interpretable Machine Learning

• Idea: control training such that the latent
space evolves interpretable structure
– Happens emergently in classical training, but

can we do better?

• Example 1: disentanglement
– each latent variable has well-defined meaning:

encodes a single isolated data property

– complex transformations of the real data can be
expressed by simple latent superpositions

– analogy in physics:
finding a good coordinate transformation is key
to the analytic solution of many problems

16

=

+

angle

pen width

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Width of bottom

Width of top

Height

Slant

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020. 17

• First 8 latent variables
control global properties

Disentanglement of MNIST
using Invertible Neural Networks

variability of handwriting

in MNIST digits dataset

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Disentanglement of MNIST
using Invertible Neural Networks

18

Tail of 2

Extension to top right

Openness of lower loop

• First 8 latent variables
control global properties

• Following 14 control
local shape

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

variability of handwriting

in MNIST digits dataset

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling for
Interpretable Machine Learning

• Idea: control training such that the latent
space evolves interpretable structure
– Happens emergently in classical training, but

can we do better?

• Example 2: Class Activation Mapping
– Map latent interpretations back to data space

– Heat maps: which input pixels are relevant to
particular latent interpretations?

– Visualize plausibility of interpretations and
detect overfitting

19

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling for
Interpretable Machine Learning

• Idea: control training such that the latent
space evolves interpretable structure
– Happens emergently in classical training, but

can we do better?

• Example 3: Metric learning
– Simple metric in latent space encodes

complicated similarity relations in data space

20

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Two Perspectives on Network Interpretability

1. External perspective: What black-boxes do we want for interpretable ML?
Assume that networks can represent any desired mapping 𝒛 = 𝑓𝜃(𝒙)
– What types of mappings are especially suitable for interpretability?

– Which properties should these mappings have (concept disentanglement, group equivariance, …)

– How can we quantify the uncertainty of such mappings (Bayesian posteriors, outlier detection, …)

– How can network mappings serve as a tool for scientific discovery?

2. Internal perspective: How to achieve the desired mappings?
Open-up the black-box
– What network architectures realize interesting interpretable function families?

– How can one guarantee convergence of the training?

– Why do neural networks generalize so well?

– How much trainings data is enough?

21

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Geometric Limitations of
Current Generative Networks

• Most generative networks use Euclidean geometry in latent space
– Euclidean metric for metric learning

– Gaussian latent distributions

– Ordinary gradients for training

• Since networks are continuous mappings, this translates to the data space
– Cannot exactly model

• Manifolds with arbitrary topology
• Data supported on multiple disconnected compact regions
• Non-Euclidean group symmetries

– If latent dimension is high enough, accurate approximate embeddings are still possible, but

• Representation does not have correct intrinsic dimension
• No disentanglement into meaningful concepts
• Representation artifacts (e.g. incorrect similarities, outliers not recognized, …)

 Interpretability requires that latent structure is compatible with intrinsic structure of the data
22

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Example: Embedding of the WordNet Hierarchy

• Famous paper by Nickel and Kiela (2017)
– Hierarchies have intrinsically hyperbolic structure

Embeddings in hyperbolic space are much more accurate

• 5-dimensional hyperbolic embedding more accurate than 200-dimensional Euclidean

23

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Example: Embedding of the WordNet Hierarchy

• Famous paper by Nickel and Kiela (2017)
– Hierarchies have intrinsically hyperbolic structure

Embeddings in hyperbolic space are much more accurate

• 5-dimensional hyperbolic embedding more accurate than 200-dimensional Euclidean
• 3-dimensional hyperbolic space suffices with better initialization (Clemens Fruböse)

24

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Example: Image Pyramid

• Classical representation in image analysis
– Alternate blurring and down-sampling

– Get gradually coarser and more abstract images

• Two kinds of relations:
– Spatial: context with in single level

(e.g. grid neighbors)  Euclidean

– Scale: objects with their constituents
(e.g. pyramid neighbors)  Hyperbolic (?)

– No satisfactory “scale embedding” yet
allowing, for example latent
interpolation of size

– Scale-space theory failed
Wavelets are not interpretable

25

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Summary

• Generative models with structured latent spaces
are a promising approach to interpretable ML

• Most networks use Euclidean latent geometry

• Results in sub-optimal representations when
the geometry/topology of the data differs

 Networks with other latent geometries, group
equivariance, Riemannian gradient descent are
hot research topics

 I’m especially interested in hyperbolic geometry
for “learning to abstract”

What types of network mappings 𝒛 = 𝑓𝜃(𝒙)
do we want and how can we get them?

26

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Invertible Neural Networks (INNs) with Coupling Layers

27

Coupling layer

𝑧

𝑧

𝑧

⊘ −
𝑥1

𝑥2

𝑧1

𝑧2

𝑥 𝑧𝑠2 𝑡2

nested networks
s2 and t2 are

always executed in
the same direction

Powerful generative models: RealNVP („non-volume preserving“) [Dinh et al. 2017]

• Network is a sequence of affine coupling layers

• Each coupling layer splits its input 𝑥 ∈ ℝ𝐷 into two halves 𝑥1, 𝑥2 ∈ ℝ𝐷/2

• Upper half is subjected to an affine transformation  outputs 𝑧1, 𝑧2 ∈ ℝ𝐷/2

• Affine coefficients are computed by standard fully connected or convolutional networks

𝑠2 ∈ ℝ+
𝐷/2

and 𝑡2 ∈ ℝ𝐷/2 from the lower half’s data

Forward computation: 𝑧1 = 𝑥1 ⊙ 𝑠2 𝑥2 + 𝑡2 𝑥2 , 𝑧2 = 𝑥2

Inverse computation: 𝑥1 = 𝑧1 − 𝑡2(𝑧2) ⊘ 𝑠2 𝑧2 , 𝑥2 = 𝑧2

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep INNs

• Concatenate many coupling layers

• Alternate with orthogonal layers 𝑄
Active (upper lane) and passive (lower lane) dimensions change in each layer

– Random permutations or projections are good enough, learning Q is not necessary

• Surprisingly powerful despite its simplicity

• Similar to autoencoder: forward mode = encoder, backward mode = decoder
– Encoder and decoder are merged into a single network

– Lossless encoding due to invertibility (no bottleneck)

28

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Conditional INNs (cINNs)

Model conditional posterior 𝑝 𝒙 𝒚)
• Receive observation 𝑦 as additional conditioning input

29Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

Training
Given training pair 𝑥, 𝑦
run cINN forward:

𝑧 = 𝑓𝜃 𝑥; 𝑦
s.t. 𝑝 𝑧 = 𝒩 0, 𝕀
(maximum likelihood loss)

Inference
Given observation ො𝑦
run cINN backward:
sample 𝑧 ∼ 𝒩 0, 𝕀

compute 𝑥 = 𝑓𝜃
−1(𝑧; ො𝑦)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN Training

Estimated conditional density Ƹ𝑝 𝑥 𝑦) expressed via ‘reparameterization trick’
• Let the cINN represent the function 𝑧 = 𝑓𝜃 𝑥 ; 𝑦

• Train cINN such that 𝑝𝑧 𝑧 ≈ 𝒩(0, 𝕀)

• Then Ƹ𝑝 𝑥 𝑦) ≈ 𝑝∗ 𝑥 | 𝑦 is defined by the change-of-variables formula

Can be trained with maximum likelihood loss:

෠𝜃 = argmax
𝜃

෍
𝑖∈𝒯𝒮

Ƹ𝑝 𝑥𝑖 𝑦𝑖)

= argmin
𝜃

෍
𝑖∈𝒯𝒮

𝑓𝜃 𝑥𝑖; 𝑦𝑖 2
2

2
−෍

𝑙=1

𝐿

log 𝑠𝑙(𝑥𝑖; 𝑦𝑖 1

Since 𝑓𝜃 is invertible (given ො𝑦), we get a generative model for free:

30

Ƹ𝑝 𝑥 𝑦) = 𝑝𝑧 𝑧 = 𝑓𝜃 𝑥 ; 𝑦 det
𝜕𝑓𝜃 𝑥 ; 𝑦

𝜕𝑥

𝑥 ~ Ƹ𝑝 𝑥 ො𝑦) ⇔ 𝑧 ~𝒩 0, 𝕀 and 𝑥 = 𝑓෡𝜃
−1(𝑧; ො𝑦)

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Simulation-Based Inference

• Classical simplification: reduce posterior to point estimate
– Regularization: disambiguate inverse when forward process is surjective (not information preserving)

– Maximum a-posteriori (MAP) inference: find only mode of posterior

 No idea of solution diversity and uncertainty

• Standard solution: approximate Bayesian computation (ABC)
– Define a distance 𝑑(𝒚obs, 𝒚sim) between observed and simulated data

• for m=1,…, M:

Sample hidden parameters 𝒙(𝑚) ∼ 𝑝(𝒙) from prior

Run the simulation 𝒚sim
(𝑚)

= 𝑔(𝒙 𝑚 ; 𝝃)

Keep 𝒙(𝑚) if 𝑑 𝒚obs, 𝒚sim
𝒎

< 𝜖, reject otherwise

• Return the set of “surviving” 𝒙(𝑚) as an approximate sample from 𝑝 𝒙 𝒚𝐨𝐛𝐬)
 Very slow: high rejection rate, because small 𝜖 are needed for accurate results

• Case-based inference
– Efficient sampling methods (MCMC, SMC, …) with good proposal distribution have low rejection rates

 Learn a good proposal distribution for each observed data set 𝒚obs, i.e. on a per case basis

 Still expensive if many different 𝒚obs must be evaluated
31

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Simulation-Based Inference

• Classical simplification: reduce posterior to point estimate
– Regularization: disambiguate inverse when forward process is surjective (not information preserving)

– Maximum a-posteriori (MAP) inference: find only mode of posterior

 No idea of solution diversity and uncertainty

• Standard solution: approximate Bayesian computation (ABC)
– Define a distance 𝑑(𝒚obs, 𝒚sim) between observed and simulated data

• for m=1,…, M:

Sample hidden parameters 𝒙(𝑚) ∼ 𝑝(𝒙) from prior

Run the simulation 𝒚sim
(𝑚)

= 𝑔(𝒙 𝑚 ; 𝝃)

Keep 𝒙(𝑚) if 𝑑 𝒚obs, 𝒚sim
𝒎

< 𝜖, reject otherwise

• Return the set of “surviving” 𝒙(𝑚) as an approximate sample from 𝑝 𝒙 𝒚𝐨𝐛𝐬)
 Very slow: high rejection rate, because small 𝜖 are needed for accurate results

• Case-based inference
– Efficient sampling methods (MCMC, SMC, …) with good proposal distribution have low rejection rates

 Learn a good proposal distribution for each observed data set 𝒚obs, i.e. on a per case basis

 Still expensive if many different 𝒚obs must be evaluated
32

We can do much better using invertible neural networks!

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Multiple Possibilities for INNs

Autoregressive Models

Chain rule decomposition:

𝑝 𝑥1, … , 𝑥𝐷 =ෑ
𝑖
𝑝𝑖 𝑥𝑖 𝑥<𝑖)

triangular reparameterization:

∀𝑖: 𝑥𝑖 = 𝑓𝑖(𝑧𝑖 , 𝑥<𝑖) monoton.

inverse direction inefficient

 use two complementary nets

33

iResNets
(invertible residual networks)

Residual block:

𝑧 = 𝑥 + 𝑓(𝑥)

is invertible when

𝑓 𝑥 Lipshitz < 1

inverse direction is reasonably
efficient (fixpoint or Newton
iterations)

RealNVP

Affine coupling layer:

𝑧 =
𝑧1
𝑧2

=
𝑥1 ⋅ 𝑠2 𝑥2 + 𝑡2(𝑥2)

𝑥2
inverse is equally efficient:

𝑥 =
𝑥1
𝑥2

=
(𝑧1 − 𝑡2 𝑧2)/𝑠(𝑧2)

𝑧2

example: parallel WaveNet example: Residual Flow Net example: GLOW

𝑧𝑥 ≡ ො𝑥

𝑥 𝑧

𝑓(𝑥) 𝑧

𝑧2

𝑧1

