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Inductive vs. Transductive Reasoning

• Traditional science: inductive reasoning

– Problem: did not work well for machine learning until recently

• available models were too weak to theoretically explain complex phenomena
• ML community gave up on it around 1990

 Transductive reasoning

– Why trying to understand the world, when one is only required to make good predictions?

– Such black-box models are very general and work surprisingly well in practice

– Most ML successes rest on transductive approach 2
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Inductive Solution of Inverted Triple Pendulum: 
Optimal Control based on Equations of Motion
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Transductive Solution of Inverted Double Pendulum: 
Reinforcement Learning
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The Brain’s Solution of Complex Balancing: 
Transductive or Inductive?

6
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Generative Modelling

• Problem: transductive models are hard to interpret, explain, validate
– not acceptable for applications with critical consequences 

– nor acceptable if ML shall be used as a scientific research tool

– the return to inductive modelling is now within reach!

 Generative modelling
– Transductive models: to predict 𝑦 from 𝑥, learn the posterior distribution                                        𝑝 𝑦 𝑥)

– Generative models turn the problem around: learn the data generating process, i.e. likelihood   𝑝 𝑥 𝑦)

– Solve the original prediction task via Bayes theorem

𝑝 𝑦 𝑥) =
𝑝 𝑥 𝑦) 𝑝(𝑦)

𝑝(𝑥)
– This is much more difficult and requires insight, i.e. theoretical understanding

Feynman: “What I cannot create, I do not understand.”

7
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Neural Networks

• Standard definition of a neuron:   ℝ𝐷 → ℝ: 𝑧′ = 𝜙(𝒘𝑇𝒛 + 𝑏)
– weights 𝒘, bias 𝑏, non-linear activation function 𝜙, e.g. 𝜙 𝑡 = tanh(𝑡) or 𝜙 𝑡 = max(𝑡, 0) (ReLU)

• Fully connected networks: combine neurons in parallel and in series (= layers)

– 𝑓: 𝒛0 ∈ ℝ𝐷 → 𝒛𝐿 ∈ ℝ𝑀:  recursive definition  𝒛𝑙 = 𝜙𝑙(𝑾𝑙
𝑇𝒛𝑙−1 + 𝒃𝑙) with weight matrices 𝑾𝑙 and

element-wise application of 𝜙𝑙
– deep learning: large number 𝐿 of layers (10 … 1000) 

• Convolutional networks: weight matrices 𝑾𝑙 are Toeplitz matrices
– Additionally: some layers execute “max pooling”: reduce spatial resolution by ½ in every direction by 

taking the maximum of certain subsets of the input 𝒛𝑙−1 (e.g. of 2x2 blocks of pixels)

– Image classification networks: convolutional and pooling layers followed by fully connected layers

– Image segmentation networks: only convolutional and pooling layers 

• Most successful networks are transductive (“discriminative models”)
8
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Deep Learning Example: Semantic Segmentation

9

• Neural network classifies each pixel as „Street“, „Sidewalk“, „Person“, „Car“ etc.
– Prerequisite for autonomous driving, but not as long as it is an unverifiable black-box 

Pohlen et al. (2016)



VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)                                                          

Opening-up the Black-Box in Retrospect

• Neural networks learn suitable features for the task
– better than traditional hand-crafted features

– early layers detect local edges, later layers entire objects

– feature visualization shows what each layer is looking for:

10

edges textures patterns objects

Ohla et al.(2017)
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• Emergent structure evolves in the 
feature spaces 

• Can identify linear “concept axes”

• Extrapolation along a concept axis 
changes image in well-defined way
– transform data 𝑥 → 𝑧

– 𝑧′ = 𝑧 + 𝜏 ⋅ concept

– reconstruct 𝑧′ → 𝑥′

• Active concepts in 𝑧 serve as 
explanations

Opening-up the Black-Box in Retrospect

11

age axis

beard axis

Upchurch et al.(2016)
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Generative Modeling

12

• Given features, learn to generate corresponding data

NVIDIA (2019)
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Deep Generative Modelling

• Generative Adversarial Networks (GANs):
– two player game:  generator learns to create realistic images

discriminator learns to recognize synthetic images

– converge to a state where synthetic and real images are indistinguishable

13

adversarial
loss
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Deep Generative Modelling

• Autoencoder
– learn a lossy compression through a latent bottleneck

– converge to maximum reconstruction quality by keeping only the relevant information in the bottleneck 

14

reconstruction loss
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Deep Generative Modelling

• Normalizing flows
– learn an invertible transport map between target distribution in data space and a simple latent base 

distribution

– converge to maximum reconstruction quality by keeping only the relevant information in the bottleneck 

15

Invertible Network

maximum likelihood loss
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Generative Modelling for 
Interpretable Machine Learning

• Idea: control training such that the latent 
space evolves interpretable structure
– Happens emergently in classical training, but 

can we do better?

• Example 1: disentanglement
– each latent variable has well-defined meaning: 

encodes a single isolated data property

– complex transformations of the real data can be 
expressed by simple latent superpositions

– analogy in physics:
finding a good coordinate transformation is key 
to the analytic solution of many problems  

16
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Width of bottom

Width of top

Height

Slant

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020. 17

• First 8 latent variables
control global properties

Disentanglement of MNIST 
using Invertible Neural Networks

variability of handwriting

in MNIST digits dataset
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Disentanglement of MNIST 
using Invertible Neural Networks

18

Tail of 2

Extension to top right

Openness of lower loop

• First 8 latent variables
control global properties

• Following 14 control
local shape

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

variability of handwriting

in MNIST digits dataset
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Generative Modelling for 
Interpretable Machine Learning

• Idea: control training such that the latent 
space evolves interpretable structure
– Happens emergently in classical training, but 

can we do better?

• Example 2: Class Activation Mapping
– Map latent interpretations back to data space

– Heat maps: which input pixels are relevant to
particular latent interpretations? 

– Visualize plausibility of interpretations and 
detect overfitting

19
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Generative Modelling for 
Interpretable Machine Learning

• Idea: control training such that the latent 
space evolves interpretable structure
– Happens emergently in classical training, but 

can we do better?

• Example 3: Metric learning
– Simple metric in latent space encodes 

complicated similarity relations in data space

20
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Two Perspectives on Network Interpretability

1. External perspective: What black-boxes do we want for interpretable ML?
Assume that networks can represent any desired mapping 𝒛 = 𝑓𝜃(𝒙)
– What types of mappings are especially suitable for interpretability?

– Which properties should these mappings have (concept disentanglement, group equivariance, …)

– How can we quantify the uncertainty of such mappings (Bayesian posteriors, outlier detection, …)

– How can network mappings serve as a tool for scientific discovery?

2. Internal perspective: How to achieve the desired mappings?
Open-up the black-box
– What network architectures realize interesting interpretable function families?

– How can one guarantee convergence of the training?

– Why do neural networks generalize so well?

– How much trainings data is enough?

21
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Geometric Limitations of 
Current Generative Networks

• Most generative networks use Euclidean geometry in latent space
– Euclidean metric for metric learning

– Gaussian latent distributions

– Ordinary gradients for training

• Since networks are continuous mappings, this translates to the data space
– Cannot exactly model

• Manifolds with arbitrary topology
• Data supported on multiple disconnected compact regions
• Non-Euclidean group symmetries

– If latent dimension is high enough, accurate approximate embeddings are still possible, but

• Representation does not have correct intrinsic dimension
• No disentanglement into meaningful concepts
• Representation artifacts (e.g. incorrect similarities, outliers not recognized, …)

 Interpretability requires that latent structure is compatible with intrinsic structure of the data
22



VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)                                                          

Example: Embedding of the WordNet Hierarchy

• Famous paper by Nickel and Kiela (2017)
– Hierarchies have intrinsically hyperbolic structure

Embeddings in hyperbolic space are much more accurate

• 5-dimensional hyperbolic embedding more accurate than 200-dimensional Euclidean

23
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Example: Embedding of the WordNet Hierarchy

• Famous paper by Nickel and Kiela (2017)
– Hierarchies have intrinsically hyperbolic structure

Embeddings in hyperbolic space are much more accurate

• 5-dimensional hyperbolic embedding more accurate than 200-dimensional Euclidean
• 3-dimensional hyperbolic space suffices with better initialization (Clemens Fruböse)

24
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Example: Image Pyramid

• Classical representation in image analysis
– Alternate blurring and down-sampling

– Get gradually coarser and more abstract images

• Two kinds of relations:
– Spatial: context with in single level 

(e.g. grid neighbors)  Euclidean

– Scale: objects with their constituents
(e.g. pyramid neighbors)  Hyperbolic (?)

– No satisfactory “scale embedding” yet
allowing, for example latent 
interpolation of size

– Scale-space theory failed
Wavelets are not interpretable

25
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Summary

• Generative models with structured latent spaces 
are a promising approach to interpretable ML

• Most networks use Euclidean latent geometry

• Results in sub-optimal representations when 
the geometry/topology of the data differs

 Networks with other latent geometries, group 
equivariance, Riemannian gradient descent are 
hot research topics

 I’m especially interested in hyperbolic geometry 
for “learning to abstract”

What types of network mappings 𝒛 = 𝑓𝜃(𝒙)
do we want and how can we get them?

26
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Invertible Neural Networks (INNs) with Coupling Layers

27

Coupling layer

𝑧

𝑧

𝑧

⊘ −
𝑥1

𝑥2

𝑧1

𝑧2

𝑥 𝑧𝑠2 𝑡2

nested networks
s2 and t2 are 

always executed in 
the same direction

Powerful generative models: RealNVP („non-volume preserving“) [Dinh et al. 2017]

• Network is a sequence of affine coupling layers

• Each coupling layer splits its input 𝑥 ∈ ℝ𝐷 into two halves 𝑥1, 𝑥2 ∈ ℝ𝐷/2

• Upper half is subjected to an affine transformation  outputs 𝑧1, 𝑧2 ∈ ℝ𝐷/2

• Affine coefficients are computed by standard fully connected or convolutional networks 

𝑠2 ∈ ℝ+
𝐷/2

and 𝑡2 ∈ ℝ𝐷/2 from the lower half’s data 

Forward computation:   𝑧1 = 𝑥1 ⊙ 𝑠2 𝑥2 + 𝑡2 𝑥2 , 𝑧2 = 𝑥2

Inverse computation:     𝑥1 = 𝑧1 − 𝑡2(𝑧2) ⊘ 𝑠2 𝑧2 , 𝑥2 = 𝑧2
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Deep INNs

• Concatenate many coupling layers

• Alternate with orthogonal layers 𝑄
Active (upper lane) and passive (lower lane) dimensions change in each layer

– Random permutations or projections are good enough, learning Q is not necessary

• Surprisingly powerful despite its simplicity

• Similar to autoencoder: forward mode = encoder, backward mode = decoder
– Encoder and decoder are merged into a single network

– Lossless encoding due to invertibility (no bottleneck)

28
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Conditional INNs (cINNs)

Model conditional posterior 𝑝 𝒙 𝒚)
• Receive observation 𝑦 as additional conditioning input

29Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

Training  
Given training pair 𝑥, 𝑦
run cINN forward:

𝑧 = 𝑓𝜃 𝑥; 𝑦
s.t. 𝑝 𝑧 = 𝒩 0, 𝕀
(maximum likelihood loss)

Inference
Given observation ො𝑦
run cINN backward:
sample      𝑧 ∼ 𝒩 0, 𝕀

compute 𝑥 = 𝑓𝜃
−1(𝑧; ො𝑦)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)
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cINN Training

Estimated conditional density Ƹ𝑝 𝑥 𝑦) expressed via ‘reparameterization trick’
• Let the cINN represent the function 𝑧 = 𝑓𝜃 𝑥 ; 𝑦

• Train cINN such that 𝑝𝑧 𝑧 ≈ 𝒩(0, 𝕀)

• Then Ƹ𝑝 𝑥 𝑦) ≈ 𝑝∗ 𝑥 | 𝑦 is defined by the change-of-variables formula

Can be trained with maximum likelihood loss:

෠𝜃 = argmax
𝜃

෍
𝑖∈𝒯𝒮

Ƹ𝑝 𝑥𝑖 𝑦𝑖)

= argmin
𝜃

෍
𝑖∈𝒯𝒮

𝑓𝜃 𝑥𝑖; 𝑦𝑖 2
2

2
−෍

𝑙=1

𝐿

log 𝑠𝑙(𝑥𝑖; 𝑦𝑖 1

Since 𝑓𝜃 is invertible (given ො𝑦), we get a generative model for free:

30

Ƹ𝑝 𝑥 𝑦) = 𝑝𝑧 𝑧 = 𝑓𝜃 𝑥 ; 𝑦 det
𝜕𝑓𝜃 𝑥 ; 𝑦

𝜕𝑥

𝑥 ~ Ƹ𝑝 𝑥 ො𝑦) ⇔ 𝑧 ~𝒩 0, 𝕀 and 𝑥 = 𝑓෡𝜃
−1(𝑧; ො𝑦)

Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.
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Simulation-Based Inference

• Classical simplification: reduce posterior to point estimate
– Regularization: disambiguate inverse when forward process is surjective (not information preserving)

– Maximum a-posteriori (MAP) inference: find only mode of posterior

 No idea of solution diversity and uncertainty

• Standard solution: approximate Bayesian computation (ABC)
– Define a distance 𝑑(𝒚obs, 𝒚sim) between observed and simulated data

• for m=1,…, M:

Sample hidden parameters 𝒙(𝑚) ∼ 𝑝(𝒙) from prior

Run the simulation 𝒚sim
(𝑚)

= 𝑔(𝒙 𝑚 ; 𝝃)

Keep 𝒙(𝑚) if 𝑑 𝒚obs, 𝒚sim
𝒎

< 𝜖, reject otherwise

• Return the set of “surviving” 𝒙(𝑚) as an approximate sample from 𝑝 𝒙 𝒚𝐨𝐛𝐬)
 Very slow: high rejection rate, because small 𝜖 are needed for accurate results

• Case-based inference
– Efficient sampling methods (MCMC, SMC, …) with good proposal distribution have low rejection rates

 Learn a good proposal distribution for each observed data set 𝒚obs, i.e. on a per case basis

 Still expensive if many different 𝒚obs must be evaluated
31
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Simulation-Based Inference

• Classical simplification: reduce posterior to point estimate
– Regularization: disambiguate inverse when forward process is surjective (not information preserving)

– Maximum a-posteriori (MAP) inference: find only mode of posterior

 No idea of solution diversity and uncertainty

• Standard solution: approximate Bayesian computation (ABC)
– Define a distance 𝑑(𝒚obs, 𝒚sim) between observed and simulated data

• for m=1,…, M:

Sample hidden parameters 𝒙(𝑚) ∼ 𝑝(𝒙) from prior

Run the simulation 𝒚sim
(𝑚)

= 𝑔(𝒙 𝑚 ; 𝝃)

Keep 𝒙(𝑚) if 𝑑 𝒚obs, 𝒚sim
𝒎

< 𝜖, reject otherwise

• Return the set of “surviving” 𝒙(𝑚) as an approximate sample from 𝑝 𝒙 𝒚𝐨𝐛𝐬)
 Very slow: high rejection rate, because small 𝜖 are needed for accurate results

• Case-based inference
– Efficient sampling methods (MCMC, SMC, …) with good proposal distribution have low rejection rates

 Learn a good proposal distribution for each observed data set 𝒚obs, i.e. on a per case basis

 Still expensive if many different 𝒚obs must be evaluated
32

We can do much better using invertible neural networks!
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Multiple Possibilities for INNs

Autoregressive Models

Chain rule decomposition:

𝑝 𝑥1, … , 𝑥𝐷 =ෑ
𝑖
𝑝𝑖 𝑥𝑖 𝑥<𝑖)

triangular reparameterization:

∀𝑖: 𝑥𝑖 = 𝑓𝑖(𝑧𝑖 , 𝑥<𝑖) monoton.

inverse direction inefficient

 use two complementary nets

33

iResNets
(invertible residual networks)

Residual block:

𝑧 = 𝑥 + 𝑓(𝑥)

is invertible when

𝑓 𝑥 Lipshitz < 1

inverse direction is reasonably 
efficient (fixpoint or Newton 
iterations)

RealNVP

Affine coupling layer:

𝑧 =
𝑧1
𝑧2

=
𝑥1 ⋅ 𝑠2 𝑥2 + 𝑡2(𝑥2)

𝑥2
inverse is equally efficient:

𝑥 =
𝑥1
𝑥2

=
(𝑧1 − 𝑡2 𝑧2 )/𝑠(𝑧2)

𝑧2

example: parallel WaveNet example: Residual Flow Net example: GLOW

𝑧𝑥 ≡ ො𝑥

𝑥 𝑧

𝑓(𝑥) 𝑧

𝑧2

𝑧1


