Differential geometry and data science for single-cell biology

Ilia Kats and Luca Marconato Stegle lab

> GERMAN CANCER RESEAR IN THE HELMHOLTZ

Measuring gene expression

Gene expression: amount of gene product in the cell

Quantification by sequencing

Bruce Alberts, Molecular Biology of the Cell (6th edition, 2015)

Measuring gene expression

RNAseq: bulk vs. single-cell

- Bulk RNAseq
 - Works with homogenized tissues/tissue culture samples
 - Measures average expression in the sample
 - High sensitivity, low throughput
 - Mostly useful for differential gene expression analysis

RNAseq: bulk vs. single-cell

- Single-cell RNAseq
 - Measures gene expression in individual cells
 - Low sensitivity, high throughput
 - Useful for: annotation of cell types, cell differentiation analysis, differential gene expression analysis, ...

Stark et al., 2019

Visualization: Dimensionality reduction

- One would like to plot the high-dimensional data in two dimensions
- Enables intuitive and easy visualization of clustering, batch correction, ...
- Non-linear dimensionality reduction
 - tSNE
 - UMAP
 - PHATE

Amir et al., 2013

tSNE (t-distributed stochastic neighbor embedding)

- Make the distribution of pairwise distances in 2 dimensions as similar as possible to the distance distribution in high-dimensional space → minimize KL-divergence
- Let x_i be the coordinates of point i in high-dimensional space and y_i the coordinates on low-dimensional visualization space

$$p_{i|j} \coloneqq \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_k - x_i\|^2}{2\sigma^2}\right)}$$

Conditional probability in feature space (not symmetric)

$$\mathbb{P}_1$$
 with $\mathbb{P}_1((i,j)) \coloneqq \frac{p_{i|j} + p_{j|i}}{2n}$

Symmetrized joint probability

$$\mathbb{P}_2$$
 with $\mathbb{P}_2((i,j)) \coloneqq q_{ij} \coloneqq \frac{(1+\|y_i-y_j\|^2)^{-1}}{\sum_{k\neq l}(1+\|y_k-y_l\|^2)^{-1}}$

Joint probability in visualization space

Hinton + van der Maaten, 2008

UMAP (Uniform Manifold Approximation and Projection)

- Approximate geodesic distances on data manifold by euclidean k-NN distances
- Use force-directed graph layout in visualization space
- Faster than tSNE, comparable embedding

Trajectory inference

- Differentiating cells have a natural temporal ordering
- Differentiation typically not synchronized → cells from each stage are present in a sample
- Try to infer differentiation trajectory from a snapshot in time

Moon et al., 2017

Trajectory inference

						intertable trajectory types					
		ured ne ref			reren	1/C6					
		ors requir	oper NP	orm o	10gy Inice	al		anon	Incatio.	~	lected .cot
Graph methods	44	or Mis	Pr Plan	1000	CYCIC	LINBO	BILON	Mula	1100	com	UISCO
PAGA	×	Direct	Python	Free	$\dot{\wedge}$		~				-4Y
RaceID / StemID		Proi	н	Free	$\overline{\nabla}$		2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	de.		
SLICER	×	Cell	н	⊢ree	$\overline{\mathbf{A}}$		2	- 2 -	éc.		
Tree methods					~~~ `						2 J 2
Slingshot		Direct	R	Free	\land		~		- (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PAGA Tree	×	Direct	Python	Free	$\overline{\frown}$		~	- 2 -	4		
MSI		Proj	н	Free	Â.		2	- 2 -	40	 	-AV
pCreode		Proj	Python	⊢ree	$\overline{\frown}$		~		- 6 - C	++++	
SCUBA		Cluster	Python	Free	—		2	- `	- é c		
Monocle DDBTree		Cell	R	Free	$\overline{\frown}$		~	- 2 -			
Monocle ICA	×	Cell	R	Param			2	- 2 -	40	1	
cellTree maptox		Cell	B	Free	$\overline{\frown}$		\geq	- 2 -	de.		
SLICE		Direct	н	Free	—		2	- 2 -	de.		
cell1ree VEM		Cell	н	⊦ree	$\overline{\frown}$		~	- 2 -	de la	1-1-0 1-1-1 1-1-1	
ElPiGraph		Direct	R	Free	—			- 2 -		1 	
Sincell		Cell	B	Free	$\overline{\frown}$			~~~	20		
URD	×	Direct	R	Free	$\overline{\frown}$		~	+4	40	1	
CellTrails		Cell	B	Free	$\overline{\frown}$		\geq	- 2 -			
Mpath	×	Cluster	н	Free	<u> </u>		\rightarrow	- à.	40	1 	
CellBouter	×	Cell	B	Free	$\overline{\frown}$			- 2	1.		
Multifurcation methods					\leftarrow					200	298
STEMNET	×	Prob	R	Param	\wedge		-	+ Æ .	dies" .		
FateID	*	Prob	R	Param	$\overline{\mathbf{x}}$		\geq	- Z.	dis .	1	
MEA	×	Prob	н	Param	$\overline{\mathbf{A}}$		\geq	- Z .	die .	1	
GPfates	×	Prob	Python	Param	$\overline{\mathbf{x}}$	_	\geq	- 2	dia .	1	
Rifurcation methods	~	1100	i yanon	r aram	\sim					6-2-0	1 I I
DPT		Direct	B	Fived	A		~	An	Aur .		
Wishbone	×	Direct	Python	Param	$\overline{\mathbf{x}}$		>		Lat.	111	
Linear methods	~	Diroot	i yaloli	r aram	\leftarrow			-	1.0	6.0-0	19
SCORPIUS		Linear	н	Fixed	\wedge				there .		
Component 1		Linear	B	Fixed	$\overline{\mathbf{A}}$	_			die .	1	
Embeddr		Linear	R	Fixed	$\overline{\mathbf{x}}$	_	-		der.	1	
MATCHER		Linear	Python	Fixed	$\overline{\sim}$				der.		
TSCAN		Linear	R	Fixed	$\overline{\mathbf{A}}$		~		die .		
Wanderlust	×	Linear	Python	Fixed	$\overline{\mathbf{x}}$	_			dir.	1-1	
PhenoPath		Linear	н	Fixed					die .	1	
topslam	×	Linear	Python	Fixed					dir.	1	
Waterfall	~	Linear	R	Fixed			~		die .	1	
ElPiGraph linear		Direct	R	Fixed	$\overline{\mathbf{A}}$	_			Ler"	1	
ouijaflow		Linear	Python	Fixed			~		der.		
FORKS		Linear	Python	Fixed	$\overline{\frown}$	_	-		dir.	1	
Cyclic methods					\leftarrow		10	1.0	2,0 -0	1++	
Angle		Cvcle	R	Fixed	Δ				and and a		
ElPiGraph cycle		Direct	B	Fixed	云.		-		der .	1	
reCAT		Cycle	R	Fixed	$\overline{\mathbf{x}}$		~		det .	1	
	Prior	nformeti	on requi	red	$ \rightarrow $		Note	shown in	sufficie	teh tre	a nointe
	None × Weak: Start or end cells						CALISTA ouiia				
							cellT	ree Gibb	s ps	eudog	р
	🗙 Sti	rong: Ce	ll groupi	ng or tin	ne course		Gran	dPrix	SC		R
							NEF		30	JUUP	

Method

Informable testant

Saelens et al., 2019

RNA velocity

- It is possible to classify sequenced mRNAs into two classes
 - mature (old, being currently translated into protein)
 - Newly synthesized (will be translated in the future)
- This makes it possible to predict changes in gene expression for single cell (i.e. predict the future position of a cell on the manifold)
- Data extremely sparse

RNA velocity

• RNA velocity can be used for semi-automatic trajectory inference

Single-cell omics

Stuart + Satija, 2019

MOFA+ (Multi-Omics Factor Analysis)

- Views: data modalities (e.g. RNAseq, protein abundance, ...)
- Groups: batches/conditions

MOFA+ (Multi-Omics Factor Analysis)

Spatial omics

Spatial omics

Spatial omics: RNA velocity

HSPA5

Xia et al, 2019

SpatialDE

- Models spatial gene expression as Gaussian Process
- Detection of spatially variable genes, classification into types of spatial variability

Svensson et al., 2018

General issues in single cell omics

- Data sets are becoming larger very fast
 - Currently: largest available scRNAseq data set has approx. 10⁶ cells
 - Commercial platform for spatial RNAseq: 5000 spots
- Methods need to be computationally efficient and scale well
 - Increasing use of GPUs
- Very sparse data, large proportion of missing values
- No ground truth
 - Difficult to know if a method is doing The Right Thing™
- Data typically non-Gaussian
 - Makes exact calculations difficult, inefficient, or impossible
 - Sometimes transformation to approximate Gaussianity possible

Microenvironments

Core idea: interactions/communications between cells

Balkwill et al. The tumor microenvironment at a glance (J. Cell Sci 2012)

Microenvironments

Adapted from Jackson et al. The single-cell pathology landscape of breast cancer (Nature 2020)

Approach:

- 1) Instance segmentation
- Graph construction, features averaging pixel signal
- 3) Permutation test
- 4) Clustering

Schapiro et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data (Nat. methods 2017)

Microenvironments

Applying the method presented in Carpenter et al. (Nat. methods, 2018)

Approach:

- Instance segmentation from H&E stained images
- 2) Graph construction, features by clustering image features
- Predictions with GCN

WSI = Whole slide image

Lu et al. Capturing Cellular Topology in Multi-Gigapixel Pathology Images (CVPR 2020)

Alignment

• Same biology, different experiments \rightarrow need to match the data

Adapted from Comprehensive Integration of Single Cell Data (presentation of Rahul Satija)

Alignment

Satija et al. Comprehensive Integration of Single Cell Data (bioRxiv 2018)

Approach:

1) Joint dimensionality reduction $X_{f,c}, Y_{f,c}$ f features, c cells, same features $\max_{u,v} u^{\top} X^{\top} Y v, \quad ||u||^2 \leq 1, ||v||^2 \leq 1$

2) Finding anchors by mutual k nearest neighbors

3) Anchor weighting (by a Gaussian kernel) and alignment

Alignment

• Idea: considering the topology for improving the alignment

Picture from a presentation of F. Frauhammer, DKFZ

Some directions that could be worth exploring

- Topology-aware manifold aligner
- Differential expression in manifolds
- Geometric deep learning

Datasets:

- Many modalities
 - Paired (many modalities for the same entity)
 - Unpaired (from the same or from different samples)
- High dimensionality (>20000 genes in humans)
- Multi-channel, high-resolution images
- Data with tree-like latent structure (suitable for hyperbolic embeddings)

Research for a Life without Cancer

SpatialDE

- Boundary effects?
- Euclidean distance smaller than geodesic distance
- Difference in detected patterns?

