A crash introduction to Gromov hyperbolic spaces

Valentina Disarlo

Universität Heidelberg

Geodesic metric spaces

Definition

A metric space (X,d) is **proper** if for every r > 0 the ball $\overline{B(x,r)}$ is compact. It is **geodesic** if every two points of *X* are joined by a geodesic.

- \mathbb{R}^n with the Euclidean distance d_{Eucl} .
- the infinite tree *T* with its length distance (every edge has length 1);

Figure: The infinite tree T

Geodesic metric spaces: the hyperbolic space \mathbb{H}^n

Disk model \mathbb{D}^n

 $\mathbb{D}^{n} := \{x \in \mathbb{R}^{n} \mid |x| < 1\} \text{ with the Riemannian metric induced by } g_{x} := \frac{4}{(1 - ||x||^{2})^{2}} g_{Eucl}$

Upper half plane \mathbb{H}^n

 $\mathbb{H}^n := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n > 0\}$ with the Riemannian metric induced by $g_x := \frac{1}{x} g_{Eucl}$

- $\forall x, y \in \mathbb{D}^n$ there exists a unique geodesic \overline{xy}
- every geodesic segment can be extended indefinitely

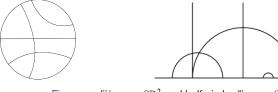


Figure: radii/arcs $\perp \partial \mathbb{D}^2$ and half-circles/lines $\perp \partial \mathbb{H}^2$

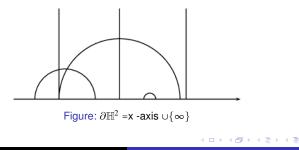
Geodesic metric spaces: the hyperbolic space \mathbb{H}^n

The **boundary of** \mathbb{H}^n is defined as the space: $\partial \mathbb{H}^n = \{ \text{ geodesic rays } c : [0, \infty) \rightarrow \mathbb{H}^n \} / \sim$

 $c \sim c'$ if and only if d(c(t), c'(t)) < M

It can be topologized so that $\partial \mathbb{H}^n = S^{n-1}$ and $\overline{\mathbb{H}^n} = \mathbb{H}^n \cup \partial \mathbb{H}^n$ is compact.

Two geodesics can be: incident (1 common point in \mathbb{H}^n , asymptotic (1 common point on $\partial \mathbb{H}^n$), or ultraparallel (no common points).



Motivation: Negative curvature without formulas

Riemannian manifold $(M^n, g) \longrightarrow$ intrinsic notion of curvature defined by g

- (flat geometry) \mathbb{R}^2 has constant sectional curvature = 0
- (spherical geometry) \mathbb{S}^2 has constant sectional curvature = 1
- (hyperbolic geometry) ℍ² has constant sectional curvature = −1: geodesics diverge exponentially fast; geodesic triangles are thin...

This talk:

- negative curvature for metric spaces using only geometric notions
- analogies between trees and $\mathbb{H}^n \longrightarrow$ Gromov hyperbolic metric spaces

No Riemannian geometry, no tensors, no painful formulas like this:

$$K = -\frac{1}{E} \left(\frac{\partial}{\partial u} \Gamma_{12}^2 - \frac{\partial}{\partial v} \Gamma_{11}^2 + \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{12}^2 \Gamma_{12}^2 - \Gamma_{11}^2 \Gamma_{22}^2 \right)$$

(Gaussian curvature n = 2)

イロト イポト イラト イラト

Geodesic metric spaces

Let (X, d_X) and (Y, d_Y) be proper geodesic metric spaces. A map $f : X \to Y$ is

- an **isometry** when $d_Y(f(x), f(y)) = d_X(x, y)$ for all $x, y \in X$;
- a (λ, ϵ) quasi-isometric embedding when $d_Y(f(x), f(y)) \sim d_X(x, y)$:

$$\frac{1}{\lambda}d_X(x,y) - \epsilon \le d_Y(f(x),f(y)) \le \lambda d_X(x,y) + \epsilon \text{ for all } x,y \in X ;$$

• a (λ, ϵ) quasi-isometry when *f* is a (λ, ϵ) -q.isometric embedding and $\exists C \ge 0$ such that every point of *Y* lies in a *C*-neighborhood of *Imf*.

Quasi-isometries: Examples

- Every finite diameter space X is quasi-isometric to a point.
- All finite degree trees are quasi-isometric to each other.
- \mathbb{R}^2 is not quasi-isometric to \mathbb{R} .
- \mathbb{R}^2 is not quasi-isometric to \mathbb{H}^2

A **quasigeodesic** is a quasi-isometric embedding $\gamma : I \to X$ where $I \subset \mathbb{R}$.

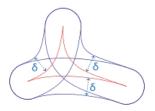
- Every geodesic in X is as quasi-geodesic
- The curve t → (t, log(1 + t)) is a quasi-geodesic in (ℝ², d_E) but not a geodesic.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

The Rips condition The 4-point condition Geodesics and quasi-geodesics

Gromov hyperbolicity I : the Rips condition

Let $\delta > 0$. A geodesic triangle is called δ -**slim** if each of its sides is contained in the δ -neighborhood of the union of the other two sides.



Definition (Criterion I)

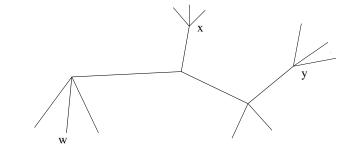
A space (X, d) is **Gromov-hyperbolic** (or δ -hyperbolic) if there exists a $\delta \ge 0$ such that every geodesic triangle is δ -slim.

The Rips condition The 4-point condition Geodesics and quasi-geodesics

Gromov hyperbolicity I: Examples

Gromov hyperbolic spaces are "thickened" versions of trees:

- \mathbb{H}^n (any complete Riemannian manifold with sectional curvature $\leq \epsilon < 0$).
- Trees are 0-hyperbolic: geodesic triangles are tripods



• \mathbb{R}^2 is **not** Gromov-hyperbolic

The Rips condition The 4-point condition Geodesics and quasi-geodesics

Gromov hyperbolicity II: Gromov product

Definition (Gromov Product)

The **Gromov product** of $x, y \in X$ with respect to $w \in X$ is defined as

$$(x,y)_w = \frac{1}{2}(d(x,w) + d(y,w) - d(x,y))$$

- it measures the "defect" of triangle inequality: $d(x, y) \le d(x, w) + d(y, w)$
- $(x, y)_w$ measures how long the geodesics \overline{wx} and \overline{wy} travel together before diverging

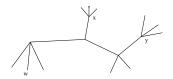


Figure: In a tree $(x, y)_w$ is the distance from w to \overline{xy}

• • • • • • • • • • • • •

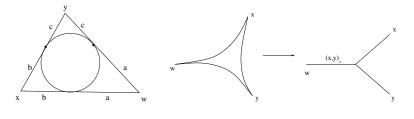
The Rips condition The 4-point condition Geodesics and quasi-geodesics

Gromov hyperbolicity II: Geometric interpretation

• $(x, y)_w$ measures how long \overline{wx} and \overline{wy} travel together before diverging There exists unique $a, b, c \ge 0$ such that:

d(x, w) = a + bd(x, y) = b + cd(y, w) = a + c

The solutions are $a = (x, y)_w$; $b = (y, w)_x$ and $c = (x, w)_y$.



The Rips condition The 4-point condition Geodesics and quasi-geodesics

Gromov hyperbolicity II: the 4-point condition

Definition (Criterion II: the 4-point condition)

X is δ -hyperbolic if and only if for all $x, y, z, w \in X$ we have:

 $(x,y)_w \geq \min((y,z)_w,(x,z)_w) - \delta .$

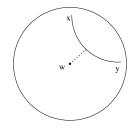
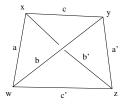


Figure: $(x, y)_w \sim d(w, [x, y])$ in \mathbb{H}^2

The Rips condition The 4-point condition Geodesics and quasi-geodesics

Gromov hyperbolicity II: the 4-point condition

Consider the tetrahedron T(x, y, w, z):



- sum the lengths of the opposite sides a + a', b + b', c + c';
- order the sums: $S \leq M \leq L$.

The 4-point condition is equivalent to the following condition on T:

$$L \leq M + 2\delta$$
 .

The Rips condition The 4-point condition Geodesics and quasi-geodesics

Geodesics and quasi-geodesics

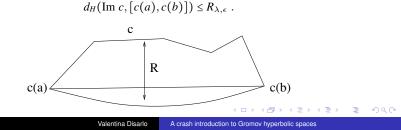
Definition (Hausdorff distance)

Let $A, B \subset X$. The **Hausdorff distance** between A, B is defined by

$$d_H(A, B) = \inf\{\epsilon \mid A \subseteq N_\epsilon(B) \text{ and } B \subseteq N_\epsilon(A)\}$$

Theorem (Stability of quasi-geodesics)

Let *X* be δ -hyperbolic. For every $\lambda \ge 1$ and $\epsilon \ge 0$ there exists $R_{\lambda,\epsilon}$ such that for every (λ, ϵ) -quasigeodesic $c : [a, b] \to X$ is *R*-close to every geodesic segment [c(a), c(b)] we have:



Definition Bonus: visual metric on ∂X

∂X Gromov boundary: asymptotic geodesic rays

Definition (Gromov-boundary)

We define the Gromov boundary of X as

 $\partial_{r,w} X \coloneqq \{ c : [0, \infty) \to X \text{ geodesic ray }, c(0) = w \} / \sim$

where $c \sim c'$ if and only if $d_H(\text{Im } c, \text{Im } c') < \infty$.

A basis of neighborhoods for $p \in \partial_{r,w}X$ is given by

 $V(p,R) = \{q \in \partial X \mid \exists c \in [p], c' \in [q] \text{ with } \liminf_{s,t \to \infty} (c(s), c'(t))_w \ge R\}.$

(Visibility) For every x ≠ y ∈ ∂X there exists a bi-infinite geodesic connecting them

< ロ > < 同 > < 三 > < 三 > -

Definition Bonus: visual metric on ∂X

Properties of ∂X

A few facts (theorems):

- $\partial_{r,w}X$ does not depend on w;
- ∂X admits a metrizable topology and $\overline{X} := X \cup \partial X$ is compact.

Theorem

Let X, X' be hyperbolic spaces. If $f : X \to X'$ is a q.i.-embedding then the map

$$f_{\partial} : \partial X \to \partial X'$$
$$[c] \mapsto [f \circ c]$$

is a topological embedding. If f is a quasi-isometry then f_{∂} is a homeomorphism.

• • • • • • • • • • • •

Definition Bonus: visual metric on ∂X

Gromov-boundaries: Hall of Fame

- The Gromov boundary of the tree T_n is a Cantor set.
- The Gromov boundary of \mathbb{H}^n is $\partial \mathbb{H}^n = \mathbb{S}^{n-1}$.

Corollary

 \mathbb{H}^n and \mathbb{H}^m are quasi-isometric if and only if n = m.

Definition Bonus: visual metric on ∂X

∂X Gromov boundary: converging sequences

Fix $w \in X$. Let $\{x_n\} \subseteq X$ be a sequence. We say $x_n \to \infty$ if

 $\liminf_{n,m\to\infty}(x_n,x_m)_w=+\infty.$

(The definition actually does not depend on w.)

When X is Gromov-hyperbolic we define an equivalence relation \sim :

 $\{x_n\} \sim \{y_n\}$ if $\liminf_{i,j\to\infty} (x_i, y_j)_w = \infty$.

The space $\partial_{s,w} X := \{ \text{ sequences } x_n \to \infty \} / \sim \text{ is the Gromov boundary of } X.$

A basis of neighborhoods for $p \in \partial_{s,w}X$ is given by

$$U(p,R) = \{q \in \partial X \mid \exists (x_n) \in p, (y_n) \in q \text{ with } \liminf_{i,j \to \infty} (x_i, y_j)_w \ge R\}$$

< ロ > < 同 > < 三 > < 三 > -

Definition Bonus: visual metric on ∂X

Generalized Gromov product of \overline{X}

We can extend the Gromov product to $\overline{X} = X \cup \partial X$ as follows:

Definition (Gromov product on \overline{X})

Let *X* be δ -hyperbolic space with basepoint $p \in X$. We extend the Gromov product to $\overline{X} = X \cup \partial X$ by:

$$(x, y)_p = \sup \liminf_{i,j\to\infty} (x_i, y_j)_p$$
,

where the supremum is taken over all sequences $X \ni x_i \rightarrow x$ and $X \ni y_i \rightarrow y$.

4 D N 4 B N 4 B N 4 B

Definition Bonus: visual metric on ∂X

Generalized Gromov product on $\partial \mathbb{H}^n$

Fix a base point *p* and let $x, y \in \partial \mathbb{H}^n$. Then the generalized Gromov product

$$(x,y)_p = \log \csc(\theta/2)$$
,

where θ is the angle between the geodesic rays \overline{px} and \overline{py} .

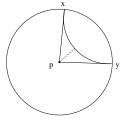


Figure: $(x, y)_p \sim d(p, [x, y])$

A (1) > A (2) > A

Definition Bonus: visual metric on ∂X

Visual metric on ∂X

Definition (Visual metric on ∂X)

Let *X* be a hyperbolic space with basepoint *p*. A metric *d* on ∂X is called a *visual metric* with parameter *a* if $\exists A, B > 0$ such that for all $x, y \in X$:

$$Aa^{-(x,y)_p} \le d(x,y) \le Ba^{-(x,y)_p}$$

Theorem (Existence of visual metrics on ∂X)

Let X δ -hyperbolic. There exists ϵ_0 such that for every $0 \le \epsilon < \epsilon_0$ then $d_{p,\epsilon}$ is a visual metric on ∂X :

$$K_{\epsilon}\rho_{p,\epsilon}(x,y) \leq d_{p,\epsilon}(x,y) \leq \rho_{p,\epsilon}(x,y)$$
.

The topology induced on $(\partial X, d_{p,\epsilon})$ coincides with the one defined before.

Definition Bonus: visual metric on ∂X

Visual metric on ∂X : Construction

Fix $\epsilon > 0$. There is a natural "measure of separation" of points on ∂X :

$$\rho_{p,\epsilon}(x,y) = e^{-\epsilon(x,y)_p}$$

(Notice that $\rho_{p,\epsilon}(x,y) = 0$ if and only if x = y and $\rho_{p,\epsilon}$ is symmetric).

Definition (Pseudo-metric associated to $\rho_{p,\epsilon}$)

The pseudo-metric associated to it is defined as:

$$d_{p,\epsilon}(x,y) \coloneqq \inf \sum_{i=1}^n \rho_{p,\epsilon}(x_{i-1},x_i)$$

The infimum is over the chains $x = x_0, ..., x_n = y$ with no bound on *n*. (When $\epsilon < \epsilon_0$ then $d_{p,\epsilon}$ is actually a metric: $d_{p,\epsilon}(x, y) > 0$ when $x \neq y$).

• $\partial \mathbb{H}^n$ is isometric to $\partial \mathbb{S}^{n-1}$.

Definition Bonus: visual metric on ∂X

Visual metric on ∂X

Theorem (Dependence on p, ϵ)

Let X be a δ -hyperbolic space.

• if $d_{p,\epsilon}$ and $d_{q,\epsilon}$ are visual metrics on ∂X then they are Lipschitz equivalent.

$$\exists C > 0 \quad \frac{\left[d_{q,\epsilon'}(x,y)\right]^{\alpha}}{C} \le d_{p,\epsilon}(x,y) \le C\left[d_{q,\epsilon'}(x,y)\right]^{\alpha} \quad \forall x, y \in \partial X$$

(with $\alpha = \log(\epsilon) / \log(\epsilon')$).

Corollary

Let $f : X \to Y$ be a quasi-isometry between δ -hyperbolic spaces. Then

$$f_{\partial} : (\partial X, d) \to (\partial Y, d)$$
$$[c] \mapsto [f \circ c]$$

is a Hölder homeomorphism.

Conclusion

General frame for the study of negative curvature spaces:

- Capture curvature without use of heavy differential geometry and formulas.
- Captures the analogies between the geometry of \mathbb{H}^n and metric trees.
- Boundaries are nice.
- Other tensor-free approaches to negative curvature: geometry of CAT(0) spaces .